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INTRODUCTION

Why are statistical methods important? One reason is that they play a fundamen-
tal role in a wide range of disciplines including physics, chemistry, astronomy,
manufacturing, agriculture, communications, pharmaceuticals, medicine, biology,
kinesiology, sports, sociology, political science, linguistics, business, economics,
education, and psychology. Basic statistical techniques impact your life.

At its simplest level, statistics involves the description and summary of events.
How many home runs did Babe Ruth hit? What is the average rainfall in Seattle? But
from a scientific point of view, it has come to mean much more. Broadly defined,
it is the science, technology, and art of extracting information from observational
data, with an emphasis on solving real-world problems. As Stigler (1986, p. 1) has
so eloquently put it:

Modern statistics provides a quantitative technology for empirical science; it is a
logic and methodology for the measurement of uncertainty and for examination of the
consequences of that uncertainty in the planning and interpretation of experimentation
and observation.

To help elucidate the types of problems addressed in this book, consider an exper-
iment aimed at investigating the effects of ozone on weight gain in rats (Doksum and
Sievers, 1976). The experimental group consisted of 22 seventy-day-old rats kept in
an ozone environment for 7 days. A control group of 23 rats, of the same age, was kept
in an ozone-free environment. The results of this experiment are shown in Table 1.1.

How should these two groups be compared? A natural reaction is to compute the
average weight gain for both groups. The averages turn out to be 11 for the ozone
group and 22.4 for the control group. The average is higher for the control group
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2 INTRODUCTION

TABLE 1.1 Weight Gain of Rats in Ozone Experiment

Control 41.0 38.4 24.4 25.9 21.9 18.3 13.1 27.3 28.5 −16.9
Ozone 10.1 6.1 20.4 7.3 14.3 15.5 −9.9 6.8 28.2 17.9
Control 26.0 17.4 21.8 15.4 27.4 19.2 22.4 17.7 26.0 29.4
Ozone −9.0 −12.9 14.0 6.6 12.1 15.7 39.9 −15.9 54.6 −14.7
Control 21.4 26.6 22.7
Ozone 44.1 −9.0

suggesting that for the typical rat, weight gain will be less in an ozone environment.
However, serious concerns come to mind upon a moment’s reflection. Only 22 rats
were kept in the ozone environment, and only 23 rats were in the control group.
Suppose 100 rats had been used, or 1,000, or even a million. Is it reasonable to
conclude that the ozone group would still have a smaller average than the control
group? What about using the average to reflect the weight gain for the typical rat?
Are there other methods for summarizing data that might have practical value when
characterizing the differences between the groups? A goal of this book is to introduce
the basic tools for answering these questions.

Most of the basic statistical methods currently taught and used were developed
prior to the year 1960 and are based on strategies developed about 200 years ago.
Of particular importance was the work of Pierre-Simon Laplace (1749–1827) and
Carl Friedrich Gauss (1777–1855). Approximately a century ago, major advances
began to appear, which dominate how researchers analyze data today. Especially
important was the work of Karl Pearson (1857–1936) Jerzy Neyman (1894–1981),
Egon Pearson (1895–1980), and Sir Ronald Fisher (1890–1962). For various reasons
summarized in subsequent chapters, it was once thought that these methods generally
perform well in terms of extracting accurate information from data. But in recent
years, it has become evident that this is not always the case. Indeed, three major
insights have revealed conditions where methods routinely used today can be highly
unsatisfactory.

The good news is that many new and improved methods have been developed
that are aimed at dealing with known problems associated with the more commonly
used techniques. In practical terms, modern technology offers the opportunity to
get a deeper and more accurate understanding of data. So, a major goal of this book
is to introduce basic methods in a manner that builds a conceptual foundation for
understanding when commonly used techniques perform in a satisfactory manner
and when this is not the case. Another goal is to provide some understanding of
when and why more modern methods have practical value.

This book does not describe the mathematical underpinnings of routinely used
statistical techniques, but rather the concepts and principles that are used. Generally,
the essence of statistical reasoning can be understood with little training in mathe-
matics beyond basic high school algebra. However, there are several key components
underlying the basic strategies to be described, the result being that it is easy to lose
track of where we are going when the individual components are being explained.
Consequently, it might help to provide a brief overview of what is covered in this
book.



�

� �

�

SAMPLES VERSUS POPULATIONS 3

1.1 SAMPLES VERSUS POPULATIONS

A key aspect of most statistical methods is the distinction between a sample of
participants or objects and a population of participants or objects. A population of
participants or objects consists of all those participants or objects that are relevant
in a particular study. In the weight-gain experiment with rats, there are millions of
rats that could be used if sufficient resources were available. To be concrete, suppose
there are a billion rats and the goal is to determine the average weight gain if all
1 billion were kept in an ozone environment. Then, these 1 billion rats compose
the population of rats we wish to study. The average gain for these rats is called
the population mean. In a similar manner, there is an average weight gain for all 1
billion rats that might be raised in an ozone-free environment instead. This is the
population mean for rats raised in an ozone-free environment. The obvious problem
is that it is impractical to measure all 1 billion rats. In the experiment, only 22 rats
were kept in an ozone environment. These 22 rats are an example of a sample.

Definition. A sample is any subset of the population of individuals or things under study.

Example

Imagine that a new method for treating depression is tried on 20 individuals. Further
imagine that after treatment with the newmethod, depressive symptoms are measured
and the average is found to be 16. So, we have information about the 20 individuals
in the study, but of particular importance is knowing the average that would result
if all individuals suffering from depression were treated with the new method. The
population corresponds to all individuals suffering from depression. The sample con-
sists of the 20 individuals who were treated with the new method. A basic issue is the
uncertainty of how well the average based on the 20 individuals in the study reflects
the average if all depressed individuals were to receive the new treatment.

Example

Shortly after the Norman Conquest, around the year 1100, there was already a need
for methods that indicate how well a sample reflects a population of objects. The
population of objects in this case consisted of coins produced on any given day. It
was desired that the weight of each coin be close to some specified amount. As a
check on the manufacturing process, a selection of each day’s coins was reserved
in a box (“the Pyx”) for inspection. In modern terminology, the coins selected for
inspection are an example of a sample, and the goal is to generalize to the population
of coins, which in this case is all the coins produced on that day.

Three Fundamental Components of Statistics Statistical techniques consist of a
wide range of goals, techniques, and strategies. Three fundamental components worth
stressing are given as follows:

1. Design. Roughly, this refers to a procedure for planning experiments so that
data yield valid and objective conclusions. Well-chosen experimental designs
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maximize the amount of information that can be obtained for a given amount
of experimental effort.

2. Description. This refers to numerical and graphical methods for summarizing
data.

3. Inference. This refers to making predictions or generalizations about a popula-
tion of individuals or things based on a sample of observations.

Design is a vast subject, and only the most basic issues are discussed here. The
immediate goal is to describe some fundamental reasons why design is important.
As a simple illustration, imagine you are interested in factors that affect health. In
North America, where fat accounts for a third of the calories consumed, the death
rate from heart disease is 20 times higher than in rural China where the typical diet
is closer to 10% fat. What are we to make of this? Should we eliminate as much fat
from our diet as possible? Are all fats bad? Could it be that some are beneficial? This
purely descriptive study does not address these issues in an adequate manner. This is
not to say that descriptive studies have no merit, only that resolving important issues
can be difficult or impossible without good experimental design. For example, heart
disease is relatively rare in Mediterranean countries where fat intake can approach
40% of calories. One distinguishing feature between the American diet and the
Mediterranean diet is the type of fat consumed. So, one possibility is that the amount
of fat in a diet, without regard to the type of fat, might be a poor gauge of nutritional
quality. Note, however, that in the observational study just described, nothing has
been done to control other factors that might influence heart disease. Sorting out what
does and does not contribute to heart disease requires good experimental design.

The ozone experiment provides a simple example where design considerations
are important. It is evident that the age of young rats is related to their weight. So,
the experiment was designed to control for age by using rats that have the same age
and then manipulate the single factor that is of interest, namely, the amount of ozone
in the air.

Description refers to ways of summarizing data that provide useful information
about the phenomenon under study. It includes methods for describing both the
sample available to us and the entire population of participants if only they could be
measured. The average is one of the most common ways of summarizing data. As
previously noted, the average for all the participants in a population is called the pop-
ulation mean; it is typically represented by the Greek letter mu, 𝜇. The average based
on a sample of participants is called a sample mean. The hope is that the sample mean
provides a good reflection of the population mean. Inferential methods described in
subsequent chapters are designed to determine the extent this goal is achieved.

1.2 COMMENTS ON SOFTWARE

As is probably evident, a key component to getting the most accurate and useful
information from data is software. There are now several popular software packages
for analyzing data. Perhaps the most important thing to keep in mind is that the choice
of software can be crucial, particularly when the goal is to apply new and improved
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methods developed during the last half century. Presumably, no software package is
perfect, based on all of the criteria that might be used to judge them, but the following
comments about some of the choices might help.

Best Software The software R is arguably the best software package for applying
all of the methods covered in this book. Moreover, it is free and available at http://
cran.R-project.org. Many modern methods developed in recent years, as well as all
classic techniques, can be applied. One feature that makes R highly valuable from a
research perspective is that a group of statisticians does an excellent job of constantly
adding and updating routines aimed at applying modern techniques. A wide range
of modern methods can be applied using the basic package and many specialized
methods are available, some of which are described in this book.

Very Good Software SAS is another software package that provides power and
excellent flexibility. Many modern methods can be applied, but a large number of the
most recently developed techniques are not yet available via SAS. SAS code could be
written by anyone reasonably familiar with SAS, and the company is fairly diligent
about upgrading the routines in their package, but this has not been done yet for some
of the methods covered in this book.

Good SoftwareMinitab is fairly simple to use and provides a reasonable degree of
flexibility when analyzing data. All of the standard methods developed prior to the
year 1960 are readily available. Many modern methods could be run in Minitab, but
doing so is not straightforward. Similarly to SAS, special Minitab code is needed,
and writing this code would take some effort. Moreover, certain modern methods
that are readily applied with R cannot be easily applied when using Minitab even if
an investigator is willing to write the appropriate code.

Unsatisfactory Software SPSS is certainly one of the more popular and frequently
used software packages. But in terms of providing access to the many new and
improved methods for comparing groups and studying associations, which have
appeared during the last half century, it must be given a poor rating. An additional
concern is its lack of flexibility compared to R. It is a relatively simple matter for
statisticians to create specialized R code that provides non-statisticians with easy
access to modern methods. Some modern methods can be applied with SPSS, but
often this task is difficult or virtually impossible.

The software EXCEL is relatively easy to use, it provides some flexibility, but
generally modern methods are not readily applied. McCullough and Wilson (2005)
conclude that this software package is not maintained in an adequate manner. (For
a more detailed description of some problems with this software, see Heiser, 2006.)
Even if EXCEL functions were available for all modern methods that might be used,
features noted by McCullough and Wilson suggest that EXCEL should not be used.
Some improvements weremade inMicrosoft Excel 2010, but serious concerns remain
(Mélard, 2014).

1.3 R BASICS

R is a vast and powerful software package. Even a book completely dedicated to R
cannot cover all of the methods and features that are available. The immediate goal is
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to describe the basic features that are needed in this book. Many additional features
are introduced in subsequent chapters when they are required. Another resource for
learning the basics of R is Swirl, which can be installed as described at http://swirlstats
.com/. There are many books on R as a Google Search will reveal. A free manual is
available at http://cran.r-project.org/. On the left side of this web page near the bottom
under documentation, you will see a manual. Click on this link to gain access to
the manual. Another free manual is available at http://cran.r-project.org/doc/contrib/
Verzani-SimpleR.pdf. (Or, google Verzani’s simpleR.)

R can be downloaded from http://cran.r-project.org/. At the top of the web page,
you will see three links:

• Download R for Linux

• Download R for (Mac) OS X

• Download R for Windows

Simply click on the link matching the computer you are using to download R.
Once you start R, you will see this prompt:

>.

This means that R is waiting for a command. (You do not type > The prompt is used
to indicate where you type commands.) To quit R, use the command

> q().

That is, type q() and hit Enter.

1.3.1 Entering Data

To begin with the simplest case, imagine you want to store the value 5 in an R variable
called blob. This can be done with the command

blob=5.

Typing blob and hitting Enter will produce the value 5 on the computer screen.
An important feature of R is that a collection of values can be stored in a single R

variable. One way of doing this is with the R command c, which stands for combine.
For example, the values 2, 4, 6, 8, 12 can be stored in the R variable blob with the
command

blob=c(2,4,6,8,12).

The first value, 2, is stored in blob[1], the second value is stored in blob[2],
and so on. To determine how many values are stored in an R variable, use the R
command length. In the example

length(blob)

would return the value 5.
R has various ways of reading data stored in a file. The R commands scan and

read.table are the two basic ways of accomplishing this goal. The simplest ver-
sion of the scan command assumes that a string of values is to be read. By default, R
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assumes that values are separated by one or more spaces. Missing values are assumed
to be recorded as NA for “not available.”

For example, imagine that a file called ice.dat contains

6 3 12 8 9.

Then, the command

ice=scan(file="ice.dat")

will read these values from the file and store them in the R variable ice. However,
this assumes that the data are stored in the directory where R expects to find the
file. Just where R expects to find the file depends on the hardware and how R is being
accessed. (It might assume that data are stored in the main directory or in Documents,
but other possibilities exist.) A simple way of dealing with this issue is to use the R
command file.choose in conjunction with the scan command. That is, use the
command

ice=scan(file.choose()).

This will open a window that lists the files on your computer. Simply click on the
appropriate file.

If the data are not separated by one or more spaces, but rather some particular char-
acter, the argument sep tells R how the values are separated. For example, suppose
the file contains

6, 3, 12, 8, 9.

That is, the values in the file are separated by a comma rather than a space. Now use
the command

ice=scan(file.choose(),sep=",")

In other words, the argument sep tells R the character used to separate the values. If
the values were separated by &, use the command

ice=scan(file.choose(),sep="&").

When you quit R with the command q(), R will ask whether you want to save
your results. If you answer yes, R variables containing data will remain in R until
they are removed. So, in this last example, if you quit R and then restart R, typing
ice will again return the values 6, 3, 12, 8, 9. To remove data, use the rm command.
For example,

rm(ice)

would remove the R variable ice.
R variables are case-sensitive. So, for example, the command

Ice=5

would store the value 5 in Ice, but the R variable ice would still contain the values
listed previously, unless of course they had been removed.
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The R command read.table is another commonly used method for reading
data into R. It is designed to read columns of data where each column contains the
values of some variable. It has the general form

read.table(file, header = FALSE, sep = "",na.strings =
"NA",skip=0)

where the argument file indicates the name of the file where the data are stored
and the other arguments are explained momentarily. Notice that the first argument,
file, does not contain an equal sign. This means that a value for this argument
must be specified. With an equal sign, the argument defaults to the value shown.
So, for read.table, header is an optional argument that will be taken to be
header=FALSE if it is not used.

Example

Suppose a file called quake.dat contains three measures related to earthquakes:

magnitude length duration
7.8 360 130
7.7 400 110
7.5 75 27
7.3 70 24
7.0 40 7
6.9 50 15
6.7 16 8
6.7 14 7
6.6 23 15
6.5 25 6
6.4 30 13
6.4 15 5
6.1 15 5
5.9 20 4
5.9 6 3
5.8 5 2

Then, the R command

quake=read.table(‘quake.dat’,skip=1)

will read the data into the R variable quake, where the argument skip=1 indicates
that the first line of the data file is to be ignored, which in this case contains the three
labels: magnitude, length, and duration. As with the scan command, you can point
to the file to be read using the file.choose command. That is, use the command

quake=read.table(file.choose(),skip=1).

Typing quake and hitting Enter produce

V1 V2 V3
1 7.8 360 130
2 7.7 400 110
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3 7.5 75 27
4 7.3 70 24
5 7.0 40 7
6 6.9 50 15
7 6.7 16 8
8 6.7 14 7
9 6.6 23 15
10 6.5 25 6
11 6.4 30 13
12 6.4 15 5
13 6.1 15 5
14 5.9 20 4
15 5.9 6 3
16 5.8 5 2

So, the columns of the data are given the names V1, V2, and V3, as indicated. Typing
the R command

quake$V1

and hitting Enter would return the first column of data, namely the magnitude of the
earthquakes. The command

quake[,1]

would accomplish the same goal. In a similar manner, quake[,2] contains the
data in the second column and quake[,3] contains the data in the third column. In
contrast, quake[1,] contains the data in the first row. So, typing the command

quake[1,]

and hitting Enter would return

7.8 360 130.

The command quake[1,1] would return the value 7.8, the value stored in the first
row and the first column, and quake[1,2] would return 360.

Now consider the command

quake=read.table("quake.dat",header=TRUE).

The argument header=TRUE tells R that the first line in the file contains labels
for the columns of data, which for the earthquake data are magnitude, length, and
duration. Now the command

quake$magnitude

would print the first column of data on the computer screen. The R command

labels

returns the labels associated with an R variable. For the situation at hand,

labels(quake)
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would return magnitude, length, and duration. The command

head(dat)

returns the first six lines of the data stored in dat and

tail(dat)

returns the final six lines. The R command

str(dat)

returns information about the number of observations, the number of variables, and
it lists some of the values stored in dat. (It also indicates the storage mode of dat;
storage modes are explained in Section 1.3.3.)

As was the case with the scan command, read.table assumes that values
stored in a data file are separated by one or more spaces. But suppose the values are
separated by some symbol, say &. Again, this can be handled via the argument sep.
Now the command would resemble this:

quake=read.table("quake.dat",sep="&",header=TRUE)

Another common issue is reading data into R that are stored in some other software
package such as SPSS. The seemingly easiest way of dealing with this is to first store
the data in a .csv file, where csv stands for Comma Separated Values. (SPSS, EXCEL,
and other popular software have a command to accomplish this goal.) Once this is
done, the data can be read into R using the read.csv command, which is used in
the same way as the read.table command.

Now imagine that some of the values in the quake file are missing and that missing
values are indicated by M rather than NA. The argument na.strings can be used
to indicate that missing values are stored as M. That is, now the data would be read
using the R command

quake=read.table(quake.dat.txt,na.strings="M",header=TRUE).

1.3.2 Arithmetic Operations

In the simplest case, arithmetic operations can be performed on numbers using the
operators +, −, * (multiplication), / (division), and ̂ (exponentiation). For example,
to compute 1 plus 5 squared, use the command

1+5 ̂ 2

which returns

[1] 26.

To store the answer in an R variable, say ans, use the command

ans=1+5 ̂ 2.
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If two or more values are stored in an R variable, arithmetic operations applied to
the variable name will be performed on all the values. For example, if the values 2,
5, 8, 12, and 25 are stored in the R variable vdat, then the command

vinv=1/vdat

will compute 1/2, 1/5, 1/8, 1/12, and 1/25, and store the results in the R variable
vinv. The R command

2*vdat

multiplies every value in vdat by 2. For the situation at hand, it returns 4, 10, 16,
24, and 50. The command

vdat-2

returns 0, 3, 6, 10, and 23. That is, 2 is subtracted from every element in vdat.
Most R commands consist of a name of some function followed by one or more

arguments enclosed in parentheses. There are hundreds of functions that come with
R. Some of the more basic functions are listed as follows:

Function Description

abs Absolute value
exp Exponential
log Natural logarithm
sqrt Square root
cor Correlation (explained in Chapter 8)
mean Arithmetic mean (with a trimming option)
median Median (explained in Chapter 2)
min Smallest value
max Largest value
range Determines the minimum and maximum values
sd Standard deviation (explained in Chapter 2)
sum Arithmetic sum
var Variance (explained in Chapter 2) and covariance (explained in

Chapter 8)
length Indicates how many values are stored in an R variable.

Example

If the values 2, 7, 9, and 14 are stored in the R variable x, the command

min(x)

returns 2, the smallest of the four values stored in x. The average of the numbers is
computed with the command

mean(x),
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which returns the value 8. The command range(x) returns the largest and smallest
values stored in x, which are 2 and 14, respectively. The command

v=range(x)

would result in the smallest value being stored in v[1] and the the largest value
stored in v[2]. The command

sum(x)

returns the value 2 + 7 + 9 + 14 = 32. The command

sum(x)/length(x)

is another way to compute the average.

1.3.3 Storage Types and Modes

R has several ways of storing data. The four types that are important in this book are
vectors, matrices, data frames, and list mode.

Vectors are themost basic way of storing data. A vector is just a collection of values
stored in some R variable. When data are read into R using the scan command, the
data are stored in a vector. The R command

blob=c(2,4,6,8,12),

previously described, creates a vector containing the values 2, 4, 6, 8, and 12.
Amatrix is a rectangular array of values having n rows and J columns. Imagine, for

example, that the performance of 10 athletes is measured on three different occasions.
Then, a convenient way of storing the data is in a matrix with n = 10 rows and J = 3
columns. So, the first row contains the three measures for the first individual, the
second row contains the three measures for the second individual, and so on.

As another example, imagine that for each of 20 individuals you measure blood
glucose levels, anxiety, height, and weight. Then, a convenient way of storing the data
is in a matrix with n = 20 rows and J = 4 columns, where the first column contains
blood glucose levels, the second column contains ameasure of anxiety, and so forth. A
vector can be thought of as a matrix with a single column, but R makes a distinction
between a vector and a matrix. If, for example, x is a matrix with 10 rows and 2
columns, the R command

is.vector(x)

returns FALSE, meaning that the R variable x is not a vector. But the R command

is.vector(x[,1])

returns TRUE, meaning that column 1 of the matrix x is a vector. More generally, any
single column of a matrix is a vector. The same is true for any row of x. For example,

is.vector(x[2,])
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would return TRUE, meaning that the second row of x is a vector. In contrast,

is.matrix(x)

returns TRUE and the command

is.matrix(x[,1])

returns FALSE.
There are several ways a matrix can be created in R. For example, imagine that

you already have an R variable BPS containing measures of systolic blood pressure
for 30 individuals and for the same 30 individuals, the R variable BPD contains their
diastolic blood pressure. The command

BP=cbind(BPS,BPD)

would result in a matrix with 30 rows and 2 columns. The command cbind(BPS,
BPD) says to bind together BPS and BPD as columns. The R command rbind binds
together rows.

To determine how many rows a matrix has, use the R command nrow. The com-
mand ncol returns the number of columns and dim returns both the number of rows
and columns. Here, ncol(BP) would return the value 2.

You can apply arithmetic operations to specific rows or columns of a matrix. For
example, to compute the average of all values in column 1 of the matrix m, use the
command

mean(m[,1]).

The command

mean(m[2,])

computes the average of all values in row 2. In contrast, the command

mean(m)

would average all of the values in m. If you have several columns of data and want
to compute the average for each column, there is a quick way of doing this via the
apply command. The command

apply(m,2,mean)

computes the average for each column. The command

apply(m,1,mean)

computes the average for each row.
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Another way to create a matrix is with the R command matrix.

Example

The command

matrix(c(1,4,8,3,7,2),ncol=2)

returns

[,1] [,2]
[1,] 1 3
[2,] 4 7
[3,] 8 2

The argument ncol tells R how many columns the matrix is to have. Note that the
first three numbers are stored in the first column and the other three are in column 2.
In contrast, the command

matrix(c(1,4,8,3,7,2),ncol=2,byrow=TRUE)

returns

[,1] [,2]
[1,] 1 4
[2,] 8 3
[3,] 7 2

Now the first two numbers are stored in the first row, the next two are stored in the
second row, and the final two are stored in the third row. That is, it fills in the numbers
by rows rather than columns.

There are several storage modes used by R. The four important ones in this book
are the following: logical, numeric, character, and factor. As the name implies,
numeric refers to numbers in contrast to characters such as “A.” (Logical variables
are discussed in Section 1.3.4.) For present purposes, factor variables can be viewed
as a storage mode that indicates the group to which an individual belongs. Imagine,
for example, a study dealing with hypertension where some individuals receive an
experimental drug and others receive a placebo. Further imagine that the data are
stored in the file BP_study containing two columns. The first column contains blood
pressure measures and the second contains the letters E and P, where E indicates that
an individual received the experimental drug and P indicates a placebo. So, the first
few rows in the file might resemble this:

120 E
145 P
132 E
121 E
139 P

As previously explained, the R command

BP=read.table(file="BP_study" )
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can be used to read the data and store it in the R variable BP. When this is done,
BP will be stored in what R calls a data frame. Similar to a matrix, a data frame
consists of n rows and J columns. The advantage of a data frame over a matrix is that
different columns of a data frame can contain different types of data. In contrast, a
matrix cannot have a mix of data types. For example, it cannot contain both numeric
and character data: it must be all numeric, or it can be all characters. A data frame
is more flexible in the sense that some columns can have numeric data that are to
be analyzed and other columns can be something other than numeric data such as a
factor variable. When the R command read.table encounters a column of data
in a file that is not numeric, it stores it as a factor. In the example, the second column
would be read as a factor variable with two possible values: E and P.

When data are stored in a data frame, with some column having the factor mode,
situations are encountered where it will be necessary to separate the data into R
variables based on the values of the factor variable. In the last example, it might
be necessary to separate the participants receiving the experimental drug from
those who received the placebo. There are several ways to do this, but the details
are postponed until they are needed. (Chapter 9 illustrates this process; see the
discussion of the R commands split and fac2list.)

List mode is yet another convenient way of storing data. It will play an important
role in Chapters 9–11. Imagine that three groups of participants are to be compared:
those with little or no signs of depression, those with mild depression, and those with
severe depression. Further suppose that there are 20, 30, and 10 individuals belonging
to these groups, respectively, and that the data are stored in the R variablesG1,G2, and
G3. For various purposes, it can be convenient to store the data for all three groups in a
single R variable. Amatrix is not convenient because the number of individuals differs
among the three groups. A more convenient way to combine the data into a single R
variable is to use list mode. In this book, the most common way of storing data in list
mode is via the R functionfac2list, or the R functionsplit, which are described
and illustrated in Chapter 9. In case it helps, here is another way this can be done:

DEP=list()

DEP[[1]]=G1

DEP[[2]]=G2

DEP[[3]]=G3

The average of the data in the second group, for example, can be computed with the
R command

mean(DEP[[2]]).

If the goal is to compute the average for all three groups, there is an easier way
to do this via the R command lapply. The command

lapply(DEP,mean)

accomplishes this goal.
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One more way of storing data in list mode is as follows. First create a variable
having list mode. If you want the variable to be called gdat, use the command

gdat=list()

Then, the data for group 1 can be stored via the command

gdat[[1]]=c(36, 24, 82, 12, 90, 33, 14, 19)

the group 2 data would be stored via the command

gdat[[2]]=c(9, 17, 8, 22, 15)

and the group 3 data would be stored by using the command

gdat[[3]]=c(43, 56, 23, 10)

Typing the command gdat and hitting Enter return

[[1]]:
[1] 36 24 82 12 90 33 14 19

[[2]]:
[1] 9 17 8 22 15

[[3]]:
[1] 43 56 23 10

That is, gdat contains three vectors of numbers corresponding to the three groups
under study.

Another way to store data in list mode is with a variation of the scan command.
Suppose the data are stored in a file called mydata.dat and are arranged as follows:

36 9 43
24 17 56
82 8 23
12 22 10
90 15 NA
33 NA NA
14 NA NA
19 NA NA

Then, the command

gdat=scan("mydata.dat",list(g1=0,g2=0,g3=0))

will store the data in gdat in list mode. Typing gdat and hitting Enter return

$g1:
[1] 36 24 82 12 90 33 14 19
$g2:
[1] 9 17 8 22 15 NA NA NA
$g3:
[1] 43 56 23 10 NA NA NA NA
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So, the data for group 1 are stored in gdat$g1; for group 2, they are in gdat$g2;
and for group 3, they are in gdat$g3. An alternative way of accessing the data in
group 1 is with gdat[[1]]. Note that when scan is used to store data in list mode,
it assumes that the data for group 1 are stored in column 1, group 2 data are stored in
column 2, and group 3 data are stored in column 3.

1.3.4 Identifying and Analyzing Special Cases

There are various ways R can be used to examine a subset of the data. The earth-
quake data, described at the end of Section 1.3.1, provide a glimpse of why this can be
important and useful. Still assuming the data are stored in the R variablequake, the R
command mean(quake[,2]) indicates that the average of the length variable (the
average of the data in column 2) is 72.75. Note that among the 16 observations, only 3
have a value greater than 72.75. Also notice that the two largest length values, 360 and
400, appear to be unusually large compared to the other values. Do these two values
have an inordinate impact on the average?Away of answering this question is to elim-
inate these two values and averaging the remaining data. Noting that the two largest
values are stored in rows 1 and 2, this can be accomplished by averaging the data in
rows 3–16 of data frame quake. An R command that accomplishes this goal is

mean(quake[3:16,2]).

Now the average is only 28.86, suggesting that the two most extreme values have
an inordinate impact on the average. In quake[3:16,2], the command 3:16
indicates that rows 3–16 of quake are to be used. Another but more tedious way of
averaging over rows 3–16 is as follows:

id=c(3,4,5,6,7,8,9,10,11,12,13,14,15,16)

mean(quake[id,2]).

In this particular case, it was a simple matter to identify and ignore the rows of data
that seem to be having an inordinate impact on the average length. But often, some
alternative method for selecting special rows of data is required and logical variables
provide a convenient way of accomplishing this goal. Again using the quake data, the
following R commands illustrate one way of doing this:

flag=quake[,2]<360

mean(quake[flag,2]).

The first command creates a logical variable that contains TRUE or FALSE,
depending on whether the length values (the values in column 2) are less than 360.
That is, the command flag=quake[,2]<360 returns TRUE for any value in
column 2 that is less than 360. Typing the R command flag and hitting Enter return

FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE TRUE TRUE TRUE TRUE TRUE
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That is, flag[1]=FALSE, flag[2]=FALSE, flag[3]=TRUE, and so forth.
The command

mean(quake[flag,2])

tells R to compute the mean using only those rows of quake for which flag is
TRUE. Another way to accomplish the same goal is to use the R command

flag=which(quake[,2]<360).

Now flag indicates the row numbers for which the length is less than 360. That is,
the values in flag are 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. Yet another way
is to eliminate or ignore the first two rows in quake when computing the average of
the values in column 2. This can be done with the R command

mean(quake[c(-1,-2),2])

which again returns the value 28.86. That is, row numbers that are negative are
ignored.

As just indicated, the commandquake[flag,2]) tells R to use only those rows
of quake for which flag is TRUE. The command quake[!flag,2]) tells R to
use only those rows for which flag is FALSE. That is, the command ! means “not.”

Logical variables provide one way of dealing with missing values. The R function
is.na determines which values are missing, which can be used to eliminate them.

Example

Consider the R command

z=c(45, 23, NA, 19 , 12)

So, the third value, stored in z[3], is missing. The R command

is.na(z)

returns FALSE FALSE TRUE FALSE FALSE, where FALSE means the correspond-
ing value is not missing, and TRUE means that it is missing. Remembering that !
means not, the command

flag=!is.na(z)

indicates which values are not missing. So, for example, flag[1]=TRUE,
flag[3]=FALSE, and z[flag] contains 45, 23, 19, and 12. An even simpler
way of eliminating missing values stored in z is with the command

z=z[!is.na(z)].
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TABLE 1.2 A Summary of Basic Commands for Accessing Data When Working with
a Vector x

x[4] Access the fourth element in x
x[c(1,4,7)] Access the first, fourth, and seventh elements in x
x[c(-1,-4,-7)] Access all elements in x excluding elements 1, 4, and 7
x[x>5] Access all elements in x having a value greater than 5
x[x>=5] Access all elements in x having a value greater than or

equal to 5
x[x>=5 | x<0] Access all elements in x having a value greater than 5 or

less than 0
x[abs(x)>12 & x<8] Access all elements in x that have an absolute value

greater than 12 and a value less than 8.
x[!is.na(x)] Access all elements in x that are not missing
which(x==min(x)) Indicates which elements of x contain the smallest value

Table 1.2 summarizes some basic commands for accessing data when working
with a vector x. The last six methods in Table 1.2 make use of logical variables that
can be very helpful when manipulating data.

Example

The following illustrates the last command in Table 1.2:

x=c(8,12,9,2,23,19)

which(x==min(x)).

The second command,which(x==min(x)), returns the value 4, meaning that x[4]
contains the smallest value.

Example

For the situation in the last example,

z=min(x)

stores a single value in z, namely the smallest value in x, which is 2. In contrast, the
command

z=x==min(x)

stores
FALSE FALSE FALSE TRUE FALSE FALSE

in the R variable z. The command

x[z]

returns only those values in x for which the corresponding value in z is TRUE, which
in this case is the value 2.
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Example

To illustrate the next to last command in Table 1.2, suppose the values 22, NA, 13,
6, 19, 23 are stored in the R variable x. Then, the R command mean attempts to
compute the average, but it returns NA because the second observation is missing
(not available). One way to remove any missing values and compute the average of
the remaining data is with the command

mean(x[!is.na(x)]).

Another way is to use the command

mean(x,na.rm=TRUE).

1.4 R PACKAGES

R has many built-in functions for applying the methods that are routinely taught and
used. We will see, however, that these classic techniques can miss important features
of data that are revealed when using more modern methods. An extremely important
feature of R is that more modern methods are readily applied via freely available
R packages that have been written by numerous statisticians. Literally, hundreds of
new and improved techniques can now be used to gain a deeper and more accurate
understanding of data. A few of these more modern methods are described in this
book and will be seen to have considerable practical importance.

R packages are available from two sources. The first is located on theweb at r-forge
.r-project.org. The other is CRANS, located at cran.r-project.org. R packages avail-
able from CRANS can be installed with the R command install.packages. For
example, the R command

install.packages("akima")

will install the R package akima, which is used when creating three-dimensional
plots.

There is a particular R package that plays a central role in this book, and there are
two ways it can be installed. The first and simplest method is to download the file
Rallfun, which is stored at

http://dornsife.usc.edu/labs/rwilcox/software/.

The current version is labeled Rallfun-v28. Once the file is downloaded, use the R
command

source("Rallfun-v28")

to execute the R commands stored in Rallfun-v28. This assumes that Rallfun-v28 is
stored where R expects to find data. If Rallfun-v28 is not stored where R expects to
find data, use the source command in conjunction with the file.choose com-
mand. That is, use the R command

source(file.choose()).
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A previously explained, file.choose provides a way of finding where the file
Rallfun-v28 is stored. By clicking on this file, the functions written for this book will
be incorporated into your version of R. This file contains over 1,100 R functions for
applying modern statistical methods.

A second way of gaining access is via the R package WRS (maintained by Felix
Schönbrodt). Go to

https://github.com.

At the top of the web page, you will see Search GitHub. Type WRS and hit return.
You can either download the Rallfun file, or you can install the WRS package
using the R commands indicated on this web page. These R commands can also be
located at

https://github.com/nicebread/WRS

Copy and paste the R commands into R. Then, use the R command

library(WRS)

to gain access to the functions.
A subset of the R functions in Rallfun is available in the R packageWRS2 (created

by Patrick Mair), which is stored on CRANS. A possible appeal of this package is
that it contains help files and it is easily installed by using the R command

install.packages("WRS2").

The R command

library(WRS2)

provides access to the functions, and it lists the functions that are available. Currently,
a negative feature is that WRS2 does not contain all of the functions described and
illustrated in this book.

Information about built-in R functions, as well as functions in R packages down-
loaded from CRANS, can be obtained by typing the R command ? followed by the
name of the function. For example, to get a brief summary of the R function mean,
use the R command

?mean.

A window will appear that summarizes what the function does. For the functions in
Rallfun, a different approach is required: type the name of the function and hit Enter.
For example, there is a function called yuen, which is described in Chapter 9. The
R command

yuen
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lists the R code on your computer screen. At the top of the code, you will see

#
# Perform Yuen’s test for trimmed means on the data in x and y.
# The default amount of trimming is 20%
# Missing values (values stored as NA) are automatically removed.
#
# A confidence interval for the trimmed mean of x minus the
# the trimmed mean of y is computed and returned in yuen$ci.
# The $p$-value is returned in yuen$p. value
#

These first few lines provide a quick summary of what the function does and how it
is used. To see a list of the arguments used by the function, use the args command.
For example,

args(yuen)

returns

function (x, y, tr = 0.2, alpha = 0.05).

So, the function expects to find data stored in two variables, labeled here as x and
y. There are two optional arguments. The first is tr, which defaults to 0.2, and the
second, alpha, which defaults to 0.05, both of which are explained in subsequent
chapters.

Many of the R functions written for this book are based in part on other R packages
available at CRANS. They include the following packages:

• akima

• MASS

• mgcv

• plotrix

• quantreg

• robust

• rrcov

• scatterplot3d

• stats

All of these packages can be installed with the install.packages command
(assuming that you are connected to the web).

1.5 ACCESS TO DATA USED IN THIS BOOK

R has many built-in data sets. To see a list of the data sets that are available, type the
R command

data().
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Additional data sets used to illustrate the methods in this book can be downloaded
from

http://dornsife.usc.edu/labs/rwilcox/datasets/.

1.6 ACCESSING MORE DETAILED ANSWERS TO THE EXERCISES

For each chapter in this book, brief answers to most of the exercises are located
in Appendix A. More detailed answers for all of the exercises are located at http://
dornsife.usc.edu/labs/rwilcox/books/ and are stored in the file answers_wiley.pdf.

1.7 EXERCISES

1. Store the values −20, −15, −5, 8, 12, 9, 2, 23, 19 in the R variable x and use the
R command sum to verify that the sum of the values is 33.

2. For the data in Exercise 1, verify that the average is 3.67 using the R command
mean.

3. What R commands can be used to compute an average without using the
R command mean?

4. In Exercise 1, use R to sum the positive values ignoring the negative values.

5. In Exercise 1, use the which command to get the average of the values ignoring
the largest value.

6. If the data in Exercise 1 are stored in the R variable x, speculate about the values
corresponding to x[abs(x)>=8 & x<8]. Verify your speculation using this
R command.

7. You record your commute time to work for 10 days, in minutes, and get 23, 18,
29, 22, 24, 27, 28, 19, 28, 23. Use R to determine the average, the shortest time,
and the longest time.

8. Verify that the R commands

y=c(2,4,8)

z=c(1,5,2)

2*y

return the values 4, 8, 16. Also, verify that the R command y+z returns 3, 9, 10
and that the command y-2 returns 0, 2, 6.

9. Let x = c(1, 8, 2, 6, 3, 8, 5, 5, 5, 5). Use R to compute the
average using the sum and length commands. Next, use a single command
to subtract the value 4 from each value stored in x. Finally, find the difference
between the largest and smallest values stored in x. (This difference is called the
range.) You can use the max and min functions or the range function.

10. For the data in Exercise 9, use R to subtract the average from each value, and
then sum the results.
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11. Imagine a matrix m having 100 rows and 2 columns. Further imagine that some
of the values in the first column are NA, missing. Describe how the R function
is.na can be used to eliminate the rows with missing values.

12. R has a built-in data set called ChickWeight. Verify that the R command

mean(ChickWeight[,1])

returns 121.8 but that the command

mean(ChickWeight[,3])

returns NA and a warning message even though the values in column 3 appear
to be numeric. The reason for the warning message is that column 3 is stored
as a factor variable. Arithmetic operations can only by performed on numeric or
logical variables. Verify that

mean(as.numeric(ChickWeight[,3]))

returns 26.26.

13. Create a matrix with two rows and five columns with some of the entries stored
as NA. Verify that the R function

elimna(x)

eliminates the rows with missing values. (This function is contained in the file
Rallfun and can be installed as described in Section 1.4.)

14. R has a built-in data set called chickwts, which is stored in a data frame with two
columns. (It differs from the built-in data set ChickWeight.) The first column
contains the weight of chicks, and the second column indicates the type of feed
they received, one of which is labeled horsebean. Use R to compute the average
weight among chicks that were fed horsebean.

15. Let x = c(1, 8, 2, 6, 3, 8, 5, 5, 5, 5). Describe two different
R commands for summing the values in x ignoring the value 2 stored in x[3]
and the value 3 stored in x[5].

16. For the values used in the previous exercise, use two different R commands to
sum all of the values not equal to 5.

17. For the data used in the previous two exercises, use a single R command to change
all values equal to 8 to 7.

18. Create a matrix with four rows and two columns with the values 1, 2, 3, 4 and in
the first column and 5, 6, 7, 8 in the second column.

19. Create a matrix with four columns and two rows with the values 1, 2, 3, 4 and in
the first row and 11, 12, 13, 14 in the second row.


