
1
SPECIAL NUMBERS: TRIANGULAR,
OBLONG, PERFECT, DEFICIENT,
AND ABUNDANT

We start our introduction to number theory with definitions, properties,
and relationships of several categories of numbers.

TRIANGULAR NUMBERS

Triangular numbers are those that can be written as the sum of a con-
secutive series of (whole) numbers beginning with 1. Thus 6 is triangular
because it is the sum of the first three numbers: 6 = 1 + 2 + 3. The first
few triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, 45, and 55. We
denote the nth triangular number by tn. Thus t5 = 1 + 2 + 3 + 4 + 5 = 15.
More generally,

tn = 1 + 2 + 3 + + n−2 + n−1 + n 1 1

Our first program, calculating a specific triangular number, shows the
format of an HTML document. The first line specifies the doctype.
The rest is an html element, starting with <html> and ending with
</html>. Within the html element is a head element and a body

Elementary Number Theory with Programming, First Edition. Marty Lewinter and Jeanine Meyer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

element. In this case, the body element is empty. The head element
contains a meta tag specifying the character type (it can be omitted),
a title, and a script element. All the action is in the script element.

The code makes use of standard programming constructs such as
variables and functions and for-loops (if you don’t understand what
these terms are, please consult any beginner book on programming.
Shameless plug: go to The Essential Guide to HTML5: Using
Games to Learn HTML5 and JavaScript, http://www.apress.com/
9781430233831).

The specific triangular number we want is specified in the coding by
setting the variable n. This is termed hard-coding. The computation
is done using a for-loop. The for-loop adds up the values from
1 to n, exactly following Equation 1.1. The built-in method
document.write writes out the result.

The challenge in Exercise 1 is to compare coding using Equation 1.1
versus Equation 1.2. The challenge is that computers are very fast.
I use the built-in Date function with the method getTime to get
the number of milliseconds from a base date at the start and after
the computation. It turns out that computing the millionth triangular
number takes 3 ms! You can experiment with different values. Using
the formula given in Equation 1.2 would be much, much faster. Give
it a try.

The nth triangular number is given by the formula:

tn = 1 + 2 + 3 + + n=
n n+ 1

2
1 2

Example: t100 =
100 × 101

2
= 5,050

Example: Write 6 + 7 + 8 + 9 + 10 + 11 as the difference of two triangu-
lar numbers.We observe that 6 + 7 + 8 + 9 + 10 + 11 = (1 + 2 + 3 + 4 + 5 +
6 + 7 + 8 + 9 + 10 + 11) − (1 + 2 + 3 + 4 + 5), which is t11 − t5.

Example: Generalize the previous example to any consecutive sum
such as 45 + 46 + + 987. Note that a+ a + 1 + a+ 2 + + b =
1 + 2 + 3 + + b − 1 + 2 + 3 + + a−1 = tb− ta −1. By letting a = 6
and b = 11, we get the result of the previous example.

2 SPECIAL NUMBERS

It should be noted that

tn− tn− 1 = n 1 3

The sum of any two consecutive triangular numbers is a square. For
example, t4 + t3 = 10 + 6 = 16 = 42 and t5 + t4 = 15 + 10 = 25 = 52. This is
expressed by the formula

tn + tn − 1 = n
2 1 4

Example: Verify (1.4) for n = 10. We have t10 + t9 = 55 + 45 = 102.

Example: Find two triangular numbers whose sum is 900. Since
900 = 302, we have n = 30. Then using (1.4), 900 = t30 + t29 =
30 × 31

2
+
29 × 30

2
= 465 + 435.

The sum of the reciprocals of all the triangular numbers is 2. Formally,

1
1
+
1
3
+
1
6
+

1
10

+ +
1
tn
+ = 2 1 5

OBLONG NUMBERS AND SQUARES

A positive integer of the form n(n + 1) is called oblong. The nth oblong
number is the sum of the first n even numbers. To see this, observe that
the nth even number is 2n. Then we have 2 + 4 + 6 + + 2n=

2 1 + 2 + + n = 2
n n+ 1

2
= n n+ 1 , the nth oblong number. What

about the sum of the first n odd numbers? The nth odd number is 2n − 1.
So 1 + 3 + 5 + + 2n−1 = 2 × 1−1 + 2 × 2−1 + 2 × 3−1 +

+ 2n−1 , in which −1 appears n times. We then get

2 1 + 2 + 3 + + n −n= 2
n n+ 1

2
−n= n n+ 1 −n= n2 + n−n= n2.

So the sum of the first n odd numbers is n2.

Example: The sum of the first 5 odd numbers is 25. (Check this: 1 + 3 +
5 + 7 + 9 = 25.) More impressively, the sum of the first 100 odd numbers
is 1002 = 10,000.

3OBLONG NUMBERS AND SQUARES

The great French mathematician LaGrange (1736–1813) showed in
the late eighteenth century that every positive number can be written
as a sum of four or fewer squares. Thus, for example, 30 = 25 + 4 + 1.

Number theorists are fond of numbers, such as 40, which are the sum
of only two squares (e.g., 40 = 36 + 4).

The Pythagoreans computed the sum of the first n powers of 2. Let

a. S = 1 + 2 + 4 + + 2n−1. Then

b. 2S = 2 + 4 + + 2n−1 + 2n.

Now subtract Equation (a) from Equation (b), and we get S = 2n − 1.
We have, then, the following formula:

1 + 2 + 22 + 23 + + 2n−1 = 2n−1 1 6

With a minor change in the proof of (1.6), we obtain an analogous
formula for the sum of the first n powers of any base. Let
S= 1 + a+ a2 + a3 + + an−1. Then aS= a+ a2 + a3 + + an−1 + an.
Subtract the first equation from the second, and we get (a − 1)S = an − 1.
Upon division by a − 1, we obtain the following formula:

1 + a+ a2 + a3 + + an−1 =
an−1
a−1

1 7

DEFICIENT, ABUNDANT, AND PERFECT NUMBERS

The Pythagoreans classified all numbers as deficient, abundant, or per-
fect. Given a number, find all of its proper factors, that is, all numbers
that go into it (with the exclusion of the given number). The proper
factors of 30, for example, are 1, 2, 3, 5, 6, 10, and 15.

Generating a list of the factors of a number is easy in JavaScript (and
other programming languages), though it appears tedious to us. The
modulo operation, %, determines the remainder. So if n is the number
and f is a candidate factor, then

n % f

will produce the remainder of n divided by f. If this is 0, then f is a
factor. If f < n, then f is a proper factor.

4 SPECIAL NUMBERS

The program uses a for-loop going from 1 up to but not including n. If
it is a factor, the number is written out in the html document using
document.write and a variable count is incremented.

If the sum of the proper factors of n is less than n, we call n deficient. If
the sum exceeds n, it is called abundant. If the sum equals n, we call it
perfect. For example, 8 is deficient since 1 + 2 + 4 < 8, 18 is abundant
since 1 + 2 + 3 + 6 + 9 > 18, and 28 is perfect since 1 + 2 + 4 + 7 + 14 =
28. The smallest perfect number is 6. The first few perfect numbers
are 6, 28, 496, and 8128. It is not known today whether there are infi-
nitely many perfect numbers. Moreover, all known perfect numbers
are even. No one knows if there are any odd perfect numbers! Inciden-
tally, the smallest abundant odd number is 945, while the smallest
abundant even number is 12.

The program to characterize a number as deficient, perfect, or abun-
dant was made by modifying the previous one that listed and counted
the number of proper factors. To make the determination of whether a
number n is deficient, perfect, or abundant, the program has to add up
the proper factors. So the statement count++ is removed and the
statement

sum += i;

is inserted. By the way, this is shorthand for taking the original value
of the variable sum, adding one to it and then assigning that back to
the variable sum.

sum = sum + i;

I also changed the name of the function to addUpFactors. I tested
the program using the specific numbers given in the text.

The Pythagoreans found an amazing method for finding perfect
numbers. They observed, using (1.6), that sums of the form
1+ 2 + 22 + 23 + + 2n −1 are prime for certain values of n and are com-
posite for others. (A number is prime if its only factors are 1 and itself. 7,
19, and 31 are examples of primes. A composite number has proper
factors other than 1. Thus 20 is composite.) The following sums, for
example, are prime:

5DEFICIENT, ABUNDANT, AND PERFECT NUMBERS

1 + 2 = 3

1 + 2 + 4 = 7

1 + 2 + 4 + 8 + 16 = 31

1 + 2 + 4 + 8 + 16 + 32 + 64 = 127

In each of these equations, multiply the greatest number on the left by
the number on the right, yielding 2 × 3 = 6, 4 × 7 = 28, 16 × 31 = 496,
and 64 × 127 = 8128. These products, 6, 28, 496, and 8128 are perfect.
Whenever the sum of the first n powers of 2 is prime, this procedure
yields a perfect number! Using (1.6), the sum of the first n powers of
2 is 2n − 1, so the perfect number is of the form 2n−1(2n − 1). The prime
sum, 2n − 1, is then called a Mersenne prime, in honor of the eighteenth
century French mathematician. It was shown in the eighteenth century
by the great Swiss mathematician Leonhard Euler (1707–1783) that
all even perfect numbers are of the form 2n−1(2n − 1).

A conjecture is that no odd number (odd number >1) is perfect. One of
the exercises and one of our programs tests this conjecture on the first
1000 odd numbers.

The program to test the conjecture concerning odd numbers not being
perfect numbers is built on the previous example. Instead of writing
out the result, a function with a parameter is made to return −1, 0, or 1
if the number is deficient, perfect, or abundant. Any three distinct
values could be used.

The inner function (I named it classify) is called for all odd num-
bers up to a limit. The task is to determine how to generate the set of
numbers. A solution is to use a for-loop going from j=1 to 1000
and, within the loop, setting a variable n to 2∗j+1.
It is very important to keep in mind that this is not a proof of the con-
jecture. Something could be happening at higher numbers.

The Pythagoreans believed that if two friends wore amulets, one with
220 and the other with 284, they would fortify their friendship. This is
because the sum of the proper factors of either one of these numbers
equals the other number, that is,

220 = 1 + 2 + 4 + 71 + 142

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110

6 SPECIAL NUMBERS

We call a pair of numbers with this property, amicable numbers. 1184
and 1210 comprise the next pair of amicable numbers, since

1210 = 1 + 2 + 4 + 8 + 16 + 32 + 37 + 74 + 148 + 296 + 592
1184 = 1 + 2 + 5 + 10 + 11 + 22 + 55 + 110 + 121 + 242 + 605

EXERCISES

An asterisk (∗) indicates that the exercise can be developed into a
research project.

1 Write a program to find the nth triangular number, tn, using formula
(1.1). Then write a program using (1.2). Compare the two procedures
for very large values of n. A program for the first part of this is
included at the end of the chapter.

2 Write a program to find out whether a given number is a square.

3 Find, using a partial fraction decomposition, the sum of the
reciprocals of the first n triangular numbers, that is, find
1
1
+
1
3
+
1
6
+

1
10

+ +
1
tn
. Then write a program to do this.

4 ∗The ancient Egyptians expressed every proper fraction except as the

sum of fractions with 1s in the numerator. Thus,
2
3
is equivalent to

1
3

+
1
4
+

1
12

and
7
8
is equivalent to as

1
2
+
1
4
+
1
8
.

a. Verify the identity
1
n
=

1
n+ 1

+
1

n n+ 1
.

b. Using the strategy of starting off by writing a fraction a/b as the
sum of 1/b + 1/b + (a times) and using the identity verified in
part a repeatedly until all fractions are distinct, write a program to
express every fraction as the sum of fractions with distinct
denominators and numerators equal to 1.

5 ∗Note that the sum and difference of the triangular numbers 15 and
21 are triangular. Verify that this is also the case for the triangular
numbers 780 and 990. Find 100 more cases.

6 Find 100 triangular numbers that are squares.

7 From the first 1000 triangular number, find ones that are the sum of
two other triangular numbers.

7EXERCISES

8 ∗Find 100 oblong numbers that are products of an oblong number
and a square.

9 Show that after 3, the next 100 triangular numbers are composite
(not prime). Then prove this for all triangular numbers after 3.

10 Write each of the numbers from 1 to 1000 as the sum of three or
fewer triangular numbers.

11 ∗Write each of the numbers from 1 to 1000 as the sum of four or
fewer squares. For which of these numbers can this be done in more
than one way? For example, 50 = 49 + 1 = 25 + 25 = 36 + 9 + 4 +
1 = 16 + 16 + 9 + 9.

12 ∗What proportion of the first 1000 numbers can be written using
two or fewer squares?

13 Write a program that lists the proper divisors of a given number.
A program for this is given at the end of the chapter.

14 Write a program to find the sum of the proper divisors of a given
number.

15 Modify the program of the previous exercise to decide whether
a given number is deficient, perfect, or abundant. A program for
this is included at the end of the chapter. You can improve this in var-
ious ways, including having the user enter the number. Look ahead to
an example in Chapter 2 that shows how to get user input.

16 ∗Write a program to check for perfect numbers within a range. You
can set the endpoints of the range within the program. You can
research to find a list of the known perfect numbersAND to determine
the biggest integer value that can be represented in regular JavaScript.

17 ∗A number is called semi-perfect if it is the sum of some (but not all)
of its proper divisors. 12 is the smallest semi-perfect number since
12 = 6 + 4 + 2. Find the next 50 semi-perfect numbers.

18 ∗If a given number is abundant, determine if it is semi-perfect.

19 Showthat2n is deficient for alln ≤ 25.Thenshowit is deficient for alln.

20 ∗Verify that 945 is the smallest odd abundant number. Find the next
10 odd abundant numbers. Do they seem to be getting further apart?

21 Observe that the square of the triangular number 6 is also triangular.
Verify that this does not occur for any other triangular number
(except 1) up to t1000.

8 SPECIAL NUMBERS

22 It has been conjectured that no odd number is perfect. Verify this for
the first 1000 odd numbers. See last example. You can decide on
other ways to present the findings and also change the limit.

Triangular Numbers

<html>
<head>
<title>Triangular Numbers</title>
<script>
var n = 1000000;
var start = new Date();
start = start.getTime();

function init(){
var sum = 0;

for(i=1;i<=n;i++){
sum+=i;

}
now = new Date();
now = now.getTime();
elapsed = (now - start);
document.write("The "+n+

"th triangular number is "+sum+".
");
document.write("Elapsed time was "+elapsed+"
milliseconds.");

}
init();
</script>
</head>
<body>
</body>
</html>

Proper Factors

<!DOCTYPE HTML>
<html>
<head>
<title>Proper factors</title>
<script>
var n = 30;

9EXERCISES

var count = 0;
function countUpFactors(n){

document.write("Proper factors of "+n+" are:

");
for (var i=1;i<n;i++){

if ((n%i)==0){
count++;
document.write(i+"
");

}
}
document.write("The number of proper factors
of "+n+" is "+count+".");

}
countUpFactors(n);
</script>
</head>
<body>
</body>
</html>

Classifying Number as Deficient, Perfect, or Abundant

<!DOCTYPE HTML>
<html>
<head>
<title>Perfect or </title>
<script>
function addUpFactors(n){

document.write("Proper factors of "+n+" are:

");
var sum = 0;
for (var i=1;i<n;i++){

if ((n%i)==0){
document.write(i+"
");
sum += i;

}
}

document.write("The sum of the proper factors
of "+n+" is "+sum+", so "+n+" is ");
if (sum<n) {

10 SPECIAL NUMBERS

document.write("deficient.");
}
else if (sum==n) {

document.write("perfect.");
}
else {

document.write("abundant.");
}
document.write("
");

}
addUpFactors(6);
addUpFactors(8);
addUpFactors(18);
addUpFactors(28);
addUpFactors(945);
addUpFactors(8128);
</script>
</head>
<body>
</body>
</html>

Checking the Conjecture on No Perfect Odd Number (up to 1000)

<!DOCTYPE HTML>
<html>
<head>
<title>Sort Odd numbers </title>
<script>
function classify(n){

var sum = 0;
for (var i=1;i<n;i++){

if ((n%i)==0){

//document.write(i+"
");

sum += i;
}

}

if (sum<n) {
return -1;

11EXERCISES

}
else if (sum==n) {

return 0;
}
else {

return 1;
}
document.write("
");

}
function sortOdds(limit) {
var perfect = 0;
var deficient = 0;
var abundant = 0;
for (var j=1;j<=limit;j++) {

var n=2∗j+1;
c = classify(n);
if (c==-1){
deficient++;

}
else if (c==1) {
abundant++;

}
else {
perfect++;

}
}
document.write("First "+limit+" odd numbers:

");
document.write ("deficient: "+deficient+
"
");
document.write("abundant: "+abundant+
"
");
document.write("perfect: "+perfect+
"
");

}
sortOdds(1000);
</script>
</head>
<body>
</body>
</html>

12 SPECIAL NUMBERS

