
c01_0.indd 11/17/2015 Page 1

 Advanced Class

Design

 THE OCP EXAM TOPICS COVERED IN THIS

CHAPTER INCLUDE THE FOLLOWING:

 ✓ Java Class Design

 ■ Implement inheritance including visibility modifiers and

composition

 ■ Implement polymorphism

 ■ Override hashCode, equals, and toString methods from

Object class

 ■ Develop code that uses the static keyword on initialize

blocks, variables, methods, and classes

 ✓ Advanced Java Class Design

 ■ Develop code that uses abstract classes and methods

 ■ Develop code that uses final keyword

 ■ Create inner classes including static inner class, local class,

nested class, and anonymous inner class

 ■ Use enumerated types including methods, and constructors

in an enum type

 ■ Develop code that declares, implements, and/or extends

interface and use the @Override annotation

 Chapter

 1
CO

PYRIG
HTED

 M
ATERIA

L

c01_0.indd 11/17/2015 Page 2

 Congratulations! If you are reading this, you’ve probably
passed the Java Programmer I OCA (Oracle Certifi ed
Associate) exam, and you are now ready to start your journey

through the Java Programmer II OCP (Oracle Certifi ed Professional) exam. Or perhaps you
came here from an older version of the certifi cation and are now upgrading.

 The OCP builds upon the OCA. You are expected to know the material on the OCA
when taking the OCP. Some objectives on the OCP are the same as those on the OCA, such
as those concerning access modifi ers, overloading, overriding, abstract classes, static ,
and final . Most are implied. For example, the OCP objectives don’t mention if statements
and loops. Clearly, you still need to know these. We will also point out differences in Java 8
to help those of you coming in from an older version of Java.

 If you didn’t score well on the OCA exam, or if it has been a while since you took it,
we recommend reviewing the book you used to study for it. The OCP questions are a lot
tougher. You really need to know the fundamentals well. If you’ve misplaced your review
materials, feel free to check out our OCA book, OCA: Oracle Certifi ed Associate Java SE
8 Programmer I Study Guide (Sybex, 2014).

 This chapter includes a brief review of overlapping topics and then moves on to new
material. You’ll see how to use instanceof , implement equals /hashCode / toString , create
enumerations, and create nested classes.

 Reviewing OCA Concepts

 In this section, we review the OCA objectives that are explicitly listed as being on the
OCP. Since this is review, we will ask you questions followed by a brief reminder of the key
points. These questions are harder than the ones on the OCA because they require you to
refl ect on a lot of what you learned at the same time.

 Access Modifiers
 First up on the review are the access modifi ers public , protected , and private and default
access. Imagine the following method exists. For now, just remember the instance variables
it tries to access:

 public static void main(String[] args) {
 BigCat cat = new BigCat();
 System.out .println(cat.name);

Reviewing OCA Concepts 3

c01_0.indd 11/17/2015 Page 3

 System.out .println(cat.hasFur);
 System.out .println(cat.hasPaws);
 System.out .println(cat.id);

 Now, suppose each of these classes has this main method that instantiates a BigCat and
tries to print out all four variables. Which variables will be allowed in each case?

 package cat;
 public class BigCat {
 public String name = "cat";
 protected boolean hasFur = true;
 boolean hasPaws = true;
 private int id;
 }

 package cat.species;
 public class Lynx extends BigCat { }

 package cat;
 public class CatAdmirer { }

 package mouse;
 public class Mouse { }

 Think about it for a minute—no really. Pause and try to answer. Ready now? While this
code compiles for BigCat , it doesn’t in all of the classes.

 The line with cat.name compiles in all four classes because any code can access public
members. The line with cat.id compiles only in BigCat because only code in the same
class can access private members. The line with cat.hasPaws compiles only in BigCat
and CatAdmirer because only code in the same package can access code with default
access.

 Finally, the line with cat.hasFur also compiles only in BigCat and CatAdmirer . pro-
tected allows subclasses and code in the same package to access members. Lynx is a tricky
one. Since the code is being accessed via the variable rather than by inheritance, it does not
benefi t from protected . However, if the code in main was Lynx cat = new Lynx(); , Lynx
would be able to access cat.hasFur using protected access because it would be seen as a
subclass.

 Remember that there was a default keyword introduced in Java 8 for

interfaces. That keyword is not an access modifier.

4 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 4

To review the rules for access modifi ers at a glance, see Table 1.1.

 TA B LE 1.1 Access modifiers

Can access
If that member
is private ?

If that member
has default
(package private)
access?

If that member
is protected ?

If that member
is public ?

Member in the

same class

yes yes yes yes

Member in

another class in

the same package

no yes yes yes

Member in a

superclass in a

different package

no no yes yes

Method/field in a

class (that is not

a superclass) in a

different package

no no no yes

 Overloading and Overriding
 Next we review the differences between overloading and overriding. Which method(s) in
BobcatKitten overload or override the one in Bobcat ?

 1: public class Bobcat {
 2: public void findDen() { }
 3: }

 1: public class BobcatKitten extends Bobcat {
 2: public void findDen() { }
 3: public void findDen(boolean b) { }
 4: public int findden() throws Exception { return 0; }
 5: }

 The one on line 2 is an override because it has the same method signature. The one on
line 3 is an overloaded method because it has the same method name but a different param-
eter list. The one on line 4 is not an override or overload because it has a different method
name. Remember that Java is case sensitive.

 To review, overloading and overriding happen only when the method name is the same.
Further, overriding occurs only when the method signature is the same. The g method

Reviewing OCA Concepts 5

c01_0.indd 11/17/2015 Page 5

signature is the method name and the parameter list. For overloading, the methodg
parameters must vary by type and/or number.

 When multiple overloaded methods are present, Java looks for the closest match fi rst. It
tries to fi nd the following:

■ Exact match by type

■ Matching a superclass type

■ Converting to a larger primitive type

■ Converting to an autoboxed type

■ Varargs

 For overriding, the overridden method has a few rules:

■ The access modifier must be the same or more accessible.

■ The return type must be the same or a more restrictive type, also known as covariant
return types .

■ If any checked exceptions are thrown, only the same exceptions or subclasses of those
exceptions are allowed to be thrown.

 The methods must not be static . (If they are, the method is hidden and not
overridden.)

 Abstract Classes
 Now we move on to reviewing abstract classes and methods. What are three ways that
you can fi ll in the blank to make this code compile? Try to think of ways that use the
clean() method rather than just putting a comment there.

 abstract class Cat {

 }
 class Lion extends Cat {
 void clean() {}
 }

 Did you get three? One of them is a little tricky. The tricky one is that you could leave it
blank. An abstract class is not required to have any methods in it, let alone any abstract
ones. A second answer is the one that you probably thought of right away:

 abstract void clean();

 This one is the actual abstract method. It has the abstract keyword and a semicolon
instead of a method body. A third answer is a default implementation:

 void clean () {}

6 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 6

An abstract class may contain any number of methods including zero. The methods can
be abstract or concrete. Abstract methods may not appear in a class that is not abstract .
The fi rst concrete subclass of an abstract class is required to implement all abstract
methods that were not implemented by a superclass.

Notice that we said three ways. There are plenty of other ways. For example, you could
have the clean() method throw a RuntimeException .

Static and c Final
 Next on the review list are the static and final modifi ers. To which lines in the follow-
ing code could you independently add static and/or final without introducing a compiler
error?

 1: abstract class Cat {
 2: String name = "The Cat";
 3: void clean() { }
 4: }
 5: class Lion extends Cat {
 6: void clean() { }
 7: }

Both static and final can be added to line 2. This allows the variable to be accessed
as Cat.name and prevents it from being changed. static cannot be added to line 3 or 6
independently because the subclass overrides it. It could be added to both, but then you
wouldn’t be inheriting the method. The final keyword cannot be added to line 3 because
the subclass method would no longer be able to override it. final can be added to line 6
since there are no subclasses of Lion .

To review, final prevents a variable from changing or a method from being overridden.
static makes a variable shared at the class level and uses the class name to refer to a
method.

static and final are allowed to be added on the class level too. You will see static
classes in the section on nested classes at the end of this chapter, so don’t worry if you didn’t
pick up on those. Using final on a class means that it cannot be subclassed. As with meth-
ods, a class cannot be both abstract and final . In the Java core classes, String is final .

 Imports
 Oracle no longer lists packages and imports in the objectives for the OCP 8 exam. They do
include visibility modifi ers, which means that you still need to understand packages and
imports. So let’s review. How many different ways can you think of to write imports that
will make this code compile?

 public class ListHelper {
 public List <String> copyAndSortList(List <String> original) {

c01_0.indd 11/17/2015 Page 7

Using instanceof 7

 List <String> list = new ArrayList <String>(original);
sort (list);

 return list;
 }
 }

 The key is to note that this question really has two parts. One thing to fi gure out is how
to get sort(list) to compile. Since sort() is a static method on Collections , you defi -
nitely need a static import. Either of these will do it:

 import static java.util.Collections.sort;
 import static java.util.Collections.*;

 The other part of the question is to note that List and ArrayList are both
referenced. These are regular classes and need regular imports. One option is to use a
wildcard:

 import java.util.*;

 The other option is to list them out:

 import java.util.List;
 import java.util.ArrayList;

 There are other imports you can add, but they have redundancy or are unnecessary.
For example, you could import java.lang.* . However, this package is always imported
whether you specify it or not.

 Using instanceof

 Now we move on to the new topics. On the OCA, you learned about many operators
including < and == . Now it is time to learn another: instanceof .

 In a instanceof B , the expression returns true if the reference to which a points is an
instance of class B , a subclass of B (directly or indirectly), or a class that implements the B
interface (directly or indirectly).

 Let’s see how this works. You have three classes with which to work:

 class HeavyAnimal { }
 class Hippo extends HeavyAnimal { }
 class Elephant extends HeavyAnimal { }

 You see that Hippo is a subclass of HeavyAnimal but not Elephant . Remember that the
exam starts with line numbers other than 1 when showing a code snippet. This is to tell
you that you can assume the correct code comes before what you see. You can assume any
missing code is correct and all imports are present.

8 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 8

 12: HeavyAnimal hippo = new Hippo();
 13: boolean b1 = hippo instanceof Hippo; // true
 14: boolean b2 = hippo instanceof HeavyAnimal; // true
 15: boolean b3 = hippo instanceof Elephant; // false

On line 13, you see that hippo is an instance of itself. We’d certainly hope so! Line
14 returns true because hippo is an instance of its superclass. Line 15 returns false
because hippo is not an Elephant . The variable reference is HeavyAnimal , so there could
be an Elephant in there. At runtime, Java knows that the variable is in fact pointing to
a Hippo .

All Java classes inherit from Object , which means that x instanceof Object is usually
true , except for one case where it is false . If the literal null or a variable reference pointing
to null is used to check instanceof , the result is false . null is not an Object . For example:

 26: HeavyAnimal hippo = new Hippo();
 27: boolean b4 = hippo instanceof Object; // true
 28: Hippo nullHippo = null;
 29: boolean b5 = nullHippo instanceof Object; // false

Line 27 returns true because Hippo extends from Object indirectly as do all classes.
Line 29 returns false because the nullHippo variable reference points to null and null is
not a Hippo . This next one is interesting:

 30: Hippo anotherHippo = new Hippo();
 31: boolean b5 = anotherHippo instanceof Elephant; // DOES NOT COMPILE

 Line 31 is a tricky one. The compiler knows that there is no possible way for a Hippo
variable reference to be an Elephant , since Hippo doesn’t extend Elephant directly or
indirectly.

 The compilation check only applies when instanceof is called on a class. When check-
ing whether an object is an instanceof an interface, Java waits until runtime to do the
check. The reason is that a subclass could implement that interface and the compiler
wouldn’t know it. There is no way for Hippo to be a subclass of Elephant .

 For example, suppose that you have an interface Mother and Hippo does not implement it:

 public interface Mother {}
 class Hippo extends HeavyAnimal { }

 This code compiles:

 42: HeavyAnimal hippo = new Hippo();
 43: boolean b6 = hippo instanceof Mother;

 It so happens that Hippo does not implement Mother . The compiler allows the statement
because there could later be a class such as this:

 class MotherHippo extends Hippo implements Mother { }

Understanding Virtual Method Invocation 9

c01_0.indd 11/17/2015 Page 9

 The compiler knows an interface could be added, so the instanceof statement could be
true for some subclasses, whereas there is no possible way to turn a Hippo into an Elephant .

 The instanceof operator is commonly used to determine if an instance is a subclass of
a particular object before applying an explicit cast. For example, consider a method that
takes as input an Animal reference and performs an operation based on that animal’s type:

 public void feedAnimal(Animal animal) {
 if(animal instanceof Cow) {
 ((Cow)animal).addHay();
 } else if(animal instanceof Bird) {
 ((Bird)animal).addSeed();
 } else if(animal instanceof Lion) {
 ((Lion)animal).addMeat();
 } else {
 throw new RuntimeException("Unsupported animal");
 } }

 In this example, you needed to know if the animal was an instance of each subclass
before applying the cast and calling the appropriate method. For example, a Bird or
Lion probably will not have an addHay() method, a Cow or Lion probably will not have
an addSeed() method, and so on. The else throwing an exception is common. It allows
the code to fail when an unexpected Animal is passed in. This is a good thing. It tells the
programmer to fi x the code rather than quietly letting the new animal go hungry.

 This is not a good way to write code. instanceof and the practice of casting with if state-
ments is extremely rare outside of the exam. It is mostly used when writing a library that will be
used by many others. On the exam, you need to understand how instanceof works though.

Understanding Virtual Method

Invocation

You just saw a poor way of feeding some animals. A better way would be to make each
Animal know how to feed itself. Granted this won’t work in the real world, but there could
be a sign in each animal habitat or the like.

abstract class Animal {
 public abstract void feed(); }

}
class Cow extends Animal {
 public void feed() { addHay(); }
 private void addHay() { }
}

10 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 10

 class Bird extends Animal {
 public void feed() { addSeed(); }
 private void addSeed() { }
 }
 class Lion extends Animal {
 public void feed() { addMeat(); }
 private void addMeat() { }
 }

The Animal class is abstract , and it requires that any concrete Animal subclass have
a feed() method. The three subclasses that we defi ned have a one‐line feed() method
that delegates to the class‐specifi c method. A Bird still gets seed, a Cow still gets hay, and
so forth. Now the method to feed the animals is really easy. We just call feed() and the
proper subclass’s version is run.

This approach has a huge advantage. The feedAnimal() method doesn’t need to change
when we add a new Animal subclass. We could have methods to feed the animals all over
the code. Maybe the animals get fed at different times on different days. No matter. feed()
still gets called to do the work.

 public void feedAnimal(Animal animal) {
 animal.feed();
 }

We’ve just relied on virtual method invocation . We actually saw virtual methods on the
OCA. They are just regular non‐static methods. Java looks for an overridden method rather
than necessarily using the one in the class that the compiler says we have. The only thing
new about virtual methods on the OCP is that Oracle now calls them virtual methods in
the objectives. You can simply think of them as methods.

In the above example, we have an Animal instance, but Java didn’t call feed on the
Animal class. Instead Java looked at the actual type of animal at runtime and called feed
on that.

Notice how this technique is called virtual method invocation. Instance variables don’td
work this way. In this example, the Animal class refers to name . It uses the one in the super-
class and not the subclass.

 abstract class Animal {
 String name = "???";
 public void printName() {
 System. out .println(name);
 }
 }
 class Lion extends Animal {
 String name = "Leo";
 }

Annotating Overridden Methods 11

c01_0.indd 11/17/2015 Page 11

 public class PlayWithAnimal {
 public static void main(String... args) {
 Animal animal = new Lion();
 animal.printName();
 }
 }

 This outputs ??? . The name declared in Lion would only be used if name was referred to
from Lion (or a subclass of Lion .) But no matter how you call printName() , it will use the
Animal ’s name, not the Lion ’s name.

 Aside from the formal sounding name, there isn’t anything new here. Let’s try one more
example to make sure that the exam can’t trick you. What does the following print?

 abstract class Animal {
 public void careFor() {
 play();
 }
 public void play() {
 System. out .println("pet animal");
 } }
 class Lion extends Animal {
 public void play() {
 System. out .println("toss in meat");
 } }
 public class PlayWithAnimal {
 public static void main(String... args) {
 Animal animal = new Lion();
 animal.careFor();
 } }

 The correct answer is toss in meat . The main method creates a new Lion and calls
careFor. Since only the Animal superclass has a careFor method, it executes. That method
calls play . Java looks for overridden methods, and it sees that Lion implements play .
Even though the call is from the Animal class, Java still looks at subclasses, which is good
because you don’t want to pet a Lion !

 Annotating Overridden Methods

 You already know how to override a method. Java provides a way to indicate explicitly in
the code that a method is being overridden. In Java, when you see code that begins with an
@ symbol, it is an annotation. An annotation is extra information about the program, and it
is a type of metadata . It can be used by the compiler or even at runtime.

12 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 12

The @Override annotation is used to express that you, the programmer, intend for this
method to override one in a superclass or implement one from an interface. You don’t tradi-
tionally think of implementing an interface as overriding, but it actually is an override. It so
happens that the method being overridden is an abstract one.

The following example shows this annotation in use:

 1: class Bobcat {
 2: public void findDen() { }
 3: }
 4: class BobcatMother extends Bobcat {
 5: @Override
 6: public void findDen() { }
 7: }

Line 5 tells the compiler that the method on line 6 is intended to override another
method. Java ignores whitespace, which means that lines 5 and 6 could be merged into
one:

 6: @Override public void findDen(boolean b) { }

This is helpful because the compiler now has enough information to tell you when you’ve
messed up. Imagine if you wrote

 1: class Bobcat {
 2: public void findDen() { }
 3: }
 4: class BobcatMother extends Bobcat {
 5: @Override
 6: public void findDen(boolean b) { } // DOES NOT COMPILE
 7: }

Line 5 still tells Java the method that line 6 is intended to override another method.
However, the method on line 6 overloads the method rather than overriding it. Java recog-
nizes that this is a broken promise and gives it a compiler error.

It is useful to have the compiler tell you that you are not actually overriding when you
think that you are. The problem could be a typo. Or it could be that the superclass or
interface changed without your knowledge. Either way, it is useful information to know so
that you can fi x the code. It is a great idea to get in the habit of using @Override in order to
avoid accidentally overloading a method.

@Override is allowed only when referencing a method. Just as there is no such thing as
overriding a fi eld, the annotation cannot be used on a fi eld either.

Much of the time, you will not see @Override used on the exam when a method is
being overridden. The exam is testing whether you can recognize an overridden method.
However, when you see @ Override show up on the exam, you must check carefully that
the method is doing one of three things:

c01_0.indd 11/17/2015 Page 13

Coding equals , hashCode , and toString 13

■ Implementing a method from an interface

■ Overriding a superclass method of a class shown in the example

■ Overriding a method declared in Object , such as hashCode , equals , or toString

 To be fair, the third one is a special case of the second. It is less obvious. Since the meth-
ods aren’t declared on the page in front of you, we mention it specifi cally. Pay attention to
the signatures of these three methods in the next sections so that you know the method sig-
natures well and can spot where they are overridden.

 Coding equals, s hashCode , and e toString

 All classes in Java inherit from java.lang.Object , either directly or indirectly, which
means that all classes inherit any methods defi ned in Object . Three of these methods are
common for subclasses to override with a custom implementation. First, we will look at
toString() . Then we will talk about equals() and hashCode() . Finally, we will discuss
how equals() and hashCode() relate.

 toString
 When studying for the OCA, we learned that Java automatically calls the toString()
method if you try to print out an object. We also learned that some classes supply a human‐
readable implementation of toString() and others do not. When running the following
example, we see one of each:

 public static void main(String[] args) {
 System.out .println(new ArrayList()); // [] t
 System.out .println(new String[0]); // [Ljava.lang.String;@65cc892et
 }

ArrayList provided an implementation of toString() that listed the contents of the
ArrayList , in this case, an empty ArrayList . (If you want to be technical about it, a super-
class of ArrayList implemented toString() and ArrayList inherited that one instead of
the one in Object , whereas the array used the default implementation from Object .) You
don’t need to know that for the exam, though.

 Clearly, providing nice human‐readable output is going to make things easier for develop-
ers working with your code. They can simply print out your object and understand what it
represents. Luckily, it is easy to override toString() and provide your own implementation.

 Let’s start with a nice, simple example:

 public class Hippo {
 private String name;
 private double weight;

14 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 14

 public Hippo(String name, double weight) {
 this.name = name;
 this.weight = weight;
 }
 @Override
 public String toString() {
 return name;
 }
 public static void main(String[] args) {
 Hippo h1 = new Hippo("Harry", 3100);
 System. out .println(h1); // Harry
 } }

Now when we run this code, it prints Harry . Granted that we have only one Hippo , so it
isn’t hard to keep track of this! But when the zoo later gets a whole family of hippos, it will
be easier to remember who is who.

When you implement the toString() method, you can provide as much or as little infor-
mation as you would like. In this example, we use all of the instance variables in the object:

 public String toString() {
 return "Name: " + name + ", Weight: " + weight;
 }

 The Easy Way to Write toString() Methods

 Once you’ve written a toString() method, it starts to get boring to write more—especially

if you want to include a lot of instance variables. Luckily, there is an open source library that

takes care of it for you. Apache Commons Lang (http://commons.apache.org/proper/
commons-lang/) provides some methods that you might wish were in core Java.

 This is all you have to write to have Apache Commons return all of the instance variables

in a String :

 public String toString() {
 return ToStringBuilder. reflectionToString (this);g
 }

 Calling our Hippo test class with this toString() method outputs something like

toString.Hippo@12da89a7[name=Harry,weight=3100.0] . You might be wondering what

c01_0.indd 11/17/2015 Page 15

Coding equals , hashCode , and toString 15

equals
 Remember that Java uses == to compare primitives and for checking if two variables refer
to the same object. Checking if two objects are equivalent uses the equals() method, or at
least it does if the developer implementing the method overrides equals() . In this example,
you can see that only one of the two classes provides a custom implementation of equals() :

 String s1 = new String("lion");
 String s2 = new String("lion");
 System.out .println(s1.equals(s2)); // true
 StringBuilder sb1 = new StringBuilder("lion");
 StringBuilder sb2 = new StringBuilder("lion");
 System.out .println(sb1.equals(sb2)); // false

String does have an equals() method. It checks that the values are the same.
StringBuilder uses the implementation of equals() provided by Object , which simply
checks if the two objects being referred to are the same.

 There is more to writing your own equals() method than there was to writing
toString() . Suppose the zoo gives every lion a unique identifi cation number. The following
Lion class implements equals() to say that any two Lion objects with the same ID are the
same Lion :

 1: public class Lion {
 2: private int idNumber;

this refl ection thing is that is mentioned in the method name. Refl ection is a technique

used in Java to look at information about the class at runtime. This lets the ToString-
Builder class determine what are all of the instance variables and to construct a

String with each.

 When testing your code, there is a benefi t to not having information in toString()
that isn’t useful to your caller (12da89a7). Apache Commons accounts for this as well.

You can write

 @Override public String toString() {
 return ToStringBuilder. reflectionToString (this,g
 ToStringStyle.SHORT_PREFIX_STYLE); E
 }

 This time our Hippo test class outputs Hippo[name=Harry,weight=3100.0] . There

are a few other styles that support letting you choose to omit the class names or the

instance variable names.

16 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 16

 3: private int age;
 4: private String name;
 5: public Lion(int idNumber, int age, String name) {
 6: this.idNumber = idNumber;
 7: this.age = age;
 8: this.name = name;
 9: }
 10: @Override public boolean equals(Object obj) {
 11: if (!(obj instanceof Lion)) return false;
 12: Lion otherLion = (Lion) obj;
 13: return this.idNumber == otherLion.idNumber;
 14: }
 15: }

First, pay attention to the method signature on line 10. It takes an Object as the method
parameter rather than a Lion . Line 11 checks whether a cast would be allowed. You get to use
the new instanceof operator that you just learned! There is no way that a Lion is going to be
equal to a String . The method needs to return false when this occurs. If you get to line 12, a
cast is OK. Then line 13 checks whether the two objects have the same identifi cation number.

The this. syntax is not required. Line 12 could have been return idNumber == other-
Lion.idNumber . Many programmers explicitly code this. to be explicit about the object
being referenced.

 The Contract for equals() Methods

 Since equals() is such a key method, Java provides a number of rules in the contract for

the method. The exam expects you to recognize correct and incorrect equals() methods,

but it will not ask you to name which property is broken. That said, it is helpful to have

seen it at least once.

 The equals() method implements an equivalence relation on non‐null object references:

■ It is refl exive : For any non‐null reference value x , x.equals(x) should return true .

■ It is symmetric : For any non‐null reference values x and y , x.equals(y) should return

true if and only if y.equals(x) returns true .

■ It is transitive : For any non‐null reference values x , y , and z , if x.equals(y) returns

true and y.equals(z) returns true , then x.equals(z) should return true .

■ It is consistent : For any non‐null reference values t x and y , multiple invocations of

x.equals(y) consistently return true or consistently return false , provided no

information used in equals comparisons on the objects is modifi ed.

■ For any non‐null reference value x , x.equals(null) should return false .

c01_0.indd 11/17/2015 Page 17

Coding equals , hashCode , and toString 17

 Much of this is common sense. The defi nition of equality doesn’t change at random,

and the same objects can’t be equal “sometimes.” The most interesting rule is the last

one. It should be obvious that an object and null aren’t equal. The key is that equals()

needs to return false when this occurs rather than throw a NullPointerException .

 For practice, can you see what is wrong with this equals() method?

 public boolean equals(Lion obj) {
 if (obj == null) return false;
 return this.idNumber == obj.idNumber;
 }

 There is actually nothing wrong with this method. It is a perfectly good method.
However, it does not override equals() from Object . It overloads that method, which is
probably not what was intended.

 The Easy Way to Write equals() Methods

 Like toString() , you can use Apache Commons Lang to do a lot of the work for you. If

you want all of the instance variables to be checked, your equals() method can be one

line:

public boolean equals(Object obj) {
 return EqualsBuilder.reflectionEquals (this, obj);
}

This is nice. However, for equals(), it is common to look at just one or two instance vari-

ables rather than all of them.

public boolean equals(Object obj) {
 if (!(obj instanceof LionEqualsBuilder)) return false;
 Lion other = (Lion) obj;
 return new EqualsBuilder().appendSuper(super.equals(obj))
 .append(idNumber, other.idNumber)
 .append(name, other.name)
 .isEquals();

}

18 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 18

 Not quite as elegant, right? You have to remember to handle the null and instanceof
guard conditions fi rst. It is still better than having to code the whole thing by hand,

though. Comparing the idNumber is easy because you can call == . Comparing the name

means checking that either both names are null or the names are the same. If either

name is null, you need to return false . This logic is a bit messy if you write it out by

hand.

hashCode
 Whenever you override equals() , you are also expected to override hashCode() . The hash
code is used when storing the object as a key in a map. You will see this in Chapter 3 ,
“Generics and Collections.”

A hash code is a number that puts instances of a class into a fi nite number of categories.
Imagine that I gave you a deck of cards, and I told you that I was going to ask you for spe-
cifi c cards and I want to get the right card back quickly. You have as long as you want to
prepare, but I’m in a big hurry when I start asking for cards. You might make 13 piles of
cards: All of the aces in one pile, all the twos in another pile, and so forth. That way, when
I ask for the fi ve of hearts, you can just pull the right card out of the four cards in the pile
with fi ves. It is certainly faster than going through the whole deck of 52 cards! You could
even make 52 piles if you had enough space on the table.

The following is the code that goes with our little story. Cards are equal if they have the
same rank and suit. They go in the same pile (hash code) if they have the same rank.

 public class Card {
 private String rank;
 private String suit;
 public Card(String r, String s) {
 if (r == null || s == null)
 throw new IllegalArgumentException();
 rank = r;
 suit = s;
 }
 public boolean equals(Object obj) {
 if (!(obj instanceof Card)) return false;
 Card c = (Card) obj;
 return rank.equals(c.rank) && suit.equals(c.suit);
 }
 public int hashCode() {
 return rank.hashCode();
 }
 }

c01_0.indd 11/17/2015 Page 19

Coding equals , hashCode , and toString 19

 In the constructor, you make sure that neither instance variable is null . This check
allows equals() to be simpler because you don’t have to worry about null there. The
hashCode() method is quite simple. It asks the rank for its hash code and uses that. k

 That’s all well and good. But what do you do if you have a primitive and need the hash code?
The hash code is just a number. On the exam, you can just use a primitive number as is or divide
to get a smaller int . Remember that all of the instance variables don’t need to be used in a
hashCode() method. It is common not to include boolean and char variables in the hash code.

 The offi cial JavaDoc contract for hashCode() is harder to read than it needs to be. The
three points in the contract boil down to these:

■ Within the same program, the result of hashCode() must not change. This means that
you shouldn’t include variables that change in figuring out the hash code. In our hippo
example, including the name is fine. Including the weight is not because hippos change
weight regularly.

■ If equals() returns true when called with two objects, calling hashCode() on each of
those objects must return the same result. This means hashCode() can use a subset of
the variables that equals() uses. You saw this in the card example. We used only one
of the variables to determine the hash code.

■ If equals() returns false when called with two objects, calling hashCode() on each of
those objects does not have to return a different result. This means hashCode() results
do not need to be unique when called on unequal objects.

 Going back to our Lion , which has three instance variables and only used idNumber in
the equals() method, which of these do you think are legal hashCode() methods?

 16: public int hashCode() { return idNumber; }
 17: public int hashCode() { return 6; }
 18: public long hashcode() { return idNumber; }
 19: public int hashCode() { return idNumber * 7 + age; }

 Line 16 is what you would expect the hashCode() method to be. Line 17 is also legal. It
isn’t particularly effi cient. It is like putting the deck of cards in one giant pile. But it is legal.
Line 18 is not an override of hashCode() . It uses a lowercase c , which makes it a different
method. If it were an override, it wouldn’t compile because the return type is wrong. Line
19 is not legal because it uses more variables than equals() .

 The Easy Way to Write hashCode() Methods

 You probably thought that this was going to be about the Apache Commons Lang class

for hash code. There is one, but it isn’t the easiest way to write hash code.

20 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 20

 It is easier to code your own. Just pick the key fi elds that identify your object (and

don’t change during the program) and combine them:

 public int hashCode() {
 return keyField + 7 * otherKeyField.hashCode();
 }

 It is common to multiply by a prime number when combining multiple fi elds in the

hash code. This makes the hash code more unique, which helps when distributing

objects into buckets.

 Working with Enum s

 In programming, it is common to have a type that can only have a fi nite set of values. An
enumeration is like a fi xed set of constants. In Java, an enum is a class that represents an
enumeration. It is much better than a bunch of constants because it provides type‐safe
checking. With numeric constants, you can pass an invalid value and not fi nd out until
runtime. With enum s, it is impossible to create an invalid enum type without introducing a
compiler error.

Enumerations show up whenever you have a set of items whose types are known at com-
pile time. Common examples are the days of the week, months of the year, the planets in
the solar system, or the cards in a deck. Well, maybe not the planets in a solar system, given
that Pluto had its planetary status revoked.

To create an enum , use the enum keyword instead of the class keyword. Then list all of
the valid types for that enum .

 public enum Season {
 WINTER, SPRING, SUMMER, FALL
 }

Since an enum is like a set of constants, use the uppercase letter convention that you used
for constants.

Behind the scenes, an enum is a type of class that mainly contains static members. It
also includes some helper methods like name() that you will see shortly. Using an enum is
easy:

 Season s = Season.SUMMER ;
 System.out .println(Season.SUMMER); // SUMMER
 System.out.println(s == Season.SUMMER); // true

As you can see, enum s print the name of the enum when toString() is called. They are
also comparable using == because they are like static final constants.

c01_0.indd 11/17/2015 Page 21

Working with Enum s 21

An enum provides a method to get an array of all of the values. You can use this like any
normal array, including in a loop:

 for(Season season: Season. values ()) {
 System.out .println(season.name() + " " + season.ordinal());
 }

 The output shows that each enum value has a corresponding int value in the order in
which they are declared. The int value will remain the same during your program, but the
program is easier to read if you stick to the human‐readable enum value.

 WINTER 0
 SPRING 1
 SUMMER 2
 FALL 3

 You can’t compare an int and enum value directly anyway. Remember that an enum is a
type and not an t int .

 if (Season. SUMMER == 2) {} // DOES NOT COMPILER

 You can also create an enum from a String . This is helpful when working with older
code. The String passed in must match exactly, though.

 Season s1 = Season.valueOf ("SUMMER"); // SUMMER
 Season s2 = Season.valueOf ("summer"); // exception

 The fi rst statement works and assigns the proper enum value to s1 . The second statement
encounters a problem. There is no enum value with the lowercase name “summer.” Java
throws up its hands in defeat and throws an IllegalArgumentException .

 Exception in thread "main" java.lang.IllegalArgumentException: No enum constant
enums.Season.summer

 Another thing that you can’t do is extend an enum .

 public enum ExtendedSeason extends Season { } // DOES NOT COMPILE

 The values in an enum are all that are allowed. You cannot add more at runtime by
extending the enum .

 Now that we’ve covered the basics, we look at using enum s in switch statements and
how to add extra functionality to enum s.

 Using Enum s in Switch Statementsh
Enums may be used in switch statements. Pay attention to the case value in this code:

 Season summer = Season.SUMMER ;
 switch (summer) {

22 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 22

 case WINTER:
 System. out .println("Get out the sled!");t
 break;
 case SUMMER :
 System. out .println("Time for the pool!");t
 break;
 default:
 System. out .println("Is it summer yet?");
}

The code prints "Time for the pool!" since it matches SUMMER . Notice that we
just typed the value of the enum rather than writing Season.WINTER . The reason is that
Java already knows that the only possible matches can be enum values. Java treats the
enum type as implied. In fact, if you were to type case Season.WINTER , it would not
compile. Keep in mind that an enum type is not an int . The following code does not
compile:

 switch (summer) {
 case 0: // DOES NOT COMPILE
 System. out .println("Get out the sled!");
 break;
 }

 You can’t compare an int with an enum . Pay special attention when working with enum s
that they are used only as enum s.

 Adding Constructors, Fields, and Methods
Enum s can have more in them than just values. It is common to give state to each
one. Our zoo wants to keep track of traffic patterns for which seasons get the most
visitors.

 1: public enum Season {
 2: WINTER("Low"), SPRING("Medium"), SUMMER("High"), FALL("Medium");
 3: private String expectedVisitors;
 4: private Season(String expectedVisitors) {
 5: this.expectedVisitors = expectedVisitors;
 6: }
 7: public void printExpectedVisitors() {
 8: System.out.println(expectedVisitors);
 9: }]

 There are a few things to notice here. On line 2, we have a semicolon. This is required if
there is anything in the enum besides the values.

c01_0.indd 11/17/2015 Page 23

Working with Enum s 23

 This is such a subtle detail that we are going to say it again: remember that

the semicolon at the end of the enum values is optional only if the only

thing in the enum is that list of values.

 Lines 3–9 are regular Java code. We have an instance variable, a constructor, and a
method. The constructor is private because it can only be called from within the enum .
The code will not compile with a public constructor.

 Calling this new method is easy:

 Season.SUMMER.printExpectedVisitors();

 Notice how we don’t appear to call the constructor. We just say that we want the enum
value. The fi rst time that we ask for any of the enum values, Java constructs all of the enum
values. After that, Java just returns the already‐constructed enum values. Given that expla-
nation, you can see why this code calls the constructor only once:

 public enum OnlyOne {
 ONCE (true); E
 private OnlyOne(boolean b) {
 System. out .println("constructing");
 }
 public static void main(String[] args) {
 OnlyOne firstCall = OnlyOne.ONCE ; // prints constructing
 OnlyOne secondCall = OnlyOne. ONCE ; // doesn't print anything
 } }

 This technique of a constructor and state allows you to combine logic with the benefi t of
a list of values. Sometimes, you want to do more. For example, our zoo has different sea-
sonal hours. It is cold and gets dark early in the winter. We could keep track of the hours
through instance variables, or we can let each enum value manage hours itself:

 public enum Season {
 WINTER { R
 public void printHours() { System. out .println("9am-3pm"); }
 }, SPRING { G
 public void printHours() { System. out .println("9am-5pm"); }
 }, SUMMER { R
 public void printHours() { System. out .println("9am-7pm"); }
 }, FALL { L
 public void printHours() { System. out .println("9am-5pm"); }
 };
 public abstract void printHours();
 }

24 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 24

What’s going on here? It looks like we created an abstract class and a bunch of tiny sub-
classes. In a way we did. The enum itself has an abstract method. This means that each and
every enum value is required to implement this method. If we forget one, we get a compiler error.

If we don’t want each and every enum value to have a method, we can create a default
implementation and override it only for the special cases:

 public enum Season3 {
 WINTER {
 public void printHours() { System.out.println("short hours"); }
 }, SUMMER {
 public void printHours() { System.out.println("long hours"); }
 }, SPRING, FALL;
 public void printHours() { System.out.println("default hours"); }
 }

This one looks better. We only code the special cases and let the others use the
enum‐provided implementation. Notice how we still have the semicolon after FALL . This is
needed when we have anything other than just the values. In this case, we have a default
method implementation.

 Just because an enum can have lots of methods, doesn’t mean that it should. Try to keep
your enum s simple. If your enum is more than a page or two, it is way too long. Most enum s
are just a handful of lines. The main reason they get long is that when you start with a one‐
or two‐line method and then declare it for each of your dozen enum types, it grows long.
When they get too long or too complex, it makes the enum hard to read.

 Creating Nested Classes

 A nested class is a class that is defi ned within another class. A nested class that is not
static is called an inner class . There are four of types of nested classes:

■ A member inner class is a class defined at the same level as instance variables. It is not
static. Often, this is just referred to as an inner class without explicitly saying the type.

■ A local inner class is defined within a method.

■ An anonymous inner class is a special case of a local inner class that does not have a
name.

■ A static nested class is a static class that is defined at the same level as static
variables.

There are a few benefi ts of using inner classes. They can encapsulate helper classes by
restricting them to the containing class. They can make it easy to create a class that will
be used in only one place. They can make the code easier to read. They can also make the
code harder to read when used improperly. Unfortunately, the exam tests these edge cases

Creating Nested Classes 25

c01_0.indd 11/17/2015 Page 25

where programmers wouldn’t actually use a nested class. This section covers all four types
of nested classes.

 Member Inner Classes
 A member inner class is defi ned at the member level of a class (the same level as the methods,
instance variables, and constructors). Member inner classes have the following properties:

■ Can be declared public, private, or protected or use default access

■ Can extend any class and implement interfaces

■ Can be abstract or final

■ Cannot declare static fields or methods

■ Can access members of the outer class including private members

 The last property is actually pretty cool. It means that the inner class can access the
outer class without doing anything special. Ready for a complicated way to print “Hi”
three times?

 1: public class Outer {
 2: private String greeting = "Hi";
 3:
 4: protected class Inner {
 5: public int repeat = 3;
 6: public void go() {
 7: for (int i = 0; i < repeat; i++)
 8: System.out .println(greeting);
 9: }
 10: }
 11:
 12: public void callInner() {
 13: Inner inner = new Inner();
 14: inner.go();
 15: }
 16: public static void main(String[] args) {
 17: Outer outer = new Outer();
 18: outer.callInner();
 19: } }

 A member inner class declaration looks just like a stand‐alone class declaration except
that it happens to be located inside another class—oh, and that it can use the instance vari-
ables declared in the outer class. Line 8 shows that the inner class just refers to greeting
 as if it were available. This works because it is in fact available. Even though the variable is
private, it is within that same class.

26 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 26

Since a member inner class is not static, it has to be used with an instance of the outer
class. Line 13 shows that an instance of the outer class can instantiate Inner normally. This
works because callInner() is an instance method on Outer . Both Inner and callInner()
are members of Outer . Since they are peers, they just write the name.

There is another way to instantiate Inner that looks odd at fi rst. OK, well maybe not
just at fi rst. This syntax isn’t used often enough to get used to it:

 20: public static void main(String[] args) {
 21: Outer outer = new Outer();
 22: Inner inner = outer.new Inner(); // create the inner class
 23: inner.go();
 24: }

Let’s take a closer look at line 22. We need an instance of Outer in order to create Inner .
We can’t just call new Inner() because Java won’t know with which instance of Outer it is
associated. Java solves this by calling new as if it were a method on the outer variable. r

.class Files for Inner Classes

 Compiling the Outer.java class with which we have been working creates two class

fi les. Outer.class you should be expecting. For the inner class, the compiler creates

Outer$Inner.class . You don’t need to know this syntax for the exam. We mention it so

that you aren’t surprised to see fi les with $ appearing in your directories. You do need to

understand that multiple class fi les are created.

Inner classes can have the same variable names as outer classes. There is a special way of
calling this to say which class you want to access. You also aren’t limited to just one inner
class. Please never do this in code you write. Here is how to nest multiple classes and access
a variable with the same name in each:

 1: public class A {
 2: private int x = 10;
 3: class B {
 4: private int x = 20;
 5: class C {
 6: private int x = 30;
 7: public void allTheX() {
 8: System. out .println(x); // 30
 9: System. out .println(this.x); // 30
 10: System. out .println(B.this.x); // 20
 11: System. out .println(A.this.x); // 10

Creating Nested Classes 27

c01_0.indd 11/17/2015 Page 27

 12: } } }
 13: public static void main(String[] args) {
 14: A a = new A();
 15: A.B b = a.new B();
 16: A.B.C c = b.new C();
 17: c.allTheX();
 18: }}

 Yes, this code makes us cringe too. It has two nested classes. Line 14 instantiates the out-
ermost one. Line 15 uses the awkward syntax to instantiate a B . Notice the type is A.B . We
could have written B as the type because that is available at the member level of B . Java knows
where to look for it. On line 16, we instantiate a C . This time, the A.B.C type is necessary to
specify. C is too deep for Java to know where to look. Then line 17 calls a method on c .

 Lines 8 and 9 are the type of code that we are used to seeing. They refer to the instance vari-
able on the current class—the one declared on line 6 to be precise. Line 10 uses this in a special
way. We still want an instance variable. But this time we want the one on the B class, which is
the variable on line 4. Line 11 does the same thing for class A , getting the variable from line 2.

 Private Interfaces

 This following code looks weird but is legal:

 public class CaseOfThePrivateInterface {
 private interface Secret {
 public void shh();
 }
 class DontTell implements Secret {
 public void shh() { }
 } }

 The rule that all methods in an interface are public still applies. A class that implements

the interface must defi ne that method as public .

 The interface itself does not have to be public , though. Just like any inner class, an inner

interface can be private . This means that the interface can only be referred to within the

current outer class.

 Local Inner Classes
 A local inner class is a nested class defi ned within a method. Like local variables, a local
inner class declaration does not exist until the method is invoked, and it goes out of scope
when the method returns. This means that you can create instances only from within the

28 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 28

method. Those instances can still be returned from the method. This is just how local vari-
ables work. Local inner classes have the following properties:

■ They do not have an access specifier.

■ They cannot be declared static and cannot declare static fields or methods.

■ They have access to all fields and methods of the enclosing class.

■ They do not have access to local variables of a method unless those variables are final
or effectively final. More on this shortly.

Ready for an example? Here’s a complicated way to multiply two numbers:

1: public class Outer {
2: private int length = 5;
3: public void calculate() {
4: final int width = 20;
5: class Inner {
6: public void multiply() {
7: System. out .println(length * width);t
8: }
9: }
10: Inner inner = new Inner();
11: inner.multiply();
12: }
13: public static void main(String[] args) {
14: Outer outer = new Outer();
15: outer.calculate();
16: }
17: }

Lines 5 through 9 are the local inner class. That class’s scope ends on line 12 where the
method ends. Line 7 refers to an instance variable and a fi nal local variable, so both vari-
able references are allowed from within the local inner class.

Earlier, we made the statement that local variable references are allowed if they are final
or effectively fi nal. Let’s talk about that now. The compiler is generating a class fi le from your
inner class. A separate class has no way to refer to local variables. If the local variable is final ,
Java can handle it by passing it to the constructor of the inner class or by storing it in the class
fi le. If it weren’t effectively fi nal, these tricks wouldn’t work because the value could change
after the copy was made. Up until Java 7, the programmer actually had to type the final
keyword. In Java 8, the “effectively fi nal” concept was introduced. If the code could still com-
pile with the keyword final inserted before the local variable, the variable is effectively fi nal.

 Remember that the “effectively final” concept was introduced in Java 8. If

you are looking at older mock exam questions online, some of the answers

about local variables and inner classes might be different.

Creating Nested Classes 29

c01_0.indd 11/17/2015 Page 29

 Which of the variables do you think are effectively fi nal in this code?

 34: public void isItFinal() {
 35: int one = 20;
 36: int two = one;
 37: two++;
 38: int three;
 39: if (one == 4) three = 3;
 40: else three = 4;
 41: int four = 4;
 42: class Inner { }
 43: four = 5;
 44: }

one is effectively fi nal. It is only set in the line in which it is declared. two is not effec-
tively fi nal. The value is changed on line 37 after it is declared. three is effectively fi nal
because it is assigned only once. This assignment may happen in either branch of the if
statement, but it can happen in only one of them. four is not effectively fi nal. Even though
the assignment happens after the inner class, it is not allowed.

 Anonymous Inner Classes
 An anonymous inner class is a local inner class that does not have a name. It is declared
and instantiated all in one statement using the new keyword. Anonymous inner classes arew
required to extend an existing class or implement an existing interface. They are useful when
you have a short implementation that will not be used anywhere else. Here’s an example:

 1: public class AnonInner {
 2: abstract class SaleTodayOnly {
 3: abstract int dollarsOff();
 4: }
 5: public int admission(int basePrice) {
 6: SaleTodayOnly sale = new SaleTodayOnly() {
 7: int dollarsOff() { return 3; }
 8: };
 9: return basePrice - sale.dollarsOff();
 10: } }

 Lines 2 through 4 defi ne an abstract class. Lines 6 through 8 defi ne the inner class.
Notice how this inner class does not have a name. The code says to instantiate a new
SaleTodayOnly object. But wait. SaleTodayOnly is abstract . This is OK because we
provide the class body right there—anonymously.

 Pay special attention to the semicolon on line 8. We are declaring a local variable on
these lines. Local variable declarations are required to end with semicolons, just like other
Java statements—even if they are long and happen to contain an anonymous inner class.

30 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 30

Now we convert this same example to implement an interface instead of extending an
abstract class:

 1: public class AnonInner {
 2: interface SaleTodayOnly {
 3: int dollarsOff();
 4: }
 5: public int admission(int basePrice) {
 6: SaleTodayOnly sale = new SaleTodayOnly() {
 7: public int dollarsOff() { return 3; }
 8: };
 9: return basePrice - sale.dollarsOff();
 10: } }

The most interesting thing here is how little has changed. Lines 2 through 4 declare an
interface instead of an abstract class. Line 7 is public instead of using default access
since interfaces require public methods. And that is it. The anonymous inner class is the
same whether you implement an interface or extend a class! Java fi gures out which one
you want automatically.

But what if we want to implement both an interface and extend a class? You can’t with
an anonymous inner class, unless the class to extend is java.lang.Object . Object is a spe-
cial class, so it doesn’t count in the rule. Remember that an anonymous inner class is just
an unnamed local inner class. You can write a local inner class and give it a name if you
have this problem. Then you can extend a class and implement as many interface s as you
like. If your code is this complex, a local inner class probably isn’t the most readable option
anyway.

There is one more thing that you can do with anonymous inner classes. You can
define them right where they are needed, even if that is an argument to another
method:

 1: public class AnonInner {
 2: interface SaleTodayOnly {
 3: int dollarsOff();
 4: }
 5: public int pay() {
 6: return admission(5, new SaleTodayOnly() {
 7: public int dollarsOff() { return 3; }
 8: });
 9: }
 10: public int admission(int basePrice, SaleTodayOnly sale) {

Creating Nested Classes 31

c01_0.indd 11/17/2015 Page 31

 11: return basePrice - sale.dollarsOff();
 12: }}

 Lines 6 through 8 are the anonymous inner class. We don’t even store it in a local
variable. Instead, we pass it directly to the method that needs it. Reading this style of code
does take some getting used to. But it is a concise way to create a class that you will use
only once.

 Before you get too attached to anonymous inner classes, know that you’ll see a shorter
way of coding them in Chapter 4 , “Functional Programming.”

 Inner Classes as Event Handlers

 Writing graphical user interface code isn’t on the exam. Nonetheless, it is a very common

use of inner classes, so we’ll give you a taste of it here:

 JButton button = new JButton("red");
 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 // handle the button click
 }
 });

 This technique gives the event handler access to the instance variables in the class with

which it goes. It works well for simple event handling.

 You should be aware that inner classes go against some fundamental concepts, such as

reuse of classes and high cohesion (discussed in the next chapter). Therefore, make sure

that inner classes make sense before you use them in your code.

 Static Nested Classes
 The final type of nested class is not an inner class. A static nested class is a static
class defined at the member level. It can be instantiated without an object of the
enclosing class, so it can’t access the instance variables without an explicit object of
the enclosing class. For example, new OuterClass().var allows access to the instance
variable var .

32 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 32

In other words, it is like a regular class except for the following:

■ The nesting creates a namespace because the enclosing class name must be used to refer
to it.

■ It can be made private or use one of the other access modifiers to encapsulate it.

■ The enclosing class can refer to the fields and methods of the static nested class.

 1: public class Enclosing {
 2: static class Nested {
 3: private int price = 6;
 4: }
 5: public static void main(String[] args) {
 6: Nested nested = new Nested();
 7: System.out .println(nested.price);t
 8: } }

Line 6 instantiates the nested class. Since the class is static , you do not need an
instance of Enclosing in order to use it. You are allowed to access private instance
variables, which is shown on line 7.

 Importing a static Nested Class

 Importing a static nested class is interesting. You can import it using a regular import:

 package bird;
 public class Toucan {
 public static class Beak {}
 }
 package watcher;
 import bird.Toucan.Beak; // regular import ok
 public class BirdWatcher {
 Beak beak;
 }

 And since it is static , alternatively you can use a static import:

 import static bird.Toucan.Beak;

 Either one will compile. Surprising, isn’t it? Java treats the static nested class as if it

were a namespace.

Summary 33

c01_0.indd 11/17/2015 Page 33

 To review the four types of nested classes, make sure that you know the information in
Table 1.2.

 TA B LE 1. 2 Types of nested classes

Member
inner class

Local inner
class Anonymous inner class static nested class

Access

modifiers

allowed

public ,

protected ,

private,

or default

access

None.

Already

local to

method.

None. Already local to

statement.
public , protected ,

private , or default

access

Can extend

any class and

any number

of interfaces

Yes Yes No—must have exactly

one superclass or one

interface

Yes

Can be

abstract
Yes Yes N/A—because no class

definition

Yes

Can be final Yes Yes N/A—because no class

definition

Yes

Can access

instance

members of

enclosing

class

Yes Yes Yes No (not directly;

requires an

instance of the

enclosing class)

Can access

local variables

of enclosing

class

No Yes—if

final or

effectively

final

Yes—if final or effec-

tively final

No

Can declare

static
methods

No No No Yes

 Summary

 The instanceof keyword compares an object to a class or interface type. It also looks at
subclasses and subinterfaces. x instanceof Object returns true unless x is null . If the
compiler can determine that there is no way for instanceof to return true , it will generate

34 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 34

a compiler error. Virtual method invocation means that Java will look at subclasses when
fi nding the right method to call. This is true, even from within a method in the superclass.

The methods toString() , equals() , and hashCode() are implemented in Object s
that classes can override to change their behavior. toString() is used to provide a
human‐readable representation of the object. equals() is used to specify which instance
variables should be considered for equality. equals() is required to return false when the
object passed in is null or is of the wrong type. hashCode() is used to provide a grouping
in some collections. hashCode() is required to return the same number when called with
objects that are equals() .

The enum keyword is short for enumerated values or a list of values. Enum s can be used
in switch statements. They are not int values and cannot be compared to int values. In a
switch , the enum value is placed in the case. Enum s are allowed to have instance variables,
constructors, and methods. Enum s can also have value‐specifi c methods. The enum itself
declares that method as well. It can be abstract , in which case all enum values must
provide an implementation. Alternatively, it can be concrete, in which case enum values can
choose whether they want to override the default implementation.

There are four types of nested classes. Member inner classes require an instance of
the outer class to use. They can access private members of that outer class. Local inner
classes are classes defi ned within a method. They can also access private members of the
outer class. Local inner classes can also access final or effectively fi nal local variables.
Anonymous inner classes are a special type of local inner class that does not have a name.
Anonymous inner classes are required to extend exactly one class by name or implement
exactly one interface . Static nested classes can exist without an instance of the outer class.

This chapter also contained a review of access modifi ers, overloading, overriding,
abstract classes, static, fi nal, and imports. It also introduced the optional @Override
annotation for overridden methods or methods implemented from an interface.

 Exam Essentials

Be able to identify the output of code using instanceof . instanceof checks if the left
operand is the same class or interface (or a subclass) as the right operand. If the left oper-
and is null , the result is false . If the two operands are not in the same class hierarchy, the
code will not compile.

Recognize correct and incorrect implementations of equals() , hashCode() , and

toString() . public boolean equals(Object obj) returns false when called with null or
a class of the wrong type. public int hashCode() returns a number calculated with all or
some of the instance variables used in equals() . public String toString() returns any
String .

Be able to create enum classes. enum s have a list of values. If that is all that is in the enum ,
the semicolon after the values is optional. Enum s can have instance variables, constructors,
and methods. The constructors are required to be private or package private. Methods are

Exam Essentials 35

c01_0.indd 11/17/2015 Page 35

allowed to be on the enum top level or in the individual enum values. If the enum declares an
abstract method, each enum value must implement it.

Identify and use nested classes. A member inner class is instantiated with code such as
outer.new Inner(); . Local inner classes are scoped to the end of the current block of code
and not allowed to have static members. Anonymous inner classes are limited to extend-
ing a class or implementing one interface . A semicolon must end the statement creating
an anonymous inner class. Static nested classes cannot access the enclosing class instance
variables.

Know how to use imports and static imports. Classes can be imported by class name or
wildcard. Wildcards do not look at subdirectories. In the event of a confl ict, class name
imports take precedence. Static imports import static members. They are written as import
static , not static import. Make sure that they are importing static methods or variables
rather than class names.

Understand the rules for method overriding and overloading. The Java compiler allows
methods to be overridden in subclasses if certain rules are followed: a method must have
the same signature, be at least as accessible as the parent method, must not declare any new
or broader exceptions, and must use covariant return types. Methods are overloaded if they
have the same method name but a different argument list. An overridden method may use
the optional @Override annotation.

36 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 36

 Review Questions

 1. What is the result of the following code?

 1: public class Employee {
 2: public int employeeId;
 3: public String firstName, lastName;
 4: public int yearStarted;
 5: @Override public int hashCode() {
 6: return employeeId;
 7: }
 8: public boolean equals(Employee e) {
 9: return this.employeeId == e.employeeId;
 10: }
 11: public static void main(String[] args) {
 12: Employee one = new Employee();
 13: one.employeeId = 101;
 14: Employee two = new Employee();
 15: two.employeeId = 101;
 16: if (one.equals(two)) System. out .println("Success");t
 17: else System.out .println("Failure");
 18: } }

 A. Success

 B. Failure

 C. The hashCode() method fails to compile.

 D. The equals() method fails to compile.

 E. Another line of code fails to compile.

 F. A runtime exception is thrown.

 2. What is the result of compiling the following class?

 public class Book {
 private int ISBN;
 private String title, author;
 private int pageCount;
 public int hashCode() {
 return ISBN;
 }
 @Override public boolean equals(Object obj) {
 if (!(obj instanceof Book)) {

c01_0.indd 11/17/2015 Page 37

Review Questions 37

 return false;
 }
 Book other = (Book) obj;
 return this.ISBN == other.ISBN;
 }
 // imagine getters and setters are here
 }

 A. The code compiles.

 B. The code does not compile because hashCode() is incorrect.

C. The code does not compile because equals() does not override the parent method
correctly.

D. The code does not compile because equals() tries to refer to a private field.

E. The code does not compile because the ClassCastException is not handled or
declared.

F. The code does not compile for another reason.

 3. What is the result of the following code?

 String s1 = "Canada";
 String s2 = new String(s1);
 if(s1 == s2) System.out .println("s1 == s2");t
 if(s1.equals(s2)) System. out.println("s1.equals(s2)"); t

A. There is no output.

B. s1 == s2

 C. s1.equals(s2)

D. Both B and C.

 E. The code does not compile.

 F. The code throws a runtime exception.

 4. What is true about the following code? You may assume city and mascot are never null .

public class BaseballTeam {
 private String city, mascot;
 private int numberOfPlayers;
 public boolean equals(Object obj) {
 if (!(obj instanceof BaseballTeam))
 return false;
 BaseballTeam other = (BaseballTeam) obj;
 return (city.equals(other.city) && mascot.equals(other.mascot));
 }

38 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 38

 public int hashCode() {
 return numberOfPlayers;
 }
 // imagine getters and setters are here
 }

A. The class does not compile.

B. The class compiles but has an improper equals() method.

 C. The class compiles but has an improper hashCode() method.

 D. The class compiles and has proper equals() and hashCode() methods.

 5. Which of the following statements are true, assuming a and b are String objects? (Choose
all that apply.)

 A. If a.equals(b) is true , a.hashCode() == b.hashCode() is always true .

 B. If a.equals(b) is true , a.hashCode() == b.hashCode() is sometimes but not
always true .

 C. If a.equals(b) is false , a.hashCode() == b.hashCode() can never be true .

 D. If a.equals(b) is false , a.hashCode() == b.hashCode() can sometimes be true .

 6. What is the result of the following code?

 public class FlavorsEnum {
 enum Flavors {

VANILLA , CHOCOLATE , STRAWBERRY
 }
 public static void main(String[] args) {
 System. out .println(Flavors. t CHOCOLATE .ordinal());E
 }
 }

A. 0

B. 1

 C. 9

 D. CHOCOLATE

E. The code does not compile due to a missing semicolon.

F. The code does not compile for a different reason.

7. What is the result of the following code? (Choose all that apply.)

 public class IceCream {
 enum Flavors {
 VANILLA , CHOCOLATE , STRAWBERRY
 }
 public static void main(String[] args) {

c01_0.indd 11/17/2015 Page 39

Review Questions 39

 Flavors f = Flavors.STRAWBERRY ;
 switch (f) {
 case 0: System.out .println("vanilla");
 case 1: System.out .println("chocolate");
 case 2: System.out .println("strawberry");
 break;
 default: System. out .println("missing flavor");
 } } }

 A. vanilla

B. chocolate

 C. strawberry

D. missing flavor

E. The code does not compile.

 F. An exception is thrown.

 8. What is the result of the following code?

 1: public class Outer {
 2: private int x = 5;
 3: protected class Inner {
 4: public static int x = 10;x
 5: public void go() { System. out .println(x); }
 6: }
 7: public static void main(String[] args) {
 8: Outer out = new Outer();
 9: Outer.Inner in = out.new Inner();
 10: in.go();
 11: } }

 A. The output is 5 .

 B. The output is 10 .

 C. Line 4 generates a compiler error.

D. Line 8 generates a compiler error.

E. Line 9 generates a compiler error.

F. An exception is thrown.

 9. What is the result of the following code?

 1: public class Outer {
 2: private int x = 24;
 3: public int getX() {
 4: String message = "x is ";

40 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 40

 5: class Inner {
 6: private int x = Outer.this.x;
 7: public void printX() {
 8: System. out .println(message + x);
 9: }
 10: }
 11: Inner in = new Inner();
 12: in.printX();
 13: return x;
 14: }
 15: public static void main(String[] args) {
 16: new Outer().getX();
 17: } }

A. x is 0 .

B. x is 24 .

 C. Line 6 generates a compiler error.

 D. Line 8 generates a compiler error.

E. Line 11 generates a compiler error.

F. An exception is thrown.

 10. The following code appears in a file named Book.java . What is the result of compiling the
source file?

 1: public class Book {
 2: private int pageNumber;
 3: private class BookReader {
 4: public int getPage() {
 5: return pageNumber;
 6: } } }

A. The code compiles successfully, and one bytecode file is generated: Book.class .

 B. The code compiles successfully, and two bytecode files are generated: Book.class and
BookReader.class .

 C. The code compiles successfully, and two bytecode files are generated: Book.class and
Book$BookReader.class .

D. A compiler error occurs on line 3.

E. A compiler error occurs on line 5.

11. Which of the following statements can be inserted to make FootballGame compile?

 package my.sports;
 public class Football {

c01_0.indd 11/17/2015 Page 41

Review Questions 41

 public static final int TEAM_SIZE = 11;E
 }

 package my.apps;
 // INSERT CODE HERE

 public class FootballGame {

 public int getTeamSize() { return TEAM_SIZE; }
 }

 A. import my.sports.Football;

 B. import static my.sports.*;

 C. import static my.sports.Football;

 D. import static my.sports.Football.*;

 E. static import my.sports.*;

 F. static import my.sports.Football;

 G. static import my.sports.Football.*;

12. What is the result of the following code?

 public class Browsers {
 static class Browser {
 public void go() {
 System. out .println("Inside Browser");
 }
 }
 static class Firefox extends Browser {
 public void go() {
 System. out .println("Inside Firefox");
 }
 }
 static class IE extends Browser {
 @Override public void go() {
 System. out .println("Inside IE");
 }
 }
 public static void main(String[] args) {
 Browser b = new Firefox();
 IE e = (IE) b;
 e.go();
 }
 }

42 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 42

 A. Inside Browser

 B. Inside Firefox

 C. Inside IE

 D. The code does not compile.

 E. A runtime exception is thrown.

 13. Which is a true statement about the following code?

 public class IsItFurry {
 static interface Mammal { }
 static class Furry implements Mammal { }
 static class Chipmunk extends Furry { }
 public static void main(String[] args) {
 Chipmunk c = new Chipmunk();
 Mammal m = c;
 Furry f = c;
 int result = 0;
 if (c instanceof Mammal) result += 1;
 if (c instanceof Furry) result += 2;
 if (null instanceof Chipmunk) result += 4;
 System. out .println(result);
 } }

 A. The output is 0 .

 B. The output is 3 .

 C. The output is 7 .

 D. c instanceof Mammal does not compile.

 E. c instanceof Furry does not compile.

 F. null instanceof Chipmunk does not compile.

 14. Which is a true statement about the following code? (Choose all that apply.)

 import java.util. *;
 public class IsItFurry {
 static class Chipmunk { }
 public static void main(String[] args) {
 Chipmunk c = new Chipmunk();
 ArrayList <Chipmunk> l = new ArrayList<>();
 Runnable r = new Thread();
 int result = 0;
 if (c instanceof Chipmunk) result += 1;

c01_0.indd 11/17/2015 Page 43

Review Questions 43

 if (l instanceof Chipmunk) result += 2;
 if (r instanceof Chipmunk) result += 4;
 System. out .println(result);
 } }

A. The code compiles, and the output is 0 .

B. The code compiles, and the output is 3 .

 C. The code compiles, and the output is 7 .

 D. c instanceof Chipmunk does not compile.

 E. l instanceof Chipmunk does not compile.

 F. r instanceof Chipmunk does not compile.

 15. Which of the following statements are true about the equals() method? (Choose all that
apply.)

A. If equals(null) is called, the method should throw an exception.

 B. If equals(null) is called, the method should return false .

 C. If equals(null) is called, the method should return true .

 D. If equals() is passed the wrong type, the method should throw an exception.

E. If equals() is passed the wrong type, the method should return false .

F. If equals() is passed the wrong type, the method should return true .

 16. Which of the following can be inserted in main ?

 public class Outer {
 class Inner { }

 public static void main(String[] args) {
 // INSERT CODE HERE
 } }

A. Inner in = new Inner();

B. Inner in = Outer.new Inner();

 C. Outer.Inner in = new Outer.Inner();

 D. Outer.Inner in = new Outer().Inner();

 E. Outer.Inner in = new Outer().new Inner();

F. Outer.Inner in = Outer.new Inner();

 17. What is the result of the following code? (Choose all that apply.)

 1: public enum AnimalClasses {
 2: MAMMAL(true), FISH (Boolean.FALSE), E BIRD(false),

44 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 44

 3: REPTILE (false), E AMPHIBIAN (false), INVERTEBRATE (false)E
 4: boolean hasHair;
 5: public AnimalClasses(boolean hasHair) {
 6: this.hasHair = hasHair;
 7: }
 8: public boolean hasHair() {
 9: return hasHair;
 10: }
 11: public void giveWig() {
 12: hasHair = true;
 13: } }

A. Compiler error on line 2.
 B. Compiler error on line 3.
 C. Compiler error on line 5.
D. Compiler error on line 8.
 E. Compiler error on line 12.
 F. Compiler error on another line.
 G. The code compiles successfully.

 18. What is the result of the following code? (Choose all that apply.)

 public class Swimmer {
 enum AnimalClasses {

MAMMAL, FISH {H
 public boolean hasFins() { return true; }},
 BIRD , REPTILE , AMPHIBIAN , INVERTEBRATE ;
 public abstract boolean hasFins();
 }
 public static void main(String[] args) {
 System. out .println(AnimalClasses.FISH);H
 System. out .println(AnimalClasses. t FISH .ordinal());
 System. out .println(AnimalClasses. t FISH .hasFins());
 System. out .println(AnimalClasses. t BIRD .hasFins());D
 }
 }

 A. fish

 B. FISH

 C. 0

D. 1

c01_0.indd 11/17/2015 Page 45

Review Questions 45

 E. false

F. true

 G. The code does not compile.

 19. Which of the following can be inserted to override the superclass method? (Choose all that
apply.)

 public class LearnToWalk {
 public void toddle() {}
 class BabyRhino extends LearnToWalk {
 // INSERT CODE HERE
 }
 }

 A. public void toddle() {}

 B. public void Toddle() {}

 C. public final void toddle() {}

 D. public static void toddle() {}

 E. public void toddle() throws Exception {}

 F. public void toddle(boolean fall) {}

 20. What is the result of the following code?

 public class FourLegged {
 String walk = "walk,";
 static class BabyRhino extends FourLegged {
 String walk = "toddle,";
 }
 public static void main(String[] args) {
 FourLegged f = new BabyRhino();
 BabyRhino b = new BabyRhino();
 System. out.println(f.walk); t
 System. out.println(b.walk); t
 } }

 A. toddle,toddle,

 B. toddle,walk,

 C. walk,toddle,

 D. walk,walk,

 E. The code does not compile.

 F. A runtime exception is thrown.

46 Chapter 1 ■ Advanced Class Design

c01_0.indd 11/17/2015 Page 46

 21. Which of the following could be inserted to fill in the blank? (Choose all that apply.)

 public interface Otter {
 default void play() { }
 }
 class RiverOtter implements Otter {

 }

 A. @Override public boolean equals(Object o) { return false; }

 B. @Override public boolean equals(Otter o) { return false; }

 C. @Override public int hashCode() { return 42; }

 D. @Override public long hashCode() { return 42; }

 E. @Override public void play() { }

 F. @Override void play() { }

