
PART I
CO

PYRIG
HTED

 M
ATERIA

L

A decorator is a tool for wrapping code around functions or classes. Decorators then explicitly
apply that wrapper to functions or classes to cause them to “opt in” to the decorator’s func-
tionality. Decorators are extremely useful for addressing common prerequisite cases before
a function runs (for example, ensuring authentication), or ensuring cleanup after a function
runs (for example, output sanitization or exception handling). They are also useful for taking
action on the decorated function or class itself. For example, a decorator might register a func-
tion with a signaling system or a URI registry in web applications.

This chapter provides an overview of what decorators are and how they interact with Python
functions and classes. It enumerates certain decorators that appear in the Python standard
library. Finally, it offers instruction in writing decorators and attaching them to functions
and classes.

UNDERSTANDING DECORATORS

At its core, a decorator is a callable that accepts a callable and returns a callable. A decorator
is simply a function (or other callable, such as an object with a __call__ method) that accepts
the decorated function as its positional argument. The decorator takes some action using that
argument, and then either returns the original argument or some other callable (presumably
that interacts with it in some way).

Because functions are fi rst-class objects in Python, they can be passed to another function just
as any other object can be. A decorator is just a function that expects another function, and
does something with it.

This sounds more confusing than it actually is. Consider the following very simple decorator.
It does nothing except append a line to the decorated callable’s docstring.

def decorated_by(func):
 func.__doc__ += '\nDecorated by decorated_by.'
 return func

1

4 ❘ CHAPTER 1 DECORATORS

Now, consider the following trivial function:

def add(x, y):
 """Return the sum of x and y."""
 return x + y

The function’s docstring is the string specifi ed in the fi rst line. It is what you will see if you run help
on that function in the Python shell. Here is the decorator applied to the add function:

def add(x, y):
 """Return the sum of x and y."""
 return x + y
add = decorated_by(add)

Here is what you get if you run help:

Help on function add in module __main__:

add(x, y)
 Return the sum of x and y.
 Decorated by decorated_by.
(END)

What has happened here is that the decorator made the modifi cation to the function’s __doc__
attribute, and then returned the original function object.

DECORATOR SYNTAX

Most times that developers use decorators to decorate a function, they are only interested in
the fi nal, decorated function. Keeping a reference to the undecorated function is ultimately
superfl uous.

Because of this (and also for purposes of clarity), it is undesirable to defi ne a function, assign it to
a particular name, and then immediately reassign the decorated function to the same name.

Therefore, Python 2.5 introduced a special syntax for decorators. Decorators are applied by
prepending an @ character to the name of the decorator and adding the line (without the implied
decorator’s method signature) immediately above the decorated function’s declaration.

Following is the preferred way to apply a decorated_by decorator to the add method:

@decorated_by
def add(x, y):
 """Return the sum of x and y."""
 return x + y

Note again that no method signature is being provided to @decorated_by. The decorator is
assumed to take a single, positional argument, which is the method being decorated. (You will
see a method signature in some cases, but with other provided arguments. This is discussed later
in this chapter.)

This syntax allows the decorator to be applied where the function is declared, which makes it easier
to read the code and immediately realize that the decorator is in play. Readability counts.

Decorator Syntax ❘ 5

Order of Decorator Application
When is a decorator applied? When the @ syntax is being used, decorators are applied immediately
after the decorated callable is created. Therefore, the two examples shown of how to apply deco-

rated_by to add are exactly equivalent. First, the add function is created, and then, immediately
after that, it is wrapped with decorated_by.

One important thing to note about this is that it is possible to use multiple decorators on a single
callable (just as it is possible to wrap function calls multiple times).

However, note that if you use multiple decorators using the @ syntax, they are applied in order, from
bottom to top. This may be counterintuitive at fi rst, but it makes sense given what the Python inter-
preter is actually doing.

Consider the following function with two decorators applied:

@also_decorated_by
@decorated_by
def add(x, y):
 """Return the sum of x and y."""
 return x + y

The fi rst thing that occurs is that the add function is created by the interpreter. Then, the deco-
rated_by decorator is applied. This decorator returns a callable (as all decorators do), which is
then sent to also_decorated_by, which does the same; the latter result is assigned to add.

Remember that the application of decorated_by is syntactically equivalent to the following:

add = decorated_by(add)

The previous two-decorator example is syntactically equivalent to the following:

add = also_decorated_by(decorated_by(add))

In both cases, the also_decorated_by decorator comes fi rst as a human reads the code. However,
the decorators are applied bottom to top for the same reason that the functions are resolved from
innermost to outermost. The same principles are at work.

In the case of a traditional function call, the interpreter must fi rst resolve the inner function call in
order to have the appropriate object or value to send to the outer call.

add = also_decorated_by(decorated_by(add)) # First, get a return value for
 # `decorated_by(add)`.
add = also_decorated_by(decorated_by(add)) # Send that return value to
 # `also_decorated_by`.

With a decorator, fi rst the add function is created normally.

@also_decorated_by
@decorated_by
def add(x, y):
 """Return the sum of x and y."""
 return x + y

6 ❘ CHAPTER 1 DECORATORS

Then, the @decorated_by decorator is called, being sent the add function as its decorated method.

@also_decorated_by
@decorated_by
def add(x, y):
 """Return the sum of x and y."""
 return x + y

The @decorated_by function returns its own callable (in this case, a modifi ed version of add). That
value is what is then sent to @also_decorated_by in the fi nal step.

@also_decorated_by
@decorated_by
def add(x, y):
 """Return the sum of x and y."""
 return x + y

When applying decorators, it is important for you to remember that they are applied bottom to top.
Many times, order does matter.

WHERE DECORATORS ARE USED

The standard library includes many modules that incorporate decorators, and many common tools
and frameworks make use of them for common functionality.

For example, if you want to make a method on a class not require an instance of the class, you use
the @classmethod or @staticmethod decorator, which is part of the standard library. The mock
module (which is used for unit testing, and which was added to the standard library in Python 3.3)
allows the use of @mock.patch or @mock.patch.object as a decorator.

Common tools also use decorators. Django (which is a common web framework for Python) uses
@login_required as a decorator to allow developers to specify that a user must be logged in to
view a particular page, and uses @permission_required for applying more specifi c permissions.
Flask (another common web framework) uses @app.route to serve as a registry between specifi c
URIs and the functions that run when the browser hits those URIs.

Celery (a common Python task runner) uses a complex @task decorator to identify a function as
an asynchronous task. This decorator actually returns an instance of a Task class, which illustrates
how decorators can be used to make a very convenient API.

WHY YOU SHOULD WRITE DECORATORS

Decorators provide an excellent way to say, “I want this specifi c, reusable piece of functionality in
these specifi c places.” When written well, they are modular and explicit.

The modularity of decorators (you can apply or remove them from functions or classes easily) makes
them ideal for avoiding the repetition of boilerplate setup and teardown code. Similarly, because
decorators interact with the decorated function itself, they excel at registering functions elsewhere.

Also, decorators are explicit. They are applied, in-place, to all callables where they are needed. This
is valuable for readability, and therefore for debugging. It is obvious exactly what is being applied
and where.

Writing Decorators ❘ 7

WHEN YOU SHOULD WRITE DECORATORS

Several very good use cases exist for writing decorators in Python applications and modules.

Additional Functionality
Probably the most common reason to write a decorator is if you want to add additional functional-
ity before or after the decorated method is executed. This could include use cases such as checking
authentication or logging the result of a function to a consistent location.

Data Sanitization or Addition
A decorator could also sanitize the values of arguments being passed to the decorated function, to
ensure consistency of argument type, or that a value conforms to a specifi c pattern. For example, a
decorator could ensure that the values sent to a function conform to a specifi c type, or meet some other
validation standard. (You will see an example of this shortly, a decorator called @requires_ints.)

A decorator can also transform or sanitize data that is returned from a function. A valuable use case
for this is if you want to have functions that return native Python objects (such as lists or dictionar-
ies), but ultimately receive a serialized format (such as JSON or YAML) on the other end.

Some decorators actually provide additional data to a function, usually in the form of additional
arguments. The @mock.patch decorator is an example of this, because it (among other things)
 provides the mock object that it creates as an additional positional argument to the function.

Function Registration
Many times, it is useful to register a function elsewhere—for example, registering a task in a task
runner, or a function with a signal handler. Any system in which some external input or routing
mechanism decides what function runs is a candidate for function registration.

WRITING DECORATORS

Decorators are simply functions that (usually) accept the decorated callable as their only argument,
and that return a callable (such as in the previous trivial example).

It is important to note that the decorator code itself runs when the decorator is applied to the deco-d
rated function, rather than when the decorated function is called. Understanding this is critical, and
will become very clear over the course of the next several examples.

An Initial Example: A Function Registry
Consider the following simple registry of functions:

registry = []
def register(decorated):
 registry.append(decorated)
 return decorated

8 ❘ CHAPTER 1 DECORATORS

The register method is a simple decorator. It appends the positional argument, decorated to the
registry variable, and then returns the decorated method unchanged. Any method that receives the
register decorator will have itself appended to registry.

@register
def foo():
 return 3

@register
def bar():
 return 5

If you have access to the registry, you can easily iterate over it and execute the functions inside.

answers = []
for func in registry:
 answers.append(func())

The answers list at this point would now contain [3, 5]. This is because the functions are
 executed in order, and their return values are appended to answers.

Several less-trivial uses for function registries exist, such as adding “hooks” into code so that cus-
tom functionality can be run before or after critical events. Here is a Registry class that can handle
just such a case:

class Registry(object):
 def __init__(self):
 self._functions = []

 def register(self, decorated):
 self._functions.append(decorated)
 return decorated

 def run_all(self, *args, **kwargs):
 return_values = []
 for func in self._functions:
 return_values.append(func(*args, **kwargs))
 return return_values

One thing worth noting about this class is that the register method—the decorator—still works
the same way as before. It is perfectly fi ne to have a bound method as a decorator. It receives self
as the fi rst argument (just as any other bound method), and expects one additional positional argu-
ment, which is the decorated method.

By making several different registry instances, you can have entirely separate registries. It is even
possible to take the same function and register it with more than one registry, as shown here:

a = Registry()
b = Registry()

@a.register
def foo(x=3):
 return x

Writing Decorators ❘ 9

@b.register
def bar(x=5):
 return x

@a.register
@b.register
def baz(x=7):
 return x

Running the code from either registry’s run_all method gives the following results:

a.run_all() # [3, 7]
b.run_all() # [5, 7]

Notice that the run_all method is able to take arguments, which it then passes to the underlying
functions when they are run.

a.run_all(x=4) # [4, 4]

Execution-Time Wrapping Code
These decorators are very simple because the decorated function is passed through unmodifi ed.
However, sometimes you want additional functionality to run when the decorated method is
executed. You do this by returning a different callable that adds the appropriate functionality
and (usually) calls the decorated method in the course of its execution.

A Simple Type Check
Here is a simple decorator that ensures that every argument the function receives is an integer, and
complains otherwise:

def requires_ints(decorated):
 def inner(*args, **kwargs):
 # Get any values that may have been sent as keyword arguments.
 kwarg_values = [i for i in kwargs.values()]

 # Iterate over every value sent to the decorated method, and
 # ensure that each one is an integer; raise TypeError if not.
 for arg in list(args) + kwarg_values:
 if not isinstance(arg, int):
 raise TypeError('%s only accepts integers as arguments.' %
 decorated.__name__)

 # Run the decorated method, and return the result.
 return decorated(*args, **kwargs)
 return inner

What is happening here?

The decorator itself is requires_ints. It accepts one argument, decorated, which is the decorated
callable. The only thing that this decorator does is return a new callable, the local function inner.
This function replaces the decorated method.

10 ❘ CHAPTER 1 DECORATORS

You can see this in action by declaring a function and decorating it with requires_ints:

@requires_ints
def foo(x, y):
 """Return the sum of x and y."""
 return x + y

Notice what you get if you run help(foo):

Help on function inner in module __main__:

inner(*args, **kwargs)
(END)

The inner function has been assigned to the name foo instead of the original, defi ned function. If f
you run foo(3, 5), the inner function runs with those arguments. The inner function performs
the type check, and then it runs the decorated method simply because the inner function calls it
using return decorated(*args, **kwargs), returning 8. Absent this call, the decorated method would
have been ignored.

Preserving the help
It often is not particularly desirable to have a decorator steamroll your function’s docstring or hijack
the output of help. Because decorators are tools for adding generic and reusable functionality, they
are necessarily going to be more vague. And, generally, if someone using a function is trying to run
help on it, he or she wants information about the guts of the function, not the shell.

The solution to this problem is actually … a decorator. Python implements a decorator called @

functools.wraps that copies the important introspection elements of one function onto another
function.

Here is the same @requires_ints decorator, but it adds in the use of @functools.wraps:

import functools

def requires_ints(decorated):
 @functools.wraps(decorated)
 def inner(*args, **kwargs):
 # Get any values that may have been sent as keyword arguments.
 kwarg_values = [i for i in kwargs.values()]

 # Iterate over every value sent to the decorated method, and
 # ensure that each one is an integer; raise TypeError if not.
 for arg in args + kwarg_values:
 if not isinstance(i, int):
 raise TypeError('%s only accepts integers as arguments.' %
 decorated.__name__)

 # Run the decorated method, and return the result.
 return decorated(*args, **kwargs)
 return inner

The decorator itself is almost entirely unchanged, except for the addition of the second line, which
applies the @functools.wraps decorator to the inner function. You must also import functools
now (which is in the standard library). You will also notice some additional syntax. This decorator
actually takes an argument (more on that later).

Writing Decorators ❘ 11

Now you apply the decorator to the same function, as shown here:

@requires_ints
def foo(x, y):
 """Return the sum of x and y."""
 return x + y

Here is what happens when you run help(foo) now:

Help on function foo in module __main__:

foo(x, y)
 Return the sum of x and y.

(END)

You see that the docstring for foo, as well as its method signature, is what is read out when you
look at help. Underneath the hood, however, the @requires_ints decorator is still applied, and
the inner function is still what runs.

Depending on which version of Python you are running, you will get a slightly different result from
running help on foo, specifi cally regarding the function signature. The previous paste represents
the output from Python 3.4. However, in Python 2, the function signature provided will still be that
of inner (so, *args and **kwargs rather than x and y).

User Verifi cation
A common use case for this pattern (that is, performing some kind of sanity check before running
the decorated method) is user verifi cation. Consider a method that is expected to take a user as its
fi rst argument.

The user should be an instance of this User and AnonymousUser class, as shown here:

class User(object):
 """A representation of a user in our application."""

 def __init__(self, username, email):
 self.username = username
 self.email = email

class AnonymousUser(User):
 """An anonymous user; a stand-in for an actual user that nonetheless
 is not an actual user.
 """
 def __init__(self):
 self.username = None
 self.email = None

 def __nonzero__(self):
 return False

A decorator is a powerful tool here for isolating the boilerplate code of user verifi cation. A
@requires_user decorator can easily verify that you got a User object and that it is not an
anonymous user.

12 ❘ CHAPTER 1 DECORATORS

import functools

def requires_user(func):
 @functools.wraps(func)
 def inner(user, *args, **kwargs):
 """Verify that the user is truthy; if so, run the decorated method,
 and if not, raise ValueError.
 """
 # Ensure that user is truthy, and of the correct type.
 # The "truthy" check will fail on anonymous users, since the
 # AnonymousUser subclass has a `__nonzero__` method that
 # returns False.
 if user and isinstance(user, User):
 return func(user, *args, **kwargs)
 else:
 raise ValueError('A valid user is required to run this.')
 return inner

This decorator applies a common, boilerplate need—the verifi cation that a user is logged in to the
application. When you implement this as a decorator, it is reusable and more easily maintainable,
and its application to functions is clear and explicit.

Note that this decorator will only correctly wrap a function or static method, and will fail if wrap-
ping a bound method to a class. This is because the decorator ignores the expectation to send self
as the fi rst argument to a bound method.

Output Formatting
In addition to sanitizing input to a function, another use for decorators can be sanitizing output
from a function.

When you’re working in Python, it is normally desirable to use native Python objects when pos-
sible. Often, however, you want a serialized output format (for example, JSON). It is cumbersome to
manually convert to JSON at the end of every relevant function, and (and it’s not a good idea, either).
Ideally, you should be using the Python structures right up until serialization is necessary, and there
may be other boilerplate that happens just before serialization (such as or the like).

Decorators provide an excellent, portable solution to this problem. Consider the following decorator
that takes Python output and serializes the result to JSON:

import functools
import json

def json_output(decorated):
 """Run the decorated function, serialize the result of that function
 to JSON, and return the JSON string.
 """
 @functools.wraps(decorated)
 def inner(*args, **kwargs):
 result = decorated(*args, **kwargs)
 return json.dumps(result)
 return inner

Writing Decorators ❘ 13

Apply the @json_output decorator to a trivial function, as shown here:

@json_output
def do_nothing():
 return {'status': 'done'}

Run the function in the Python shell, and you get the following:

>>> do_nothing()
'{"status": "done"}'

Notice that you got back a string that contains valid JSON. You didg not get back a dictionary.t

The beauty of this decorator is in its simplicity. Apply it to a function, and suddenly a function that
did return a Python dictionary, list, or other object now returns its JSON-serialized version.

You might ask, “Why is this valuable?” After all, you are adding a one-line decorator that essen-
tially removes a single line of code—a call to json.dumps. However, consider the value of having
this decorator as the application’s needs expand.

For example, what if certain exceptions should be trapped and output specifi cally formatted JSON,
rather than having the exception bubble up and traceback? Because you have a decorator, that func-
tionality is very easy to add.

import functools
import json

class JSONOutputError(Exception):
 def __init__(self, message):
 self._message = message

 def __str__(self):
 return self._message

def json_output(decorated):
 """Run the decorated function, serialize the result of that function
 to JSON, and return the JSON string.
 """
 @functools.wraps(decorated)
 def inner(*args, **kwargs):
 try:
 result = decorated(*args, **kwargs)
 except JSONOutputError as ex:
 result = {
 'status': 'error',
 'message': str(ex),
 }
 return json.dumps(result)
 return inner

By augmenting the @json_output decorator with this error handling, you have added it to any func-
tion where the decorator was already applied. This is part of what makes decorators so valuable.
They are very useful tools for code portability and reusability.

14 ❘ CHAPTER 1 DECORATORS

Now, if a function decorated with @json_output raises a JSONOutputError, you will get this
 special error handling. Here is a function that does:

@json_output
def error():
 raise JSONOutputError('This function is erratic.')

Running the error function in the Python interpreter gives you the following:

>>> error()
'{"status": "error", "message": "This function is erratic."}'

Note that only the JSONOutputError exception class (and any subclasses) receives this special
 handling. Any other exception is passed through normally, and generates a traceback. Consider
this function:

@json_output
def other_error():
 raise ValueError('The grass is always greener...')

When you run it, you will get the traceback you expect, as shown here:

>>> other_error()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 8, in inner
 File "<stdin>", line 3, in other_error
ValueError: The grass is always greener...

This reusability and maintainability is part of what makes decorators valuable. Because a decorator
is being used for a reusable, generally applicable concept throughout the application (in this case,
JSON serialization), the decorator becomes the place for housing that functionality as needs arise
that are applicable whenever that concept is used.

Essentially, decorators are tools to avoid repeating yourself, and part of their value is in providing
hooks for future maintenance.

This can be accomplished without the use of decorators. Consider the example of requiring a
logged-in user. It is not diffi cult to write a function that does this and simply place it near the top of
functions that require that functionality. The decorator is primarily syntactic sugar. The syntactic
sugar has value, though. Code is read more often than it is written, after all, and it is easy to locate
decorators at a glance.

Logging
One fi nal example of execution-time wrapping of code is a general-use logging function. Consider
the following decorator that causes the function call, timings, and result to be logged:

import functools
import logging
import time

def logged(method):
 """Cause the decorated method to be run and its results logged, along

Writing Decorators ❘ 15

 with some other diagnostic information.
 """
 @functools.wraps(method)
 def inner(*args, **kwargs):
 # Record our start time.
 start = time.time()

 # Run the decorated method.
 return_value = method(*args, **kwargs)

 # Record our completion time, and calculate the delta.
 end = time.time()
 delta = end - start

 # Log the method call and the result.
 logger = logging.getLogger('decorator.logged')
 logger.warn('Called method %s at %.02f; execution time %.02f '
 'seconds; result %r.' %
 (method.__name__, start, delta, return_value))

 # Return the method's original return value.
 return return_value
 return inner

When applied to a function, this decorator runs that function normally, but uses the Python log-
ging module to log out information about the function call after it completes. Now, suddenly, you
have (extremely rudimentary) logging of any function where this decorator is applied.

>>> import time
>>> @logged
... def sleep_and_return(return_value):
... time.sleep(2)
... return return_value
...
>>>
>>> sleep_and_return(42)
Called method sleep_and_return at 1424462194.70;
 execution time 2.00 seconds; result 42.
42

Unlike the previous examples, this decorator does not alter the function call in an obvious way. No
cases exist where you apply this decorator and get a different result from the decorated function
than you did from the undecorated function. The previous examples raised exceptions or modifi ed
the result if this or that check did not pass. This decorator is more invisible. It does some under-the-
hood work, but in no situation should it change the actual result.

Variable Arguments
It is worth noting that the @json_output and @logged decorators both provide inner functions that
simply take, and pass on with minimal investigation, variable arguments and keyword arguments.

This is an important pattern. One way that it is particularly important is that many decorators
may be used to decorate plain functions as well as methods of classes. Remember that in Python,
methods declared in classes receive an additional positional argument, conventionally known as

16 ❘ CHAPTER 1 DECORATORS

self. This does not change when decorators are in use. (This is why the requires_user decorator
shown earlier does not work on bound methods within classes.)

For example, if @json_result is used to decorate a method of a class, the inner function is called
and it receives the instance of the class as the fi rst argument. In fact, this is fi ne. In this case, that
argument is simply args[0], and it is passed to the decorated method unmolested.

Decorator Arguments
One thing that has been consistent about all the decorators enumerated thus far is that the decora-
tors themselves appear not to take any arguments. As discussed, there is an implied argument—the
method that is being decorated.

However, sometimes it is useful to have the decorator itself take some information that it needs tof
decorate the method appropriately. The difference between an argument passed to the decorator and
an argument passed to the function at call time is precisely that. An argument to the decorator is
processed once, when the function is declared and decorated. By contrast, arguments to the function
are processed when that function is called.

You have already seen an example of an argument sent to a decorator with the repeated use of
@functools.wraps. It takes an argument—the method being wrapped, whose help and docstring
and the like should be preserved.

However, decorators have implied call signatures. They take one positional argument—the method
being decorated. So, how does this work?

The answer is that it is complicated. Recall the basic decorators that have execution-time wrap-
ping of code. They declare an inner method in local scope that they then return. This is the call-
able returned by the decorator. It is what is assigned to the function name. Decorators that take
arguments add one more wrapping layer to this dance. This is because the decorator that takes the
argument is not actually the decorator. Rather, it is a function thatrr returns the decorator, which is rr
a function that takes one argument (the decorated method), which then decorates the function and
returns a callable.

That sounds confusing. Consider the following example where a @json_output decorator is aug-
mented to ask about indentation and key sorting:

import functools
import json

class JSONOutputError(Exception):
 def __init__(self, message):
 self._message = message

 def __str__(self):
 return self._message

def json_output(indent=None, sort_keys=False):
 """Run the decorated function, serialize the result of that function
 to JSON, and return the JSON string.

Writing Decorators ❘ 17

 """
 def actual_decorator(decorated):
 @functools.wraps(decorated)
 def inner(*args, **kwargs):
 try:
 result = decorated(*args, **kwargs)
 except JSONOutputError as ex:
 result = {
 'status': 'error',
 'message': str(ex),
 }
 return json.dumps(result, indent=indent, sort_keys=sort_keys)
 return inner
 return actual_decorator

So, what has happened here, and why does this work?

This is a function, json_output, which accepts two arguments (indent and sort_keys). It returns
another function, called actual_decorator, which is (as its name suggests) intended to be used as
a decorator. That is a classic decorator—a callable that accepts a single callable (decorated) as an
argument and returns a callable (inner).

Note that the inner function has changed slightly to accommodate the indent and sort_keys

arguments. These arguments mirror similar arguments accepted by json.dumps, so the call to
json.dumps accepts the values provided to indent and sort_keys in the decorator’s signature and
provides them to json.dumps in the antepenultimate line.

The inner function is what ultimately makes use of the indent and sort_keys arguments. This is
fi ne, because Python’s block scoping rules allow for this. It also is not a problem that this might be
called with different values for inner and sort_keys, because inner is a local function (a different
copy is returned each time the decorator is used).

Applying the json_output function looks like this:

@json_output(indent=4)
def do_nothing():
 return {'status': 'done'}

And if you run the do_nothing function now, you get a JSON block back with indentation and
newlines added, as shown here:

>>> do_nothing()
'{\n "status": "done"\n}'

How Does This Work?
But wait. If json_output is not a decorator, but a function that returns a decorator, why does it
look like it is being applied as a decorator? What is the Python interpreter doing here that makes
this work?

More explanation is in order. The key here is in the order of operations. Specifi cally, the function
call (json_output(indent=4)) precedes the decorator application syntax (@). Thus, the result of
the function call is used to apply the decorator.

18 ❘ CHAPTER 1 DECORATORS

The fi rst thing that is happening is that the interpreter is seeing the function call for json_output
and resolving that call (note that the boldface does not include the t @):

@json_output(indent=4)
def do_nothing():
 return {'status': 'done'}

All the json_output function does is defi ne another function, actual_decorator, and return it.
As the result of that function, it is then provided to @, as shown here:

@actual_decorator
def do_nothing():
 return {'status': 'done'}

Now, actual_decorator is being run. It declares another local function, inner, and returns it. As
previously discussed, that function is then assigned to the name do_nothing, the name of the deco-
rated method. When do_nothing is called, the inner function is called, runs the decorated method,
and JSON dumps the result with the appropriate indentation.

The Call Signature Matters
It is critical to realize that when you introduced your new, altered json_output function, you
 actually introduced a backward-incompatible change.

Why? Because now there is this extra function call that is expected. If you want the old json_output

behavior, and do not need values for any of the arguments available, you still must call the method.

In other words, you must do the following:

@json_output()
def do_nothing():
 return {'status': 'done'}

Note the parentheses. They matter, because they indicate that the function is being called (even with
no arguments), and then the result is applied to the @.

The previous code is not—repeat, not—equivalent to the following:

@json_output
def do_nothing():
 return {'status': 'done'}

This presents two problems. It is inherently confusing, because if you are accustomed to seeing deco-
rators applied without a signature, a requirement to supply an empty signature is counterintuitive.
Secondly, if the old decorator already exists in your application, you must go back and edit all of its
existing calls. You should avoid backward-incompatible changes if possible.

In a perfect world, this decorator would work for three different types of applications:

➤ @json_output

➤ @json_output()

➤ @json_output(indent=4)

Writing Decorators ❘ 19

As it turns out, this is possible, by having a decorator that modifi es its behavior based on the argu-
ments that it receives. Remember, a decorator is just a function and has all the fl exibility of any
other function to do what it needs to do to respond to the inputs it gets.

Consider this more fl exible iteration of json_output:

import functools
import json

class JSONOutputError(Exception):
 def __init__(self, message):
 self._message = message

 def __str__(self):
 return self._message

def json_output(decorated_=None, indent=None, sort_keys=False):
 """Run the decorated function, serialize the result of that function
 to JSON, and return the JSON string.
 """
 # Did we get both a decorated method and keyword arguments?
 # That should not happen.
 if decorated_ and (indent or sort_keys):
 raise RuntimeError('Unexpected arguments.')

 # Define the actual decorator function.
 def actual_decorator(func):
 @functools.wraps(func)
 def inner(*args, **kwargs):
 try:
 result = func(*args, **kwargs)
 except JSONOutputError as ex:
 result = {
 'status': 'error',
 'message': str(ex),
 }
 return json.dumps(result, indent=indent, sort_keys=sort_keys)
 return inner

 # Return either the actual decorator, or the result of applying
 # the actual decorator, depending on what arguments we got.
 if decorated_:
 return actual_decorator(decorated_)
 else:
 return actual_decorator

This function is endeavoring to be intelligent about whether or not it is currently being used as
a decorator.

First, it makes sure it is not being called in an unexpected way. You never expect to receive both a
method to be decorated and the keyword arguments, because a decorator is always called with thed
decorated method as the only argument.

20 ❘ CHAPTER 1 DECORATORS

Second, it defi nes the actual_decorator function, which (as its name suggests) is the actual decora-
tor to be either returned or applied. It defi nes the inner function that is the ultimate function to be
returned from the decorator.

Finally, it returns the appropriate result based on how it was called:

➤ If decorated_ is set, it was called as a plain decorator, without a method signature, and
its responsibility is to apply the ultimate decorator and return the inner function. Here
again, observe how decorators that take arguments are actually working. First, actual_
decorator(decorated_) is called and resolved, then its result (which must be a callable,t
because this is a decorator) is called with inner provided as its only argument.

➤ If decorated_ is not set, then this was called with keyword arguments instead, and the
function must return an actual decorator, which receives the decorated method and returns
inner. Therefore, the function returns actual_decorator outright. This is then applied by
the Python interpreter as the actual decorator (which ultimately returns inner).

Why is this technique valuable? It enables you to maintain your decorator’s functionality as previ-
ously used. This means that you do not have to update each case where the decorator has been
applied. But you still get the additional fl exibility of being able to add arguments in the cases where
you need them.

DECORATING CLASSES

Remember that a decorator is, fundamentally, a callable that accepts a callable and returns a call-
able. This means that decorators can be used to decorate classes as well as functions (classes are
callable, after all).

Decorating classes can have a variety of uses. They can be particularly valuable because, like func-
tion decorators, class decorators can interact with the attributes of the decorated class. A class
decorator can add or augment attributes, or it can alter the API of a class to provide a distinction
between how a class is declared versus how its instances are d used.

You might ask, “Isn’t the appropriate way to add or augment attributes of a class through sub
classing?” Usually, the answer is “yes.” However, in some situations an alternative approach may be
appropriate. Consider, for example, a generally applicable feature that may apply to many classes in
your application that live in distinct places in your class hierarchies.

By way of example, consider a feature of a class such that each instance knows when it was instanti-
ated, and instances are sorted by their creation times. This has general applicability across many
different classes, and requires the addition of three attributes—the instantiation timestamp, and the
__gt__ and __lt__ methods.

You have multiple ways to go about adding this. Here is how you can do it with a class decorator:

import functools
import time

Decorating Classes ❘ 21

def sortable_by_creation_time(cls):
 """Given a class, augment the class to have its instances be sortable
 by the timestamp at which they were instantiated.
 """
 # Augment the class' original `__init__` method to also store a
 # `_created` attribute on the instance, which corresponds to when it
 # was instantiated.
 original_init = cls.__init__

 @functools.wraps(original_init)
 def new_init(self, *args, **kwargs):
 original_init(self, *args, **kwargs)
 self._created = time.time()
 cls.__init__ = new_init

 # Add `__lt__` and `__gt__` methods that return True or False based on
 # the created values in question.
 cls.__lt__ = lambda self, other: self._created < other._created
 cls.__gt__ = lambda self, other: self._created > other._created

 # Done; return the class object.
 return cls

The fi rst thing that is happening in this decorator is that you are saving a copy of the class’s original
__init__ method. You do not need to worry about whether the class has one. Because object has
an __init__ method, that attribute’s presence is guaranteed. Next, you create a new method that
will be assigned to __init__, and this method fi rst calls the original and then does
one piece of extra work, saving the instantiation timestamp to self._created.

It is worth noting that this is a very similar pattern to the execution-time wrapping code from previ-
ous examples—making a function that wraps another function, whose primary responsibility is to
run the wrapped function, but also adds a small piece of other functionality.

It is worth noting that if a class decorated with @sortable_by_creation_time defi ned its own
__lt__ and __gt__ methods, then this decorator would override them.

The _created value by itself does little good if the class does not recognize that it is to be used
for sorting. Therefore, the decorator also adds __lt__ and __gt__ magic methods. These cause the
< and > operators to return True or False based on the result of those methods. This also affects
the behavior of sorted and other similar functions.

This is all that is necessary to make an arbitrary class’s instances sortable by their instantiation
time. This decorator can be applied to any class, including many classes with unrelated ancestry.

Here is an example of a simple class with instances sortable by when they are created:

>>> @sortable_by_creation_time
... class Sortable(object):
... def __init__(self, identifier):
... self.identifier = identifier
... def __repr__(self):
... return self.identifier
...
>>> first = Sortable('first')
>>> second = Sortable('second')

22 ❘ CHAPTER 1 DECORATORS

>>> third = Sortable('third')
>>>
>>> sortables = [second, first, third]
>>> sorted(sortables)
[first, second, third]

Bear in mind that simply because a decorator can be used to solve a problem, that does not mean
that it is necessarily the appropriate solution.

For instance, when it comes to this example, the same thing could be accomplished by using a
“mixin,” or a small class that simply defi nes the appropriate __init__, __lt__, and __gt__

 methods. A simple approach using a mixin would look like this:

import time

class SortableByCreationTime(object):
 def __init__(self):
 self._created = time.time()

 def __lt__(self, other):
 return self._created < other._created

 def __gt__(self, other):
 return self._created > other._created

Applying the mixin to a class can be done using Python’s multiple inheritance:

class MyClass(MySuperclass, SortableByCreationTime):
 pass

This approach has different advantages and drawbacks. On the one hand, it will not mercilessly
plow over __lt__ and __gt__ methods defi ned by the class or its superclasses (and it may not be
obvious when the code is read later that the decorator was clobbering two methods).

On the other hand, it would be very easy to get into a situation where the __init__ method pro-
vided by SortableByCreationTime does not run. If MyClass or MySuperclass or any class in
MySuperclass’s ancestry defi nes an __init__ method, it will win out. Reversing the class order
does not solve this problem; it simply reverses it.

By contrast, the decorator handles the __init__ case very well, simply by augmenting the effect
of the decorated class’s __init__ method and otherwise leaving it intact.

So, which approach is the correct approach? It depends.

TYPE SWITCHING

Thus far, the discussion in this chapter has only considered cases in which a decorator is expected to
decorate a function and provide a function, or when a decorator is expected to decorate a class and
provide a class.

There is no reason why this relationship must hold, however. The only requirement for a decorator
is that it is a callable that accepts a callable and returns the callable. There is no requirement that it
return the same kind of callable.f

Type Switching ❘ 23

One more advanced use case for decorators is actually when they do not do this. In particular, it can
be valuable for a decorator to decorate a function, but return a class. This can be a very useful tool
for situations where the amount of boilerplate code grows, or for allowing developers to use a simple
function for simple cases, but subclass a class in an application’s API for more advanced cases.

An example of this in the wild is a decorator used in a popular task runner in the Python ecosystem:
celery. The celery package provides a @celery.task decorator that is expected to decorate a func-
tion. What the decorator actually does is return a subclass of celery’s internal Task class, with the
decorated function being used within the subclass’s run method.

Consider the following trivial example of a similar approach:

class Task(object):
 """A trivial task class. Task classes have a `run` method, which runs
 the task.
 """
 def run(self, *args, **kwargs):
 raise NotImplementedError('Subclasses must implement `run`.')

 def identify(self):
 return 'I am a task.'

def task(decorated):
 """Return a class that runs the given function if its run method is
 called.
 """
 class TaskSubclass(Task):
 def run(self, *args, **kwargs):
 return decorated(*args, **kwargs)
 return TaskSubclass

What is happening here? The decorator creates a subclass of Task and returns the class. The class is
callable calling a class creates an instance of that class and runs its __init __ method

The value of doing this is that it provides a hook for lots of augmentation. The base Task class can
defi ne much, much more than just the run method. For example, a start method might run the task
asynchronously. The base class might also provide methods to save information about the task’s sta-
tus. Using a decorator that swaps out a function for a class here enables the developer to only con-
sider the actual body of his or her task, and the decorator does the rest of the work.

You can see this in action by taking an instance of the class and running its identify method, as
shown here:

>>> @task
>>> def foo():
>>> return 2 + 2
>>>
>>> f = foo()
>>> f.run()
4
>>> f.identify()
'I am a task.'

24 ❘ CHAPTER 1 DECORATORS

A Pitfall
This exact approach carries with it some problems. In particular, once a task function is decorated t
with the @task_class decorator, it becomes a class.

Consider the following simple task function decorated in this way:

@task
def foo():
 return 2 + 2

Now, attempt to run it directly in the interpreter:

>>> foo()
<__main__.TaskSubclass object at 0x10c3612d0>

That is a bad thing. This decorator alters the function in such a way that if the developer runs
it, it does not do what anyone expects. It is usually not acceptable to expect the function to be
declared as foo and then run using the convoluted foo().run() (which is what would be neces-
sary in this case).

Fixing this requires putting a little more thought into how both the decorator and the Task class are
constructed. Consider the following amended version:

class Task(object):
 """A trivial task class. Task classes have a `run` method, which runs
 the task.
 """
 def __call__(self, *args, **kwargs):
 return self.run(*args, **kwargs)

 def run(self, *args, **kwargs):
 raise NotImplementedError('Subclasses must implement `run`.')

 def identify(self):
 return 'I am a task.'

def task(decorated):
 """Return a class that runs the given function if its run method is
 called.
 """
 class TaskSubclass(Task):
 def run(self, *args, **kwargs):
 return decorated(*args, **kwargs)
 return TaskSubclass()

A couple of key differences exist here. The fi rst is the addition of the __call__ method to the base
Task class. The second difference (which complements the fi rst) is that the @task_class decorator
now returns an instance of thef TaskSubclass, rather than the class itself.

This is acceptable because the only requirement for the decorator is that it return a callable, and the
addition of the __call__ method to Task means that its instances are now callable.

Summary ❘ 25

Why is this pattern valuable? Again, the Task class is trivial, but it is easy to see how more function-
ality could be added here that is useful for managing and running tasks.

However, this approach maintains the spirit of the original function if it is invoked directly.
Consider the decorated function again:

@task
def foo():
 return 2 + 2

And now, what do you get if you run it in the interpreter?

>>> foo()
4

This is what you expect, which makes this a far superior class and decorator design. Under the
hood, the decorator has returned a TaskSubclass instance. When that instance is called in the
interpreter, its __call__ method is invoked, which calls run, which calls the original function.

You can see that you still got your instance back, though, by using the identify method.

>>> foo.identify()
'I am a task.'

Now you have an instance that, when called directly, calls exactly like the original function.
However, it can include other methods and attributes to provide for other functionality.

This is powerful. It allows a developer to write a function that is easily and explicitly grafted into a
class that provides for alternate ways for that function to be invoked or other related functionality.
This is a helpful paradigm.

SUMMARY

 Decorators are very valuable tools that you can use to write maintainable, readable Python code.
A decorator’s value is in the fact that it is explicit, as well as the fact that decorators are reusable.
They provide an excellent way to use boilerplate code, write it once, and apply it in many different
situations.

This useful paradigm is possible because Python’s data model provides functions and classes as fi rst-
class objects, capable of being passed around and augmented like any other object in the language.

On the other hand, there are also drawbacks to this model. In particular, the decorator syntax,
while clean and easy to read, can obscure the fact that a function is being wrapped within another
function, which can lead to challenges in debugging. Poorly written decorators may create errors by
being careless about the nature of the callables they wrap (for example, by ignoring the distinction
between bound methods and unbound functions).

Additionally, bear in mind that, like any function, the interpreter must actually run the code inside the
decorator, which has a performance impact. Decorators are not immune to this; be mindful of what
you are asking your decorators to do, in the same way that you would be for any other code you write.

26 ❘ CHAPTER 1 DECORATORS

Consider using decorators as a way to take leading or trailing functionality and wrap it around
unrelated functions. Similarly, decorators are useful tools for function registries, signaling, certain
cases of class augmentation, as well as many other things.

Chapter 2 “Context Managers,” discusses context managers, which are another way to take bits of
functionality that require reuse across an application, and compartmentalize them in an effective
and portable way.

