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1.1 Introduction

In many high-speed applications, there is a need for microwave amplifier circuits. For example,
satellite communications can be used when radio signals are blocked between two terrestrial trans-
ceiver stations as shown in Figure 1.1. The satellite then acts as a repeater, and the signal being
repeated must be amplified before being sent back.

Important amplifier characteristics are center frequency and span of the pass band, gain, stabil-
ity, input and output matching to the rest of the communication system, and noise figure [1].

At microwave frequencies, a common amplification component that has minimum noise is a
field effect transistor (FET) as shown in Figure 1.2.

In this book, the FET will be typically modeled as a two-port network, where the input is on the
gate and the output is on the drain. The source is mainly used for biasing of the transistor.

1.2 Scattering Parameters and Signal Flow Graphs

At high frequencies, voltages and currents are difficult to measure directly. However, scattering
parameters determined from incident and reflected waves can be measured with resistive termin-
ations. The scattering matrix of a two-port system provides relations between input and output
reflected waves b, and b, and input and output incident waves a; and a, when the structure is

rth antenna Earth ante

Figure 1.1 High-speed signals must be amplified in a satellite repeater.
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Figure 1.2 A FET modeled as a two-port network.
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Figure 1.3 Scattering matrix of a two-port system terminated on characteristic impedance Zj.

terminated on its characteristic impedance Z, as shown in Figure 1.3. Typically the reference
source and load Z, used in commercial network analyzers is 50 Q.

In the case of a two-port system, the equations relating incident and reflected waves and the
scattering parameters are given by

by =Sna+Spax

by=S821a1+Snaz
b Su S
(- ()
by S21 S/ \a
The incident and reflected waves are related to the voltages and currents in Figure 1.3.

a _V1+Z()11
Y
V2+Z()Iz

= 2703 1.4

N (1.4)
Vi-2Zyl

by =291 (1.5)

27y

Va-Zoby

W%

The parameter Sy, is the input reflection coefficient and is the ratio of input reflected wave
over input incident wave when the output incident wave is equal to zero. The output incident
wave a, is equal to zero when the output of the system is connected to the characteristic
impedance Z:

az

by (1.6)

Su=—

a

(1.7)

a2:0

The parameter S5, is the forward transmission coefficient and is the ratio of the output reflected
wave over the input incident wave when the output incident wave is equal to zero:

(1.8)
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ay by

S21

Figure 1.4 Signal flow graph representation of a two-port network.

The parameter S,, is the output reflection coefficient and is the ratio of the output reflected wave
over the output incident wave when the input incident wave is equal to zero. The input incident
wave a; is equal to zero when the input of the system is connected to the characteristic imped-
ance Zy:

(1.9)

The parameter S, is the reverse transmission coefficient and is the ratio of the input reflected
wave over the output incident wave when the input incident wave is equal to zero:

Spp=—

(1.10)
a

a; =0

The two-port network and scattering parameters can be modeled using the signal flow graph
representation of Figure 1.4.

A useful tool when defining system gains using signal flow graphs is the Mason gain
formula [2]. It provides the gain T of a system between a source node and an output node:

> Tl
T=4—~ 1.11
5 (1.11)
with

A=1-"Li+Y LLi-Y LLLc-
where

T} is the gain of the kth forward path between the source node and the output node

ZLi is the sum of all individual loop gains
ZLiLj is the sum of two loop gain products of any two nontouching loops

ZLiLij is the sum of three loop gain products of any three nontouching loops
A, is the part of A that does not touch the kth forward path
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1.3 Reflection Coefficients

As shown in Figure 1.5, the input reflection coefficient when the output is connected to charac-
teristic impedance Z, can be expressed in terms of the input impedance Z;y = V; /I, by replacing a;
and b, by their expressions in terms of voltages and currents:

Vi-Zl,
_ b __ 2% _Zw-2%
aj =0 V1+Zoll Z[N+ZO

27y

Sy =20 (1.12)

The input impedance can be expressed in terms of the input reflection coefficient by

1+S11
1-811

Ziv="Zo (1.13)

Figure 1.6 defines additional reflection coefficients when the two-port is terminated on arbitrary
loads Zg and Z;.
Reflection coefficient of the source:

ay _ Zg-Zy

=—= 1.14
PG by Zo+7o ( )
Z I l>
O O O O
a St Si2 by
— —E
Vg v, A Zy
b a
g) O 821 S22 O O 2
Zin
Figure 1.5 Input reflection coefficient and input impedance.
Za l4 Iy
O O s, Sty O O
— -
Z
Ve v, [ a 0 a T v, z
R —
Bl o o P |_> So1 Sap B b 5 o |—>
pG P in pout P L

Figure 1.6 Reflection coefficients of a two-port when terminated on arbitrary loads.
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Reflection coefficient of the load:

ay Z—Zy
=== 1.15
L by Z,+7 ( )
Input reflection coefficient of the two-port when output loaded on p;:
b S128pL
pin:—:sl + — 116
a YN (1.16)
Output reflection coefficient of the two-port when input loaded on pg:
by $12821P¢
ot =—=Sn+—— 1.17
Pou= g, =227 125 11PG (L17)

For example, the expression of the input reflection coefficient when loaded on p; is obtained by
first using the general scattering parameter definition of the two-port:

by =S11a1 +Say

by=S$na1+Snaz
Then, using the relation between incident and reflected waves a, =p; b, gives

bi=Snai+Swp b
by =8r1a1+S20p;b>

S
then from the second equation, b, (1—Sxp;)=S21a; and b, = $a1, so that
(1-Sxp.)
S21 $21812p1
b =S +Spp; ———a; =S| + ———=
1 114ai lszl—SZZPLal < 11 1=Snp, a

and

b S128
o= 1 =S, + 12921P1,
aj 1-Sxp;

The voltage standing wave ratio (VSWR) is given in terms of a reflection coefficient p by

1+|p|
1-|p|

VSWR = (1.18)
The input VSWR for the two-port in Figure 1.6 is therefore

1+1p.
VSWRyy = L 1P (1.19)
I-lp

in|
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The output VSWR for the two-port in Figure 1.6 is therefore

1 + |p(114f|

VSWRoyr =
1- |pout|

(1.20)

1.4 Gain Expressions

Figure 1.7 shows the different reflection coefficients used to define various power gains.

The transducer power gain can be computed using the signal flow graph and the Mason gain
formula as shown in Figure 1.8.

There is one forward path from node bs; to node b,. The path gain of this path
is T] =1 XS21 =S21.

There are three individual loops: pGS11, p1.S22, and pGS>1p1.512.

This gives

A=1=) Li+ Y LLi=» LiliLe--=1=[S11pg+Snps +S12510601) + [S1196520,] -0

and
T_ZTkAk_ T1X(1—0)
A 1=811p6 =820 —S12821p6P1 + S11p6S2201,
Z5 I, I,
O O O O
—_— S Z S12 —~—
Vs v, a 0 A z,
R —
‘—l O O b1 |_> 821 822 ‘—l b9 O O |_>
pG pin pout pL
Figure 1.7 Gain definitions.
b a b
‘G 1 821 2
Pg St Saz P
Si2
by a

Figure 1.8 Signal flow graph representation for defining the gain.
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So1

T=
1=-S11p6=S2p + 511520691 —S1252196PL

The transducer power gain is defined as

power delivered to the load

Gr=
"™ maximum available power from the source
so that
ool (1=10u?) i .
Gr=—tt= (TP (1=lpal) (1-1p.P)
|bg|
2
(1-lpal)

and

(1=1e6P) (1=lpc)Is P

_ ! (1.21)
1-S11p6=S2pr +S1182p6PL —S12521 601
Note that G can also be written as
(1=1e6P) (1=lpc)Isa P
. i (1.22)
|(1=S11p6) (1=S2p.) = S1282106P1|
or as
o (1=bel) (1=l I -
T= :
|1_pGpin|2|l_822pL|2
or as

o (1=beel) (1-lmiP)isa -
T= .
|1_SllpG|2|1_proul|2

Note that when S, =0, the transducer power gain reduces to the unilateral transducer power gain
Gty given by [3]

Gry=GgGoGr

where

2
1—|/’G|

2
o= — el 2
|1—SIIPG|2

G() = |S21 ‘2 and GL =
[1=S50p,
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Go
(transistor)

D DI

‘ s11 822

Pe P,

Figure 1.9 Representation in the case of a unilateral amplifier (S, =0).

In this case, G represents the losses in the source, Gy is the intrinsic gain, and G; represents the
losses in the load and can be modeled as in Figure 1.9.

The maximum unilateral gain occurs when there is perfect matching of source and load imped-
ances. For maximum unilateral gain, one would match the source to the input of the transistor by
making p; =57, and match the load to the output of the transistor by making p; =55,.

The maximum unilateral gain Gy pax 1S then given by

Gru max = (1.25)

The available power gain is defined as

_ maximum power the amplifier can deliver to the load

A : -
maximum available power from the source

and it is given by

(1=lp6P) 15

A=
|1_SllpG|2(1_|pout|2>

(1.26)

Note that when the input is perfectly matched then Zg =Zj and p; =0 and

S$1281p6 Sy

=Sn+
Pout 22 1—311,00

so that the available power gain becomes

1521

S e (1.27)
1-[S5[*

A=

1.5 Stability

The stability of the amplifier depends on the scattering parameters of the transistor but also on the
matching networks and terminations [4].

For the two-port shown in Figure 1.10, p;, is the input reflection coefficient of the transistor
when output loaded on p; and p,,, is the output reflection coefficient of the transistor when input
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Zg
Transistor
Ve Si1 Sz Z
= . S21 S22
pG‘ ‘ ’Din pout pL

Figure 1.10 Stability of a two-port.

loaded on pg. The system is said to be unconditionally stable if the amplitude of p;, and p,,,, are less
than unity for all the real parts of load impedance Z; and source impedance Zg:

VZ, (withRe{Z,} >0); |p,|> <1
VZg(withRe{Zg} > 0); [pp* <1

It can be shown that for unconditional stability one must satisfy three conditions:

K>1
B;>0 (1.28)
Bz>0

where

=1"‘|A|2—|511|2—|522|2

1.29

2[812821] (1.29)

By =1-|S5[*=|S128x] (1.30)
By=1-S11[*~|S128x] (1.31)

It is seen that these conditions only depend on the scattering parameters of the transistor. When
these three conditions are met the amplifier can be connected to the loads without risk of becoming
unstable and producing oscillations.

1.6 Noise

Figure 1.11 shows an active two-port between input impedance Zs and load impedance Z.
The noise in the amplifier can be characterized by the noise figure F defined by

Rn 2
F:Fmin+ |YG_YGmin| (132)
Gg

where

Fin 1S the minimum noise figure obtained when Y5 = Ymin
R, is the equivalent noise resistance of the active device
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Zg

Active
Z
device L

D I

Pr

p

out

Figure 1.11 Active device and source and load impedances.

Y6 min 15 the source admittance that makes the noise figure minimum
Y is the source admittance such that Y = Gg +jBg

The Section 1.7 consists of the rewritten noise figure formula in terms of reflection coefficients
rather than in terms of admittances.
Referring to Figure 1.11, the reflection coefficient ps from the source admittance is given by

Yo-Yo
Y() + YG

Pc= (1.33)

where Y is the characteristic admittance used.
This gives the source admittance in terms of the source reflection coefficient such that

_ (I-pg)
YG_(HPZ)YO (1.34)

In (1.32), taking Y = Y5min makes the noise figure become minimum. This translates to a reflec-
tion coefficient pg in, Where the noise figure is at a minimum such that

Yo —YGmin

L= 1.35

P Gmin YO+YGmin ( )
(1_.0Gmin)

Yomin=7—"""=Y 1.36

Gmin (1 +mejn) 0 ( )

Then, replacing Y min and Y by their expressions in terms of pg and pg min gives us

(1-pg)  (1=PpGmin) ?

(I+pg)  (1+PGmin)

2
1 —PG +mein_pGmein_(1 ~PGmin +pG_pGmein)

|YG—YGmin\2= Yo?

=Y,?
(1 +pG)(1+mein)
and
2
|YG_YG . |2_Y02 2(mein_pG) 2 |mein_pG|
min - =
(1+p6) (14 pGumin) 11+ o611+ peminl®
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So that the noise figure can first be expressed as

2
4R, Y2 |PG =P Gmin|

F:Fmin+ 0 P B
Ge 11+ 061" |1+ PG minl

Then, one expresses G as the real part of the source admittance in terms of reflection coefficients:

GoRerg) < 116 B[ (100) {105

2 2
Y [l—pc +p6" = lpal’ +1 +PG—PG*‘PG|2]

2 |1"'/’G|2
and
- 2
Go=Y, |/’G|2
1+ p6]
so that

1 [1+pg]? p—
F:ijn+4RnYO2_| pG| |pG meml

2 2 2
Yo 1=|pg|™ [1+pg|" |1 + PG minl

and the noise figure is given in terms of the source reflection parameter ps and the optimum source
reflection parameter pg min by

2
F=Fmin+4RnY0 |pG2mein‘ 5 (137)
(1-1e6l )11+ P

Typically, the manufacturer provides the three parameters p min, Fmin» and r, =R, /Ro, the nor-
malized equivalent noise resistance. Note that the reflection coefficient pg i, is complex and
is often given as magnitude and phase. Note that these parameters do change with frequency
so they are provided in table form.

Next, we provide the noise figure corresponding to a cascade of active devices. In Figure 1.12, a
first active device is characterized by a gain G, and noise figure F'|, and a second active device is
characterized by a gain G, and noise figure F,.

Z
Active Active
device device Zy
G1| F1 G2’ F2

Figure 1.12 Noise figure of the cascade of two active devices.
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It can be shown [5] that the noise figure F) corresponding to the cascade of the two systems is
given by

1
F£=F1+G—(F2—1) (138)
1

and the gain G} of the cascaded system is given by
" =G1G, (1.39)
The system is then placed in cascade with a third active device characterized by a gain G5 and noise

figure F5 as shown in Figure 1.13.
Then, the noise figure F% corresponding to the cascade of the three systems is given by

1
F,=F,+—(F3-1)
3 2 G/2

and the gain G} of the cascaded system is given by
| =G)\Gs

We repeat this approach for the case of a cascade of k active devices as shown in Figure 1.14.
In this case, the noise figure F corresponding to the cascade of the k systems is given by

1
FI/C:FIIC—I-'-G/—(FI(_]) (140)
k-1

and the gain G, of the cascaded system is given by

/ /
= G_1Gk (1.41)
Zo
Active Active
device device Zy
G3, F3 Ga, Fs

Figure 1.13 Noise figure of the cascade of three active devices.

Zy
Active Active Active Active
device device device device Z,
G11F1 G2|F2 GSvFS Gkak

Figure 1.14 Noise figure of the cascade of k active devices.
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where k>2 with F}; =F, and G| =G;.
Note that this can also be written as

(Fe-1) (1.42)

1 1
F.=F +—(Fp—1)+ Fyml)td——
e Gl( 2=1) Gle( 3-1) GGy -Gy

1.7 ABCD Matrix

The ABCD matrix of a two-port is defined using the voltages and currents shown in
Figure 1.15 [6].
The ABCD matrix shows the relation between input and output voltages and currents. It is

given by
(?H? g)(i) (1.43)

What follows are the ABCD matrices of several common elements and configurations found in
microwave structures.

1.7.1 ABCD Matrix of a Series Impedance

Figure 1.16 shows the case of a two-port network made of impedance placed in series.
The equations of this system are

Li=(-h) or iy (12 V2
Vi=Va+Z(~h) L) \o1)\(-n)

Therefore, the ABCD matrix representing a two-port system made of impedance connected in ser-
ies is given by

l Iy
+ o—— 4 g ————=o0+
Vi ‘ ‘Vz
- C D ——-++-0 —

Figure 1.16 Impedance placed in series.
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(2 g)z(é f) (1.44)

1.7.2  ABCD Matrix of a Parallel Admittance

Figure 1.17 shows the case of a two-port network made of admittance placed in parallel.
The equations of this system are given by

Vi=V, Vi 10 Va
or =
YWo=5L+1 I Y 1)\ (=h)

Therefore, the ABCD matrix representing a two-port system made of admittance connected in par-

allel is given by
A B 10
= ( (1.45)
CcD Y 1

1.7.3  Input Impedance of Impedance Loaded Two-Port

When a two-port is connected to load Z; as shown in Figure 1.18, the output voltage V, and output
current I, are such that V, =7, (-1).
The equations of the system are given by

Vi=AV, +B(—12) =AZL(—12) +B(—12)
{11 = CVz +D(—12) = CZL(—Iz) +D(—12)

v,

(e} >0

; ‘

Figure 1.17 Admittance placed in parallel.

I, Iy
o———
A B
vy ' Vs z
C D
O—
Zin

Figure 1.18 Two-port connected to load impedance Z;.
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from which it is straightforward to extract the input impedance of the two-port network:

Vi| _AZ +B

Ziv=—1| =
"Tnl, Czi+D

(1.46)

1.7.4  Input Admittance of Admittance Loaded Two-Port

When a two-port is connected to load admittance Y; as shown in Figure 1.19, the output voltage V,
and output current I, are such that -1, =Y, V>.
The equations of the system are given by

Vi =AV2 +B(—12) =AV2 +BY;V,
L =CV, +D(—12) =CV,+DY V,

from which it is straightforward to extract the input admittance of the two-port network:

_ C+DYL
Y, A+BYL

(1.47)

1.7.5 ABCD Matrix of the Cascade of Two Systems

One of the main advantages of the ABCD representation is that the ABCD matrix of the cascade of
two systems as shown in Figure 1.20 is equal to the multiplication of the individual ABCD
matrices.

The equations of this system are given by

Vi=A1Vo+B(-L) . Vi=AV5+B,(-1)
an
I;=C\V,+D;(-D) I} =GV, + Dy (-1})

In Figure 1.19, V, =V{ and (-L)=1] so that the equations of the overall system are

{ V] =A1 (AgVé-i-Bz(—]é)) +B] (C2V£+D2(—Ié)) = (A|A2 +31C2)V2, + (A1B2 +BlD2)(—Ié)
Il = Cl (AzVé +Bz(—]£)) +D1 (C2V£ +D2(—I§)) = (ClAz +D1 Cz)Vé + (C132 +D1D2)(—I§)

I I,
[
A B
V1 V2 YL
C D
o—— —

Figure 1.19 Two-port connected to load admittance Y.
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B, O +

A1 B1 A2
Vz' ‘ V1/ Vé

Cq Dy Cy D,

Figure 1.20 Cascade of two systems.

If we multiply the ABCD matrices representing the two systems, we get
A1 Bl A2 Bz A1A2 +BIC2 A132 +BlD2
C1 D] Cz D2 - C1A2 +D1C2 Cle +D1D2

Since both techniques provide the same answers, the ABCD matrix of the cascade of two systems
will be given by the multiplication of their ABCD matrices:

A B Ay By Ay By A1Ar+B1C, ABy+B\D, ( )
= = 1.48
C D C, D C, Dy CiAy+DCy CiB,+ DD,

1.7.6  ABCD Matrix of the Parallel Connection of Two Systems

In this case, the two-port networks are connected in parallel as shown in Figure 1.21.
The ABCD matrix representing two systems connected in parallel is given by

Ale +BlA2 BIB2
(A B)_ Bl+Bz Bl+Bz (1 49)
C D C (A1=Ay)(D,-Dy) D\B;+B\D; ’
1+Cr+
B, +B, B, +B,
1.7.7 ABCD Matrix of the Series Connection of Two Systems
In this case, the two-port networks are connected in series as shown in Figure 1.22.
The ABCD matrix representing two systems connected in series is given by
A - -
162+ C1A B +By+ (A1=Az)(D2-Dy)
A B\ _ | C+G Ci1+GC (1.50)
CD G DG+ C Dy
Ci+(C Ci+C

1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel

In this case, a two-port loaded on admittance Y;; is connected in parallel to form the two-port of
network as shown in Figure 1.23.
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o——9o— —e—o0
A B
c, D
o—o—>—
A B
C2 D2

o——— o0
A, B
C1 D1
Ay B
Cs D,
o—— 0

Figure 1.22 Two systems connected in series.
O I O

— :

Figure 1.23 Two-port system made of admittance loaded two-port connected in parallel.

The ABCD matrix is that of an admittance in parallel and where the admittance is equal to the
input admittance of the two-port loaded on Yy ;. It is given by

1 0
A B
< >: Ci+D Yy, (151)
cb A1 +BiYp
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Z;4
Q g
< )
O O
O O

Figure 1.24 Two-port system made of impedance loaded two-port connected in series.

1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series

In this case, a two-port loaded on impedance Z;; is connected in series to form the two-port net-

work as shown in Figure 1.24.
The ABCD matrix is that of an impedance in series and where the impedance is equal to the input
impedance of the two-port loaded on Z; ;. It is given by

A]ZL1+B]

( >_ : CiZp +D (1.52)
= + .

1.7.10 Conversion Between Scattering and ABCD Matrices

It is often needed to convert from scattering parameters to ABCD parameters and vice versa. Refer-
ring to Figure 1.3, the ABCD matrix of the two-port is given in terms of the scattering param-
eters by

(1+S“)(1—522)+S21512 7 (1+S”)(1+522)—521512
0
<A B) _ 252] 2521 (1 53)
CD (1=811)(1=822)=821812 (1=811)(1+82)+ 52512 '
2S21 2S21

0
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In return, the scattering matrix of the two-port can be expressed in terms of the ABCD parameters
using the conversion formulas:

A+BYy-CZy-D  2(AD-BC)

(Sn Slz)= A+BYy+CZy+D A+BYy+CZy+D (1.54)
So1 S»

2 —-A+BYy—-CZy+D
A+BYy+CZy+D A+BYy+CZy+D

1.8 Distributed Network Elements

For planar technologies, it is often more practical to obtain circuit layouts given in terms of dis-
tributed elements rather than given in terms of lumped elements. This section provides a back-
ground review of key aspects needed to better understand the subsequent chapters in this book.

1.8.1 Uniform Transmission Line

A uniform transmission line is a fundamental element when defining distributed networks. There
are many ways to symbolize it, and in this book, we will generally represent it as shown in
Figure 1.25.

The transmission line is defined by the characteristic impedance of the line Z, the propagation
constant of the transmission line y, and the physical length of the transmission line /.

The ABCD matrix of a uniform transmission line with physical length / is given by

A cosh(yl) Zysinh(yl)
(C D) = sm;(yl) cosh(y) (1.55)
0

Note that the propagation constant can be expressed in terms of the attenuation constant a and the
phase constant f such that

y=a+jp (1.56)
The electrical length is defined as the product of the phase constant and the physical length:

0=pl (1.57)

Figure 1.25 Uniform transmission line.
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Since the phase rotates by 2z for one wavelength 4, the phase constant can be expressed as

(1.58)

2
=7

The phase constant can also be expressed in terms of the operating radian frequency  and the
phase velocity v such that

p=2 (1.59)

(1.60)

where c is the speed of light and ¢, is the relative permittivity of the medium.
In the case of an ideal lossless transmission line, the attenuation constant « is equal to 0 and the
ABCD matrix of the transmission line can be expressed in terms of the electrical length € such that

A B\ cosf  jZysinf
cCD) jYosin@  cos@

where Yy =1/Z,.

1.8.2 Unit Element

A unit element (UE) is a two-port made of a single section of a uniform lossless transmission line
with a fixed length [/ and characteristic impedance Z, as shown in Figure 1.26.
The ABCD matrix of this two-port is given by

A B cosf jZysin®
=\ . (1.61)
C D jYosin@ cos@
where 6 =pl is the electrical length of the transmission line.

/

o————7o0

Zy, 0

o— I —0o0

Figure 1.26 The unit element.
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1.8.3  Input Impedance and Input Admittance

First, a UE is connected to load impedance Z; as shown in Figure 1.27, and we are interested in the
loaded input impedance of the UE.

The input impedance is given in terms of the load impedance Z; and ABCD parameters of the
two-port by

Vi
ZiN=—
W=7

_ AZL +B
7 CZL+D

with the ABCD parameters of the UE given by

cos@ jZysin@
jYosin@ cos@

so that

_cosOZ; +jZysing _ cosO(Zp +jZotan0)  (Zp+jZyotand) _ Zp +jZtan6
" jYosinfZp +cos@  cosO(1+jYotan6Z;)  Yo(Zo+jZptand) " Zy+jZitan6

IN

and the input impedance of a UE loaded on impedance Z; is given by

Z; +jZytanf
Zyy =7, L2 (1.62)
Zy +]ZL tan®
Note that when Z; =7y, then Z;y =Z, regardless of the electrical length 6.
Second, a UE is connected to load admittance Y; as shown in Figure 1.28, and we are interested
in the loaded input admittance of the UE.

Zin

Figure 1.27 Input impedance of a UE loaded on impedance Z;.

l4 I
vy Zy, 6 v, Y,
Yin

Figure 1.28 Input admittance of a UE loaded on impedance Y;.
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The input admittance is given in terms of the load admittance Y; and ABCD parameters of the
two-port by

Ii| _C+Dy,
Vily, A+BY,

Yiv=

This gives

C+DY, _jYysinO+cos@Y,  cosO(j¥otan6 + Y.) _ (jYotan0+Y.) y jYotan@+Y;
A+BY, cosO+Zysin0Y, cosO(1+jZytan0Y,) Zo(Yo+jtan0Y;) Yo+ jtan0y;

Yin=

and the input admittance of a UE loaded on admittance Y, is given by

Y. +jYotan@
Yy +jtan 0y,

Y]N— (163)

1.8.4 Short-Circuited Stub Placed in Series

In this case, we have a short-circuited stub that is placed in series to form the two-port of
Figure 1.29.

In this case, the stub is loaded with impedance Z; =0 and the input impedance of the short-
circuited stub is given by

0+jZytan0
Zin=Z 207

————— =jZptan6
OZO+j0tan6’ Jzo

and the ABCD matrix of the two-port system made of this short-circuited stub placed as a series

impedance is given by
A B 1 Z 1 jZytan@
R I (1.64)
CD 0 1 0 1

O D

Figure 1.29 Short-circuited stub placed in series.
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Figure 1.30 Short-circuited stub placed in parallel.

1.8.5 Short-Circuited Stub Placed in Parallel

In this case, we have a short-circuited stub that is placed in parallel to form the two-port of
Figure 1.30.

In this case, the stub is loaded by admittance Y; = co and the input admittance of the short-
circuited stub is given by

Y, +jYptanf

a Y, Yo
0 Yo +jtan0Y;

=Yy——— =
0jtan@YL jtan®

Yin=

Y— o0

and the ABCD matrix of the two-port system made of this short-circuited stub placed as a admit-
tance in parallel is given by

1 0
A B 1 0
(A5 .
¢D Yiv 1 jtan@

1.8.6  Open-Circuited Stub Placed in Series

In this case, we have an open-circuited stub that is placed in series to form the two-port of
Figure 1.31.

In this case, the stub is loaded by impedance Z; = oo and the input impedance of the open-
circuited stub is given by

7 Zo
=Zo5——— =+
jZptan@ jtan@

Z; +jZytan@
Ziy =2,
Z() +JZL tand

Z; =00

and the ABCD matrix of the two-port system made of this open-circuited stub placed as a series

impedance is given by
A B 1 Z 1
= ™M)= jtano (1.66)
CcD 0 1
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O D

Figure 1.31 Open-circuited stub placed in series.

Figure 1.32 Open-circuited stub placed in parallel.

1.8.7 Open-Circuited Stub Placed in Parallel

In this case we have an open-circuited stub that is placed in parallel to form the two-port of

Figure 1.32.
In this case the stub is loaded with admittance Y;, =0 and the input admittance of the open-

circuited stub is given by

0+jYytan@
OYO +jtan60

Y]N— =jY0tan0

and the ABCD matrix of the two-port system made of this open-circuited stub placed as an admit-

tance in parallel is given by
A B 1 0 1 0
= =1 . (1.67)
CcD Yiv 1 Yotan6 1

1.8.8 Richard’s Transformation

It is not always easy to see the frequency dependency in the ABCD matrix of a UE when expressed
in terms of electrical length 8. When the length of the transmission line is A/4, there are special
properties that can be exploited for distributed network design and synthesis.
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The Richard’s variable ¢ is defined as the hyperbolic tangent of the delay 7, and the Laplace
variable s as shown below [7]:

t=tanh(zos) (1.68)

In (1.68), 74 is the delay of the UE and is proportional to the physical length / of the UE and the
phase velocity v such that

l
To=— (1 69)
v
The UEs are assumed to be lossless so that s — jw and
t=tanh(jrow) =jtan(zow) =jtan (91) =jtan(pl) =jtan6=jQ (1.70)
%
For example, in the case of quarter-wavelength UEs, we have
Ao
[=— 1.71

where 4 is the wavelength given by the ratio of the velocity in the medium divided by a normal-
ization frequency f; such that

Jo=~ (1.72)

so that

1 1v
_a_ap_11_12

PTVT Y TaR  de
71
T9==—
0 20)0

where @, is the normalization radian frequency.
So that in the case of quarter-wavelength UEs, we have

Q=tan(row) =tan (gﬂ) (1.73)

o

1.8.8.1 ABCD Matrix of a UE in terms of Richard’s Variable
The ABCD matrix of a general UE is given by

A B\ [ cos® jZysin®
C D) iYosin@ cos@
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and can be rewritten as

A B 1 JjZotan@
=cosd| .
Cc D Yotan® 1

and since ¢ =jtan#, this matrix can be expressed in terms of the Richard’s variable 7 to give the

ABCD matrix of a UE to be
A B 1 1 tZ
= 0 (1.74)
C D) Vi-2\t 1

1.8.8.2 ABCD Matrices in Terms of Richard’s Variable

The input impedance Z;y of a quarter-wavelength UE loaded on impedance Z; (see Fig. 1.27) can
be expressed in terms of the Richard’s variable by

Zp +jZytan@ -7 Z; +1tZy
"Zo+jZitand °Zy+1Z;

Ziy= (1.75)

The input admittance Y,y of a quarter-wavelength UE loaded on impedance Y; (see Fig. 1.28) can
be expressed in terms of the Richard’s variable by

YL+jY0tan9_ Y, +1tY
OYo+jtan0Y,  Yo+1Y

Yoy = (1.76)

The ABCD matrix of a two-port system made of a short-circuited stub placed as series impedance
(see Fig. 1.29) can be expressed in terms of the Richard’s variable by

(D09 )-0%) 0w

The ABCD matrix of a two-port system made of a short-circuited stub placed as parallel admittance
(see Fig. 1.30) can be expressed in terms of the Richard’s variable by

1 0 10
A B 1 0
(& 5)=(a )= (2 1) =(2 ) 0.
¢ D Yy 1 jtan@

t

The ABCD matrix of a two-port system made of an open-circuited stub placed as series impedance
(see Fig. 1.31) can be expressed in terms of the Richard’s variable by

A B 1 Zy 1 ,Z" L L
= = ]tan€ = t (179)
C D 0 1 01 0 1
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The ABCD matrix of a two-port system made of an open-circuited stub placed as parallel admit-
tance (see Fig. 1.32) can be expressed in terms of the Richard’s variable by

<2 g)z();N (1)>=<jY0:an9 (1)>=<ﬂl/0 (1)) (1.80)

1.8.9 Kuroda Identities

There are situations when a synthesis technique can lead to the direct cascade of stubs. This situ-
ation is often impossible to replicate in an actual circuit. There are also times where one might
prefer one type of stub to the other. In these situations, one can transform a given set of stub con-
figurations into another set of stub configurations. In this subsection, we recall the four classic
Kuroda identities that can help solve these problems.

1.8.9.1 First Low-Pass Kuroda Identity

The first low-pass Kuroda identity consists of a UE with characteristic impedance Z; placed left of
a series short-circuited stub with characteristic impedance Zy,. This is equivalent to a UE with
characteristic impedance Z, placed right of a parallel open-circuited stub with characteristic
impedance Zy; as shown in Figure 1.33 [7].

The two systems are equivalent if

Zos=Zo1 +Zip

Z 1.81
Zoy = =2 (Zoy + Z0n) (1.81)
Zy

The proof is obtained by equating the ABCD matrix of the system on the left

( cosf jstinG)(l jZoztan9> <0059 jstinc9+jZoztan9cos0>

jYo18in@  cosf 0 1 - JjYo18in0 cosO+ ;Yo sindjZy, tan 6

0 %z

o o—{I—o
201 ) 0 Zo4, 4

o—{I—o o o % o— (o

Figure 1.33 First low-pass Kuroda identity.
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to the ABCD matrix of the system on the right:

1 0 cos@  jZyssind cosf JjZo4sin0
iYostan6 1 iYos8in@  cos@ - JYo4sin0+jYgstanfcosO cosO+jYy3tandjZy, sind

Equating B parameters gives
JZo18in0 + jZy, tan @ cos O = jZy4 sin O
and dividing both sides by sin € gives
Zoy+Zop=Zoy
Equating C parameters gives
JjYo15in0=jYy4sin6 +jYy3 tanOcos O
and dividing both sides by sin 6 gives
Yo1=Yos + Yo3

which can be expressed in terms of impedances by

7 = Zo3Zos
01=5———
Zoz +Zos
which can also be expressed as
Zo1Zo4
Zp3 =
Zou—Zo1

and replacing Zyy by Zy; + Zy, gives

Zo1(Zo +Z02)  Zo
03 = g =——(Zo1 +Zp2)
Zon+Zn—Zyr Zp

1.8.9.2 Second Low-Pass Kuroda Identity

The second low-pass Kuroda identity consists of a UE with characteristic impedance Zy, placed
right of a series short-circuited stub with characteristic impedance Z,. This is equivalent to a UE
with characteristic impedance Z; placed left of a parallel open-circuited stub with characteristic
impedance Zy, as shown in Figure 1.34.

The two systems are equivalent if

Zoz =Zo1 +Zin

Zy
——(

(1.82)
Zoa =
04 ZOl

Zo1 +Zpn)
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Figure 1.34 Second low-pass Kuroda identity.

The proof is obtained by equating the ABCD matrix of the system on the left

(1 jZOltan9)< cosd jZogsinH)_ <0059+jY025in9j201 tan6d jZozsin9+jZ01tan9<:os€>

0 1 jYop2sin@  cosf JjYo28in0 cos@

to the ABCD matrix of the system on the right:

( cos@  jZyzsin 9) ( 1 0) B <cos 0+ jYostan0jZys sin@  jZy3 sin9>

jYo3sin@  cosé jYoatan6 1 JjYo3sin@+jYpstanfcosé cosd

Equating B parameters gives
JZop sin0 + jZy; tan @ cos O =jZy3 sind
and dividing both sides by sin 6 gives
Zop +Zo1 =Z3
Equating C parameters gives
JY028in0=jYy3sin0 +jYpstanfcosd
and dividing both sides by sin 6 gives
Yoo=Yn3 + Y04

which can be expressed in terms of impedances by
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which can also be expressed as

7 = ZonZo3
4=
Zo3—Zon

and replacing Zyz by Zy; + Zy, gives

= Zo2(Zo1 + Zin) _Zon
Zoi+Zn—Zy  Zy

1.8.9.3 First High-Pass Kuroda Identity

The first high-pass Kuroda identity consists of a UE with characteristic impedance Z, placed right
of a parallel short-circuited stub with characteristic impedance Z;,. This is equivalent to a UE with
characteristic impedance Z; placed left of a parallel short-circuited stub with characteristic imped-
ance Z, followed by an ideal transformer n as shown in Figure 1.35.

The two systems are equivalent if

Z
n=1+ £
Zy
Zo1Zn2
Zos = 0202
0 7o (1.83)
7 2
Zou= 201
Zo1 +Zoy»

The proof is obtained by equating the ABCD matrix of the system on the left

Yl 0 < cosl jZy sin6’> cosd . JZo2sin@

01 . . = . 6

jtan & L) \i¥osing  cosd JY028in60—jYo O 050+ Zop Yo1 cosO
/ sin

Zys, 0

Figure 1.35 First high-pass Kuroda identity.
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to the ABCD matrix of the system on the right:

cos+Zy;Ypscosb 7 sing
n.
cosO  jZo3sind L0y /1 n e
(j ) ) ) You 1 n = _ cos?0
Yo3sin@  cosé jtan@ 0 n JYo38in0—jYo4— 0
SINY 4 cos6

n
Equating D parameters gives

cos+Zy Yy cos@=ncosf
and dividing both sides by cos 6 gives

Z
1+ZpYy =n or n=1+£
2o

Equating B parameters gives
JZop sin0 = jnZy; sin@
and dividing both sides by sin 6 gives
JZo2 =jnZos
then replacing n gives

Zo  Zno _ ZonZp

Zoyz=—= =
‘ n 1+ @ Zo1 +Zyo
2y

Equating A parameters gives

cosf +Zy3Ypscosl

0sf=
n
and dividing both sides by cos € gives
= 1 +Zp3Y04
B n

from which we find that

Z Z Z
l+£=n=l+£ or Z04=ﬂ203
Zo4 Zy Zy
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then replacing Zy; gives

_Zo ZnZy _ Zot’

Zos= =
ZonZon +Zyy  Zo +Zy

1.8.9.4 Second High-Pass Kuroda Identity

The second high-pass Kuroda identity consists of a UE with characteristic impedance Z, placed
right of a series open-circuited stub with characteristic impedance Z,. This is equivalent to a UE
with characteristic impedance Zj3 placed left of a series open-circuited stub with characteristic
impedance Z, followed by an ideal transformer n as shown in Figure 1.36.

The two systems are equivalent if

1 Z

—=1+4+ ﬂ

n Zoz

Zy3=Zo1 +Z (1.84)

Z
Zos= Z—Ol(Zm +Zpy)
02

The proof is obtained by equating the ABCD matrix of the system on the left

Zo o cos?0
jtan@ < cost  jZo sm&) cosO+ Zy1 Yoo cos0 jZy, sin0—jZy, 0
= i
0 1 J¥orsin®  cosd jY025iné cos0

to the ABCD matrix of the system on the right:

cosd o _ cos?O
cosl  jZysinf [ 1 ,ZO4 1 0 n " <] Z03$in0=jZo4 sind >
iYo3sin@  cos@ jtand " " | jYossing
JE0s 0 1 0 n 1035107 n(cos@ + Zy4 Yo3 cos )
n

N N
= s

1:n

Zyo, 0 Zoz, 0
o o—{I—o o— o :

Figure 1.36 Second high-pass Kuroda identity.
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Equating A parameters gives

cosd
cos@+Zy Yypcos@=——
n

and dividing both sides by cos @ gives

1 1 Z
1+Z()1Y02=— or —=1+ﬂ
n n Z()2

Equating C parameters gives

o JjYo35in6
Yoo sinf=———
JXo2 "

and dividing both sides by sin 6 gives
) Y 1
JYo =L or Zyy=~7Zp
n n

and replacing n gives

Zy1
Zoy=\1+ - | Zop=Zo1 + 20
02

Equating D parameters gives
cos@=n(cosO+ Zys Y3 cosh)
and dividing both sides by cos 6 gives
1=n(1+ZuYo3)

from which we find that

1 1 01
1+2% _— 420 or Zou=—2
Z0s n 5 04= 7203
and replacing Zy3 gives
Zo Zo1
Zos = 5203 =——(Zo1 +Z
Z Zy ( )
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