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OVERVIEW AND BACKGROUND

1.1 INTRODUCTION

In this book, we develop and examine severalmathematical models consisting of one
or more equations that are used in engineering to represent various physical systems.
Usually, the goal is to solve these equations for the unknown dependent variables,
and if that is not possible, the equations can be used to simulate the behavior of a
system using computer software such as MATLAB.1 In most engineering courses, the
equations are usually linear or can be linearized as an approximation, but sometimes
they are nonlinear and may be difficult to solve. From such models, it is possible to
design and analyze components of a proposed system in order to achieve required
performance specifications before developing a prototype and actually implementing
the physical system.

Definition: System A system is a collection of interacting elements or devices that
together result in a more complicated structure than the individual components alone,
for the purpose of generating a specific type of signal or realizing a particular process.

The term system, as used in this book, also describes several interrelated equations
called a system of equations, which are usually linear and can be represented by a

1MATLAB® is a registered trademark of The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA.
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2 OVERVIEW AND BACKGROUND

matrix equation. The distinction between a physical system and a system of linear
equations will be evident from the specific application.

Definition: Mathematical Model A mathematical model is an equation or set of
equations used to represent a physical system, from which it is possible to predict the
properties of the system and its output response to an input, given known parameters,
certain variables, and initial conditions.

Generally, we are interested in the dynamic behavior of a system over time as it
responds to one or more time-varying input signals. A block diagram of a systemwith
single input x(t) and single output y(t) (single-input single-output (SISO)) is shown
in Figure 1.1(a), where t is continuous time. The time variable can be defined for the
entire real line : −∞ < t < ∞, but often we assume nonnegative +: 0 ≤ t < ∞.
In this scenario, a mathematical model provides the means to observe how y(t) varies
with x(t) over t, assuming known initial conditions (usually at t = 0), so that we
can predict the future behavior of the system. For the electric circuits described in
Chapter 2, the inputs and outputs are currents through or voltages across the cir-
cuit components. For convenience, Table 1.1 summarizes the notation for different
sets of numbers used in this book (though quaternions are only briefly discussed in
Chapter 4).

Figure 1.1(b) shows a linear SISO system with sinusoidal input cos(2𝜋fot) where
fo is ordinary frequency in hertz (Hz). As discussed in Chapter 7, a sinusoidal signal
is an eigenfunction of a linear system, which means that the output is also sinusoidal
with the same frequency fo. For such a signal, the output differs from the input by
having a different magnitude, which is A in the figure, and possibly a phase shift 𝜙.
This is an important characteristic of linear systems that allows us to investigate them
in the so-called frequency domain, which provides information about their properties
beyond those observed in the time domain.

In order to more easily solve for the unknown variables of a mathematical model,
the techniques usually require knowledge of matrices and complex numbers. The
matrices covered in Chapter 3 are useful for describing a system of linear equations

Systemx(t) y(t)

Input Output

Linear
system

cos(2π fot)

(a)

(b)

Acos(2π fot+ϕ)

Figure 1.1 Systems with a single input and a single output (SISO). (a) General system with
input x(t) and output y(t). (b) Linear system with sinusoidal input and output.
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TABLE 1.1 Symbols for Sets of Numbers

Symbol Domain x Set

 x ∈ (−∞,∞) Real numbers

+ x ∈ [0,∞) Nonnegative real numbers

 x ∈ {… ,−2,−1, 0, 1, 2,…} Integers

+ x ∈ {0, 1, 2,…} Nonnegative integers

 x ∈ {1, 2,…} Natural numbers

 x = a∕b with a, b ∈  and b ≠ 0 Rational numbers

 x = jb with j =
√
−1 and b ∈  Imaginary numbers

 x = a + jb with j =
√
−1 and a, b ∈  Complex numbers

 x = a + ib1 + jb2 + kb3 Quaternions

with i = j = k =
√
−1 and a, b1, b2, b3 ∈ 

with constant coefficients. Chapter 4 provides the motivation for complex numbers
and summarizes many of their properties. Chapter 5 introduces several different
waveforms that are used to represent the signals of a system: inputs, outputs, as well
as internal waveforms. These include the well-known sinusoidal and exponential
signals, as well as the unit step function and the Dirac delta function. The theory of
generalized functions and some of their properties are briefly introduced. Systems
represented by linear ordinary differential equations (ODEs) are then covered in
Chapter 6, where they are solved using conventional time-domain techniques. The
reader will find that such techniques are straightforward for first- and second-order
ODEs, especially for the linear circuits covered in this book, but are more difficult
to use for higher order systems.

Chapter 7 describes methods based on the Laplace transform that are widely used
in engineering to solve linear ODEs with constant coefficients. The Laplace trans-
form converts an ODE into an algebraic equation that is more easily solved using
matrix techniques. Finally, Chapter 8 introduces methods for analyzing a system in
the frequency domain, which provides a characterization of its frequency response to
different input waveforms. In particular, we can view linear circuits and systems as
filters that modify the frequency content of their input signals.

We focus on continuous-time systems, which means {x(t), y(t)} are defined with
support t ∈  or t ∈ + where the functions are nonzero.Discrete-time systems and
signals are defined for a countable set of time instants such as,+, or . Different
but related techniques are used to examine discrete-time systems, though these are
beyond the scope of this book.

1.2 MATHEMATICAL MODELS

Consider again the system in Figure 1.1(a) and assume that we have access only
to its input x(t) and output y(t) as implied by the block diagram. There is no direct
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information about the internal structure of the system, and the only way we can learn
about its properties is by providing input signals and observing the output signals.
Such an unknown system is called a “black box” (because we cannot see inside), and
the procedure of examining its input/output characteristics is a type of reverse engi-
neering. Wemention this because themathematical models used to represent physical
devices and systems are typically verified and even derived from experiments with
various types of input/output signals. Such an approach yields the transfer charac-
teristic of the system, and for linear and time-invariant (LTI) systems, we can write
a specific transfer function as described in Chapter 7.

Example 1.1 Suppose input x of an unknown system is varied over  and we
observe the output y shown in Figure 1.2. This characteristic does not change with
time, and so we have suppressed the time argument for the input and output. The
plot of y is flat for three intervals: −∞ < x ≤ −2, −1 < x ≤ 2, and 3 < x < ∞, and it
is linearly increasing for two intervals: −2 < x ≤ −1 and 2 < x ≤ 3. For this piece-
wise linear function, the equation for each interval has the form y = ax + b where
a = Δy∕Δx is the slope and b is the ordinate, which is the point where the line crosses
the y-axis if it were extended to x = 0. For the first linearly increasing region, the slope
is obviously a = (1 − 0)∕[−1 − (−2)] = 1. When x = 0, the extended line crosses the
y-axis at y = 2, which gives b = 2. Similarly, for the second linearly increasing region,
a = (3 − 1)∕(3 − 2) = 2 and b = −3. The remaining three regions have zero slope but
different ordinates (these equations are of the form y = b), and so the overall transfer
characteristic for this system is

y =

⎧⎪⎪⎨⎪⎪⎩

0, x ≤ −2
x + 2, −2 < x ≤ −1
1, −1 < x ≤ 2

2x − 3, 2 < x ≤ 3

3, x > 3.

(1.1)

The values of y match at the boundaries for each interval of x as shown in the figure.
Themapping in (1.1) is a mathematical model for a particular system that can be used
to study its behavior even if it is included as part of a larger system. Note that this

y

x−2

3

3 4

1

10−1

2

2

Figure 1.2 Input/output characteristic for the nonlinear system in Example 1.1.
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Figure 1.3 Output y(t) for the transfer characteristic in (1.1) in Example 1.1 with input
x(t) = 5 sin(2𝜋t) for t ∈ [0, 1].

input/output characteristic does not provide any direct information about the indi-
vidual components or the internal dynamics of the system. When the input x(t) is
a function of time, the output y(t) is also time varying. For example, suppose that
x(t) = 5 sin(2𝜋t) as illustrated in Figure 1.3 for one period of the sine function with
frequency fo = 1 Hz. The output y(t) is computed using (1.1) at each time instant on
the closed interval t ∈ [0, 1] in seconds (s). Observe that y(t) is truncated relative to
the input waveform due to this particular input/output mapping. Similar results for
y(t) can be derived for any input function x(t) by using the model in (1.1).

The output y(t) is not sinusoidal because the function in Figure 1.2 is piecewise
linear, and so, overall it is nonlinear. Sinusoidal signals are not eigenfunctions for
nonlinear systems as demonstrated in this example. Eigenfunctions and their defining
properties are covered later in Chapter 7. The fundamental frequency of the output in
Figure 1.3 is fo = 1 Hz because the waveform for all t ∈  consists of repetitions of
the 1 s segment dashed curve. The waveform within this segment also has variations,
which result in harmonics of fo. This means that sinusoidal components with integer
multiples of fo are also present in y(t). It is possible to determine these harmonics
using a Fourier series representation of y(t) as discussed in Chapter 5.

Example 1.2 Consider the following mapping:

y = 2x − 3, x ∈ , (1.2)
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which is one component of (1.1) with support extended to the entire real line, and so,
the input is not truncated. For x(t) = 5 sin(2𝜋t), the output of this system is

y(t) = 10 sin(2𝜋t) − 3, (1.3)

which has the same frequency fo = 1 Hz as the input; there are no harmonics of fo.
However, this system is not linear because it introduces a DC (“direct current”) com-
ponent at f = 0 Hz, which causes the output to be shifted downward, as illustrated
in Figure 1.4 (the dashed line). The function in (1.2) is actually affine because of the
nonzero ordinate b = −3. A linear function is obtained by dropping the ordinate:

y = 2x, x ∈ , (1.4)

which has the output in Figure 1.4 (the dotted line). This is a trivial system because
the peak amplitude 10 of the output is unchanged for any input frequency fo, and the
phase shift 𝜙 is always zero.

A linear system that is modeled by an ODE has a more complicated representation
than the simple scaling in (1.4), and the amplitude and phase of its output gener-
ally change with frequency fo. By varying the frequency of the input and observing
the output of a linear system, we can derive its frequency response. This representa-
tion of a system indicates which frequency components of a signal are attenuated or

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

t (s)

x(
t)

, y
(t

)

Input and output waveforms

Input x(t)
y(t) affine system
y(t) linear system

Figure 1.4 Output y(t) for the transfer characteristics in (1.2) and (1.4) in Example 1.2 with
input x(t) = 5 sin(2𝜋t) for t ∈ [0, 1].
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amplified and whether they are shifted in time. Using this approach, the system can
be viewed as a type of filter that modifies the frequency characteristics of the input
signal. For example, a low-pass filter retains only low-frequency components while
attenuating or blocking high frequencies. It is useful in many applications such as
noise reduction in communication systems. The frequency response of a system is
investigated further in Chapter 8 where we cover the Fourier transform.

Example 1.3 An example of a system of linear equations is

a11y1(t) + a12y2(t) = x1(t), (1.5)

a21y1(t) + a22y2(t) = x2(t), (1.6)

where {y1(t), y2(t)} are unknown outputs, {x1(t), x2(t)} are known inputs, and {amn}
are constant coefficients. (Many books on linear algebra have x and y interchanged.
We use the form in (1.5) and (1.6) for notational consistency throughout the book,
where known x is the input and unknown y is the output.) These equations can be
viewed as a multiple-input multiple-output (MIMO) system as depicted in Figure 1.5.
It is straightforward to solve for the unknown variables {y1(t), y2(t)} by first rearrang-
ing (1.6) as

y2(t) = x2(t)∕a22 − a21y1(t)∕a22, (1.7)

and then substituting (1.7) into (1.5):

a11y1(t) + a12x2(t)∕a22 − a12a21y1(t)∕a22 = x1(t), (1.8)

which gives

y1(t) =
x1(t) − a12x2(t)∕a22
a11 − a12a21∕a22

=
a22x1(t) − a12x2(t)
a11a22 − a12a21

, (1.9)

and likewise for the other output:

y2(t) = x2(t)∕a22 − (a21∕a22)
a22x1(t) − a12x2(t)
a11a22 − a12a21

=
a11x2(t) − a21x1(t)
a11a22 − a12a21

. (1.10)

System

y1(t)x1(t)

Inputs Outputs

yN(t)xM(t)

Figure 1.5 Multiple-input and multiple-output (MIMO) system.
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The reader may recognize that if (1.5) and (1.6) are written in matrix form as
described in Chapter 3, then the denominator in (1.9) and (1.10) is the determinant
det(A) = a11a22 − a12a21 of the matrix

A ≜
[
a11 a12
a21 a22

]
. (1.11)

It is usually convenient to write such systems of equations inmatrix form, because it is
then straightforward to examine their properties based on the structure and elements
of A. Moreover, we can write the solution of the linear equations Ay(t) = x(t) via the
matrix inverse as y(t) = A−1x(t), where for this two-dimensional matrix, the column
vectors are

x(t) ≜
[
x1(t)
x2(t)

]
, y(t) ≜

[
y1(t)
y2(t)

]
. (1.12)

For a numerical example, let the matrix elements be a11 = a21 = a22 = 1 and
a12 = −0.1, and assume the inputs are constant: x1(t) = 0 and x2(t) = 1. Then
from (1.9) and (1.10), we have the explicit solution y1(t) = 1∕11 ≈ 0.0909 and
y2(t) = 10∕11 ≈ 0.9091.

Example 1.4 In this example, we examine a nonlinear system to illustrate the diffi-
culty of solving for the output variables of such models. AMIMO system is described
by two equations, the first of which is nonlinear:

a11y1(t) + a12 exp (𝛼y2(t)) = x1(t), (1.13)

a21y1(t) + a22y2(t) = x2(t), (1.14)

where 𝛼 and the coefficients {amn} are constant parameters. This system is similar to
the one in Example 1.3, except that a12 multiplies the exponential function

exp (𝛼y2(t)) ≜ e𝛼y2(t), (1.15)

where e is Napier’s constant which is reviewed later in this chapter. The inputs are
again {x1(t), x2(t)}, and we would like to find a solution for {y1(t), y2(t)}. Unlike
the linear system of equations in the previous example, eliminating one variable by
substituting one equation into the other does not yield a closed-form solution because
of the exponential function. Figure 1.6(a) shows examples of these two equations,
obtained by plotting y1 versus y2 for the parameters used at the end of Example 1.3
and with 𝛼 = 4. Since {yn} must simultaneously satisfy both equations, it is clear
that the solution for this system of equations occurs where the two curves (solid and
dashed) in the figure intersect. One approach to finding the solution is iterative, where
an initial estimate is chosen for y2, from which it is possible to solve for y1 using
(1.14). This value for y1 is substituted into (1.13), which is rewritten as follows:

y2 = (1∕𝛼) ln((x1 − a11y1)∕a12), (1.16)
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Figure 1.6 Systems of equations. (a) Nonlinear system in (1.13) and (1.14) in Example 1.4
with 𝛼 = 4. (b) Linear system in (1.5) and (1.6) in Example 1.3.
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where ln (⋅) is the natural logarithm. This equation yields a new value for y2, which is
used in (1.14) to compute y1, and the procedure is repeated several times until {yn} no
longer change (up to some desired numerical precision), and so they have converged
to a solution. For the aforementioned parameters and initial value y2 = 0.2, we find
using MATLAB that the solution is y1 ≈ 0.5664 and y2 ≈ 0.4336, which is verified
by the intersecting curves in Figure 1.6(a). The first four iterations are denoted by
the dotted lines in the figure, which we see approach the solution. For comparison
purposes, Figure 1.6(b) shows the two lines for the linear system in Example 1.3 using
the same coefficient values. The solution is located where the two lines intersect:
y1 ≈ 0.0909 and y2 ≈ 0.9091. Since this system of equations is linear, we can solve
for y1 and y2 explicitly as was done in (1.9) and (1.10) (there is no need to perform
iterations).

We mention that it is possible to find a type of explicit solution for the system
of nonlinear equations in the previous example by using the Lambert W-function
described in Appendix F, which includes some examples. Nonlinear circuit equations
for the diode are briefly discussed in Chapter 2, and an explicit solution using the
Lambert W-function for a simple diode circuit is derived in Appendix F. Although
an explicit solution is obtained, it turns out that the Lambert W-function cannot be
written in terms of ordinary functions, and so, it must be solved numerically.

The transfer characteristic in Example 1.1 is static because it describes the output
y(t) for a given input x(t) independently of the time variable t. For many physical
systems, the transfer characteristic also depends on other factors, such as the rate at
which x(t) changes over time. This type of system is modeled by an ODE. In subse-
quent chapters, we describe techniques used to evaluate and solve linear ODEs for
systems in general as in Figure 1.1 and for linear circuits in particular.

Example 1.5 An example of a linear ODE is

d2

dt2
y(t) + a1

d
dt
y(t) + a0y(t) = x(t), t ∈ , (1.17)

where time t is the independent variable, y(t) is the unknown dependent variable,
and x(t) is the known dependent variable. For the system in Figure 1.1(a), x(t) is the
input and y(t) is the output. The coefficients {a0, a1} are fixed, and the goal is to find
a solution for y(t) given these parameters as well as the initial conditions y(0) and
y′(0). The superscript denotes the ordinary derivative of y(t) with respect to t, which
is then evaluated at t = 0:

y′(0) ≜ d
dt
y(t)

||||t=0. (1.18)

Equation 1.17 is a second-order ODE because it contains the second derivative of
y(t); higher order derivatives are considered in Chapter 7. An implementation based
on integrators is illustrated in Figure 1.7. This configuration is preferred in practice
because differentiators enhance additive noise in a system (Kailath, 1980), which
can overwhelm the signals of interest. Integrators, on the other hand, average out
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−a1
−a0

x(t) y(t)
d2
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∑
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y (0)y ′(0)

Figure 1.7 Integrator implementation of a second-order linear ODE.

additive noise, which often has a zero average value. This implementation is obtained
by bringing the {a0, a1} terms of (1.17) to the right-hand side of the equation such
that the output of the summing element in the figure is

d2

dt2
y(t) = x(t) − a1

d
dt
y(t) − a0y(t). (1.19)

The cascaded integrators sequentially yield dy(t)∕dt and y(t). The solution to (1.17)
when x(t) = 0 and a0 = a1 = 2 is

y(t) = exp (−t)[2 sin(t) + cos(t)], t ∈ +, (1.20)

where the nonzero initial conditions y(0) = y′(0) = 1 have been assumed. This wave-
form is plotted in Figure 1.8 (the solid line) from which we can easily verify the
initial conditions. It is straightforward to show that (1.20) is the solution of (1.19) by
differentiating y(t):

d
dt
y(t) = − exp (−t)[2 sin(t) + cos(t)] + exp (−t)[2 cos(t) − sin(t)]

= exp (−t)[cos(t) − 3 sin(t)], (1.21)

d2

dt2
y(t) = − exp (−t)[cos(t) − 3 sin(t)] + exp (−t)[− sin(t) − 3 cos(t)]

= exp (−t)[2 sin(t) − 4 cos(t)]. (1.22)

Substituting these expressions into (1.17) with a0 = a1 = 2, we find that all terms
cancel to give 0. By changing the coefficients, a different output response is obtained.
For example, when a0 = 2 and a1 = 3, the solution is purely exponential:

y(t) = 3 exp (−t) − 2 exp (−2t), t ∈ +. (1.23)

This is also plotted in Figure 1.8 for the same initial conditions and input x(t) = 0
(the dashed line). The solutions in (1.20) and (1.23) are known as underdamped
and overdamped, respectively. It turns out that there is a third type of solution for
a second-order ODE called critically damped, which is obtained by changing the
coefficient values. All three solutions are discussed in greater detail in Chapters 6
and 7.
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Figure 1.8 Solutions for the second-order ODE in Example 1.5 with constant coefficients.
The input is x(t) = 0 and the initial conditions are nonzero: y(0) = y′(0) = 1.

1.3 FREQUENCY CONTENT

As mentioned earlier, the main goal of this book is to develop mathematical models
for circuits and systems, and to describe techniques for finding expressions (solutions)
for the dependent variables of interest. In addition, we are interested in the frequency
content of signals and the frequency response of different types of systems. This fre-
quency information illustrates various properties of signals and systems beyond that
observed from their time-domain representations.

The most basic signal is sinusoidal with angular frequency 𝜔o = 2𝜋 fo in radi-
ans/second (rad/s) and ordinary frequency fo in Hz. It turns out that all periodic
signals can be represented by a sum of sinusoidal signals with fundamental fre-
quency fo and integer multiples n fo for n ∈  called harmonics. For example, the
periodic rectangular waveform in Figure 1.9(a) has the frequency spectrum shown in
Figure 1.9(b), with the magnitude of each frequency component indicated on the ver-
tical axis. Lower harmonics have greater magnitudes, demonstrating that this wave-
form is dominated by low frequencies. This frequency representation for periodic
signals is known as the Fourier series and is covered in Chapter 5. Aperiodic sig-
nals, which do not repeat, have a frequency representation known as the Fourier
transform. Whereas the Fourier series consists of integer multiples of a fundamen-
tal frequency, the Fourier transform is a continuum of frequencies as illustrated in
Figure 1.10 for triangular and rectangular waveforms. Both of these signals are dom-
inated by low-frequency content.
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Figure 1.9 Periodic rectangular waveform. (a) Time-domain representation. (b) Magnitude
of frequency spectrum: Fourier series with harmonics n fo and fo = 1 Hz.
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Figure 1.10 Aperiodic waveforms. (a) Time-domain representation. (b) Magnitude of
frequency spectrum: Fourier transform.
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(a)

(b)

Figure 1.11 Two-dimensional image and spectrum. (a) Spatial representation. (b)Magnitude
of frequency spectrum in two dimensions. White denotes a greater magnitude. (The vertical
and horizontal white lines are the frequency axes where 𝜔1 = 0 and 𝜔2 = 0. A log scale is used
to better visualize variations in the spectrum.)

Although we focus on one-dimensional signals in this book, which are
generally a function of the independent variable time t, Figure 1.11 shows a
two-dimensional image and its frequency representation. The two independent vari-
ables in Figure 1.11(a) are given by the horizontal (width) and vertical (height) axes,
and the information contained in the image is indicated by a gray scale from white to
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black. Similarly, the magnitude of the spectrum in Figure 1.11(b) is represented by a
gray scale, with white denoting a greater magnitude for particular frequencies. Two
frequency variables {𝜔1, 𝜔2} are used in the Fourier transform of a two-dimensional
image (Bracewell, 1978); these are the horizontal and vertical axes in Figure 1.11(b).
Low frequencies are located around the center of the plot, and high frequencies
(positive and negative) extend outward to the edges of the spectrum plot. Once
again, we have a signal with mostly low-frequency content; in fact, the spectrum
is dominated by the white “star” located about the center where 𝜔1 = 𝜔2 = 0. This
occurs because there is not much spatial variation across the image in Figure 1.11(a).
In general, greater variations in the time/spatial domain correspond to higher
frequencies with greater magnitudes in the Fourier/frequency domain.

Systems are often designed to have a particular frequency response where some
frequencies are emphasized and others are attenuated. For example, a system that
passes low frequencies and attenuates high frequencies is called a low-pass filter.
Likewise, systems can be designed to have a high-pass, band-pass, or band-reject
frequency response. Conventional amplitude modulated (AM) radio is an example of
a system that incorporates band-pass filters to select a transmitted signal located in
a specific radio frequency channel. Such a channel is defined by a center frequency
and a bandwidth over which the signal can be transmitted without interfering with
other signals in nearby channels. The Fourier transform and different types of filters
are covered in Chapter 8.

In the rest of this chapter, we provide a review of some basic topics that the reader
has probably studied to some extent, and which form the basis of the material covered
throughout this book.

1.4 FUNCTIONS AND PROPERTIES

We begin with a summary of basic definitions for functions of a single independent
variable.

Definition: Function The function y = f (x) is a unique mapping from input x to
output y.

Although x yields a single value y, more than one value of x could map to the same
y. (Note, however, that it is possible to define multiple-output functions; an example
of this is the Lambert W-function discussed in Appendix F.)

Definition: Domain and Range The domain of function f (x) consists of those
values of x for which the function is defined. The range of a function is the set of
values y = f (x) generated when x is varied over the domain.

Example 1.6 For f (x) = x2, the natural domain is  (although it is possible to
restrict the domain to some finite interval), and the corresponding range is +. The
domain for f (x) = log(x) is+ and its range is .
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Definition: Support The support of a function is the set of x values for which f (x)
is nonzero.

Example 1.7 The domain of the unit step function is :

u(x) ≜
{
1, x ≥ 0
0, x < 0,

(1.24)

but its support is+. Similarly, the domain of the truncated sine function sin(𝜔ot)u(t)
is  and its support is +. Even though sine is 0 for integer multiples of 𝜋, the
support is still + because sine is a continuous function and those points (which
form a countable set) are not excluded from the support.

Definition: Inverse Image and Inverse Function The inverse image x = f−1(y)
is the set of all values x that map to y. The inverse image of a function may not yield
a unique x. If a single x = f−1(y) is generated for each y, then f (x) is one-to-one and
the inverse image is equivalent to the inverse function x = f−1(y) ≜ g(y).

Example 1.8 For the quadratic function y = x2, it is obvious that each x ∈  gives a
single y. Solving for x yields x = ±

√
y. Since x is not unique for each y, the square root

is not the inverse function. An inverse function does not exist for y = x2. However,
x = f−1(y) = ±

√
y describes the inverse image; for example, the inverse image of

y = 9 is the set of values x = {−3, 3}. The one-to-one function y = 2x + 1 has inverse
function x = g(y) = (y − 1)∕2. The natural logarithm y = ln(x) is also one-to-onewith
inverse function x = g(y) = exp (y).

Definition: Linear Function A linear function f (x) has the following two proper-
ties:

f (x1 + x2) = f (x1) + f (x2), f (𝛼x) = 𝛼 f (x), (1.25)

where 𝛼 ∈  is any constant.
The line representing a linear function necessarily passes through the origin:

y(x) = 0 when x = 0.

Example 1.9 The circuit model shown in Figure 1.12(a) for a resistor with resis-
tance R has the form 𝑣 = Ri known as Ohm’s law. It is a linear function:

𝑣1 = Ri1, 𝑣2 = Ri2 ⇒ 𝑣1 + 𝑣2 = R(i1 + i2) = Ri1 + Ri2, (1.26)

𝑣 = Ri ⇒ 𝛼𝑣 = R(𝛼i) = 𝛼Ri, (1.27)

where 𝑣 is a voltage and i is a current (both are defined in Chapter 2). An example of
a nonlinear function is the piecewise linear circuit model for a diode that is in series
with resistor R:

i =
{
(𝑣 − 𝑣c)∕R, 𝑣 ≥ 𝑣c
0, 𝑣 < 𝑣c,

(1.28)
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Figure 1.12 Device models used in Example 1.9. (a) Linear model for resistor R. (b) Non-
linear model for diode D with resistance R.

where 𝑣c is a cutoff voltage; typically 𝑣c ≈ 0.7 V (volt). Although this equation has
straight-line components (it is piecewise linear), overall it is nonlinear as depicted
in Figure 1.12(b) because it does not satisfy (1.25). Suppose 𝑣1 = −2 V such that
i1 = 0 A (ampere), and 𝑣2 = 1.7 V such that i2 = (1∕R) A. Then 𝑣1 + 𝑣2 = −0.3 V
⇒ i = 0 A, which is not equal to i1 + i2 = (1∕R) A.

The general equation y = ax + b for a line is not linear even though it is straight
and is used to describe the different parts of a piecewise linear function (as in
Example 1.1). A linear function based on the properties in (1.25) must pass through
the origin.

Definition: Affine Function Affine function g(x) is a linear function f (x)with addi-
tive scalar b such that the ordinate is nonzero:

g(x) = f (x) + b. (1.29)

An affine function does not satisfy either requirement in (1.25) for a linear function:

g(x1 + x2) = f (x1 + x2) + b ≠ g(x1) + g(x2) = f (x1) + b + f (x2) + b, (1.30)

g(𝛼x) = f (𝛼x) + b ≠ 𝛼g(x) = 𝛼f (x) + 𝛼b, (1.31)

where 𝛼 ∈  is any nonzero constant.

Definition: Continuous Function Function f (x) is continuous at xo if there exists
𝜖 > 0 for every 𝛿 > 0 such that

|x − xo| < 𝜖 ⇒ |f (x) − f (xo)| < 𝛿. (1.32)

More simply we can write

lim
𝜖→0

|f (xo + 𝜖) − f (xo)| = 0, (1.33)
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where 𝜖 is either positive or negative such that f (xo + 𝜖) approaches xo from the right
or the left, respectively.

All the functions shown in Figures 1.8 and 1.12 are continuous. An example of a
function that is continuous only from the right is shown in Figure 1.13. Approaching
xo from the left, the function jumps to the higher value b. A solid circle indicates that
the function is continuous approaching from the right, meaning that the function is b
at xo. A function that is continuous at xo from the left is similarly definedwith the solid
and open circles in Figure 1.13 interchanged. If a function is left- and right-continuous
at xo, then it is strictly continuous at that point as defined in (1.32) and (1.33).

Functions of a real variable can have different types of discontinuities. The plot in
Figure 1.13 shows a function with a jump discontinuity. Another example is the unit
step function u(t) in (1.24), which is used extensively throughout this book. Similar
to the example in Figure 1.13, u(t) is continuous from the right but not from the left.
A function that is nowhere continuous is the Dirichlet function, given by

f (x) =
{
1, x ∈ 
0, x ∈  −, (1.34)

where is the set of rational numbers. It is not possible to accurately plot this function
using MATLAB (or any other mathematics software). Another type of discontinuity
is an infinite discontinuity, also called an asymptotic discontinuity. Examples include

f (x) = 1∕x, f (x) = 1∕(x − 1)(x − 2), (1.35)

where, in the first case, the discontinuity is at x = 0, and in the second case, there are
discontinuities at x = {1, 2}. The second function is plotted in Figure 1.14(a), which
we see is continuous except at the two points indicated by the vertical dotted lines.
With the terminology of functions of complex variables considered later in this book
(see Chapter 5 and Appendix E), these singularities are called poles.

Consider the function

f (x) = sin(x)
x

, (1.36)

x

f(x)

Continuous
from the right

xo

a

b

Figure 1.13 Example of a function with a discontinuity at xo.
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Figure 1.14 (a) Functionwith two pole singularities at x = {1, 2}. (b) Function with a remov-
able pole singularity at x = 0.
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which appears to have a pole at x = 0. It turns out, however, that this pole is cancelled
by the numerator such that f (0) = 1. This can be seen using L’Hôpital’s rule

d sin(x)∕dx|x=0
dx∕dx|x=0 = cos(0) = 1. (1.37)

Such singularities are called removable. This function, which is plotted in
Figure 1.14(b), is known as the unnormalized sinc function, and should not be
confused with the usual sinc function sinc(x) ≜ sin(𝜋x)∕𝜋x discussed in subsequent
chapters. Another example of a removable singularity is the following rational
function, where a factor in the numerator cancels the denominator:

f (x) = x2 − 1
x + 1

= x − 1, (1.38)

and so f (−1) = −2. A function with a singularity for which there is no limit is called
an essential singularity. The classic example is

f (x) = sin(1∕x), (1.39)

which is plotted in Figure 1.15. Observe that as x approaches 0, there is no single
finite value for the function.

Finally, ordinary functions can be divided into two basic types.
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Figure 1.15 Function with an essential singularity at x = 0.
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Definition: Algebraic Functions and Transcendental Equations An algebraic
function f (x) satisfies the following polynomial equation:

pn(x)f n(x) + … + p1(x)f (x) + p0(x) = 0, (1.40)

where {pm(x)} are polynomials in x and n ∈  (the natural numbers {1, 2,…}). All
other equations are transcendental equations, such as those containing exponential,
logarithmic, and trigonometric functions.

Example 1.10 Examples of algebraic functions are

f (x) = x4 + x2 − x + 1, f (x) =
√
x, f (x) = 1∕x2, (1.41)

and examples of transcendental functions are

f (x) = log(x), f (x) = tan−1(x), f (x) = cos(x) tan(x). (1.42)

Both types of functions/equations are considered in this book. In Chapter 4, we
find that the solutions to some algebraic equations require complex numbers. The
class of ordinary functions is extended in Chapter 5 to generalized functions, which
include the Dirac delta function 𝛿(x) and its derivatives 𝛿(n)(x).

1.5 DERIVATIVES AND INTEGRALS

In this section, definitions for the ordinary derivative of a function of one independent
variable and its Riemann integral are reviewed.

Definition: Derivative The derivative of function f (x) is another function that
gives the rate of change of y = f (x) as x is varied.

The following notations are used to represent the derivative of y = f (x):

dy

dx
,

d
dx

f (x), f ′(x), ẏ, (1.43)

though the last form is usually reserved for the derivative of y(t) with respect to time
t: ẏ = dy∕dt. The derivative of a continuous function is generated from the following
limit:

d
dx

f (x) = lim
Δx→0

f (x + Δx) − f (x)
Δx

, (1.44)

where a secant line connects the points {x, f (x)} and {x + Δx, f (x + Δx)}. AsΔx → 0,
the family of secant lines approach the tangent line at x as shown for the function in
Figure 1.16. The next example demonstrates how to use this definition of the deriva-
tive for two of the functions in Example 1.8.
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x x+Δx

f(x)

f(x+Δx)

Secant line

Tangent line

Figure 1.16 Finite approximation of the derivative of f (x) at x.

Example 1.11 For y = x2:

dy

dx
= lim

Δx→0

(x + Δx)2 − x2

Δx
= lim

Δx→0

2xΔx + Δx2
Δx

= 2x, (1.45)

and for y = 2x + 1:

dy

dx
= lim

Δx→0

[2(x + Δx) + 1] − (2x + 1)
Δx

= lim
Δx→0

2Δx
Δx

= 2. (1.46)

For the latter affine function, the derivative is a constant equal to the slope. In general,
the derivative varies with x, as it does for the quadratic function f (x) = x2.

Example 1.12 Consider the derivative of the absolute value function y = |x|:
dy

dx
= lim

Δx→0

|x + Δx| − |x|
Δx

= lim
Δx→0

{
(x + Δx − x)∕Δx, x > 0
(−x − Δx + x)∕Δx, x < 0.

(1.47)

Thus, as Δx → 0:
dy

dx
=
{

1, x > 0
−1, x < 0.

(1.48)

Although the absolute value function is continuous at all points, its derivative does not
exist at x = 0 because the ratio in (1.47) is not defined there in the limit. However,
since this is usually not an issue in practice, d|x|∕dx = sgn(x) is often used where
sgn(x) is the signum function:

sgn(x) ≜
⎧⎪⎨⎪⎩
1, x > 0
0, x = 0
−1, x < 0.

(1.49)
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The derivative of function y(x) can be extended to include points where dy(x)∕dx is
not defined by using the theory of generalized functions, as discussed in Chapter 5.
This is even more evident for the derivative of the signum function:

d
dx

sgn(x) = 2𝛿(x), (1.50)

where 𝛿(x) is the Dirac delta function. This result cannot be derived using the differ-
ence approach in (1.44)

It is not necessary to use the limit in (1.44) to find derivatives because many
results have already been established for a wide range of functions. For convenience,
Appendix C summarizes the derivatives of several ordinary functions. The following
important properties of the derivative are provided without proof, which can be used
to derive results for more complicated functions.

• Addition and scalar multiplication:

d
dx

[𝛼f (x) + 𝛽g(x)] = 𝛼
d
dx

f (x) + 𝛽
d
dx

g(x), (1.51)

with 𝛼, 𝛽 ∈ .

• Product rule:
d
dx

[f (x)g(x)] = g(x) d
dx

f (x) + f (x) d
dx

g(x). (1.52)

• Quotient rule:

d
dx

f (x)
g(x)

= [1∕g2(x)]
[
g(x) d

dx
f (x) − f (x) d

dx
g(x)

]
. (1.53)

• Chain rule:
d
dx

f (g(x)) = d
dg(x)

f (g(x)) d
dx

g(x). (1.54)

As shown earlier, the independent variable of the function in a derivative is often
suppressed for notational convenience. For example, we usually just write dy∕dx,
which is the same as dy(x)∕dx; we also use y′(x) as was done for the initial condi-
tion y′(0) in Figure 1.7. For the nth-order derivative, a superscript is used: y(n)(x), or
multiple primes y′′(x), or multiple dots for time derivatives ÿ(t).

Example 1.13 The chain rule is useful for finding the derivative of a composite
function where the variable of one equation depends on another variable. Let the two
functions be

f (y) = 4y2 − y + 3, y = g(x) = x2 + 1. (1.55)

The derivatives are

d
dy

f (y) = 8y − 1 = 8g(x) − 1,
d
dx

g(x) = 2x, (1.56)
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Figure 1.17 Vehicle position, velocity, and acceleration waveforms used in Example 1.14.

and the chain rule yields

d
dx

f (g(x)) = [8g(x) − 1]2x = 16x3 + 14x. (1.57)

This is verified by substituting g(x) into f (y) and differentiating once with respect
to x:

f (g(x)) = 4x4 + 7x2 + 6 ⇒
d
dx

f (g(x)) = 16x3 + 14x. (1.58)

Substituting one equation into the other is usually a tedious process, which is a step
the chain rule eliminates. The product and quotient formulas also simplify finding
derivatives because it is not necessary tomultiply or divide the functions, respectively,
before computing derivatives.

Example 1.14 Suppose the position of a vehicle in meters (m) along one Cartesian
coordinate over time t is described by the following piecewise linear function:

f (t) =
⎧⎪⎨⎪⎩
100t, 0 ≤ t ≤ 1
−30t2 + 160t − 30, 1 < t ≤ 2
40t + 90, 2 < t ≤ 3,

(1.59)
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where the units of t are seconds (s). The distance traveled versus time is illustrated
in Figure 1.17 (the solid line). The velocity is the time derivative of this function,
denoted by g(t) = ḟ (t) with units m/s:

g(t) =
⎧⎪⎨⎪⎩
100, 0 ≤ t ≤ 1
−60t + 160, 1 < t ≤ 2
40, 2 < t ≤ 3.

(1.60)

In Figure 1.17, we see that the velocity is initially 100 m/s and then it decreases
linearly to 40 m/s (the dashed line). The acceleration is the time derivative of the
velocity h(t) = ġ(t) = f̈ (t), which has units m/s2:

h(t) =
⎧⎪⎨⎪⎩
0, 0 ≤ t < 1
−60, 1 ≤ t < 2
0, 2 ≤ t ≤ 3.

(1.61)

The vehicle has nonzero acceleration only when its velocity is decreasing from 100
to 40 m/s (it is actually a deceleration because h(t) is negative). Unlike the first two
functions, h(t) is not continuous.

Example 1.15 The derivative can be used to find saddle points, the minimum, or
themaximum of a function (if they exist). Consider the cubic function f (x) = (x − 1)3
plotted in Figure 1.18. The first derivative is f ′(x) = 3(x − 1)2 and the second deriva-
tive is f ′′(x) = 6(x − 1), both of which are also plotted in Figure 1.18. Observe that
f (x) has a saddle point at x = 1: the derivative f ′(x) (the dashed line) is 0 there, but
x = 1 is neither a maximum nor a minimum of f (x). The second derivative f ′′(x) is
also 0 at x = 1, which means that the quadratic function f ′(x) has a minimum there.
It is a minimum (and not a maximum) because the second derivative of f ′(x), given
by f (3)(x) = 6, is positive.

Definition: Indefinite Integral The indefinite integral of f (x) is another function
g(x) such that dg(x)∕dx = f (x).

The indefinite integral g(x) is also called the antiderivative, and so, integration is
the inverse operation of differentiation. It is represented by

g(x) = ∫ f (x)dx = F(x) + c, (1.62)

where c is a constant independent of x, and F(x) is the antiderivative when c = 0.
Thus, the antiderivative is not unique; instead, we say it is unique up to a constant.
The value of c is determined by boundary conditions.
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Figure 1.18 Cubic function f (x) = (x − 1)3 in Example 1.15 and its derivatives.

Example 1.16 For the scenario in Example 1.14, the velocity is the indefinite inte-
gral of acceleration:

g(t) = ∫ h(t)dt =
⎧⎪⎨⎪⎩
c1, 0 ≤ t ≤ 1
−60t + c2, 1 < t ≤ 2
c3, 2 < t ≤ 3,

(1.63)

where {cn} are constants that are determined by the boundary conditions for the
subintervals [0, 1], (1, 2], and (2, 3]. In order to continue, we need the initial velocity,
which in this case is 100 m/s, yielding c1 = 100. Similarly, the final velocity gives
c3 = 40 m/s. The middle coefficient is derived by assuming that the velocity does not
change instantaneously. Thus, at t = 1:

− 60 × 1 + c2 = 100 =⇒ c2 = 160 m∕s, (1.64)

which can also be derived at t = 2:

− 60 × 2 + c2 = 40 =⇒ c2 = 160 m∕s. (1.65)

Combining these terms gives the expression for g(t) in (1.60).
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Definition: Definite Integral The definite integral of function f (x) is a real number
derived from the indefinite integral with specific limits of integration:

g(b) − g(a) = ∫
b

a
f (x)dx. (1.66)

It gives the area under f (x) on the interval [a, b].
For a definite integral, the constant c appearing in (1.62) is of no concern because

it cancels when evaluated at the limits:

g(b) − g(a) = [F(b) + c] − [F(a) + c] = F(b) − F(a). (1.67)

Note that seemingly simple integrals require special attention. For example, it is not
clear how to evaluate

∫
b

a
f (x)dx = ∫

1

−1
(1∕x)dx, (1.68)

because f (x) = 1∕x has a singularity at x = 0. Such functions are sometimes called
pseudofunctions and the integral is improper.

Definition: Improper Integral The following integral is improper if f (x) is infi-
nite for some x in [a, b]:

∫
b

a
f (x)dx, (1.69)

or if a = −∞, b = ∞, or both.
In both situations, we must carefully evaluate the integral as demonstrated in the

next example.

Example 1.17 The following integral is improper because the function is
unbounded at x = 1:

∫
2

1

dx
x − 1

. (1.70)

This expression is examined by changing the lower limit to 𝜖 and letting 𝜖 → 1:

lim
𝜖→1∫

2

𝜖

dx
x − 1

= lim
𝜖→1

[ln (|2 − 1|) − ln (|𝜖 − 1|)] = ∞. (1.71)

Similarly, for

∫
∞

2

dx
x − 1

, (1.72)

we have

lim
𝜖→∞∫

𝜖

2

dx
x − 1

= lim
𝜖→∞

[ln (|𝜖 − 1|) − ln (|2 − 1|)] = ∞. (1.73)
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Both of these integrals are divergent. Suppose the denominator in (1.70) is squared:

∫
2

1

dx
(x − 1)2

. (1.74)

Then

lim
𝜖→1∫

2

𝜖

dx
(x − 1)2

= lim
𝜖→1

−1
x − 1

||||2𝜖 = ∞, (1.75)

which is also divergent. However, the integral

∫
∞

2

dx
(x − 1)2

(1.76)

is convergent:

lim
𝜖→∞∫

𝜖

2

dx
(x − 1)2

= lim
𝜖→∞

−1
x − 1

||||𝜖2 = 1. (1.77)

Although f (x) = 1∕
√
x − 1 is undefined at x = 1, the following integral is conver-

gent:

∫
2

1

dx√
x − 1

= 2
√
x − 1|||21 = 2. (1.78)

The three functions in this example all have a singularity at x = 1 as shown in
Figure 1.19. Since 1∕

√
x − 1 is imaginary for x < 1, it is plotted only for x > 1.

Imaginary and complex numbers are covered in Chapter 4.

The definite integral in (1.66) is known as a Riemann integral in order to distin-
guish it from other types of integrals (such as the Lebesgue integral, which is beyond
the scope of this book). It can be defined in terms of the following Riemann sum:

∫
b

a
f (x)dx = lim

Δxn→0

N−1∑
n=0

f (xn)Δxn, (1.79)

such that N → ∞ with Δxn ≜ xn+1 − xn, x0 = a, and xN = b. In a Riemann sum,
the interval [a, b] on the x-axis is divided into nonoverlapping subintervals, which
together cover the entire interval. This collection of subintervals is called a partition
of [a, b]. Observe that we have used the smaller value xn of Δn for the argument of
f (xn), in which case the sum is known as a lower Riemann sum. If instead xn+1 is used,
then it is called an upper Riemann sum. In the limit as Δxn → 0, both sums converge
to the same quantity for a continuous function, giving the definite integral of f (x) on
[a, b]. Examples of the lower and upper Riemann sums are indicated by the shaded
regions in Figure 1.20.
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Figure 1.20 Lower and upper Riemann sums approximating the integral of f (x) on [a, b].

Although it is not necessary for the subintervals to have the same width, it is usu-
ally convenient to do so with Δxn = (b − a)∕N ≜ Δ for all n such that xn = a + nΔ
and (1.79) becomes

∫
b

a
f (x)dx = b − a

N
lim
N→∞

N−1∑
n=0

f (a + nΔ). (1.80)

Example 1.18 Consider again the functions in Example 1.8. The area under
f (x) = x2 on [0, 2] is

∫
2

0
x2dx = 2

N
lim
N→∞

N−1∑
n=0

(nΔ)2 = 8
N3

N−1∑
n=0

n2, (1.81)
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where we have assumed equal-length subintervals and substituted Δ = 2∕N. A
closed-form expression in Appendix C for the last sum in (1.81) yields

∫
2

0
x2dx = lim

N→∞
(8∕N3)(1∕6)[(N − 1)N][2(N − 1) + 1]

= (8∕6) lim
N→∞

2N3 − 3N2 + N
N3

= 8∕3. (1.82)

Since the indefinite integral of f (x) = x2 is g(x) = x3∕3 + c, we confirm that the area
of f (x) on [0, 2] is 8∕3. For f (x) = 2x + 1 on [−1, 2]:

∫
2

−1
(2x + 1)dx = lim

N→∞
3
N

N−1∑
n=0

[2(−1 + nΔ) + 1]

= lim
N→∞

[
(18∕N2)

N−1∑
n=0

n − (3∕N)
N−1∑
n=0

1

]
, (1.83)

where Δ = 3∕N. The last sum is N, and using another closed-form expression from
Appendix C for the first sum in (1.83), the area is

∫
2

−1
(2x + 1)dx = lim

N→∞
(18∕N2)[(N − 1)N∕2] − 3 = 6. (1.84)

The indefinite integral of f (x) = 2x + 1 is g(x) = x2 + x + c, and from this we verify
that the definite integral on [−1, 2] is 6.

It is not necessary that the sum in (1.79) be used to derive integrals because many
results have already been established for a wide range of functions. Appendix C
includes some indefinite integrals as well as a few definite integrals. The following
important properties of integration are provided without proof.

• Integration by parts:

∫ 𝑤(x)d𝑣(x)
dx

dx = 𝑤(x)𝑣(x) − ∫
d𝑤(x)
dx

𝑣(x)dx. (1.85)

• Leibniz’s integral rule:

d
dx ∫

b(x)

a(x)
f (𝑣)d𝑣 = f (b(x)) d

dx
b(x) − f (a(x)) d

dx
a(x). (1.86)
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The following expressions are special cases that are used often in engineering
problems:

d
dx ∫

x

a
f (𝑣)d𝑣 = f (x), d

dx ∫
b

x
f (𝑣)d𝑣 = −f (x). (1.87)

Example 1.19 Consider the indefinite integral

f (x) = ∫ x exp (𝛼x)dx, (1.88)

where 𝛼 is a constant. In order to use integration by parts, we equate the
following: 𝑤(x) = x and d𝑣(x)∕dx = exp (𝛼x) which yield d𝑤(x)∕dx = 1 and
𝑣(x) = (1∕𝛼) exp (𝛼x). The expression in (1.85) gives

f (x) = (x∕𝛼) exp (𝛼x) − (1∕𝛼)∫ exp (𝛼x)dx, (1.89)

whose integral is straightforward to evaluate:

f (x) = (x∕𝛼) exp (𝛼x) − (1∕𝛼2) exp (𝛼x) + c

= [(𝛼x − 1)∕𝛼2] exp (𝛼x) + c, (1.90)

where c is the constant of integration. For an example of Leibniz’s integral rule,
consider

g(x) = ∫
x2

x
exp (𝛼u)du, (1.91)

which has derivative

d
dx

g(x) = exp (𝛼x2) d
dx

x2 − exp (𝛼x) d
dx

x

= 2x exp (𝛼x2) − exp (𝛼x). (1.92)

This is verified by performing the integration:

g(x) = (1∕𝛼)[exp (𝛼x2) − exp (𝛼x)], (1.93)

and then differentiating (using the chain rule):

d
dx

g(x) = (1∕𝛼)[2𝛼x exp (𝛼x2) − 𝛼 exp (𝛼x)], (1.94)

which simplifies to (1.92). Leibniz’s integral rule allows us to find the derivative in
(1.92) without first computing the integral in (1.91).

Derivatives and integrals appear in the linear ODEs and integro-differential
equations discussed in Chapters 6 and 7.



�

� �

�

SINE, COSINE, AND 𝜋 33

1.6 SINE, COSINE, AND 𝝅

Next, we discuss some properties of sinusoidal functions and indicate how they arise
in practice. Consider the circle shown in Figure 1.21, which has unit radius r = 1
and is called the unit circle, and so, its circumference is 2𝜋. The famous constant
𝜋 = 3.141592653589… is the ratio of the circumference of any circle and its diame-
ter. Since it cannot be expressed as the ratio of two integers, 𝜋 is an irrational number
(of course, this also means that if the circumference of a circle is an integer, then its
diameter is not). The circumference in the figure can be divided into 360 equal lengths
(arcs), and each “pie slice” projected back to the origin is defined to have an angle
of 1∘. The distance along the unit circle yields the corresponding angle in radians.
The example in Figure 1.21 illustrates that an angle of 𝜋∕2 in the first quadrant rel-
ative to the positive horizontal axis is actually one-quarter distance along the circle
circumference of 2𝜋: 2𝜋∕4 = 𝜋∕2.

It is well known from trigonometry that sine of an angle formed by a right triangle
is defined as the ratio of the lengths of the distant side y and the hypotenuse r: sin(𝜃) ≜
y∕r. Similarly, cosine of 𝜃 is defined as the ratio of the lengths of the adjacent side of
a right triangle and its hypotenuse: cos(𝜃) ≜ x∕r. Since x2 + y2 = r2, we immediately
have that for any angle 𝜃:

sin2(𝜃) + cos2(𝜃) = 1, (1.95)

where either 𝜃 ∈ [0, 360∘] or 𝜃 ∈ [0, 2𝜋] radians. It is also clear from Figure 1.21 and
the connection between sine and cosine that

sin(𝜃 ± 𝜋∕2) = ± cos(𝜃), (1.96)

cos(𝜃 ± 𝜋∕2) = ∓ sin(𝜃). (1.97)

Plotting sine and cosine as functions of 𝜃, we find that sine lags cosine by 𝜋∕2 radians
(90∘).

Suppose now that the angle is written as 𝜃(t) = 𝜔ot so that it varies with time,
where 𝜔o is angular frequency with units of rad/s. Thus, with a fixed 𝜔o, any point
on the radial line from the origin to the circle with radius r has the same constant

Circumference
is 2π

Angle π/2 corresponds
to the distance along
the unit circle of the
first quadrant  

θ

Horizontal
axis

Vertical
axis

Figure 1.21 Unit circle with radius r = 1 and circumference 2𝜋.
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angular velocity as it sweeps counterclockwise with increasing t. This result follows
because the derivative is a constant d𝜃(t)∕dt = 𝜔o. From Figure 1.22, observe how
the functions sin(𝜔ot) and cos(𝜔ot) are generated. As time increases, cos(𝜔ot) is the
projection of the end of the radial line onto the horizontal axis; the cosine function
is the length of this projection as it varies over [−1, 1] (for r = 1). Likewise, sin(𝜔ot)
is the projection of the end of the radial line onto the vertical axis. A projection is
defined to be negative for cosine when it is located to the left of the origin on the
horizontal axis, and it is negative for sine when it is below the origin on the vertical
axis.

Summarizing, the time-varying functions sin(𝜔ot) and cos(𝜔ot) follow from the
usual definitions of the sine and cosine of an angle, except that the angle varies as
𝜃(t) = 𝜔ot. By convention, the angle is defined with respect to the positive horizontal
axis as depicted in Figure 1.22 for four different time instants (snapshots). These plots
illustrate why the sine and cosine functions are 90∘ out of phase with respect to each
other: as sin(𝜔ot) increases, cos(𝜔ot) decreases and vice versa. They are orthogonal
functions:

∫
b

a
sin(𝜔ot) cos(𝜔ot)dt = 0, (1.98)

sin(ωot1)

sin(ωot3)
sin(ωot4)

sin(ωot2)

cos(ωot2)cos(ωot1)

cos(ωot3) cos(ωot4)

(a) (b)

Unit circle

Unit circle

Unit circle

Unit circle

(c) (d)

ωot1

ωot3

ωot4

ωot2

Figure 1.22 Four snapshots of sine and cosine for time-varying angle 𝜃(t) = 𝜔ot with con-
stant angular velocity and t1 < t2 < t3 < t4.



�

� �

�

SINE, COSINE, AND 𝜋 35

when (b − a)𝜔o is an integer multiple of 𝜋. This result is verified by using a trigono-
metric identity from Appendix C:

∫
b

a
sin(𝜔ot) cos(𝜔ot)dt = (1∕2)∫

b

a
[sin(2𝜔ot) + sin(0)]dt

= (−1∕4𝜔o) cos(2𝜔ot)|ba
= [cos(2𝜔oa) − cos(2𝜔ob)]∕4𝜔o, (1.99)

which is 0 when cos(2𝜔ob) = cos(2𝜔oa). Since cosine is periodic with period 2𝜋, we
require 2𝜔ob = 2𝜔oa + n2𝜋 for n ∈ , which means (b − a)𝜔o = n𝜋. Figure 1.23
shows a plot of (1.99) for a = 0 and 𝜔o = 1 rad/s as b is varied from 0 to 5𝜋. The
integral is 0 for b = {0, 𝜋, 2𝜋, 3𝜋, 4𝜋, 5𝜋}, and themaximum area is 1∕2 for this value
of𝜔o. The orthogonality property is also evident from a geometric viewpoint because
the vertical and horizontal dashed lines in Figure 1.22 are orthogonal: they form the
previously mentioned right triangle. The fact that the radial line sweeps along a circle
gives rise to the specific smooth shapes of the sine and cosine waveforms, derived as
projections on the two axes.

Figure 1.24(a) shows the sine waveform in Figure 1.22 with 𝜔o = 1 rad/s. The
function approaches its maximum with a decreasing derivative, which is the cosine
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Figure 1.23 Orthogonality of sine and cosine for a = 0 and 𝜔o = 1 rad/s.
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(b) Triangular waveform and its rectangular derivative.
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Mass M
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constant K

Rigid surface

Sinusoidal
oscillation

Figure 1.25 Mass on a spring influenced by gravity.

waveform also shown in the figure. (The orthogonality of these two waveforms is
also apparent from this figure.) This smooth behavior of its derivative is unlike that
of the triangular waveform in Figure 1.24(b) whose derivative is a constant until the
function reaches its maximum, at which point the derivative abruptly changes sign.
It turns out that many physical phenomena are modeled accurately using sinusoidal
functions. Apparently, many physical systems behave in a sinusoidal manner because
the underlying physics yield gradual variations rather than abrupt changes. This also
means that the physical mechanisms of many systems have the dynamic of constant
angular velocity along a circle on the plane as in Figure 1.22.

An example of a mechanical process is an object (mass) attached to a spring
as depicted in Figure 1.25. If the object is extended downward and released, its
up-and-down trajectory is sinusoidal. As the spring is stretched, its linear velocity
gradually decreases and it becomes exactly 0 at its maximum distance, just like a
sinusoidal waveform. This behavior is due to the physical properties of the spring
and the force of gravity. The object does not have constant linear velocity, and it
does not abruptly change direction at its minimum and maximum distance from the
rigid surface. The amplitude and frequency of the waveform depend on the mass M
of the object, the spring constant K, and the initial position of the object, which are
discussed further in Chapter 2.

We demonstrate in Chapter 4 that the sine and cosine axes as depicted in
Figure 1.21 can be represented on the complex plane, where the horizontal axis
(associated with cosine) is the real axis and the vertical axis (associated with sine)
is the imaginary axis. It turns out that both sine and cosine can be written together
using complex notation as follows:

exp (j𝜔ot) = cos(𝜔ot) + j sin(𝜔ot), (1.100)

where j ≜ √
−1 and exp (1) = e is Napier’s constant. This two-dimensional formula-

tion called Euler’s formula is widely used in engineering to represent signals and
waveforms, and exp (j𝜔ot) is an eigenfunction of a linear system as discussed in
Chapter 7.
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1.7 NAPIER’S CONSTANT e AND LOGARITHMS

Napier’s constant e is another important irrational number used in mathematics and
engineering. It is motivated by the following compound interest problem. Suppose
one has an initial monetary amount xo called the principal, which accumulates interest
at an annual percentage rate of 100r%. At the end of 1 year when a single interest
payment is made, the new principal is xo(1 + r), where for now we assume 0 < r ≤ 1.
Suppose instead that an interest payment is made after 6 months, and the total amount
available then accumulates interest until the end of the year. The amount after one-half
year is xo(1 + r∕2). Since this is the principal for the second half of the year, we have a
total amount of xo(1 + r∕2)(1 + r∕2) = xo(1 + r∕2)2 at the end of the year. Similarly,
by dividing the year into thirds, the amount at the end of the year is xo(1 + r∕3)3, and
in general, for n interest payments, the principal is xo(1 + r∕n)n at the end of 1 year.

It can be shown that for xo = 1 and r = 1 (corresponding to a 100% interest rate),
the limit is Napier’s constant:

lim
n→∞

(1 + 1∕n)n = e = 2.718281828459… (1.101)

This convergence to e is demonstrated in Figure 1.26. It is an interesting result that
the total monetary amount after 1 year of essentially continuous interest payments

0 2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

n

(1
 +

 1
/n

)n
, P

ow
er

 s
er

ie
s

Convergence to e and power series

(1 + 1/n)n

Power series
e = 2.718 …

Figure 1.26 Convergence of (1 + 1∕n)n to e and its power series approximation, where n is
the upper limit of the sum in (1.104). (The individual points at integer n for the power series
have been connected by lines for ease of viewing.)
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(because n → ∞) is finite and given exactly by e. For general xo and r, the limit is

lim
n→∞

xo(1 + r∕n)n = xoe
r, (1.102)

such that r > 0 results in a gain on the original principal xo, and r < 0 yields a loss.
These correspond to exponential growth and exponential decay, respectively.

The constant e has the following alternative representations.

• Limits:
e = lim

n→0
(1 + n)1∕n, er = lim

n→0
(1 + n∕r)r∕n. (1.103)

• Power series:

e =
∞∑
m=0

1
m!

. (1.104)

• Hyperbolic functions:
e = sinh(1) + cosh(1). (1.105)

Convergence of the power series sum in (1.104) with upper limit n instead of infin-
ity is shown in Figure 1.26. As n is varied over the 11 integers {0,… , 10}, we find
that the sum quickly approaches e; the first six values are 1, 2, 2.5, 2.6667, 2.7083,
and 2.7167.

The exponential function based on Napier’s constant is defined next, which is dis-
cussed further in Chapter 5.

Definition: Exponential Function The exponential function is

exp (x) ≜ ex. (1.106)

It has domain  and range +.
The exponential function has the following properties.

• Product:
exp (x) exp (y) = exp (xy). (1.107)

• Ratio:
exp (x)
exp (y)

= exp (x∕y). (1.108)

• Derivative:
d
dx

exp (x) = exp (x). (1.109)

• Integrals:

∫ exp (x)dx = exp (x) + c, ∫
x

−∞
exp (𝑣)dv = exp (x), ∫

x

0
exp (𝑣)dv = exp (x) − 1.

(1.110)
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• Power series:

exp (x) =
∞∑
n=0

xn

n!
. (1.111)

• Hyperbolic functions:

exp (x) = cosh(x) + sinh(x), exp (−x) = cosh(x) − sinh(x). (1.112)

The last property gives cosh(x) = (1∕2)[exp (x) + exp (−x)] and sinh(x) =
(1∕2)[exp (x) − exp (−x)], which is similar to Euler’s formula for complex numbers
discussed in Chapter 4. The exponential functions in (1.112) and their hyperbolic
components are plotted in Figure 1.27.

The exponential function arises naturally in many engineering problems because
of its unique derivative and integral properties. This is demonstrated by the following
example in probability.

Example 1.20 The exponential probability density function (pdf) is

fX(x) =
{
𝛼 exp (−𝛼x), x ≥ 0

0, x < 0,
(1.113)

where the uppercase notation X denotes a random variable with outcomes x, and the
parameter 𝛼 > 0 determines the mean and variance of X. This pdf has domain ,
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Figure 1.27 Exponential and hyperbolic functions.
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support +, and range +. A valid pdf satisfies the following two conditions:

fX(x) ≥ 0, ∫
∞

−∞
fX(x)dx = 1. (1.114)

These are obviously true for the exponential pdf:

𝛼 exp (−𝛼x) ≥ 0, ∫
∞

0
𝛼 exp (−𝛼x)dx = − exp (−𝛼x)|∞0 = 1. (1.115)

Suppose instead that we are interested in another decaying function such as fX(x) =
ba−x ≥ 0 for a, b ≥ 0 and x ∈ +. The integral of this function is

b∫
∞

0
a−xdx = − ba−x

ln (a)
||||∞0 = b

ln (a)
, (1.116)

where ln (⋅) is the natural logarithm defined next. In order for the integral to be 1, it
is necessary that b = ln (a), and so, we must have a > 1, yielding the following valid
pdf:

fX(x) = ln (a)a−x, x ∈ +, (1.117)

which has a maximum value of ln (a) at x = 0. Thus, other exponential-like decaying
functions are possible, but they require a leading coefficient, and so, they are not the
“natural” choice as is a = e with ln (a) = 1. The derivative and integral properties of
exp (x) eliminate such multiplicative scaling of the function. The same reasoning can
be used to justify e in the Gaussian pdf:

fX(x) =
1√
2𝜋𝜎

exp (−(x − 𝜇)2∕2𝜎2), (1.118)

where 𝜇 and 𝜎 are its mean and standard deviation, respectively. Likewise, the pdf of
the Laplace random variable is

fX(x) =
1
2𝛼

exp (−|x|∕𝛼), (1.119)

with parameter 𝛼 > 0, which determines the variance 2𝛼2. The support for these last
two pdfs is the entire real line .

Finally, we consider logarithms and their connection to e.

Definition: Logarithm The logarithm of x is the exponent y with base b such that
by = x. It is written as logb(x) = y with domain + and range .

Perhaps the most familiar base is b = 10, which yields common logarithms.
Binary logarithms with b = 2 are used in the analysis of digital systems. Note that
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Figure 1.28 Logarithmic functions with different base b.

logb(1) = 0 for any b as depicted in Figure 1.28 where the base is varied from 2 to
10. The conversion formula of a logarithm from base b1 to base b2 is

logb2 (x) = logb1 (x)∕logb1 (b2). (1.120)

Example 1.21 For b = 10, the subscript is often omitted: log(x) (though in MAT-
LAB log has base e and log10 has base 10). Examples include log(1000) = 3 and
log(0.1) = −1. Integer powers of 2 are important numbers in digital systems because
their logic is based on the binary number system, usually represented by {0, 1}. Thus,
b = 2 such that log2(8) = 3, log2(64) = 6, log2(1∕2) = −1, and so on.

The following logarithm appears frequently in engineering applications.

Definition: Natural Logarithm The natural logarithm is

ln (x) ≜ loge(x), (1.121)

which has domain + and range . It is also defined by the definite integral:

ln (x) ≜ ∫
x

1
(1∕𝑣)dv. (1.122)
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Figure 1.29 Exponential and natural logarithm functions.

This is not an improper integral of the pseudofunction 1∕𝑣 because the limits of inte-
gration do not include the origin. From (1.121), we have

ln(exp (x)) = x, exp (ln(x)) = x, (1.123)

where it is assumed that x > 0 in the second equation. The exponential and natural
logarithm functions are plotted in Figure 1.29, where the vertical axis has been lim-
ited to 20 because the exponential function increases rapidly (e.g., exp (5) ≈ 148.41).
Observe the following properties: (i) ln (x) increases much more slowly than exp (x)
and (ii) ln (x) → −∞ as x → 0. We have also included the straight-line plot for
ln (exp (x)) = exp (ln (x)) = x, demonstrating that they are in fact inverse functions
of each other.

Logarithms have the following properties.

• Integrals:

∫ logb(x)dx = x[logb(x) − 1∕ ln (b)] + c, ∫ ln (x)dx = x ln (x) − x + c.

(1.124)

• Sum:

logb(x) + logb(y) = logb(xy). (1.125)
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• Difference:

logb(x) − logb(y) = logb(x∕y). (1.126)

• Exponent:

logb(xn) = nlogb(x). (1.127)

• Derivatives:
d
dx

logb(x) =
1

x ln (b)
,

d
dx

ln (x) = 1∕x. (1.128)

• Limit:

ln (x) = lim
n→∞

n(x1∕n − 1). (1.129)

• Power series:

ln (x) =
∞∑
n=1

(−1)n+1

n
(x − 1)n, ln (x + 1) =

∞∑
n=1

(−1)n+1

n
xn. (1.130)

Example 1.22 From the identity 𝛼 = exp (ln (𝛼)), we can write

𝛼𝑣 = exp (𝑣 ln (𝛼)). (1.131)

Suppose 𝑣 is a function of x such that

𝛼𝑣(x) = exp (𝑣(x) ln (𝛼)). (1.132)

The right-hand side and the chain rule can be used to find the derivative of functions
of this form with x in the exponent:

d
dx

𝛼𝑣(x) = d
dx

exp (𝑣(x) ln (𝛼))

= exp (𝑣(x) ln (𝛼)) ln (𝛼) d
dx

𝑣(x)

= ln (𝛼)𝛼𝑣(x) d
dx

𝑣(x), (1.133)

where (1.131) has been substituted in the final expression. This result is not the same
as the more commonly used derivative

d
dx

𝑣n(x) = n𝑣n−1(x) d
dx

𝑣(x), (1.134)

where n in the exponent is a constant.
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We conclude this section with proofs of the derivatives in (1.109) and (1.128) using
the limit definition of the derivative in (1.44). For the natural logarithm:

d
dx

ln (x) = lim
Δx→0

ln (x + Δx) − ln (x)
Δx

= lim
Δx→0

ln ((x + Δx)∕x)
Δx

. (1.135)

Multiplying and dividing by x and then using the exponent property yield

d
dx

ln (x) = lim
Δx→0

(x∕Δx) ln ((x + Δx)∕x)
x

= (1∕x) lim
Δx→0

ln ((1 + Δx∕x)x∕Δx), (1.136)

where 1∕x has been brought outside the limit. The second form of the limit for e in
(1.103) (with x in place of n) gives the final result:

d
dx

ln (x) = (1∕x) ln (e) = 1∕x. (1.137)

The derivative of exp (x) is obtained from the derivative of the natural logarithm and
the chain rule:

d
dx

ln (exp (x)) = 1
exp (x)

d
dx

exp (x) =⇒ d
dx

exp (x) = exp (x), (1.138)

where we have used the fact that the left-hand side equals 1.

PROBLEMS

MATHEMATICAL MODELS

1.1 Sketch the following transfer characteristic:

y =
⎧⎪⎨⎪⎩

0, x < 0
x2, 0 ≤ x < 3

2x + 3, 3 ≤ x < 5
0, x ≥ 5,

(1.139)

and sketch its output y(t) when the input is the exponential function
x(t) = exp (t)u(t).

1.2 Repeat the previous problem for

y =
⎧⎪⎨⎪⎩

0, x < 0
2x, 0 ≤ x < 2
4, 2 ≤ x < 4

4 exp (−2(x∕2 − 4)), x ≥ 4,

(1.140)

and x(t) = 2tu(t).
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1.3 (a) For the linear system of equations in (1.5) and (1.6) with

A =
[
2 1
1 2

]
, (1.141)

solve for {y1, y2} given x1 = x2 = 1. (b) Repeat part (a) for

A =
[
2 2
2 2

]
. (1.142)

1.4 (a) For the nonlinear system in Example 1.4, iteratively solve for y1 and y2 by
using the same parameter values and inputs, except let the exponential param-
eter be 𝛼 = 5. (b) Describe the behavior of the iterations for 𝛼 = 2.

1.5 A diode circuit using an exponential model with a series resistor is represented
by the following system of equations:

a11 exp (𝛼y) + a12 = x, a21 + a22y = x, (1.143)

where the input x is a current (A) and the output y is a voltage (V). The coef-
ficients {amn} depend on the series resistor, the voltage source, and the diode
parameters. Iteratively solve for {x, y} using the following parameter values:
a11 = 10−15, a12 = −a11, a21 = 10−3, a22 = −a21, and 𝛼 = 40. Let the initial
value be y = 0.6 V.

1.6 A transistor circuit with a series resistor is represented by the following system
of equations:

a11y
2 = x, a21y + a22 = x, (1.144)

where the input x is a current (A) and y is an output voltage (V). The coeffi-
cients {amn} depend on the series resistor, the voltage source, and the transistor
parameters. Let the parameter values be a11 = 0.5 × 10−3, a21 = −10−3, and
a22 = 5 × 10−3. Iteratively solve for {x, y} assuming the initial value y = 1 V.

FUNCTIONS AND PROPERTIES

1.7 Specify the domain, range, and support for the following functions, assuming
that x and y are real-valued. (a) y =

√
x2 − 1. (b) y = u(x − 2) (shifted unit step

function). (c) y = 1∕|x − 1|.
1.8 For real-valued f (x) = 1∕

√
x + 2 and g(x) = |x|, give the domain, range, and

support for the following functions. (a) y1 = f (x)∕g(x). (b) y2 = g(x)∕f (x). (c)
y3 = f (x)g(x).

1.9 Specify the inverse image for each function. (a) y1 = x2 − 5. (b) y2 =|x − 1|∕√x. (c) y3 = sgn(x)u(x + 2).
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1.10 Find the range of values for x. (a) |(x − 1)∕x| < 2. (b) |x + 2| > 3x. (c) x2 +|x| − 1 > 0.

1.11 Determine the values of x for which the following functions are continuous. (a)
y1 = 2x3 − x2 + x. (b) y2 = x∕(x2 − 1). (c) y3 = sgn(x − 2)sgn(x + 2).

1.12 Let {x1, x2} be the roots of the quadratic equation ax2 + bx + c = 0. Prove that
x1 + x2 = −b∕a and x1x2 = c∕a.

1.13 It can be shown that if f (x) is a polynomial with real coefficients such that
f (x1) < 0 and f (x2) > 0 for real {x1, x2}, then f (x) = 0 for some x between x1
and x2. Determine if this is the case for the following functions. (a) f1(x) =
x3 − 5x2 + 2x + 8 with x1 = 1 and x2 = 3. (b) f2(x) = x3 + 2x2 − 5x − 6 with
x1 = −2 and x2 = 0.

1.14 If function f (x) has a derivative at xo, then show using the following expression
that it is also continuous at xo:

lim
x→xo

|f (x) − f (xo)| = lim
x→xo

||||(x − xo)
f (x) − f (xo)

x − xo

|||| . (1.145)

DERIVATIVES AND INTEGRALS

1.15 Find the derivative of y = x3 + 2x using the limit definition.

1.16 Repeat the previous problem for y =
√
x + 2.

1.17 Repeat Problem 1.15 for y = x2 + 1∕x assuming x ≠ 0.

1.18 (a) Use the product and chain rules to write an expression for

y = d
dx

gm(x)hn(f (x)), (1.146)

where {m, n} are constants. (b) Find the derivative of x2m exp (𝛼n sin(x)).

1.19 (a) Extend the chain rule to find an expression for

y = d2

dx2
f (g(x)). (1.147)

(b) Find the second derivative of exp (𝛼 sin(x)).

1.20 Determine which of the following improper integrals converge.

(a) ∫
∞

0
exp (−𝛼x) sin(x)dx. (b) ∫

4

2

dx
(x − 2)3

. (c) ∫
∞

0

dx
x2 + 4

.

(1.148)
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1.21 Consider the integral transform

X(𝜎) ≜ ∫
∞

0
x(t) exp (−𝜎t)dt, (1.149)

where 𝜎 is real-valued. Find X(𝜎) for x(t) = exp (−t)u(t) + u(t) and specify the
range of values for 𝜎 such that the integral is convergent.

1.22 The current i(t) in a series circuit with resistance R and inductance L is modeled
by the following first-order ODE:

L
d
dt
i(t) + Ri(t) = 0. (1.150)

(a) Verify that the solution of this equation has the form i(t) = i(0) exp (−𝛼t)u(t)
where i(0) is the initial current, and specify the constant 𝛼. (b) Find the value
of t such that the current is 1∕2e its initial value i(0).

1.23 Repeat the previous problem for the integral equation

(1∕L)∫ 𝑣(t)dt + 𝑣(t)∕R = 0, (1.151)

where 𝑣(t) is a voltage with initial value 𝑣(0).

SINE, COSINE, AND 𝝅

1.24 Prove the identity cos(𝜃2 − 𝜃1) = cos(𝜃1) cos(𝜃2) + sin(𝜃1) sin(𝜃2) using an
illustration on the unit circle.

1.25 (a) Repeat the previous problem for the double angle formula cos(2𝜃) =
cos2(𝜃) − sin2(𝜃), and (b) verify this result algebraically using the identity in
that problem.

1.26 Find the minimum and maximum of y = 3 cos(x) + 2 sin(x∕2) on the interval
x ∈ [0, 𝜋].

1.27 Solve sin2(𝜃) + 2 sin(𝜃) − 1 = 0 for 𝜃 ∈ [−𝜋∕2, 𝜋∕2].

1.28 For a general triangle whose sides have lengths x, y, and r, prove the law of
cosines:

x2 + y2 − 2xy cos(𝜃) = r2, (1.152)

where 𝜃 is the angle formed by the x and y sides.

1.29 Show that
d
dx

sin−1(x) = 1√
1 − x2

. (1.153)
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1.30 (a) Use the natural logarithm to find an expression for the derivative of
y = f g(x)(x) with respect to x. (b) Find the derivative of y = xln(x).

1.31 From the logarithm sum property ln(y1y2) = ln(y1) + ln(y2), prove the product
property exp (x1 + x2) = exp (x1) exp (x2) where y = exp (x).

1.32 Use the fact that d ln(y)∕dx = (1∕y)dy∕dx to find the derivative of the following
functions. (a) y1 = x2

√
x − 1. (b) y2 = x2 cos(x).

1.33 Prove that the minimum of y = xx is located at x = e−1.

1.34 Solve ln(x − 1) − 2 ln(x) = ln(2) for x.

1.35 The time constant of the exponential function y = 2 exp (−t∕𝜏)u(t) is 𝜏 > 0. It
is the value of t such that y is 1∕e times its initial value of 2. (a) Give the number
of time constants such that y = 1∕5. (b) Repeat part (a) by approximating the
exponential function using the first two terms of the Maclaurin series expansion
in Appendix E.

COMPUTER PROBLEMS

1.36 For the model in Problem 1.1, use MATLAB to plot the input and output for
x(t) = 6 sin(2𝜋t) on the interval t ∈ [0, 1].

1.37 A transistor has the following input/output voltage transfer characteristic:

y =
⎧⎪⎨⎪⎩

A, x < 𝛼

A − 𝛽(x − 𝛼)2, 𝛼 ≤ x < y + 𝛼

complicated, x > y + 𝛼.

(1.154)

Find the upper bound for x in the second region of the transfer characteristic, and
approximate the third region using the exponential function y = yb exp (−𝛽(x −
xb))u(x − xb), where yb is the output when the input is x = xb. Repeat the pre-
vious problem using this model with input x(t) = 2 sin(2𝜋t) + 2 on the interval
t ∈ [0, 1]. Let the parameters be A = 5, 𝛼 = 1, and 𝛽 = 2.

1.38 For the model in Problem 1.5, use MATLAB to plot the two functions and show
the first few results of the iterative approach for finding the solution for {x, y}.
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