
SECTION I

▸ LESSON 1: Hello iOS!

▸ LESSON 2: A Tour of Xcode and the iOS Simulator

▸ LESSON 3: Introducting Swift

▸ LESSON 4: Functions

▸ LESSON 5: Closures

▸ LESSON 6LESSON 6: E H dli Error Handling

▸ LESSON 7: Object-Oriented Programming With Swift

▸ LESSON 8: Supporting Multiple Device Types

▸ LESSON 9: Introduction to UIKit and Adaptive Layout

▸ LESSON 10: Introduction to StoryboardsCO
PYRIG

HTED
 M

ATERIA
L

Hello and welcome to the exciting world of iOS application development. iOS is Apple’s operat-
ing system for mobile devices; the current version at the time of this writing is 8.0. It was origi-
nally developed for the iPhone (simply known as iPhone OS back then), and was subsequently
extended and renamed in June 2010 to iOS to support the iPad, iPhone, and iPod Touch.

At its core, iOS is Unix-based and has its foundations in MacOS X, which is Apple’s desktop
operating system. In fact, both iOS and MacOS X share a common code base. As new ver-
sions of mobile operating systems have appeared, Apple has brought over more functionality
from MacOS X. This is part of Apple’s strategy to bridge the difference between desktop and
mobile computing.

With the launch of version 8.0, Apple has not only pushed the boundaries on what is achiev-
able on smart phones and tablet computers, but has also given us a brand new programming
language called Swift. This book covers iOS development with Swift only, but at the time of
this writing, it is possible to create iOS applications with both the older language Objective-C
as well as Swift.

This lesson introduces you to the arena of iOS development.

iOS DEVELOPER ESSENTIALS

Before you get started on your journey to becoming an iOS developer, you will need some
essential resources. This section covers these basic requirements.

A Suitable Mac
To develop apps for the iPhone and the iPad using the offi cial set of tools provided by Apple,
you will fi rst need an Intel-based Mac running Mac OS X Yosemite (10.10) with a minimum
4GB of RAM and at least 11GB of free space on your hard disk. You do not need a top-spec
model to get started. In fact a Mac Mini or a low-end MacBook will work just fi ne.

Processor speed is not going to make much difference to you as a developer. You will be better
off investing your money in more RAM and hard disk space instead. These are things you can
never get enough of. A large screen does help, but it is not essential.

1

4 ❘ LESSON 1 HELLO IOS!

A Device for Testing
If you are reading this book, chances are that you have used an iPhone, iPad, or iPod Touch and
probably even own one or more of these nifty devices.

As far as development is concerned, there aren’t many differences between developing for any of
these devices. The obvious differences are screen size and the fact that only iPhones can make
phone calls. When you are starting out as an iOS developer, you will test your creations on the iOS
Simulator. The iOS Simulator is an application that runs on your Mac and simulates several func-
tions of a real iOS device (more on this later).

At some point, however, you will want to test your apps on a physical device. As good as the iOS
Simulator may be, you must test on a physical device before submitting your app to the App Store.

Another good reason to test on a physical device is that the processor on your Mac is much faster
than that on the iPhone/iPad. Your app may appear to execute much faster on your Mac (in the iOS
Simulator) than it does on the real thing.

If the app you are going to make is targeted at iPhone users, you can also use an iPod Touch as the
test device. These are signifi cantly cheaper than iPhones and for the most part offer the same func-
tionality as their phone counterparts.

Most of Apple’s devices support iOS 8; however, iOS 8 is not supported for the following:

➤ iPhones prior to the iPhone 4S

➤ iPads prior to the iPad 2

➤ iPod Touch devices prior to the iPod Touch 5th generation

An iOS Developer Account
To develop your apps you will need to download the latest version of Xcode and the iOS SDK
(Software Development Kit). To do this, you must sign up to the Apple Developer Program to
become a registered developer.

The signup process is free and you can immediately begin to develop your fi rst apps. Limitations
exist as to what you can do for free. To submit your apps to the App Store, get access to beta ver-
sions of the iOS/SDK, or test your apps on a physical device, you need to become a paying member.

Most of the concepts and apps presented in this book will work just fi ne with the free membership.
The only exceptions would be examples that require the camera, accelerometer, and GPS for which
you would need to try the app on a physical device.

You can choose from two forms of paid membership as a registered Apple Developer: Individual and
Enterprise.

Individual
The Individual iOS Developer Program costs $99 a year and is for individuals or companies that
want to develop apps that will be distributed through the App Store. You can also test/distribute

iOS Developer Essentials ❘ 5

your apps on up to 100 devices without having to go through the App Store. This form of deploy-
ment (without having to submit them to the App Store) is called ad-hoc distribution and is a great
way to submit a preview of the app to a client. This form of distribution is covered in detail in
Appendix C.

Enterprise
The Enterprise iOS Developer Program costs $299 a year and is for large companies that want to
develop apps for internal use and will not distribute these apps through the App Store. With the
Enterprise iOS Developer Program there is no restriction to the number of devices on which your
in-house application can be installed.

To start the registration process, visit the iOS Dev Center (see Figure 1-1) at https://developer
.apple.com/programs/enroll/.

FIGURE 1-1

6 ❘ LESSON 1 HELLO IOS!

The Offi cial iOS SDK
The Apple iOS SDK (Software Development Kit) is a collection of tools and documentation that you
can use to develop iOS apps. The main tools that make up the SDK are:

➤ Xcode: Apple’s integrated development environment (IDE) that enables you to manage your
products, type your code, trace and fi x bugs (debugging), and lots more.

➤ Interface Builder: A tool fully integrated into the Xcode IDE that enables you to build your
application’s user interface visually.

➤ iOS Simulator: A software simulator to simulate the functions of an iPhone or an iPad on
your Mac.

➤ Instruments: A tool that will help you fi nd memory leaks and optimize the performance of
your apps. Instruments are not covered in this book.

In addition to these tools, the iOS SDK also includes extensive documentation, sample code, How-
To’s, and access to the Apple Developer Forums.

The iOS SDK is available as a free download to registered members (registration is free). However,
there are benefi ts to paid membership, including the ability to debug your code on an iOS device,
distribution of your applications, and two technical support incidents a year where Apple engineers
will provide you code-level assistance.

Downloading and Installing
You can download and install Xcode 7 for Mac OS X El Capitan and the iOS SDK from the Mac
App Store (see Figure 1-2).

If you have a paid membership, you can download the latest version of Xcode as well as prior ver-
sions by logging in to the iOS developer portal at https://developer.apple.com/devcenter/
ios/index.action.

The Typical App Development Process
Whether you intend to develop iOS apps yourself or manage the development of one, you need to
be familiar with the basic steps in the development process (see Figure 1-3). This section introduces
these steps briefl y.

iOS Developer Essentials ❘ 7

FIGURE 1-2

Final
Product Testing

Wireframes
and

Design
CodingWritten

Specification

FIGURE 1-3

8 ❘ LESSON 1 HELLO IOS!

Writing a Specifi cation
The development of an app begins with a concept. It is good practice to formally put this concept on
paper and create a specifi cation. You do not necessarily need to type this specifi cation, although it’s
a good idea to do so.

At the end of the project you should come back to the specifi cation document to see how the fi nal
product that was created compares with the original specifi cation.

As you build your experience developing iOS applications, this difference will become smaller. The
specifi cation must address the following points:

➤ A short description in 200 words or less

➤ The target audience/demographic of the users

➤ How will it be distributed (App Store, or direct to a small number of devices)

➤ A list of similar competing apps

➤ A list of apps that best illustrate the look-and-feel your app is after

➤ The pricing model of competing apps and potential pricing for your app

Wireframes and Design
A wireframe is a large drawing that contains mockups of each screen of your app as well as lines
connecting different screens that indicate the user’s journey through your application.

Wireframes are important because they can help identify fl aws in your design early on (before any
coding has been done). They can also be used to show potential clients how a particular app is likely
to look when it’s completed.

There is no right or wrong way to make a wireframe. If it is for your personal use, you can just use
a few sheets of paper and a pen. If it is for a client, you might want to consider using an illustration
package.

Coding
The actual process of creating an iOS app involves using the Xcode IDE to type your code. iOS apps
can be written in either Swift or Objective-C. This book covers iOS development with Swift only.

An iOS app typically consists of several fi les of Swift code along with resource fi les (such as images,
audio, and video). These individual fi les are combined together by a process called compilation into
a single fi le that is installed onto the target device. This single fi le is usually referred to as the appli-
cation binary or a build.

Testing
It might sound obvious, but you must test your app after it has been developed. As a developer, you
test your code frequently as you write it. You must also perform a comprehensive test of the entire
application as often as possible to ensure things that were working in the past continue to do so.

iOS Developer Essentials ❘ 9

This form of testing is called regression testing. It helps to make a test plan document. Such a docu-
ment basically lists all the features that you want to test and the steps required to carry out each
test. The document should also clearly list which tests failed. The ones that fail will then need to be
fi xed and the test plan document can provide the replication procedure for the defect in question.

When your app is ready, you will want to list it in the iTunes App Store. To do so involves submit-
ting your app for review to Apple. Apple has several criteria against which it reviews applications
and if your app fails one or more of these criteria it will be rejected—in which case you will need to
fi x the appropriate code and resubmit. It is best to test your apps thoroughly before submitting them
in the fi rst place. Distributing your apps via the App Store is covered in Appendix D.

You must always test on a real iOS device before submitting your app for the App Store review pro-
cess, or giving it to a client to test. Testing on the iOS Simulator alone is not suffi cient.

If you are developing for a client, you will probably need to send the client a testable version of your
work periodically for review. The recommended way to do this is by using Apple’s TestFlight ser-
vice, which is covered in Appendix C.

Home Screen Icon
Unless you provide an icon for your application, iOS will use a standard gray icon to represent your
application in the home screen (see Figure 1-4).

FIGURE 1-4

10 ❘ LESSON 1 HELLO IOS!

To replace this icon, you will need to provide one or more PNG fi les with appropriate dimen-
sions. These dimensions are listed in Table 1-1 and are different for iPhone-based and iPad-based
applications.

TABLE 1-1: Home Screen Icon Sizes

DEVICE ICON SIZE (IN PIXELS)

iPhone 4s 120 x 120

iPhone 5 and iPhone 6 120 x 120

iPhone 6Plus 180 x 180

iPad Retina and iPad Mini Retina 152 x 152

iPad and iPad Mini (without Retina) 76 x 76

You learn to use these icons in this lesson’s Try It section.

Application Launch Image
A launch image is a placeholder image that you must provide as part of your iOS application.
When a user taps your application’s icon on the home screen, iOS displays this image while the app
starts up.

Once your application has fi nished loading, iOS gives it control and simultaneously hides the launch
image. The overall effect of the launch image is to give your users the perception that your applica-
tion has launched quickly.

NOTE The launch image provided as part of your application may not always
be used. When an app is suspended into the background state (perhaps because
the user tapped the home button on the device), iOS creates a snapshot of the
current screen before suspending the app. If the app is resumed within a short
period of time then this cached image is used in place of the launch image.
However, if the user killed the app, uninstalled it, or hasn’t used the app for an
extended period of time then the launch image will be used.

Prior to iOS8, as a developer you had to provide a static PNG version of the launch image for every
screen size and orientation that was supported by your app.

While it is still possible to provide static launch images, with the launch of iOS 8 Apple has intro-
duced the concept of a single launch fi le. A launch fi le is an XIB (or a storyboard fi le) that describes
the user interface for the launch image. An empty document called LaunchScreen.storyboard is
provided with every iOS project that you create.

Try It ❘ 11

The idea behind providing a single launch fi le over several individual launch images is that iOS will
generate the launch images it needs from the launch fi le for the device on which the app is being
used.

You learn to use a launch fi le in this lesson’s Try It section.

TRY IT

In this Try It, you build a simple iPhone application using Xcode 7 that displays the text “Hello
Swift” in the center of the screen. You will also provide application icons and a launch fi le.

Lesson Requirements
➤ Launch Xcode.

➤ Create a new project based on the Single View Application template.

➤ Edit a storyboard in Interface Builder.

➤ Display the Xcode Utilities area.

➤ Set up an application icon.

➤ Set up a launch fi le.

➤ Test an app in the iOS Simulator.

REFERENCE The code for this Try It is available at www.wrox.com/go/
swiftios.

Hints
Download and install the latest version of Xcode and the iOS SDK on your Mac; then launch
Xcode.

Step-by-Step
➤ Create a Single View Application in Xcode called HelloSwift.

1. Launch Xcode.

2. To create a new project, select the File ➪ New ➪ Project menu item.

3. Choose the Single View Application (see Figure 1-5) template for iOS and click Next.

12 ❘ LESSON 1 HELLO IOS!

FIGURE 1-5

4. Use the following information in the project options dialog box (see Figure 1-6) and
click Next.

➤ Product Name: HelloSwift

➤ Organization Name: Your company

➤ Organization Identifi er: com.wileybook

➤ Language: Swift

➤ Devices: Universal

➤ Use Core Data: Unchecked

➤ Include Unit Tests: Unchecked

➤ Include UI Tests: Unchecked

5. Select a folder where this project should be created.

6. Ensure the Source Control checkbox is not selected.

7. Click Create.

➤ Edit the Main.storyboard fi le in Interface Builder (see Figure 1-7).

Try It ❘ 13

FIGURE 1-6

FIGURE 1-7

14 ❘ LESSON 1 HELLO IOS!

1. Ensure the project navigator is visible and the HelloSwift project is selected and
expanded. To show the project navigator, use the View ➪ Navigators ➪ Show Project
Navigator menu item. To expand a project, click the triangle next to the project name
in the project navigator.

2. Click the Main.storyboard fi le to select it.

3. Ensure the Attribute inspector is visible by selecting the View ➪ Utilities ➪ Show
Utilities menu item.

4. Click the white background area of the default scene in the storyboard.

5. Under the View section of the Attribute inspector, click once on the Background item
to change the background color. This is shown in Figure 1-8. Pick any color you want.

FIGURE 1-8

6. From the Object library in the bottom-right corner, select Label and drop it onto the
View (see Figure 1-9). You can use the search box to narrow your choices.

7. Change the text displayed in the Label to “Hello Swift” by editing the value of the Text
attribute in the Attribute inspector.

8. Position the label anywhere within the scene using the mouse.

➤ Create layout constraints.

1. Select the label in the storyboard scene by clicking on the label once. Change the size of
the label so that the label is large enough to show the text “Hello Swift” fully. To do
this use the Editor ➪ Size To Fit Content menu item.

2. Select the label in the storyboard and bring up the Align constraints popup window by
clicking the Align button at the bottom right corner of the storyboard (see Figure 1-10).

Try It ❘ 15

FIGURE 1-9

FIGURE 1-10

16 ❘ LESSON 1 HELLO IOS!

In this popup window, setup the following options (see Figure 1-11):

➤ Horizontally in Container: Checked

➤ Vertically in Container: Checked

➤ Update Frames: All Frames In Container

FIGURE 1-11

Click the Add 2 constraints button in the popup to apply these layout constraints to
the label and dismiss the popup.

NOTE Selecting All Frames in Container in the Update Frames combo box will
force the scene to update the position of the label using the constraints you have
just specifi ed.

➤ Set up a launch fi le.

1. Select the LaunchScreen.Storyboard fi le in the project navigator.

2. Use the Attribute Inspector to change the background color of the launch fi le to a dif-
ferent color than that of the scene in the main storyboard.

➤ Set up an application icon.

1. Select the Assets.xcassets item in the project navigator to open the asset bundle.
Select the AppIcon asset within this bundle.

2. Use drag-and-drop to assign images to the iPhone App and iPad App placeholders. You
can obtain the images from the resources available for this lesson on the book’s website
at www.wrox.com/go/swiftios.

➤ iPhone App 2x: Use the fi le
iPhoneAppIcon2x.png.

Try It ❘ 17

➤ iPhone App 3x: Use the fi le
iPhoneAppIcon3x.png.

➤ iPad App 1x: Use the fi le
iPadAppIcon1x.png.

➤ iPad App 2x: Use the fi le
iPadAppIcon2x.png.

After these assignments are made, your scene should resemble Figure 1-12.

FIGURE 1-12

➤ Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project ➪ Run menu item.

REFERENCE To see some of the examples from this lesson, watch the Lesson 1
video online at www.wrox.com/go/swiftio s vid.

		2015-12-16T06:03:52-0500
	Certified PDF 2 Signature

