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1.1 BACKGROUND, BASIC DEFINITIONS, AND HISTORY

1.1.1 The Importance of Interfaces

Since the end of World War II, we have witnessed the development of solid-state batteries as recharge-
able energy storage devices with high power density; a revolution in high-temperature electrochemical
sensors in environmental, industrial, and energy efficiency control; and the introduction of fuel cells to
avoid the Carnot inefficiency inherent in noncatalytic energy conversion. The trend away from corrosive
aqueous solutions and toward solid-state technologywas inevitable in electrochemical energy engineer-
ing, if only for convenience and safety in bulk handling. As a consequence, the characterization of sys-
tems with solid–solid or solid–liquid interfaces, often involving solid ionic conductors and frequently
operating well above room temperature, has become a major concern of electrochemists and materials
scientists.

At an interface, physical properties—crystallographic, mechanical, compositional, and, particularly,
electrical—change precipitously, and heterogeneous charge distributions (polarizations) reduce the
overall electrical conductivity of a system. Proliferation of interfaces is a distinguishing feature of
solid-state electrolytic cells, where not only is the junction between electrode and electrolyte consider-
ably more complex than in aqueous cells but also the solid electrolyte is commonly polycrystalline. Each
interface will polarize in its unique way when the system is subjected to an applied potential difference.
The rate at which a polarized region will change when the applied voltage is reversed is characteristic
of the type of interface: slow for chemical reactions at the triple-phase contacts between atmosphere,
electrode, and electrolyte, appreciably faster across grain boundaries in the polycrystalline electrolyte.
The emphasis in electrochemistry has consequently shifted from a time/concentration dependency to
frequency-related phenomena, a trend toward small-signal alternating current (ac) studies. Electrical
double layers and their inherent capacitive reactances are characterized by their relaxation times ormore
realistically by the distribution of their relaxation times. The electrical response of a heterogeneous cell
can vary substantially depending on the species of charge present, the microstructure of the electrolyte,
and the texture and nature of the electrodes.

Impedance spectroscopy (IS) is a relatively new and powerful method of characterizing many of the
electrical properties of materials and their interfaces with electronically conducting electrodes. It may
be used to investigate the dynamics of bound or mobile charge in the bulk or interfacial regions of
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any kind of solid or liquid material: ionic, semiconducting, mixed electronic–ionic, and even insulators
(dielectrics). Althoughwe shall primarily concentrate in this monograph on solid electrolyte materials—
amorphous, polycrystalline, and single crystal in form—and on solid metallic electrodes, reference will
be made, where appropriate, to fused salts and aqueous electrolytes and to liquid metal and high-
molarity aqueous electrodes as well. We shall refer to the experimental cell as an electrode–material sys-
tem. Similarly, although much of the present work will deal with measurements at room temperature
and above, a few references to the use of IS well below room temperature will also be included. A list of
acronym and model definitions appears at the end of this work.

In this chapter we aim to provide a working background for the practical materials scientist or engi-
neer who wishes to apply IS as a method of analysis without needing to become a knowledgeable elec-
trochemist. In contrast to the subsequent chapters, the emphasis here will be on practical, empirical
interpretations of materials problems, based on somewhat oversimplified electrochemical models.
We shall thus describe approximate methods of data analysis of IS results for simple solid-state electro-
lyte situations in this chapter and discuss more detailed methods and analyses later. Although we shall
concentrate on intrinsically conductive systems, most of the IS measurement techniques, data presen-
tation methods, and analysis functions and methods discussed herein apply directly to lossy dielectric
materials as well.

1.1.2 The Basic Impedance Spectroscopy Experiment

Electrical measurements to evaluate the electrochemical behavior of electrode and/or electrolyte mate-
rials are usually made with cells having two identical electrodes applied to the faces of a sample in the
form of a cylinder or parallelepiped. However, if devices such as chemical sensors or living cells are
investigated, this simple symmetrical geometry is often not feasible. Vacuum, a neutral atmosphere such
as argon, or an oxidizing atmosphere is variously used. The general approach is to apply an electrical
stimulus (a known voltage or current) to the electrodes and observe the response (the resulting current
or voltage). It is virtually always assumed that the properties of the electrode–material system are time
invariant and it is one of the basic purposes of IS to determine these properties, their interrelations, and
their dependences on such controllable variables as temperature, oxygen partial pressure, applied
hydrostatic pressure, and applied static voltage or current bias.

A multitude of fundamental microscopic processes take place throughout the cell when it is electri-
cally stimulated and, in concert, lead to the overall electrical response. These include the transport of
electrons through the electronic conductors, the transfer of electrons at the electrode–electrolyte inter-
faces to or from charged or uncharged atomic species that originate from the cell materials and its atmos-
pheric environment (oxidation or reduction reactions), and the flow of charged atoms or atom
agglomerates via defects in the electrolyte. The flow rate of charged particles (current) depends on
the ohmic resistance of the electrodes and the electrolyte and on the reaction rates at the electrode–
electrolyte interfaces. The flow may be further impeded by band structure anomalies at any grain
boundaries present (particularly if second phases are present in these regions) and by point defects
in the bulk of all materials. We shall usually assume that the electrode–electrolyte interfaces are perfectly
smooth, with a simple crystallographic orientation. In reality of course, they are jagged, full of structural
defects and electrical short and open circuits, and they often contain a host of adsorbed and included
foreign chemical species that influence the local electric field.

There are three different types of electrical stimuli that are used in IS. First, in transient measure-
ments a step function of voltage [V(t) =V0 for t > 0,V(t) = 0 for t < 0]may be applied at t = 0 to the system,
and the resulting time-varying current i(t) measured. The ratio V0/i(t), often called the indicial imped-
ance or the time-varying resistance, measures the impedance resulting from the step function voltage
perturbation at the electrochemical interface. This quantity, although easily defined, is not the usual
impedance referred to in IS. Rather, such time-varying results are generally Fourier or Laplace trans-
formed into the frequency domain, yielding a frequency-dependent impedance. If a Fourier transform
is used, a distortion arising because of the non-periodicity of excitation should be corrected by using
windowing. Such transformation is only valid when |V0| is sufficiently small that system response
is linear. The advantages of this approach are that it is experimentally easily accomplished and that
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the independent variable, voltage, controls the rate of the electrochemical reaction at the interface. Dis-
advantages include the need to perform integral transformation of the results and the fact that the signal-
to-noise ratio differs between different frequencies, so the impedance may not be well determined over
the desired frequency range.

Second, a signal ν(t) composed of random (white) noise may be applied to the interface andmeasure
the resulting current. Again, one generally Fourier transforms the results to pass into the frequency
domain and obtain an impedance. This approach offers the advantage of fast data collection because
only one signal is applied to the interface for a short time. The technique has the disadvantages of requir-
ing true white noise and then the need to carry out a Fourier analysis. Often a microcomputer is used for
both the generation of white noise and the subsequent analysis. Using a sum of well-defined sine waves
as excitation instead of white noise offers the advantage of a better signal-to-noise ratio for each desired
frequency and the ability to analyze the linearity of system response.

Third, the most common and standard one is to measure impedance by applying a single-frequency
voltage or current to the interface and measuring the phase shift and amplitude, or real and imaginary
parts, of the resulting current at that frequency using either analog circuit or FFT analysis of the
response. Commercial instruments (see Section 3.2) are available, which measure the impedance as a
function of frequency automatically in the frequency ranges of about 1mHz to 1MHz and which are
easily interfaced to laboratory microcomputers. The advantages of this approach are the availability
of these instruments and the ease of their use, as well as the fact that the experimentalist can achieve
a better signal-to-noise ratio in the frequency range of most interest.

In addition to these three approaches, one can combine them to generate other types of stimuli. The
most important of these, ac polarography, combines the first and third techniques by simultaneously
applying a linearly varying unipolar transient signal and a much smaller single-frequency sinusoidal
signal (Smith [1966]).

Any intrinsic property that influences the conductivity of an electrode–material system, or an exter-
nal stimulus, can be studied by IS. The parameters derived from an IS spectrum fall generally into two
categories: (i) those pertinent only to the material itself, such as conductivity, dielectric constant, mobi-
lities of charges, equilibrium concentrations of the charged species, and bulk generation–recombination
rates, and (ii) those pertinent to an electrode–material interface, such as adsorption–reaction rate con-
stants, capacitance of the interface region, and diffusion coefficient of neutral species in the electrode
itself.

It is useful and not surprising that modern advances in electronic automation have included IS.
Sophisticated automatic experimental equipment has been developed to measure and analyze the fre-
quency response to a small-amplitude ac signal between about 10−4 and >106 Hz, interfacing its results
to computers and their peripherals (see Section 3.1). A revolution in the automation of an otherwise dif-
ficult measuring technique has moved IS out of the academic laboratory and has begun to make it a
technique of importance in the areas of industrial quality control of paints, emulsions, electroplating,
thin-film technology, materials fabrication, mechanical performance of engines, corrosion, and so on.

Although this book has a strong physicochemical bias, the use of IS to investigate polarization across
biological cell membranes has been pursued bymany investigators since 1925. Details and discussion of
the historical background of this important branch of IS are given in the books of Cole [1972] and
Schanne and Ruiz-Ceretti [1978].

1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain

Amonochromatic signal ν t =Vm sin ωt , involving the single-frequency ν ω 2π, is applied to a cell,
and the resulting steady-state current i t = Im sin ωt+ θ measured. Here θ is the phase difference
between the voltage and the current; it is zero for purely resistive behavior. The relation between system
properties and response to periodic voltage or current excitation is very complex in the time domain.
In general, the solution of a system of differential equations is required. Response of capacitive and
inductive elements is given as i(t) = [dv(t)/dt]C and v(t) = [di(t)/dt]L correspondingly, and combination
of many such elements can produce an intractable complex problem.
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Fortunately, the use of Fourier transformation allows one to simplify significantly the mathematical
treatment of this system. The aforementioned differential equations can be transformed into I(j ω) =
C ω j V(j ω) and I(j ω) =V(j ω)/(L ω j). Here j −1, which is also often denoted in the literature as
“i.” For the case of sine-wave excitation as aforementioned, Fourier transforms of voltage and current
V(jω) and I(jω) becomeVmπ and Imπ exp(θj), respectively. It can be easily seen that in frequency domain
voltage/current relations can be rearranged to a form similar to Ohm’s law for dc current: I(j ω) =V(j
ω)/Z(jω) where for capacitance the complex quantityZ(jω) is 1/(C ω j) and for inductanceZ(jω) is L ω j.
The complex quantity Z(j ω) is defined as the “impedance function,” and its value at a particular
frequency is “impedance” of the electric circuit. For simplicity, Z(j ω) is usually written as just Z(ω).
Because of this Ohm’s law-like relationship between complex current and voltage, the impedance of
a circuit with multiple elements is calculated using the same rules as with multiple resistors, which
greatly simplifies calculations.

Impedancemay be defined not only for discrete systems but also for arbitrary distributed systems as
the Fourier transform of the differential equation, defining the voltage response divided by the Fourier
transform of the periodic current excitation: Z(j ω) = F{v(t)}/F{i(t)}. Here the F{ } operator denotes a
Fourier transform. However, Fourier transformation only reduces differential equations to simple
Ohm’s law-like form under conditions of linearity, causality, and stationarity of the system; therefore
impedance is properly defined only for systems satisfying these conditions.

The concept of electrical impedance was first introduced by Oliver Heaviside in the 1880s and
was soon developed in terms of vector diagrams and complex representation by A. E. Kennelly and
especially C. P. Steinmetz. Impedance is a more general concept than resistance because it takes phase
differences into account, and it has become a fundamental and essential concept in electrical engineer-
ing. IS is thus just a specific branch of the tree of electrical measurements. The magnitude and direction
of a planar vector in a right-hand orthogonal system of axes can be expressed by the vector sum of
the components a and b along the axes, that is, by the complex number Z = a + jb. The imaginary
number j −1 exp jπ 2 indicates an anticlockwise rotation by π/2 relative to the x-axis. Thus,
the real part of Z, a, is in the direction of the real axis x, and the imaginary part b is along the y-axis.
An impedance Z ω =Z + jZ is such a vector quantity and may be plotted in the plane with either
rectangular or polar coordinates, as shown in Figure 1.1.1. Here the two rectangular coordinate values
are clearly

Re Z Z = Z cos θ and Im Z Z = Z sin θ (1)

Z″

│Z│

Z′
0

θ

0

Y-axis

X-axis

Im (Z)

Re (Z)

FIGURE 1.1.1 The impedance Z plotted as a planar
vector using rectangular and polar coordinates.
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with the phase angle

θ = tan− 1 Z
Z

(2)

and the modulus

Z = Z 2 + Z 2 1 2
(3)

This defines the Argand diagram or complex plane, widely used in both mathematics and electrical
engineering. In polar form, Z may now be written as Z(ω) = |Z| exp(jθ), which may be converted to
rectangular form through the use of the Euler relation exp(jθ) = cos(θ) + j sin(θ). It will be noticed that
the original time variations of the applied voltage and the resulting current have disappeared and
the impedance is time invariant (provided the system itself is time invariant).

In general, Z is frequency dependent, as defined previously. Conventional IS consists of the (now-
adays often automated) measurement of Z as a function of ν or ω over a wide frequency range. It is from
the resulting structure of the Z(ω) versus ω response that one derives information about the electrical
properties of the full electrode–material system.

For nonlinear systems, that is, most real electrode–material systems, IS measurements in either the
time or the frequency domain are useful and meaningful in general only for signals of magnitude such
that the overall electrode–material system response is electrically linear. This requires that the response
to the sum of two separate input-measuring signals applied simultaneously be the sum of the responses
of the signals applied separately. A corollary is that the application of a monochromatic signal, one
involving sin(ωt), results in no, or at least negligible, generation of harmonics in the output, that is, com-
ponents with frequencies nν for n = 2, 3,…. Both solid and liquid electrochemical systems tend to show
strong nonlinear behavior, especially in their interfacial response, when applied voltages or currents are
large. But so long as the applied potential difference (p.d.) amplitudeVm is less than the thermal voltage,
VT RT/F kT/e, about 25mV at 25 C, it can be shown that the basic differential equations that
govern the response of the system become linear to an excellent approximation. Here k is Boltzmann’s
constant, T the absolute temperature, e the proton charge, R the gas constant, and F the faraday. Thus if
the applied amplitude Vm is appreciably less than VT, the system will respond linearly. Note that in the
linear regime, it is immaterial as far as the determination of Z(ω) is concerned whether a known ν(ωt) is
applied and the current measured or a known i(ωt) applied and the resulting voltage across the cell
measured. When the system is nonlinear, this reciprocity no longer holds.

1.1.4 Impedance-Related Functions

The impedance has frequently been designated as the ac impedance or the complex impedance. Both
these modifiers are redundant and should be omitted. Impedance without a modifier always means
impedance applied in the frequency domain and usually measured with a monochromatic signal. Even
when impedance values are derived by Fourier transformation from the time domain, the impedance is
still defined for a set of individual frequencies and is thus an ac impedance in character.

Impedance is by definition a complex quantity and is only real when θ = 0 and thusZ(ω) = Z (ω), that
is, for purely resistive behavior. In this case the impedance is completely frequency independent. When
Z is found to be a variable function of frequency, the Kronig–Kramers (Hilbert integral transform) rela-
tions (Macdonald and Brachman [1956]), which holistically connect real and imaginary parts with each
other, ensure that Z (and θ) cannot be zero over all frequencies but must vary with frequency as well.
Thus it is only when Z(ω) = Z , independent of frequency, so Z = R, an ordinary linear resistance, that
Z(ω) is purely real.

There are several other measured or derived quantities related to impedance that often play
important roles in IS. All of them may be generically called immittances. First is the admittance,
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Y Z−1 Y + jY . In the complex domainwhere ν, i, andZ are all taken complex, we canwrite ν = Zi or
alternatively i =Yν. It is also customary in IS to express Z and Y in terms of resistive and capacitance
components as Z = Rs(ω) − jXs(ω) and Y =Gp(ω) + jBp(ω), where the reactance Xs [ωCs(ω)]−1 and
the susceptance Bp ωCp(ω). Here the subscripts s and p stand for “series” and “parallel.”

The other two quantities are usually defined as the modulus function M = jωCcZ =M + jM and
the complex dielectric constant or dielectric permittivity ε =M−1 Y/(jωCc) ε − jε . In these expres-
sions Cc ε0Ac/l is the capacitance of the empty measuring cell of electrode area Ac and electrode
separation length l. The quantity ε0 is the dielectric permittivity of free space, 8 854 × 10− 12 F/m. The
dielectric constant ε is often written elsewhere as ε∗ or ε to denote its complex character. Here we shall
reserve the superscript asterisk to denote complex conjugation; thus Z∗ =Z − jZ . The interrelations
between the four immittance functions are summarized in Table 1.1.1.

Themodulus functionM= ε− 1 was apparently first introduced by Schrama [1957] and has been used
appreciably by McCrum et al. [1967], Macedo et al. [1972b], and Hodge et al. [1975, 1976]. The use of the
complex dielectric constant goes back much further but was particularly popularized by the work of
Cole and Cole [1941], who were the first to plot ε in the complex plane.

Some authors have used the designation modulus spectroscopy to denote small-signal measurement
of M versus ν or ω. Clearly, one could also define admittance and dielectric permittivity spectroscopy.
The latter is just anotherway of referring to ordinary dielectric constant and lossmeasurements. Herewe
shall take the general term IS to include all these other very closely related approaches. Thus IS also
stands for immittance spectroscopy. The measurement and use of the complex ε(ω) function is particularly
appropriate for dielectric materials, those with very low or vanishing conductivity, but all four functions
are valuable in IS, particularly because of their different dependence on and weighting with frequency.

1.1.5 Early History

IS is particularly characterized by the measurement and analysis of some or all of the four impedance-
related functions Z, Y,M, and ε, and the plotting of these functions in the complex plane. Such plotting
can, as we shall see, be very helpful in interpreting the small-signal AC response of the electrode–
material system being investigated. Historically, the use of Z and Y in analyzing the response of
electrical circuits made up of lumped (ideal) elements (R, L, and C) goes back to the beginning of the
discipline of electrical engineering. An important milestone for the analysis of real systems, that is, ones
distributed in space, was the plotting by Cole and Cole [1941] of ε and ε for dielectric systems in the
complex plane, now known as a Cole–Cole plot, an adaption at the dielectric constant level of the circle
diagram of electrical engineering (Carter [1925]), exemplified by the Smith–Chart impedance diagram
(Smith [1939, 1944]). Further, Z and Y have been widely used in theoretical treatments of semiconductor
and ionic systems and devices since at least 1947 (see, e.g., Randles [1947], Jaffé [1952], Chang and
Jaffé [1952], Macdonald [1953a], and Friauf [1954]). Complex plane plots have sometimes been called
Nyquist diagrams. This is a misnomer, however, since Nyquist diagrams refer to transfer function
(three- or four-terminal) response, while conventional complex plane plots involve only two-terminal
input immittances.

TABLE 1.1.1 Relations between the Four Basic Immittance
Functions

M Z Y ε

M M μZ μY−1 ε−1

Z μ−1M Z Y−1 μ−1ε−1

Y μM−1 Z−1 Y με
ε M−1 μ−1Z−1 μ−1Y ε

μ≡ jωCc, where Cc is the capacitance of the empty cell.
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On the experimental side, one should mention the early work of Randles and Somerton [1952] on
fast reactions in supported electrolytes; no complex plane plotting appeared here. But complex plane
plotting of Gp/ω versus Cp was used byMacdonald [1955] for experimental results on photoconducting
alkali halide single crystals. Apparently the first plotting of impedance in the impedance plane for aque-
ous electrolytes was that of Sluyters [1960] (theory) and Sluyters and Oomen [1960] (experiment). The
use of admittance plane plotting for accurate conductivity determination of solid electrolytes was
introduced by Bauerle [1969], the first important paper to deal with IS for ionic solids directly. Since
then, there have been many pertinent theoretical and experimental papers dealing with IS and complex
plane plots. Many of themwill be cited later, andwe conclude this short survey of early history pertinent
to IS with the mention of three valuable reviews: Sluyters-Rehbach and Sluyters [1970], Armstrong et al.
[1978], and Archer and Armstrong [1980]. The first and second of these deal almost entirely with liquid
electrolytes but are nevertheless somewhat pertinent to IS for solids.

1.2 ADVANTAGES AND LIMITATIONS

Although we believe that the importance of IS is demonstrated throughout this monograph by its use-
fulness in the various applications discussed, it is of some value to summarize the matter briefly here. IS
is becoming a popular analytical tool in materials research and development because it involves a rel-
atively simple electrical measurement that can readily be automated and whose results may often be
correlated withmany complex materials variables: frommass transport, rates of chemical reactions, cor-
rosion, and dielectric properties, to defects, microstructure, and compositional influences on the con-
ductance of solids. IS can predict aspects of the performance of chemical sensors and fuel cells, and
it has been used extensively to investigate membrane behavior in living cells. It is useful as an empirical
quality control procedure, yet it can contribute to the interpretation of fundamental electrochemical and
electronic processes.

A flow diagram of a general characterization procedure using IS is presented in Figure 1.2.1. Here
CNLS stands for complex nonlinear least squares fitting (see Section 3.2.2). Experimentally obtained
impedance data for a given electrode–materials systemmay be analyzed by using an exactmathematical
model based on a plausible physical theory that predicts theoretical impedance Zt(ω) or by a relatively
empirical equivalent circuit whose impedance predictionsmay be denoted byZec(ω). In case either of the
relatively empirical equivalent circuit or of the exact mathematical model, the parameters can be esti-
mated and the experimentalZe(ω) data comparedwith either the predicted equivalent circuit impedance
Zec(ω) or the theoretical impedance Zt(ω). Such fitting is most accurately accomplished by the CNLS
method described and illustrated in Section 3.2.2.

An analysis of the charge transport processes likely to be present in an experimental cell (the phys-
ical model) will often suggest an equivalent circuit of ideal resistors and capacitors (even inductors or
negative capacitors in some instances) and may account adequately for the observed IS response. For
example, Schouler et al. [1983] found that the effects of densification by sintering a polycrystalline elec-
trolyte will reduce the magnitude of the resistance across the grain boundaries and simultaneously
decrease the surface area associated with the interface capacitance. These components will clearly be
electrically in parallel in this situation. Their combination will be in series with other similar subcircuits
representing such processes as the ionization of oxygen at the electrodes.

In another example, the oxidation–reduction reaction for the Zn2+ couple in an aqueous solution
with a dropping mercury electrode (Sluyters and Oomen [1960]) can be represented by a reaction resist-
ance RR, arising from the transfer of electrons between the electrode and the solution, in parallel with a
capacitor CR associated with the space-charge diffuse double layer near the electrode surface. It is not
difficult to calculate the theoretical impedance for such a circuit in terms of the parameters RR and CR.
From an analysis of the parameter values in a plausible equivalent circuit as the experimental conditions
are changed, the materials system can be characterized by analysis of its observed impedance response,
leading to estimates of itsmicroscopic parameters such as chargemobilities, concentrations, and electron
transfer reaction rates.
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The disadvantages of IS are primarily associated with possible ambiguities in interpretation. An
important complication of analyses based on an equivalent circuit (e.g., Bauerle [1969]) is that ordinary
ideal circuit elements represent ideal lumped-constant properties. Inevitably, all electrolytic cells are dis-
tributed in space, and their microscopic properties may be also independently distributed. Under these
conditions, ideal circuit elements may be inadequate to describe the electrical response. Thus, it is often
found that Ze(ω) cannot be well approximated by the impedance of an equivalent circuit involving only
a finite number of ordinary lumped-constant elements. It has been observed bymany in the field that the
use of distributed impedance elements (e.g., constant-phase elements (CPEs) (see Section 2.2.2.2)) in the
equivalent circuit greatly aids the process of fitting observed impedance data for a cell with distributed
properties.

There is a further serious potential problemwith equivalent circuit analysis, not shared by the direct
comparison with Zt(ω) of a theoretical model: what specific equivalent circuit out of an infinity of
possibilities should be used if one is necessary? An equivalent circuit involving three or more circuit
elements can often be rearranged in various ways and still yield exactly the sameZec(ω). For the different
interconnections, the values of the elements will have to be different to yield the same Zec(ω) for all ω,
but an essential ambiguity is present. An example is presented in Figure 1.2.2. In these circuits the
impedance Zi is arbitrary and may be made up of either lumped elements, distributed elements, or a
combination of these types. Examples of other circuits that demonstrate this type of ambiguity will
be presented in Section 2.2.2.3. Which one of two or more circuits that all yield exactly the same Zec(ω)
for all ω should be used for physicochemical analysis and interpretation? This question cannot be
answered for a single set ofZe(ω) data alone. An approach to its solution can only bemade by employing

Plausible
physical
model

Theory

Mathematical
model
Zt (ω) 

Material–electrode
system

Is
experiment

Ze (ω)

Curve fitting

(e.g., CNLS)

System

characterization

Equivalent
circuit
Zec (ω)

FIGURE 1.2.1 Flow diagram for the measurement and
characterization of a material–electrode system.
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physical intuition and by carrying out several Ze(ω) sets of measurements with different conditions,
as discussed in Section 2.2.2.3.

1.2.1 Differences between Solid-State and Aqueous Electrochemistry

The electrochemist who works with aqueous electrolytes has available to him/her at least one major
stratagem not accessible to those who work with solid electrolytes. If he/she is interested in the inter-
facial behavior of a particular charged species, he/she is usually free to add to the solution an excess of a
second electrolyte, the ions of which are neither adsorbed nor react at the interface but which by sheer
numbers are able to screen the interior of the electrolyte from any electric field and cause nearly all the
potential drop to occur within a few angstroms of the interface. The investigator is thus (at least by
assumption) freed from having to take into account the effect of a nonuniform electric field on the trans-
port of the electroactive species through the bulk electrolyte and need not (again by assumption) puzzle
over the fraction of the applied signal that directly governs the exchange of ions or electrons between the
electrode surface and the adjacent layer of electrolyte. The added electrolyte species that thus simplifies
the interpretation of the experimental results is termed the indifferent or supporting electrolyte, and sys-
tems thus prepared are termed supported systems. Solid electrolytes must necessarily be treated as unsup-
ported systems, even though they may display some electrical characteristics usually associated with
supported ones. The distinction between unsupported and supported situations is a crucial one for
the interpretation of IS results.

It is thus unfortunate that there has been a tendency among some workers in the solid electrolyte
field to take over many of the relatively simple theoretical results derived for supported conditions and
use them uncritically in unsupported situations, where the supportedmodels and formulas rarely apply
adequately. For example, the expression for theWarburg impedance for a redox reaction in a supported
situation is often employed in the analysis of data on unsupported situations where the parameters
involved are quite different (see, e.g., Sections 2.2.3.2 and 2.2.3.3).

There are a few other important distinctions between solid and liquid electrolytes. While liquid elec-
trolytes andmany solid electrolytes have negligible electronic conductivity, quite a number of solid elec-
trolytes can exhibit substantial electronic conductivity, especially for small deviations from strict
stoichiometric composition. Solid electrolytes may be amorphous, polycrystalline, or single crystal,
and charges of one sign may be essentially immobile (except possibly for high temperatures and over
long time spans). On the other hand, all dissociated charges in a liquid electrolyte or fused salt are
mobile, although the ratio between the mobilities of positive and negative charges may differ appreci-
ably from unity. Further, in solid electrolytes, mobile ions are considered to be able tomove as close to an
electrode as permitted by ion-size steric considerations. But in liquid electrolytes, a compact inner or
Stern layer composed of solvent molecules, for example, H2O, immediately next to the electrode, is usu-
ally present. This layer may often be entirely devoid of ions and only has some in it when the ions are
specifically adsorbed at the electrode or react there. Thus capacitative effects in electrode interface
regions can be considerably different between solid and liquid electrolyte systems.

Ry (Rx+ Ry)

Rx [1 + (Rx /Ry)]
Zi

=

Zn

Zn= [1 + (Rx /Ry)]
2Zi

Rx

FIGURE 1.2.2 An example of different circuits with the same overall
impedance at all frequencies.
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1.3 ELEMENTARY ANALYSIS OF IMPEDANCE SPECTRA

1.3.1 Physical Models for Equivalent Circuit Elements

A detailed physicoelectrical model of all the processes that might occur in investigations on an elec-
trode–material system may be unavailable, premature, or perhaps too complicated to warrant its initial
use. One then tries to show that the experimental impedance data Ze(ω) may be well approximated by
the impedance Zec(ω) of an equivalent circuit made up of ideal resistors, capacitors, perhaps induc-
tances, and possibly various distributed circuit elements. In such a circuit a resistance represents a con-
ductive path, and a given resistor in the circuit might account for the bulk conductivity of the material or
even the chemical step associated with an electrode reaction (see, e.g., Randles [1947] or Armstrong et al.
[1978]). Similarly, capacitances and inductances will be generally associated with space-charge polari-
zation regions andwith specific adsorption and electrocrystallization processes at an electrode. It should
be pointed out that ordinary circuit elements, such as resistors and capacitors, are always considered as
lumped-constant quantities that involve ideal properties. But all real resistors are of finite size and are
thus disturbed in space; they therefore always involve some inductance, capacitance, and time delay of
response as well as resistance. These residual properties are unimportant over wide frequency ranges
and therefore usually allow a physical resistor to be well approximated in an equivalent circuit by an
ideal resistance, one which exhibits only resistance over all frequencies and yields an immediate rather
than a delayed response to an electrical stimulus.

The physical interpretation of the distributed elements in an equivalent circuit is somewhat
more elusive. They are, however, essential in understanding and interpreting most impedance spectra.
There are two types of distributions with which we need to be concerned. Both are related, but in dif-
ferentways, to the finite spatial extension of any real system. The first is associated directlywith nonlocal
processes, such as diffusion, which can occur even in a completely homogeneous material, one whose
physical properties, such as charge mobilities, are the same everywhere. The other type, exemplified by
the CPE, arises because microscopic material properties are themselves often distributed. For example,
the solid electrode–solid electrolyte interface on the microscopic level is not the often presumed smooth
and uniform surface. It contains a large number of surface defects such as kinks, jags, and ledges, local
charge inhomogeneities, two- and three-phase regions, adsorbed species, and variations in composition
and stoichiometry. Reaction resistance and capacitance contributions differ with electrode position and
vary over a certain range around a mean, but only their average effects over the entire electrode surface
can be observed. Themacroscopic impedance that depends, for example, on the reaction rate distribution
across such an interface is measured as an average over the entire electrode. We account for such aver-
aging in our usual one-dimensional treatments (with the dimension of interest perpendicular to the elec-
trodes) by assuming that pertinent material properties are continuously distributed over a given range
fromminimum to maximum values. For example, when a given time constant, associated with an inter-
face or bulk processes, is thermally activated with a distribution of activation energies, one passes from a
simple ideal resistor and capacitor in parallel or series to a distributed impedance element, for example,
the CPE, which exhibits more complicated frequency response than a simple undistributed RC time
constant process (Macdonald [1984, 1985a, c, d], McCann and Badwal [1982]).

Similar property distributions occur throughout the frequency spectrum. The classical example for
dielectric liquids at high frequencies is the bulk relaxation of dipoles present in a pseudoviscous liquid.
Such behavior was represented by Cole and Cole [1941] by a modification of the Debye expression for
the complex dielectric constant and was the first distribution involving the important CPE, defined in
Section 2.1.2.3. In normalized form the complex dielectric constant for the Cole–Cole distributionmay be
written as

ε−ε∞
εs −ε∞

= 1+ jωτ0
1− α

− 1
(1)

where ε is the dielectric constant, εs and ε∞ the static and high-frequency-limiting dielectric constants, τ0
the mean relaxation time, and α a parameter describing the width of the material property distribution
(in this case a distribution of dielectric relaxation times in frequency space).
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1.3.2 Simple RC Circuits

Figure 1.3.1 shows two RC circuits common in IS and typical Z and Y complex plane responses for
them. The response of Figure 1.3.1a is often present (if not always measured) in IS results for solids
and liquids. Any electrode–material system in a measuring cell has a geometrical capacitance
Cg C∞ =C1 and a bulk resistance Rb R∞ =R1 parallel with it. These elements lead to the time con-
stant τD =R∞C∞ , the dielectric relaxation time of the basic material. Usually, τD is the smallest time con-
stant of interest in IS experiments. It is often so small ( < 10− 7 s) that for the highest angular frequency
applied, ωmax, the condition ωmaxτD 1 is satisfied and little or nothing of the impedance plane curve of
Figure 1.3.1b is seen. It should be noted, however, that lowering the temperature will often increase
τD and bring the bulk arc within the range of measurement. Since the peak frequency of the complete
semicircle in Figure 1.3.1b, ωp, satisfies ωpτD = 1, it is only when ωmaxτD 1 that nearly the full curve in
Figure 1.3.1b is obtained. Although the bulk resistance is often not appreciably distributed, particularly
for single crystals, when it is actually distributed, the response of the circuit often leads to a partial
semicircle in the Z plane, one whose center lies below the real axis, instead of a full semicircle with
its center on the real axis. Since this distributed-element situation is frequently found for processes in
theω τ−1D frequency range, however, we shall examine in detail one simple representation of it shortly.

Besides R1 =R∞ and C1 =C∞ , one often finds parallel R1, C1 response associated with a heteroge-
neous electrode reaction. For such a case we would set R1 =RR and C1 = CR, where RR is a reaction

C1

(a)

(b) (e)

(c) (f)

(d)

–Im (Z)

–Im (Y) –Im (Y)

0

–Im (Z)

C2

C∞

R∞

ω∞

(R∞+R2) Re (Z)

(R∞+R2)–1 R∞
–1 Re (Y)

R2R1

R1

G1

R∞Re (Z)

Re (Y)

ωp ωp

FIGURE 1.3.1 (a) and (d) show two common RC circuits, (b)
and (e) show their impedance plane plots, and (c) and (f ) show
their admittance plane plots. Arrows indicate the direction of
increasing frequency.
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resistance and CR is the diffuse double-layer capacitance of the polarization region near the electrode in
simplest cases. The circuit of Figure 1.3.1d combines the aforementioned possibilities when R2 = RR and
C2 =CR. The results shown in Figure 1.3.1e and f are appropriate for the well-separated time constants,
R∞R∞ R2C2. It is also possible that a parallel RC combination can result from specific adsorption at
an electrode, possibly associatedwith delayed reaction processes. The response arising fromR∞ andC∞
in Figure 1.3.1e is shown dotted to remind one that it often occurs in too high a frequency region to be
easily observed. Incidentally, we shall always assume that the capacitance and resistance of leads to
the measuring cell have been subtracted out (e.g., by using the results of a preliminary calibration of
the system with the cell empty or shorted) so that we always deal only with the response of the
material–electrode system alone.

In the complex plane plots, the arrows show the direction of increasing frequency. Further,G1 R−1
1 ,

G∞ R−1
∞ ,G2 R−1

2 . Because IS results usually involve capacitance and rarely involve inductance, it has
become customary to plot impedance in the −Im(Z), Re(Z) plane rather than the Im(Z), Re(Z) plane,
thereby ensuring that the vast majority of all curves fall in the first quadrant, as in Figure 1.3.1b. This
procedure is also equivalent to plotting Z∗ =Z − iZ rather than Z, so we can alternatively label the ordi-
nate Im(Z∗) instead of −Im(Z). Both choices will be used in the rest of this work.

The admittance of the parallel RC circuit of Figure 1.3.1a is just the sum of the admittances of the two
elements, that is,

Ya =G1 + jωC1 (2)

It immediately follows that

Za =Y−1
a =

R1

R1Ya
=

R1

1 + jωR1C1
(3)

This result can be rationalized by multiplying 1− jωR1C1 , the complex conjugate of 1 + jωR1C1 , to
both numerator and denominator. The response of the Figure 1.3.1a circuit is particularly simple when
it is plotted in theY plane, as in Figure 1.3.1c. To obtain the overall admittance of the Figure 1.3.1d circuit,
it is simplest to add R∞ to the expression for Za previously mentioned with R1 R2 and C1 C2,
convert the result to an admittance by inversion, and then add the jωC∞ admittance. The result is

Yd = jωC∞ +
1+ jωR2C2

R2 +R∞ + jωC2R2R∞
(4)

Although complex plane data plots, such as those in Figure 1.3.1b, c, e, and f inwhich frequency is an
implicit variable, can show response patterns that are often very useful in identifying the physicochem-
ical processes involved in the electrical response of the electrode–material system, the absence of explicit
frequency-dependent information is frequently a considerable drawback. Even when frequency values
are shown explicitly in such two-dimensional (2D) plots, it is usually found that with either equal inter-
vals in frequency or equal frequency ratios, the frequency points fall very nonlinearly along the curves.
The availability of computerized plotting procedures makes the plotting of all relevant information in a
single graph relatively simple. For example, three-dimensional (3D) perspective plotting, as introduced
byMacdonald et al. [1981], displays the frequency dependence along a new log (v) axis perpendicular to
the complex plane (see Section 3.2). For multi-time-constant response in particular, this method is par-
ticularly appropriate. The full response information can alternately be plotted with orthographic rather
than perspective viewing.

1.3.3 Analysis of Single Impedance Arcs

Analysis of experimental data that yield a full semicircular arc in the complex plane, such as that in
Figure 1.3.1b, can provide estimates of the parametersR1 andC1 and hence lead to quantitative estimates
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of conductivity, faradic reaction rates, relaxation times, and interfacial capacitance (see detailed discus-
sion in Section 2.2.3.3). In practice, however, experimental data are only rarely found to yield a full
semicircle with its center on the real axis of the complex plane. There are three common perturbations
that may still lead to at least part of a semicircular arc in the complex plane:

1. The arc does not pass through the origin, either because there are other arcs appearing at higher
frequencies or because R∞ > 0.

2. The center of an experimental arc is frequently displaced below the real axis because of the pres-
ence of distributed elements in the material–electrode system. Similar displacements may also be
observed in any of the other complex planes plots (Y, M, or ). The relaxation time τ is then not
single-valued but is distributed continuously or discretely around a mean, τm =ω−1

m . The angle θ
by which such a semicircular arc is depressed below the real axis is related to the width of the
relaxation time distribution and as such is an important parameter.

3. Arcs can be substantially distorted by other relaxations whose mean time constants are within
two orders of magnitude or less of that for the arc under consideration. Many of the spectra
shown in following chapters involve overlapping arcs.

We shall begin by considering simple approximate analysis methods of data yielding a single, pos-
sibly depressed, arc. Suppose that IS data plotted in the impedance plane (actually the Z∗ plane) show
typical depressed circular arc behavior, such as that depicted in Figure 1.3.2. Here we have included R∞
but shall initially ignore any effect of C∞ . We have defined some new quantities in this figure that will
be used in the analysis to yield estimates of the parameters R∞ , RR R0 −R∞ , τR, and the fractional
exponent ψZC, parameters that fully characterize the data when they are well represented by the distrib-
uted-element ZARC impedance expression (see Section 2.2.2.2):

Z−R∞ ZZARC R0−R∞ IZ (5)

where

IZ 1 + jωτR
ψZC − 1 1 + js ψZC − 1 (6)

Here s ωτR is a normalized frequency variable and IZ is the normalized, dimensionless form of
ZZARC. Notice that it is exactly the same as the similarly normalized Cole–Cole dielectric response

R0

Re(Z)

rχ
χ

χ/2

w

u

ωτR= 1

–
Im

 (
Z

)

0 θ
x0 x0

y0
Z*

v

R∞

FIGURE 1.3.2 Impedance plane plot for a depressed
circular arc showing definitions of quantities used in its
analysis.
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function of Eq. (1) when we set ψZC = 1−α. We can also alternatively write the ZARC impedance as
the combination of the resistance RR in parallel with the CPE impedance ZCPE (see Section 2.2.2.2).
The CPE admittance is (Macdonald [1984])

YCPE =Z−1
CPE A0 jω ψZC jωτR

ψZC (7)

Then Eq. (5) may be expressed as

ZZARC =
RR

1 +B0 jω ψZC
(8)

where B0 τψZC
R RRA0. The fractional exponent ψZC satisfies 0 ≤ψZC ≤ 1.

Let us start by considering two easy-to-use approximate methods of estimating the parameters,
methods often adequate for initial approximate characterization of the response. The estimates obtained
by these approachesmay also be used as initial values for themore complicated andmuchmore accurate
CNLSmethod described and illustrated in Section 3.2.2. Note that the single RRCR situation, where θ = 0
and ψZC = 1, is included in the analysis described in the succeeding text.

From the Figure 1.3.2, −Z reaches its maximum value, y0, when ω=ωm = τ−1R and thus s = 1. At this
point the half-width of the arc on the real axis is Z −R∞ = x0 RR 2. Now from the data, the complex
plane plot, and estimated values of x0, y0, and ωm, one can immediately obtain estimates of R∞ , R0, RR,
and τR. In order to obtain θ, one must, of course, find the direction of the circle center. The easiest graph-
icalmethod is to draw on theZ∗ plane plot several lines perpendicular to the semicircle; the center will be
defined by their intersection. Two other more accurate approaches will be described in the succeeding
text. Incidentally, when there is more than one arc present and there is some overlap that distorts the
right, lower-frequency side of the arc, the present methods can still be used without appreciable loss of
accuracy, provided overlap distortion is only significant for ω<ωm, that is, on the right side of the center
of the left arc. Then all parameters should be estimated from the left side of the arc, that is, for ω ≥ωm.
A similar approach may be used when data are available only for ω ≤ωm. From Figure 1.3.2 and Eq. (5),
we readily find that θ = π 2−x π 2 1−ψZC ; thus when ψZC = 1 there is no depression and one has
simple single-time-constant τR RRCR Debye response with A0 CR. When ψZC < 1, τR = RRA0

1 ψZC ,
but an ideal CR capacitor cannot be directly defined, reflecting the distributed nature of the response.

The rest of the analysis proceeds as follows. First, onemay obtain an estimate of ψZC from the θ value
using ψZC = 1−2θ π. But a superior alternative to first obtaining θ by finding the circle center approx-
imately is to use the values of x0 and y0 defined on the Figure 1.3.2. For simplicity, it will be convenient to
define

q ωτR
ψZC s ψZC (9)

χ
π

2
−θ

π

2
ψZC (10)

and note that

x0
R0 −R∞

2
RR

2
(11)

We may now rewrite Eq. (6) for IZ as

IZ q,χ =
1+ q cos χ − jqsin χ

1 + 2q cos χ + q2
(12)

For q = 1, the peak point, one finds

IZ 1,χ = 0 5 1− j tan
χ

2
(13)
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Let us further define for later use the quantity

ψ J tan
χ

2
= tan

πψZC

4
(14)

Now in general from Eq. (12), we may write

−
IZ
IZ

=
q sin χ

1+ q cos χ
(15)

which becomes, for q = 1,

− IZ
IZ q= 1

=
y0
x0

= tan
χ

2
ψ J (16)

Thus from knowledge of y0 and x0, one can immediately calculate χ, ψ J, ψZC, and θ. For complete-
ness, it is worth giving expressions for w are r that follow from the Figure 1.3.2. One finds

w= x0 ctn χ = x0 tan θ = x0
1− ψ2

J

2ψ J
(17)

and

r−y0 +w= x0 csc χ = x0 sec θ = x0
1 + ψ2

J

2ψ J
(18)

Another method of obtaining ψZC and θ is to first estimate R∞ and plot Z−R∞
− 1 in the Y plane.

Then a spur inclined at the angle π 2 −θ = χ will appear whose ω 0 intercept is R0 −R∞
−1. A good

estimate of ψZCmay be obtained from the χ value when the spur is indeed a straight line. Now atω=ωm,
it turns out that B0ω

ψZC
m = 1. Thus one may obtain an estimate of B0 from ω−ψZC

m . Then τR =B1 ψZC
0 =ω−1

m

and A0 = R−1
R B0. Thus all the parameters of interest have then been estimated.

The aforementioned simple methods of estimating ψZC depend only on the determination of x0 and
y0 from the impedance complex plane arc or on the use of a few points in the admittance plane. Although
they are often adequate for initial investigation, it is worth mentioning a relatively simple alternative
procedure that can be used to test the appropriateness of Eqs. (5) and (6) and obtain the parameter esti-
mates of interest. Consider the point Z∗ on the arc of Figure 1.3.2, a point marking a specific value of Z.
It follows from this figure and Eq. (5) that Z∗−R∞ = R0 −R∞ I∗Z u and R0 −Z∗ = R0 −R∞ 1− I∗Z v.
Therefore,

ln
v
u

= ln I∗Z
− 1

−1 = ln q =ψZC ln ω + ln τR (19)

If one assumes that R0 and R∞ may be determined adequately from the complex plane plot—not
always a valid assumption—then v and u may be calculated from experimental Z data for a variety
of frequencies. A plot of ln|v/u| versus ln(ω) will yield a straight line with a slope of ψZC and an inter-
cept of ψZC ln(τR), provided Eq. (19) holds. Ordinary linear least squares fitting may then be used to
obtain estimates of ψZC and ln(τR).

Although a more complicated nonlinear least squares procedure has been described by Tsai and
Whitmore [1982], which allows analysis of two arcs with some overlap, approximate analysis of two
or more arcs without much overlap does not require this approach, and CNLS fitting is more appropri-
ate for one or more arcs with or without appreciable overlap when accurate results are needed. In this
sectionwe have discussed some simple methods of obtaining approximate estimates of some equivalent
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circuit parameters, particularly those related to the common symmetrical depressed arc, the ZARC. An
important aspect of material–electrode characterization is the identification of derived parameters with
specific physicochemical processes in the system. Thismatter is discussed in detail in Sections 2.2 and 3.2
and will not be repeated here. Until such identification has been made, however, one cannot relate the
parameter estimates, such as RR, CR, and ψZC, to specific microscopic quantities of interest such as mobi-
lities, reaction rates, and activation energies. It is this final step, however, yielding estimates of para-
meters immediately involved in the elemental processes occurring in the electrode–material system,
which is the heart of characterization and an important part of IS.

1.4 SELECTED APPLICATIONS OF IS

In this section two applications will be presented, illustrating the power of the IS technique when it
is applied to two very diverse areas, aqueous electrochemistry and fast ion transport in solids. These
particular examples were chosen because of their historical importance and because the analysis in each
case is particularly simple. Additional techniques and applications of IS to more complicated systems
will be presented in Chapter 4 as well as throughout the text.

The first experimental use of complex plane analysis in aqueous electrochemistry was performed in
1960 (Sluyters andOomen [1960]). This study is a classic illustration of the ability of IS to establish kinetic
parameters in an aqueous electrochemical system. Using a standard hanging mercury drop cell, the
impedance response of the Zn(Hg)/Zn2+ couple in a 1MNaClO4 + 10− 3 MHClO4 electrolyte was exam-
ined at 298 K. For this couple, the reaction rate is such that in the frequency range of 20 Hz to 20 kHz, the
kinetics of charge transfer is slower than ion diffusion in the electrolyte. The results (Figure 1.4.1) show a
single semicircle characteristic of kinetic control by an electrochemical charge transfer step at the elec-
trode–electrolyte interface. The physical model appropriate to this system is the same as that presented
in Figure 1.3.1d. The semicircle beginning at the origin in Figure 1.3.1e is not observed in Figure 1.4.1
because the frequency range was limited to below 20 kHz. Thus, in Figure 1.4.1,R∞ is the solution resist-
ance, R2 is the charge transfer resistance, and C2 is the double-layer capacitance.

By solving the standard current–potential equation for an electrochemical reaction (see, e.g., Bard
and Faulkner [1980]) under the conditions of kinetic control (i.e., the rate of charge transfer is much

2

1

20

10

5

1

0.2

0.002

–Z″

Z′

0
0 1 2 3 4R∞ R∞+ R2

FIGURE 1.4.1 The impedance results of a Zn(Hg)/Zn2+

couple in 1M NaClO4 + 10−3N HClO4 with CZn = 8 × 10−6

coles/cm3 and CZn2+ = 8 × 10−6. The numbers represent the
frequency in kilohertz; the axes are in arbitrary scale units.
Source: Sluyters 1960. Reproduced with permission of
John Wiley & Sons, Inc.
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slower than diffusive processes in the system), the value of R2 can be evaluated. For a known con-
centration of Zn at the amalgam–electrolyte interface, CZn(Hg), and a known concentration of Zn2+

at the electrolyte–electrode interface, CZn2+ , the value of R2 is given by Eq. (1):

R2 =
RT

n2F2k CZn2+
α CZn Hg

1−α (1)

where n is the number of electrons transferred, F is Faraday’s constant, k is the rate constant for
the electrochemical charge transfer reaction, α is the electrochemical transfer coefficient, R is the
ideal gas constant, and T is the absolute temperature. When the concentration of Zn in the amalgam
is equal to the concentration of Zn ions in the solution, then the rate constant k can be determined. Results
at several different equal concentrations of Zn and Zn2+ (Table 1.4.1) gave a mean value of k = 3 26 × 103

cm/s. By using different concentrations of Zn and Zn2+, the transfer coefficient α (Tables 1.4.2 and 1.4.3)

TABLE 1.4.1 Calculation of Rate Constant of Zn(Hg)/Zn2+ Couple

CZn =Czn2+ (mol/cm3) R2 (Ω-cm2) R2 × CZn (mol-Ω/cm) k (cm/s)a

2 × 10−6 10.17 20.3 × 10−6

4 4.95 19.8
5 4.26 21.3
8 2.41 19.3 3.26 × 10−3 ± 3.6%
10 2.13 21.3
16 1.27 20.3
16 1.28 20.5

aCalculated from the average value of R2 ×CZn = 20.4 × 10−6 by k = (R2CZnn
2F2 )−1RT according to Eq. (1).

Source: Sluyters and Oomen [1960].

TABLE 1.4.2 Calculation of Transfer Coefficient α of Zn(Hg)/Zn2+ Couple

CZn (mol/cm3) CZn2 + (mol/cm3) R2 (Ω-cm2) log R2 −log CZn2+ αa

16 × 16−6 16 × 10−6 1.28 0.107 4.796
16 8 2.00 0.301 5.097 0.70
16 4 3.29 0.517 5.398
16 2 5.37 0.730 5.699

aFrom slope of −log CZn2+ versus log R2 plot.
Source: Sluyters and Oomen [1960].

TABLE 1.4.3 Calculation of Transfer Coefficient 1 − α of Zn(Hg)/Zn2+ Couple

CZn2+ (mol/cm3) CZn (mol/cm3) R2 (Ω-cm2) log R2 −log CZn 1 − αa

16 × 10−6 16 × 10−6 1.28 0.107 4.796
16 × 10−6 8 1.56 0.193 5.097 0.29
16 × 10−6 4 1.93 0.286 5.398

aFrom slope of −log CZn versus log R2 plot.
Source: Sluyters and Oomen [1960].
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was found to be 0.70. In addition, the value of the double-layer capacitance could be easily determined
in each of the experiments.

In a similar experiment, the Hg/Hg2+ reaction in 1M HClO4 has also been investigated
(Sluyters and Oomen [1960]) using IS in the frequency range of 20 Hz to 20 kHz and for concentrations
between 2× 10− 6 and 10 × 10− 6 mol/cm3 Hg2+. The results (Figure 1.4.2) show linear behavior in the
complex plane with an angle of 45 to the real axis. Such a response is indicative of a distributed element
as discussed in the previous section. In this case, the system is under diffusion control as the kinetics of
the charge transfer at the electrode–electrolyte interface is much faster than the diffusion of the Hg2+ ions
in the solution. Solution of the diffusion equation with the appropriate boundary conditions under a
small AC perturbation gives the diffusional contribution to the impedance in the complex plane as
(see Chapter 2 for a detailed discussion)

W = σω− 1 2− jσω− 1 2 (2)

where the impedance W is generally called the Warburg impedance, ω is the angular frequency,
j is equal to −1 1 2, and σ is a constant given by

σ =
RT

n2F2 2

1

C Hg2+2
D Hg2+2

1 2 +
1

CHg DHg
1 2

(3)

whereDHg2+2
andDHg are the diffusivity of mercurous ions in solution andmercury in amalgam, respec-

tively, and the other terms are defined as aforementioned. This impedance is to be added (see Sluyters
[1960] and the discussion in Chapter 2) in series with R2 of Figure 1.3.1d. When the impedance of this
circuit is plotted in the complex plane, one obtains a semicircle combined with a straight line at an angle
of 45 to the real axis. The line, when extended to the real axis, has an intercept ofR∞ +R2−2σCdl. If 2σCdl

is small, as in the present case, the semicircle is suppressed and the product of the imaginary part ofW,
Im(W), and ω1/2 will be equal to σ at all frequencies.

The experimental results in Figure 1.4.2 are thus consistent with a system under diffusion control.
The diffusivity of Hg2+2 ions in solution can be easily calculated (Table 1.4.4) at several different concen-
trations of Hg2+2 in the solution from the value of σ. No further information can be obtained from this
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FIGURE 1.4.2 The impedance results of a Hg2+
2 /Hg couple

in 1M HClO4 electrolyte with CHg2+ = 2 × 10−6 mol/cm3. The
numbers represent the frequency in kilohertz; the axes are
in arbitrary scale units. Source: Sluyters 1960. Reproduced
with permission of John Wiley & Sons, Inc.
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data because the time constant associated with the kinetics is too fast to be measured at frequencies
below 20 kHz.

The frequency range chosen in the aforementioned experiments was dictated by the limited elec-
tronics available in 1960 and the cumbersome experimental approach associated with it, which required
that the impedance be measured independently at each frequency. The introduction of automated
impedance analysis instruments removes this restriction and allows the experimenter to choose themost
appropriate frequency range for a given experiment. This choice should be determined by the nature of
the interfaces in the experiment and the time constants that are associated with them. For example, cor-
rosion studies, which often involve a slow aqueous diffusion process, generally have relatively large
time constants (on the order of 0.1 − 10 s), and thus most impedance studies of corroding systems
use frequencies between a fewmillihertz and 100 kHz. On the other hand, studies of solid ionic conduc-
tors require higher frequencies to measure the time constant associated with ionic motion (milli- to
microseconds), which is generally smaller than those found in aqueous diffusion processes. Thus, fre-
quencies between a few hertz and 15MHz are most appropriate here.

That is not to say that the frequency range should always be restricted based upon predetermined
expectations. In the aforementioned studies, a wider frequency range would probably have allowed a
determination of additional information. For the Zn/Zn2+ couple, lower frequencies would have
allowed the measurement of the diffusivity of zinc ions in the solution. For the study of the Hg/Hg2
+ couple, the kinetics of the electrochemical reaction at the interface could have been explored by using
higher frequencies. Nevertheless, an understanding of the relationship between the time constant in an
experiment and the frequencies with which to measure it provides an intelligent starting point in the
choice of the most appropriate frequency range.

Another example that illustrates the utility of IS to solid-state chemists is the application of
impedance analysis to zirconia–yttria solid electrolytes (Bauerle [1969]). At elevated temperatures
solid solution zirconia–yttria compounds are known to be oxygen-ion conductors, which function
by transport of oxygen ions through vacancies introduced by the dopant yttria. By examining cells
of the form

Pt, O2 ZrO2 0 9 Y2O3 0 1 O2, Pt (4)

using IS, admittance plots were obtained (Figure 1.4.3a). The equivalent circuit proposed to fit this data
is shown in Figure 1.4.3b. By a careful examination of the effect of the electrode-area-to-sample-length
ratio and by measuring the DC conductivity of the samples, the high-frequency semicircle (the one on
the right in Figure 1.4.3a) was ascribed to bulk electrolyte behavior, while the low-frequency semicircle
(on the left in Figure 1.4.3a) corresponded to the electrode polarization. In the terminology of
Figure 1.4.3b, R1 and C1 correspond to electrode polarization phenomena, while R2, R3, and C2 describe
processes that occur in the bulk of the electrolyte specimen. Furthermore, by varying temperature, oxy-
gen partial pressure, and electrode preparation, the role of each component in the overall conduction

TABLE 1.4.4 Calculation of Diffusion Coefficient of Hg2+ in 1 N NClO4

CHg2+2
(mol/cm3) σ (Ω-s−1/2cm2)a DHg2+2

(cm2/s)b R∞ +R2 (Ω-cm2)

10 × 10−6 2.09 0.241 × 10−5 0.190
5 4.10 0.251 0.188
4 4.99 0.264 0.188
3 6.60 0.268 0.195
2 9.73 0.277 0.193

Source: Sluyters and Oomen [1960].
aσ = Im W 1 2

w was found to be independent of frequency within 2%.
bD = [RT(σn2F2 2CHg2+2

CHg2+2
)−1]2 according to Eq. (3) with 1/[CHg(DHg)

−1/2] 1/

[CHg2+ (DHg2+2
)1/2], as is the case here with a pure Hg electrode.
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mechanism was determined. In particular, R1 represents an effective resistance for the electrode
reaction:

1
2
O2 g + 2e− =O2− electrolyte (5)

where C1 is the double-layer capacitance of the electrode; R2 is a “constriction” or intergranular resist-
ance corresponding to resistance of conduction across two different grains, primarily due to impurities
located there; C2 is the capacity across the intergranular region; and R3 is the resistance to conduction
within the grains. Electronmicroprobe studies supported the theory of impurities at the grain boundary.
Thus, in a system as electrochemically complex at this, with many different effects interacting, one can
still obtain fundamental information about processes occurring at each interface and in the bulk
specimen.

This second study illustrates a very important point about IS. Although it is an extremely powerful
technique in its own right, the analysis of complicated systemsmust be correlatedwith other experimen-
tal information to verify that the chosen circuit is physically reasonable. Furthermore, agreement
between independently determined experimental values and those determined in a fitting procedure
of the complex plane results can only strengthen the IS results and thus should never be overlooked.

G1 G2

C1 C2

R3

R2

G2
2

R1

C1=
2πf1(G1–G2)

G (103 Ω1)

B
 (

1
0

3
 Ω

1
)

G3

2

(a)

(b)

1

f1
f2

0
0 1

Electrode
polarization

Electrolyte bulk
properties

50 Hz 50 kHz

2 3 4 5

1
G1

R1 =
1

G2

1
G2

R2 =
1

G3

R3 =
1

G3

G3
2

C2=
2πf2(G3–G2)

FIGURE 1.4.3 (a) Admittance behavior of the electrochemical cell
given in 1.4.4 at 873 K for a specimen with naturally porous
electrodes (sputtered Pt). (b) The equivalent circuit for the
behavior in part a showing the two impedance elements
associated with each semicircle. Source: Bauerle 1969.
Reproduced with permission of Elsevier.
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