
�

� �

�

1

1

R

1.1 Introduction

This book focuses on one problem that is common to almost every statistical
problem – indeed, to almost any problem involving any sort of analysis. That
problem is acquiring and preparing the data. Across our many years of data
analysis, we have learned that seemingly 80% of our time – maybe more – goes
into the data preparation steps (a belief echoed by others such as Dasu and
Johnson, 2003). Collectively, we call these actions data cleaning, although,
as we will discuss later, we sometimes use that term for something a little
more specific. Regardless of the name, almost any analysis requires that you
(i) acquire that data, that is, read it into the computer program; (ii) clean the
data, that is, identify entries that are duplicated or clearly erroneous or anoma-
lous, and take other preparation steps (e.g., combining entries such as “Female,”
“female,” and “F”); (iii) merge data from different sources; and (iv) prepare
the data for modeling, which might involve dividing a set of numeric values
into subsets, combining states into regions, and so on. This book discusses
some approaches for accomplishing these four steps in the R language (R Core
Team, 2013). A fifth problem, which receives less emphasis, is the problem of
long-term curation of the data. Which parts of the data must be saved and in
what way? We address that question by reference to the idea of reproducible
research, which we discuss later in this chapter, and later in the book as well.

1.1.1 What Is R?

R is a computer program that lets you analyze data. By “analyze” we mean, first,
read the data into the program and then operate on it – drawing graphs and
charts, manipulating values, fitting statistical models, and so on. (Notice that
we prefer to call data “it” rather than “them.” We discuss this choice briefly
toward the end of the chapter.) R is both a statistical “environment” and also

A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R, First Edition.
Samuel E. Buttrey and Lyn R. Whitaker.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/buttrey/datascientistsguide

CO
PYRIG

HTED
 M

ATERIA
L

�

� �

�

2 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

a programming language, and it is very widely used both in commercial and
academic settings. R is free and open-source and runs on Windows, Apple, and
Linux operating systems. It is maintained by a group of volunteers who release
bug fixes and new features regularly.

1.1.2 Who Uses R and Why?

R started as a tool for statisticians, evolving from a language called S that
was created in the 1970s. Today, R remains the primary language of academic
statisticians, and it also has a prominent place among analysts in business
and government as well. It is used not only for building statistical models
but also for handling and cleaning data, as in this book, and for developing
new statistical methods, building simulations, for visualization, and generally
for all the data-handling tools the statistician and the data scientist require.
Because of the ease with which users can develop and distribute new methods,
R has also become the tool of choice in certain fast-growing fields such as
biostatistics and genetics. Articles on “surveys of the top tools used by data
scientists” inevitably name R as one of the important tools with which data
scientists, as well as statisticians, should be familiar. Moreover, R’s popularity is
such that there are extensions to R (see “packages” in Section 1.4.4) that allow
you to connect to other programs such as the Python and Java languages, the
H2O machine-learning system, the ArcGIS geographical information system,
and many more.

1.1.3 Acquiring and Installing R

The primary way to acquire R is to download it from the Internet. The main
R website for R is www.r-project.org, and the www.cran.r-project
.org page (“CRAN” standing for “Comprehensive R Archive Network”) is
where you can download R itself. There are in fact dozens of “mirror” sites for
CRAN – that is, websites that are essentially copies of the CRAN site – so as
to reduce the load on the CRAN site. You can probably find a mirror near you
on the “mirrors” page. After you download R, install it in the way you would
normally install a program on your operating system.

At any one time, users around the world will be running slightly different
versions of R, since new ones are released fairly frequently. For example, at this
writing the current version of R was called 3.3.2, but many users are still using
3.2 or earlier versions. This will almost never cause problems, but it is a good
idea to update your version of R from time to time.

There are also several slightly different versions of R distributed other than at
CRAN. Microsoft R Open is a particular version of R that uses a different set
of math libraries intended to make certain computations faster. Like “regular”
R, Microsoft R Open is free, although it does not run on OS X. Other ver-
sions of R are intended to communicate with relational databases or with other

�

� �

�

R 3

big-data platforms. For this book, we will assume you are running “regular”
R – but in any case for our purposes all versions of R should behave exactly the
same way.

1.1.4 Starting and Quitting R

The way you start R depends on your operating system. Normally double-
clicking on an R icon will be enough to get R started. In the command-
line interface of many Linux systems, or using the OS X terminal window, it
may be enough just to type the upper-case letter R (or, for Windows command
lines, Rgui). When R has started, you will see the command prompt >. This is
the R console, the place where commands are entered. At this point, you can
start typing commands to R. When it comes time to quit R, you can either
“kill” the window in the usual way (for OS X, the red dot, the lightswitch in the
top right, or via the File dialog; for Windows, the red X or File dialog) or you
can type the q() command. In either case, R will then ask you if you want to
“Save workspace image.” If you answer “yes” to this question, R will save to the
disk any changes you made during the current session, whereas if you answer
“no,” R will return its workspace to the condition it was in when R was last
started. We almost always want to answer “yes” to this question!

1.2 Data

Data is information about the elements of whatever problem we are investigat-
ing. Data comes in many forms, but for our purposes it will always be presented
in a set of computer-ready values. For example, a database concerning birds
might include text about the habits of the birds, numbers giving lengths and
weights of the individuals, maps showing migration patterns, images showing
the birds themselves, sound recordings of the birds’ calls, and so on. Although
they look very different, all of these different pieces of information can be rep-
resented in the computer in digital form in one way or another. In this example,
one of our primary tasks might be to ensure that each bird’s description is cor-
rectly matched with the correct map, image, and song file. Our data analysis
projects rarely include data quite so disparate, but in almost every case we need
to acquire data, clean it (a process we start to describe in what follows and con-
tinue throughout the book), and prepare it for modeling, and in almost every
case we expect our data to consist of both numeric and textual values.

1.2.1 Acquiring Data

The first step in a data analysis project, of course, is to get the data into R where
it can be manipulated. We are old enough to remember the days when this
involved typing all the data from the back of a book or journal paper into a

�

� �

�

4 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

statistics package by hand, but happily this is not necessary today. On the other
hand, data now comes in a variety of formats, few of which were created with
the convenience of the data scientist in mind. In Chapter 6, we describe some
of these common formats and how to use R to read data effectively.

1.2.2 Cleaning Data

We “clean” data when we detect (and, in many cases, remove) anomalies.
Anomalies will very often be missing values, but they might also be absurd
ones, as when people’s ages are reported as 999 or −1. Sometimes, as in our
earlier example, we might have genders reported as “Female,” “female,” and “F”
and we want to combine these three values. In the cleaning process we might
learn, for example, that one data source produced no data at all in August 2016;
this sort of fact will need to be brought to the attention of the data provider.
The data cleaning process also involves merging data from different sources,
extracting subsets or reshaping the data in some way. All in all, data cleaning
is the process of turning raw data, received from one or more providers, into a
data set that can be used in visualization, modeling, and decision-making.

In practice these steps are iterative. Our cleaning process not only informs the
modeling, but it sometimes leads us to re-acquire the data in a different, more
usable form. Similarly, insights from modeling will often lead us to prepare the
data in a new and more revealing way – because it is when we model that we
often discover anomalies or other interesting attributes of the data.

1.2.3 The Goal of Data Cleaning

What a “clean” data set should look like depends on what your goals are. One
useful perspective is given by Wickham (2014), who describes what he calls
“tidy” data. A tidy data set is rectangular (or tabular); each row describes one
unit of analysis (an observation), and each column gives one measurement (a
variable). For example, in a data set giving measurements about people, each
row would concern itself with a person, and the columns might give height,
weight, age, blood type, and so on.

In some problems, it is not immediately clear what the unit of analysis is.
For example, imagine data that describes the locations of boats over the course
of a month, as recorded by GPS. For some purposes, a “tidy” data set would
have one row per GPS ping, each row giving a ship identifier, a location, and
a time. For other purposes, we might prefer a data set with one row per boat,
each row giving the southernmost point that ship reaches, or perhaps giving a
binary indicator of whether the ship did, or did not, spend time in international
waters. Some data – images and sound, for example – do not lend themselves
to this “tidy” approach.

�

� �

�

R 5

The exact layout of your final data will depend on what you plan to do with
it – and in some cases this won’t be known until after you have operated on
the data.

1.2.4 Making Your Work Reproducible

It is vital that other people be able to reproduce the actions you took on your
data. Ideally, you or another analyst should be able to start with your raw data,
run all the steps you applied to it, and emerge with exactly the same clean, pre-
pared data sets. This will be useful to you when you encounter a situation similar
to the one in the previous paragraph, where the form of the new data needs to
be designed. But it is even more important for another analyst, since if you
or another analyst can reproduce your results there will be no disagreement
about the data. The act of making research reproducible has, in recent years,
been rightfully recognized as a cornerstone of scientific progress. Record and
document every step you take so that others can repeat them.

1.3 The Very Basics of R

This book is about handling data in R. It cannot teach you the very basics of R in
detail – although, happily, there are many good books and online resources that
can. (We give a few examples at the end of this chapter.) In this section, we list a
few of the most basic facts about R, but, again, this book is not intended to teach
you R. Rather, we focus on the details of R and of the way data is represented
in R, in order to help you understand some of the ways to acquire, clean, and
handle data inside R.

1.3.1 Top Ten Quick Facts You Need to Know about R

In this section, we give a few of the most important facts about R a beginner
needs to know. There will be more detail on these facts later in the chapter and
throughout the book.

1) The prompt is (by default) >. If you leave a command incomplete, maybe
because there is an unclosed parenthesis or quotation mark, R gives you
the continuation prompt, which is +. The Esc key (Windows) or control-C
(other systems) produces the break command, which will take you back to
the regular prompt. In this example, we show what a completed command
looks like – in this case, R is computing the value of 3 divided by 2.
> 3 / 2
[1] 1.5

�

� �

�

6 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

Here, R produced the prompt (>), and we typed 3 / 2 and pressed the
Enter (or “Return”) key. R then produced the output. We will talk about
the [1] part in Chapter 2, but the computed value of 1.5 is shown. In
the following example, we show what happens when we press Enter after
typing the slash character:

> 3/
+ 2
[1] 1.5

Here, since the expression on the first line was incomplete, R produced the
continuation prompt, +. When we typed 2 and hit Enter, the expression
was complete and the result was shown. In case of confusion, press break
until the original > prompt is showing.

In examples in this book where we want to show the R output, we also
show the > prompt in front of our code. Remember, that > is produced by
R; you don’t need to type that yourself. (At the end of the chapter, we tell
you where you can get all the code from the book in electronic form.)

2) R is case-sensitive, which means that upper- and lower-case letters
are different in R. For example, the built-in R object LETTERS gives
all 26 upper-case letters. A different item called letters contains the
lower-case versions of the alphabet. There is no built-in object called
Letters.

3) Show an object by typing its name. For example, if you type ls by itself,
you see the contents of the function whose name is ls, the one that lists all
the objects in your workspace (which we define later). To actually run the
function and see the objects, you need to type the function’s name together
with parentheses. In this case, list your objects by typing ls().

4) Get help for a function or object named thing with the command
help(thing) or ?thing. For example, to see the help for the
ls() function, type help(ls). If you don’t know the name, try
help.search() with a relevant word in quotation marks; for example,
try help.search ("matrices") to see functions that handle
matrices.

5) Assign a value or object to a name with the left-arrow (less-than plus
hyphen): for example, the command a <- 1 creates a new object named
a with value 1. (You can also assign with a command such as a = 1,
but we don’t recommend it.) The assignment will over-write any existing
object named a you might have had. Once you create an object, it is in
your “workspace,” and your workspace can be saved when you quit. So
unless your computer crashes, when you create an object it will persist
until you delete it. Display the set of objects in your workspace with
objects() or ls(); remove an object with remove() or rm(). Not
every character is permitted in the name of an R object. Start a name

�

� �

�

R 7

with a letter or a dot, and then stick to numbers, letters, underscores,
and dots. Names cannot contain spaces. In this example, we show some
assignments that succeed and some that do not.

> a <- 1
> a.1 <- 1
> 2a <- 1
Error: unexpected symbol in "2a"
> a 2 <- 1
Error: unexpected numeric constant in "a 2"

The first two of these assignments succeed, because a and a.1 are valid
names. The last two fail because they refer to invalid names.

6) The comment character is #. A comment ends at the end of the line. If you
want a comment to span multiple lines, you need to start each comment
line with #.

7) Recall earlier commands with the up-arrow. You can edit an earlier
command and then press the Enter key to run the new version. The
history() command shows a list of your recent commands; put a
number in (as in history(500)) to see more.

8) When referring to file names, R itself uses the forward slash in the console.
The Windows file system uses the backward slash, so Windows users may
use that, too, but in that case you have to type \\ (we talk more about
this later on). For example, a Windows user who wants to access a file
named c:\temp\mycode.R in an R command will need to type either
c:/temp/mycode.R or c:\\temp\\mycode.R. You’ll need to use a
regular, single backslash if you are interacting with the Windows operat-
ing system and not R – if, for example, you are presented with a graphical
“select file” window. The file systems for OS X and Linux users use the
forward slash at all times.

9) Just about any function you want is built into R, so R makes an excellent
calculator. For example,

> sin (log (34))
[1] -0.375344

This says that the sine (using radians) of the logarithm (base e) of 34 is
−0.375344. Most functions allow you to specify “arguments,” values you
pass to the function to modify its behavior. Some must be specified; others
have default values. For example, log (34, 10) produces the base 10
logarithm instead of the natural logarithm. If a function accepts multiple
arguments, you will need to specify them in the proper order – or by name.
In this example, the arguments to log are named x and base (see the
help at ?log), so we could have entered log(base = 10, x = 34)
too.

�

� �

�

8 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

10) R’s operators include the comparison operators != for “not equal,” == for
“is equal to,”<= and>= for “less than or equal to” and “greater than or equal
to,” and the arithmetic operators * for “multiplied by” and ^ for “raised to
the power of.”

1.3.2 Vocabulary

As we get started, it will be worthwhile for us to repeat some of the vocabulary
of R, and of data, that you should be familiar with. In this section, we define
some of the terms that are commonly used in discussion of R, both in this book
and elsewhere.

vector A vector is the simplest piece of data in R. It consists of one or more
entries (also called “items” or “elements”) that are all either text or all num-
bers or all “logical” (i.e., TRUE or FALSE). (Technically, a vector might have
length 0, and there are some other types, but that last sentence covers 99%
of what you will do with R.) For example, the value of the famous constant 𝜋
is built into R as the object pi, and the R object pi is a numeric vector with
length 1. We talk about vectors in Chapter 2.

matrix A matrix is just a two-dimensional vector in rectangular shape. While
matrices are important in statistics, they are less important in the data clean-
ing process. Still, it is useful to know about matrices in preparation for using
data frames (below). We discuss matrices at the start of Chapter 3.

list A list is an R object that can hold other R objects. Lists are everywhere in
R and you will need to know how to create them and access their elements.
We discuss lists starting in Section 3.3.

data frame A data frame is a cross between a matrix and a list. Like a matrix, it
is rectangular, but like a list it can contain items of different sorts – numeric,
text, and so on – as its columns. You can think of a data frame as a list of
vectors all of which are the same length. Most of the data we encounter will
be in the form of data frames, and, if it isn’t, we will usually try to put it into
a data frame. We talk about data frames starting in Section 3.4.

object An object is a general word for anything in R. Usually, we will use this to
refer to data objects such as vectors, matrices, lists, or data frames, but we
might use “object” to refer to a function, a file handle, or anything else with
a name in R.

rows and columns A data frame and a matrix are two-dimensional rectan-
gular objects, consisting of rows and columns. Our goal, in a data cleaning
problem, is almost always to produce one or more data frames whose rows
correspond to the things being measured, and whose columns give the
different measurements. For example, in a military manpower problem each
row might represent a soldier, and the columns would give measurements
such as age, sex, rank, and years in service. Statisticians sometimes call
rows and columns “observations” and “variables” (although that second

�

� �

�

R 9

word has another meaning in R, see the following discussion). Confusingly,
other terms exist too: authors in machine learning talk of “instances” (or
“entities”) and “attributes” (“features”). We will use “rows” and “columns”
when the emphasis is on the representation of the data in a data frame, and
“observations” and “variables” when the emphasis is on the role being played
by the data.

variable A variable is also a generic term for an R object, especially one of
the objects in our workspace. The name is slightly misleading because the
object’s value doesn’t have to change. We would call pi a “variable,” at least
in casual conversation.

operator An operator describes an action on one or two objects – often vec-
tors – and produces a result. For example, the* operator, placed between two
numbers, produces their product. Most operators act on two things – we say
they are “binary.” The + and - operators can also be “unary,” meaning they
act on one number. So in the expression -3, the - is a unary operator. Oper-
ations are often “vectorized,” meaning they act separately on each item of a
vector.

function A function is a kind of R object that can take an action. Functions
often accept arguments to control the computations they make, and pro-
duce “return values,” the results of the computation. For example, thecos()
function takes as its one argument the size of an angle, in radians, and pro-
duces, as its return value, the cosine of that angle. So typing cos(1) invokes
a function and produces a value of about 0.54. Operators are functions, too,
although they don’t look like it. For example, you can multiply two numbers
by calling the * function explicitly with two arguments, though you’ll need
quotation marks; "*"(3, 4) operates * on 3 and 4 and produces 12. Func-
tions are covered in detail in Chapter 5.

expression An expression is a legal R “phrase” that would produce an action if
you entered it into R. For example,a <- 3 is an expression that, if evaluated,
would cause an item a to be created and given the value 3. That expression
is called an assignment. pi > 3 is an expression that would produce TRUE,
since the number pi is greater than 3. This is an example of a comparison.
Just typing 2 is also an expression; the system interprets this as being the
same as print(2), and prints out the value 2. Most expressions involve the
use of functions or operators, as well as R variables.

command We often use the word “command” as a casual shortcut to mean
“function,” “operator,” or “expression.” For example, we might say “use the
help command” instead of “run the help function.”

script A script is a text file that can list R commands. We use script files in all
of our projects and we recommend that you do, too. We discuss scripts in
Chapter 5.

workspace The workspace is the set of objects (data and functions) in our cur-
rent environment. These are objects we have created.

�

� �

�

10 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

working directory The working directory is the folder on your computer where
your R data is stored. By default, R will look in this directory for any exter-
nal files you might ask for. We talk more about the working directory in the
following section.

With this vocabulary in mind it is easier to discuss some of the ways that R
operates. As an example, it’s not always obvious what the different operators
in R will do in weird cases. We know that 3 < 10 is TRUE. What is the value
of 3 < "10"? The answer is FALSE. R cannot compare a number to a char-
acter, so converts both values into characters. Then the comparison is made
alphabetically. So just as "Apple" < "Banana" is TRUE because "Apple"
comes first in alphabetical order, so too does "10" come before "3" – since,
as always, we compare the initial characters first, and the 1 character precedes
the 3 character in our computer’s sorting system. We talk much more about
the different types of data in R, and converting between them, in Chapter 2.

Another example of unexpected behavior has to do with the way R reads
commands typed in at the command line. We saw that the command a <- 3
assigns the value 3 to an object a. However, what happens when you type
a < - 3, with a space between < and -? The answer is that R attaches the
hyphen to the value 3, and then compares the value of a to the number -3. In
general, spaces will not affect your R commands – but in this case the space
“broke” the assignment operator <-.

R objects have names and names have to conform to a small set of rules. If
data is brought in from outside R, perhaps from a spreadsheet, names will be
changed if they need to be made valid (details can be seen in the help for the
make.names() function). Technically it is possible to force R to use invalid
names, but don’t do that. A few names in R are reserved, meaning they cannot
be used as the name of an R variable. For example, you cannot name an object
TRUE; that name is reserved. (You may name an object T, because that name
isn’t reserved, but we don’t recommend it.) It is also wise to try to avoid giv-
ing an object the name of an existing R function (although there are lots of R
functions and some are obscure). If you name a vector sum, and then use the
sum() function to add things up, R will be smart enough to differentiate your
vector from the system’s function. But if you create a function called sum() in
your workspace, R will use that one (since your function will appear first on the
search path; see “search path” in Section 1.4.1). This is almost never what you
want. The R functions c() and t() provide good examples of names to avoid.

Finally, R can operate in an “object-oriented” way. A number of R functions
are “generic,” meaning that have specific methods to handle specific data types.
For example, the summary() function applied to a numeric vector gives some
information about the values in the vector, but the same function applied to
the output of a modeling function will often give summary statistics about the
model. The exact action that the generic function takes depends on the “class”

�

� �

�

R 11

(i.e., the type) of the object passed to it. We run across a few of these generic
functions in the following few chapters and discuss object-oriented program-
ming briefly in Section 5.6.3

1.3.3 Calculating and Printing in R

R performs calculations and prints results. In this section, we talk about some
of the differences between what R computes and what it prints, as well as how
text data is represented.

Floating-Point Error
This is a good place to discuss an issue that arises in a lot of data cleaning prob-
lems and has caught us and our students off-guard more than once. For almost
all computations, R uses “double-precision floating-point” arithmetic, as most
other systems do. What this means is that R can represent numbers up to about
±1.79 × 10±308 with at least some accuracy. However, double precision is not
exact. Consider this example, in which we multiply together the numbers (1/49)
and 49.

> 1/49 * 49
[1] 1 # as expected
> 1 - (1/49 * 49)
[1] 1.110223e-16
> (49 * 1/49) == (1/49 * 49) # should be TRUE
[1] FALSE

The first computation shows the “expected” product of (1/49) and 49 – the
value 1. In fact, though, the second computation shows that this prod-
uct is not exactly 1; it differs from 1 by a tiny amount that we might call
“floating-point error.” That amount was so small that it wasn’t displayed in the
first computation, according to R’s default display conditions. (The command
print(1/49 * 49, digits = 16) will reveal that this product is
computed as a number very slightly less than 1.) This is not a bug in R; it’s a
statement about the way double-precision floating-point arithmetic works,
analogous to the way that in ordinary arithmetic, the number 0.333333…
is not quite 1/3. The final computation shows the practical effect of this: if
you compare two floating-point values directly, they might be recorded as
being different just because of floating-point error. You will need to be aware
of this when you compare the results of doing the same computation in two
different ways.

Significant Digits
In the above-mentioned example, we saw how R printed 1 even though
the number in question was slightly different. While R’s computations use

�

� �

�

12 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

double-precision floating point, its display will generally print a smaller
number of digits than are available. Moreover, R formats outputs in a neat
way, so that typing 2.00 produces 2, but typing 2.01 prints out as 2.01.
These formatting choices are most noticeable when many values are being
shown. The display that R chooses does not affect the precision with which
it does calculations. Of course you can force R to round off the results of
its calculation; we discuss formatting, rounding, and scientific notation in
Chapter 4.

Character Strings
We will spend a lot of time in this book handling text or character data, data
in the form of letters such as "Oakland" or "Missing". Sometimes, as is
common, we will call a set of characters a string. In R, strings are enclosed by
quotation marks, and either the double-quotation mark " or the single one
’ can be used. A string delineated by single-quotation marks is converted
into the other kind. The two kinds of quotation marks make it possible to
insert a quote into a string, such as this: "She said ’No.’ " (If you
typed "She said "No." ", you would see R produce an error.) If you type
’She said "No." ’, the outside quotes are converted to double quotes.
Then, since there are double quotes on the inside, too, those interior quotation
marks are “protected” by preceding them with the backslash character. The
result is converted into "She said \"No.\" "

This idea of “protecting” certain special characters goes beyond quotation
marks. The character that marks the end of a line of text is called “new-line” and
is written as \n, backslash followed by n. Typing this character requires two
keystrokes, but it counts as only one character. In general, special characters
are “protected” by the backslash characters. Besides the quotation mark and the
new-line, the important special characters are\t, the tab, and\\, the backslash
itself. The backslash also serves to introduce strings in special formats, such as
hexadecimal (e.g., "\xb1" produces the character with hexadecimal value b1,
which displays as the plus-minus sign, ±) or Unicode (e.g., "\U20ac" uses
Unicode to display the Euro currency symbol). We talk much more about text
in general and Unicode in particular in Chapter 4.

1.4 Running an R Session

Once you start using R you may find yourself using it for lots of different
projects. Although this is partly a matter of taste, we find it useful to keep
separate sets of data for separate projects. In this section, we describe where R
keeps your data, and some other aspects of R with which you will need to be
familiar.

�

� �

�

R 13

1.4.1 Where Your Data Is Stored

When you start R, you start it in a working directory, and this directory forms
the starting point for where R looks for, and stores, data. For example, typing
list.files() will list all of the files in your working directory. When you
quit R and save the workspace, a file with all of your R objects will be created
in that same directory. This file is named .RData. The leading dot in the name
is important, because some terminal programs, such as the “bash” command
interpreter, do not by default list files whose names start with a dot. We don’t
recommend changing the name of the .RData file.

This provides a natural mechanism for project management. To prepare for a
new project on a system with a command-line interface, just create a new direc-
tory and start R from there (see “starting R” above). On systems with desktop
icons, copy an existing R icon, edit the properties to point to the new directory,
and add the project name to the icon. The details of this operation will depend
on your operating system. In this way, you can keep the different .RData files
for your different projects separate.

When you start R, it will use an existing .RData file if there is one in the
working directory, or create a new, empty one if there is not. Often we have a
certain number of objects from earlier projects that we want in the new project.
There are two mechanisms for acquiring those existing R objects. In one case,
we literally copy all the objects from another .RData in a different project’s
directory into the existing workspace, using the load() function. This can
be dangerous because objects being copied will over-write existing ones with
the same names. A second mechanism uses attach(), which puts the other
.RData on the “search path.” The search path is a list of places where R looks
for objects when you mention them. You can examine your current search path
with the search() command. The first entry on the search path is the current
.RData file (although it carries the confusing name .GlobalEnv); most of
the other entries on the search path are put there by R itself. When you use a
name such as pi, R looks for that object in your workspace, and then in each
of the packages or directories named in the search path until it finds one by
that name. You can attach other .RData files anywhere in the search path,
except in the first position; usually we put them into position two so that they
are searched right after the local workspace. We talk more about getting data
into and out of R in Chapter 6.

1.4.2 Options

R maintains a list of what it calls “options,” which describe aspects of your inter-
action with it. For example, one option sets the text editor that R calls when
you edit a function, one describes how much memory is set aside for R, one
lets you change the prompt character from its default, and so on. Generally, we

�

� �

�

14 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

find the default values reasonable, but the help for the options() function
describes the possible values and running options() shows you the current
ones. Changes to the options last only for this R session. Section 3.3.2 shows an
example of setting one of the options.

1.4.3 Scripts

Most of the work we do with R is interactive – that is, we issue commands
and wait for R’s response. This use of R is best when we are exploring data and
developing approaches to handling and modeling it. As we develop sets of com-
mands for a particular project, we can combine these into “scripts,” which are
simply files full of commands. Having a set of commands together allows us
to execute them in exactly the same way every time, and it allows us to add
comments and other notes that will be useful to us and to other users whom
we share the code with. This approach, while still interactive, is best when we
have developed an approach and want to use it repeatedly. Scripts also provide
a natural mechanism for project management: often we start with an empty
workspace and use scripts to populate the workspace by reading and preparing
data, loading from other sources, or attaching other directories, before starting
on the modeling steps.

R can also be run in batch mode – that is, it can start, run a single set of
commands, and then stop. This approach can be used when the same task needs
to be performed repeatedly, perhaps on different data – say, every day to process
data gathered overnight. We talk about scripts and batch use of R in Chapter 5.

1.4.4 R Packages

A package is a set of functions (and maybe data and other stuff too) that pro-
vides an extension to R. R comes with a set of packages, some of which are
automatically placed onto the search path, and others of which are not. If a
package is present on your computer but not in your search path, you can access
(or “load”) it with the library() or require() command (these two differ
only in how they react if a package cannot be found). A package only needs to
be loaded once per R session, but when you re-start R you will need to re-load
packages. There are also thousands of additional packages that have been con-
tributed by R users that can be found on the Internet, primarily at the main
repository at cran.r-project.org and its mirror sites. If your computer
is connected to the Internet, you can install a package (if you know its name)
with the install.packages() command. If that works, the package will
still need to be loaded with the library() command. If your computer is
not connected to the Internet, you can still install packages from a disk file if
one is available. Most of the code in this book requires no additional packages,
although in some cases we will point out cases where additional packages make
particular tasks easier, more efficient, or, in rare cases, possible.

�

� �

�

R 15

It is possible to force certain packages to be loaded whenever you start R.
When we anticipate needing a package, our preference is to include a call to
library() or require() inside our scripts.

1.4.5 RStudio and Other GUIs

The “look” of R depends on your operating system. At its most basic – and we
often see this when we are connecting to remote servers – R consists only of a
command line. On the most popular platforms – Windows and OS X – running
R produces a graphical user interface, or GUI. This is a set of windows con-
taining a number of menu items giving selections, or buttons that help you
perform common tasks. Most of the GUI, though, consists of the console. A
few enhanced GUIs are available. Perhaps the most widely used among these
is RStudio (RStudio Team, 2015), a development environment that includes a
console window, a set of script window tabs, and better handling of multiple
graphics windows. RStudio comes in free and paid versions for all operating
systems and is available from its maker at rstudio.com. We have found that
many of our students prefer the more interactive, perhaps more modern feel of
RStudio to the standard R interface – but underneath, the R language is exactly
the same.

1.4.6 Locales and Character Sets

R is essentially the same program whether you run it on Windows, OS X, or
Linux. (There are minor differences in the way you access external files and
in some low-level technical functions that will not be relevant in data clean-
ing.) In particular, R is an English-language program, so a “for” loop is always
indicated by for(). Speakers of many languages can arrange to have error
messages delivered in their language, if this ability is configured at the time R is
installed – see the help for the Sys.setenv() function and for “environment
variables.”

Even though R is in English, it is possible to set the “locale” of R. This allows
you to change the way that R does things such as format currency values.
English speakers use the dot as the decimal separator and the comma to set
off thousands from hundreds, but many Europeans use those two characters
in reverse. Other locale settings affect the abbreviations in use for days of
the week and months of the year. We discuss some of these in Chapter 3, but
one important one to note here is the “collation” setting. This describes how
R sorts alphabetical items. Under the usual choices on Windows and OS X,
lower- and upper-case letters are sorted together, so that “a” precedes “A”
in alphabetical order, but both precede “b.” To continue an earlier example,
this ensures that "apple" < "banana" and "apple" < "Banana"
are both TRUE. However, on some Linux systems the so-called “C” collation
sequence is used. In that scheme, all the upper-case letters come before

�

� �

�

16 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

any of the lower-case ones – so that "apple" < "banana" is TRUE, but
"apple" < "Banana" is FALSE. Moreover, as the help for Comparison
points out, “in Estonian, Z comes between S and T.” You have to be aware of
your both locale and the relevant language whenever you compare strings.

Another aspect of character handling is the use of different character sets.
Text in non-Roman languages such as Hebrew or Korean requires some special
considerations. We discuss these at some length in Chapter 4.

1.5 Getting Help

R has a number of ways of getting help to you. “Help” can mean information
about the specific syntax of individual R commands, about putting the pieces
of R together in programs, or about the details of the various statistical models
and tools that R provides. In this section, we describe some of the resources
available to help you learn about R.

1.5.1 At the Command Line

The most basic help is provided at the command line, through the commands
help(), ? and help.search(). The first two commands act identically and
will be most useful when you need information on a particular R function or
operator whose name you know. In most cases, the argument doesn’t need to
be in quotation marks, though it may be – so help(matrix) or ?"matrix"
both bring up a page about some matrix functions. Quotation marks will
be required when looking for help on some elements of the R language – so
?"for" gives the help page for the for looping term and help("==")
produces the page on comparison operators. The help.search() command
is useful when the subject, rather than the name, is known; this command
opens a window (depending on your operating system) that gives links to
associated R objects. A related command is the apropos() function, which
takes a character argument (as in apropos("matrix")) and returns a
vector of names of objects containing that string (in this example, every object
with matrix in its name). A final piece of command-line help is provided by
the args() function, which takes a function and displays the set of arguments
expected by, and default values provided by that function.

1.5.2 The Online Manuals

When you install R, you are given the opportunity to install the online manuals
with it. These manuals are generally correct and complete, but they are intended
as references, and are not always useful as tutorials.

�

� �

�

R 17

1.5.3 On the Internet

The main page for the R project is r-project.org. This is the central repos-
itory for R and its documentation. If you are interested in participating in a
community of R users, you might consider joining one of the mailing lists,
which you can find under mail.html at that page.

R is very popular and there are lots and lots of blogs, pages, and other web
documents that address R and solve specific problems. Your favorite Internet
search engine will be able to find dozens of these.

1.5.4 Further Reading

A lot of documentation comes with R when you install in the usual way. You
can find a list of these manuals under Help | Manuals in Windows, or Help | R
Help on OS X, or with help.start(). The “Introduction to R” manual is a
good place to start.

The book “The Art of R Programming” (Matloff, 2011) is a nice tour of many R
features ranging from beginning to advanced. As its name suggests, the empha-
sis is on writing powerful and efficient R programs. Many other books introduce
the use of R, or describe its application in specific fields such as economics or
genomics. The r-project website has a list of over 150 books using R. As we
mentioned earlier, that site also maintains mailing lists for interested users, and
a quick web search will reveal scores of blogs and web pages devoted to R and
to answering R questions.

The recent book by Wickham and Grolemond (2016) describes those authors’
approach to not only data cleaning but a set of additional tasks, including visual-
ization and modeling, which we think of as beyond the scope of data acquisition
and cleaning. That approach requires an entire set of tools from packages out-
side R – although they come conveniently bundled together – as well as a new
vocabulary. This ecosystem has its adherents, but we prefer to use base R where
possible.

1.6 How to Use This Book

1.6.1 Syntax and Conventions in This Book

We reproduce a lot of R code in this book. R code is indicated in a fixed-width
font like this. Since R is case-sensitive, our text will exactly match what is
typed into R – except that in the prose we capitalize letters of R objects if they
appear at the beginning of sentences. Inside a paragraph, or when we want to
show a sequence of commands, we reproduce exactly what we type, like this:

�

� �

�

18 A Data Scientist’s Guide to Acquiring, Cleaning, and Managing Data in R

sqrt(pi). When we also want to show what R returns, the code will be shown
with the prompt and the literal R output, like this:
> sqrt (pi)
[1] 1.772454

Unlike the example in the “top ten quick fact” #1, we suppress the continuation
prompt +, so that it is not confused with the ordinary plus sign.

There are several different schemes for formatting code that you can find
described on the Internet, and they do not always agree. To us the most impor-
tant rule is to make your code easy to read. This means, first, use spacing and
indenting in a helpful and consistent way, and second, add plenty of comments
to help the reader. There is always a temptation to write code as quickly as pos-
sible, with an eye toward worrying about neatness later. Resist that temptation!
Code is for sharing and for re-use.

On a lighter note, we know that the word “data” originated as the plural of
the singular “datum,” but it has long been permitted to construe “data” in the
singular, and we do that in this book. You will find us saying “the data is...” rather
than “are.” This is intentional.

1.6.2 The Chapters

In order to use R wisely, you have to understand what data looks like to R. The
following three chapters describe the sorts of data that R recognizes, and how
to manipulate R’s objects. We start by describing vectors, the simplest form of
data in R, in Chapter 2. This chapter describes the common types of vectors,
the different ways to extract subsets from them, and how to change values in
vectors. It also describes how R stores missing values, an integral part of almost
every data cleaning problem. The chapter concludes with a look at the impor-
tant table() function and some of the basic operations on vectors – sorting,
identifying duplicates, computing unions and intersections of sets, and so on.

Chapter 3 describes more complicated data structures: matrices, lists, and
finally data frames. Understanding how data frames work is critical to using R
intelligently. We defer until this chapter discussion of how R handles times and
dates, because part of that discussion requires an understanding of lists.

The final data chapter, Chapter 4, discusses the last important data type – text
or character data. Text data is stored in vectors and data frames such as other
kinds, but there are a number of operations specific to text. This chapter
describes how to manipulate text in R – changing case, extracting and
assembling pieces of strings, formatting numbers into strings, and so on. One
important topic is regular expressions, a set of tools for finding strings that
contain a pattern of characters. This chapter also discusses the UTF-8 system
of encoding non-Roman alphabets such as Greek or Chinese and R’s concept
of factors, which are important in modeling but often cause problems during
the data cleaning process.

�

� �

�

R 19

Chapter 5 discusses two types of tool used to automate computations in R:
functions and scripts. These different, but related, tools, will be part of every
analysis you ever do, so you should understand how to construct them intelli-
gently. We also look briefly at “shell scripts,” which are a special sort of script
that let you run R in batch, rather than interactive mode, and discuss some of
the tools available in R for debugging.

This is a book about cleaning data, but the data to be cleaned needs to
come from somewhere. Chapter 6 describes the different ways to bring
data into R: from other R sessions, from spreadsheet-like text files, from
relational databases, and so on. We describe two of the formats in which data
is commonly found in modern applications: XML and JSON. We also describe
how to acquire data programmatically from web pages.

Chapter 7 takes a bigger view of the data cleaning process. While the earlier
chapters focus on the nuts and bolts of R as they relate to data cleaning, this
chapter describes the sort of challenges in a real-life data cleaning project. We
talk about how to combine data from different sources and give examples of the
sort of anomalies that you have to expect in dealing with real data. In almost
every case you will have to rely on judgment, rather than just on a cookbook
of techniques. We spend some time discussing the role of judgment on data
cleaning.

The Exercise
The culmination of the book is the data cleaning exercise presented in
Chapter 8. This chapter presents a complicated data acquisition and cleaning
problem that, while artificial, reflects many of the problems and challenges we
have seen over our years of real-life data handling experience. If you can find
your way through to the end of the exercise, we expect that you will be well
prepared to handle the data the real world sends your way.

Critical Data Handling Tools
In every chapter, we have set aside the final section to recap commands and
tools we think are particularly important when it comes to data handling and
manipulation. If you can master the use of these tools, and apply them wisely,
you can reduce the risk of missing important information in your data.

The Code
All of the code reproduced in this book appears in scripts in the cleaning
Book package you can download from the CRAN website. You can open these
scripts in R and run the code from there – although since most examples are
very short, we suggest that you consider typing them in yourself, to get a feel
for the R language.

�

� �

�

