1

Introduction®

The word “embedded” literally means “within,” so embedded systems are information
processing systems within (embedded into) other systems. In other words, an embedded
system is a system that uses a computer to perform a specific task but are neither used nor
perceived as a computer. Essentially, an embedded system is virtually any computing system
other than a desktop or a server computer. Embedded systems have links to physical compo-
nents/systems, which distinguishes them from traditional desktop and server computing [1].
Embedded systems possess a large number of common characteristics such as real-time
constraints, dependability, and power/energy efficiency.

Embedded systems can be classified based on functionality as transformational, reactive, or
interactive [2]. Transformational embedded systems take input data and transform the data into
output data. Reactive embedded systems react continuously to their environment at the speed
of the environment, whereas interactive embedded systems react with their environment at
their own speed.

Embedded systems can be classified based on orchestration/architecture as single-unit or
multi-unit/distributed and/or parallel embedded systems. Single-unit embedded systems refer
to embedded systems that possess computational capabilities and interact with the physical
world via sensors and actuators, but are fabricated on a single chip and are enclosed in a sin-
gle package. Multi-unit embedded systems, also referred to as distributed embedded systems,
consist of a large number of physically distributed nodes that possess computation capabili-
ties, interact with the physical world via a set of sensors and actuators, and communicate with
each other via a wired or wireless network. An emerging trend is to connect these distributed
embedded systems via a wireless network instead of a bulky, wired networking infrastructure.
Cyber-physical systems (CPSs) and embedded wireless sensor networks (EWSNs) are typical
examples of distributed embedded systems.

To meet the continuously increasing performance demands of many application domains
(e.g., medical imaging, mobile signal processing), many embedded systems leverage multicore
(manycore) architectures. Since processing is done in parallel in multicore-based embedded

*A portion of this chapter appeared in: Arslan Munir, Sanjay Ranka, and Ann Gordon-Ross, Modeling of Scalable
Embedded Systems, CH 29 in Scalable Computing and Communications: Theory and Practice, Samee U. Khan, Lizhe
Wang, and Albert Y. Zomaya (Eds.), ISBN: 978-1-1181-6265-1, John Wiley & Sons, pp. 629-657, January 2013.

Modeling and Optimization of Parallel and Distributed Embedded Systems, First Edition.
Arslan Munir, Ann Gordon-Ross and Sanjay Ranka.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

4 Modeling and Optimization of Parallel and Distributed Embedded Systems

systems, these embedded systems are often referred to as parallel embedded systems. Often
parallel embedded systems are networked together to form parallel and distributed embedded
systems. The burgeoning multicore revolution in computing industry is the main thrust behind
the emergence of these parallel and distributed embedded systems. The multicore innovation
in computer industry has induced parallel computing in embedded domain, which was previ-
ously used predominantly in supercomputing domain only. Parallel and distributed embedded
systems have proliferated in a wide variety of application domains. These application domains
include military, health, ecology, environment, industrial automation, transportation, control,
and medical, to name a few.

Embedded systems often require specific quantifiable design goals, such as real-time con-
straints, performance, power/energy consumption, and cost. In order to design embedded com-
puter systems to meet these quantifiable goals, designers realize that no one system is best for
all embedded applications. Different requirements lead to different trade-offs between per-
formance and power, hardware and software, and so on. Different implementations need to
be created to meet the requirements of a family of applications. Solutions should be pro-
grammable enough to make the embedded design flexible and long-lived, but not provide
unnecessary flexibility that would impede meeting the application requirements [3]. To meet
various design goals, embedded systems design requires optimization of hardware and soft-
ware. In particular, performance and power optimizations are required for many embedded
applications. Embedded systems leverage various techniques to optimize and manage power in
embedded systems. These techniques include, but are not limited to, power-aware high-level
language compilers, dynamic power management policies, memory management schemes,
and bus encoding techniques [4].

Embedded systems design is traditionally power-centric, but there has been a recent
shift toward high-performance embedded computing (HPEC) due to the proliferation of
compute-intensive embedded applications. For example, the signal processing for a 3G mobile
handset requires 35-40 giga operations per second (GOPS) for a 14.4Mbps channel and
210-290 GOPS for a 100 Mbps orthogonal frequency-division multiplexing (OFDM) channel.
Considering the limited energy of a mobile handset battery, these performance levels must be
met with a power dissipation budget of approximately 1 W, which translates to a performance
efficiency of 25 mW/GOPS or 25 pJ/operation for the 3G receiver and 3-5 pJ/operation for the
OFDM receiver [5, 6]. These demanding and competing power—performance requirements
make modern embedded systems design challenging.

The high-performance energy-efficient embedded computing (HPEEC) domain addresses
the unique design challenges of high-performance and low-power/energy embedded comput-
ing. The HPEEC domain can be termed as high-performance green computing; however, green
may refer to a bigger notion of environmental impact. The high-performance and low-power
design challenges are competing because high performance typically requires maximum
processor speeds with enormous energy consumption, whereas low power typically requires
nominal or low processor speeds that offer modest performance. HPEEC requires thorough
consideration of the thermal design power (TDP) and processor frequency relationship while
selecting an appropriate processor for an embedded application. For example, decreasing the
processor frequency by a fraction of the maximum operating frequency (e.g., reducing from
3.16 to 3.0 GHz) can cause 10% performance degradation but can decrease power consumption
by 30—40% [7]. To meet HPEEC power—performance requirements, embedded systems design
has transitioned from a single-core paradigm to a multicore paradigm that favors multiple

Introduction 5

low-power cores running at low processor speeds rather than a single high-speed power-hungry
core. The multicore embedded systems have integrated HPEEC and parallel computing into
high-performance energy-efficient parallel embedded computing (HPEPEC) domain.

HPEPEC domain encompasses both single-unit and multi-unit distributed embedded sys-
tems. Chip multiprocessors (CMPs) provide a scalable HPEPEC platform as performance can
be increased by increasing the number of cores as long as the increase in the number of cores
offsets the clock frequency reduction by maintaining a given performance level with less
power [8]. Multiprocessor systems-on-chip (MPSoCs), which are multiprocessor version of
systems-on-chip (SoCs), are another alternative HPEPEC platform, which provide an unlim-
ited combination of homogeneous and heterogeneous cores. Though both CMPs and MPSoCs
are HPEPEC platforms, MPSoCs differ from CMPs in that MPSoCs provide custom archi-
tectures (including specialized instruction sets) tailored for meeting peculiar requirements of
specific embedded applications (e.g., real-time, throughput-intensive, reliability-constrained).
Both CMPs and MPSoCs rely on HPEPEC hardware/software techniques for delivering high
performance per watt and meeting diverse application requirements.

Although HPEPEC enables more sophisticated embedded applications and meets better
competing performance and energy requirements, HPEPEC further complicates embedded
systems design. Embedded systems design is highly challenging as the interaction with the
environment, timing of the operations, communication network, and peculiar application
requirements that may need integration of on-chip hardwired and/or reconfigurable units have
to be considered. Both hardware and software designs of embedded systems are complex,
for example, current automotive embedded systems contain more than 100 million lines of
code. Multicore—a crucial enabler for HPEPEC—while providing performance and energy
benefits further aggravates design challenges of embedded systems. While industry focuses
on increasing the number of on-chip processor cores to meet customer performance demands,
this increasing number of cores has led to an exponential increase in design complexity.
Embedded system designers face the new challenge of optimal layout of these processor
cores along with the memory subsystem (caches and main memory) to satisfy power, area,
and stringent real-time constraints. The short time-to-market (time from product conception
to market release) of embedded systems further exacerbates design challenges.

Modeling of embedded systems helps the designers to cope with increasingly complex
design challenges. Modeling of embedded systems helps in reducing the time-to-market
by enabling fast application-to-device mapping, early proof of concept (POC), and system
verification. Original equipment manufacturers (OEMs) increasingly adopt model-based
design methodologies for improving the quality and reuse of hardware/software components.
A model-based design allows development of control and dataflow applications in a graphical
language familiar to control engineers and domain experts. Moreover, a model-based design
enables components’ definition at a higher level of abstraction that permits modularity and
reusability. Furthermore, a model-based design allows verification of system behavior using
simulation. However, different models provide different levels of abstraction for the system
under design (SUD). To ensure timely completion of embedded systems design with sufficient
confidence in the product’s market release, design engineers have to make trade-offs between
the abstraction level of a model and the accuracy a model can attain.

The remainder of this chapter is organized as follows. Section 1.1 elaborates on sev-
eral embedded system application domains. Various characteristics of embedded system
applications are discussed in Section 1.2. Section 1.3 discusses the main components of

6 Modeling and Optimization of Parallel and Distributed Embedded Systems

a typical embedded system’s hardware and software. Section 1.4 elaborates modeling,
modeling objectives, and various modeling paradigms. Section 1.5 provides an overview of
optimization in embedded systems. Finally, Section 1.6 concludes this chapter.

1.1 Embedded Systems Applications

Embedded systems have applications in virtually all computing domains (except desktop com-
puting) such as automobiles, medical, industry automation, home appliances (e.g., microwave
ovens, toasters, washers/dryers), offices (e.g., printers, scanners), aircraft, space, military,
and consumer electronics (e.g., smartphones, feature phones, portable media players, video
games). In this section, we discuss some of these applications in detail.

1.1.1 Cyber-Physical Systems

A CPS is an emerging application domain of multi-unit/networked embedded systems. The
CPS term emphasizes the link to physical quantities such as time, energy, and space. Although
CPSs are embedded systems, the new terminology has been proposed by researchers to distin-
guish CPSs from simple microcontroller-based embedded systems. CPSs have become a hot
topic for research in recent years and the difference between CPSs and embedded systems is
not elucidated in many texts. We aim at making the distinction clear: every CPS is an embed-
ded system but not every embedded system is a CPS. For instance, different distributed control
functions in automobiles are examples of CPSs, and hence embedded systems (automotive
CPSs are often also referred as automotive embedded systems). However, most of consumer
electronic devices, such as mobile phones, personal digital assistants (PDAs), digital cameras,
printers, and smart cards, are embedded systems but not CPSs.

CPSs enable monitoring and control of physical systems via a network (e.g., Internet,
intranet, or wireless cellular network). CPSs are hybrid systems that include both continuous
and discrete dynamics. Modeling of CPSs must use hybrid models that represent both contin-
uous and discrete dynamics and should incorporate timing and concurrency. Communication
between single-unit embedded devices/subsystems performing distributed computation in
CPSs presents challenges due to uncertainty in temporal behavior (e.g., jitter in latency),
message ordering because of dynamic routing of data, and data error rates. CPS applications
include process control, networked building control systems (e.g., lighting, air-conditioning),
telemedicine, and smart structures.

1.1.2 Space

Embedded systems are prevalent in space and aerospace systems where safety, reliability,
and real-time requirements are critical. For example, a fly-by-wire aircraft with a 50-year
production cycle requires an aircraft manufacturer to purchase, all at once, a 50-year supply
of the microprocessors that will run the embedded software. All of these microprocessors
must be manufactured from the same production line from the same mask to ensure that the
validated real-time performance is maintained. Consequently, aerospace systems are unable
to benefit from the technological improvements in this 50-year period without repeating

Introduction 7

the software validation and certification, which is very expensive. Hence, for aerospace
applications, efficiency is of less relative importance as compared to predictability and safety,
which is difficult to ensure without freezing the design at the physical level [9].

Embedded systems are used in satellites and space shuttles. For example, small-scale satel-
lites in low earth orbit (LEO) use embedded systems for earth imaging and detection of iono-
spheric phenomenon that influences radio wave propagation (the ionosphere is produced by
the ionization of atmospheric neutrals by ultraviolet radiation from the Sun and resides above
the surface of earth stretching from a height of 50 km to more than 1000km) [10]. Embed-
ded systems enable unmanned and autonomous satellite platforms for space missions. For
example, the dependable multiprocessor (DM), commissioned by NASA’s New Millennium
Program for future space missions, is an embedded system leveraging multicore processors
and field-programmable gate array (FPGA)-based coprocessors [11].

1.1.3 Medical

Embedded systems are widely used in medical equipment where a product life cycle of 7
years is a prerequisite (i.e., processors used in medical equipment must be available for at
least 7 years of operation) [12]. High-performance embedded systems are used in medical
imaging devices (e.g., magnetic resonance imaging (MRI), computed tomography (CT), digi-
tal X-ray, and ultrasound) to provide high-quality images, which can accurately diagnose and
determine treatment for a variety of patients’ conditions. Filtering noisy input data and produc-
ing high-resolution images at high data processing rates require tremendous computing power
(e.g., video imaging applications often require data processing at rates of 30 images/s or more).
Using multicore embedded systems helps in efficient processing of these high-resolution med-
ical images, whereas hardware coprocessors such as graphics processing units (GPUs) and
FPGAs take parallel computing on these images to the next step. These coprocessors offload
and accelerate some of the processing tasks that the processor would normally handle.

Some medical applications require real-time imaging to provide feedback while performing
procedures such as positioning a stent or other devices inside a patient’s heart. Some imaging
applications require multiple modalities (e.g., CT, MRI, ultrasound) to provide optimal images
as no single technique is optimal for imaging all types of tissues. In these applications, embed-
ded systems combine images from each modality into a composite image that provides more
information than the images from each individual modality separately [13].

Embedded systems are used in cardiovascular monitoring applications to treat high-risk
patients while undergoing major surgery or cardiology procedures. Hemodynamic monitors
in cardiovascular embedded systems measure a range of data related to a patient’s heart and
blood circulation on a beat-by-beat basis. These systems monitor the arterial blood pressure
waveform along with the corresponding beat durations, which determines the amount of blood
pumped out with each individual beat and heart rate.

Embedded systems have made telemedicine a reality enabling remote patient examination.
Telemedicine virtually eliminates the distance between remote patients and urban practitioners
by using real-time audio and video with one camera at the patient’s location and another with
the treatment specialist. Telemedicine requires standard-based platforms capable of integrating
a myriad of medical devices via a standard input/output (I/O) connection such as Ethernet,
Universal Serial Bus (USB), or video port. Vendors (e.g., Intel) supply embedded equipment
for telemedicine that support real-time transmission of high-definition audio and video while

8 Modeling and Optimization of Parallel and Distributed Embedded Systems

simultaneously gathering data from the attached peripheral devices (e.g., heart monitor, CT
scanner, thermometer, X-ray, and ultrasound machine) [14].

1.1.4 Automotive

Embedded systems are heavily used in the automotive industry for measurement and con-
trol. Since these embedded systems are commonly known as electronic control units (ECUs),
we use the term ECU to refer to any automotive embedded system. A state-of-the-art luxury
car contains more than 70 ECUs for safety and comfort functions [15]. Typically, ECUs in
automotive systems communicate with each other over controller area network (CAN) buses.

ECUs in automotives are partitioned into two major categories: (1) ECUs for controlling
mechanical parts and (2) ECUs for handling information systems and/ entertainment. The first
category includes chassis control, automotive body control (interior air-conditioning, dash-
board, power windows, etc.), power-train control (engine, transmission, emissions, etc.), and
active safety control. The second category includes office computing, information manage-
ment, navigation, external communication, and entertainment [16]. Each category has unique
requirements for computation speed, scalability, and reliability.

ECUs responsible for power-train control, motor management, gear control, suspension
control, airbag release, and antilocking brakes implement closed-loop control functions as well
as reactive functions with hard real-time constraints and communicate over a class C CAN-bus
(typically 1 Mbps). ECUs responsible for power-train have stringent real-time and computing
power constraints requiring an activation period of a few milliseconds at high engine speeds.
Typical power-train ECUs use 32-bit microcontrollers running at a few hundreds of mega-
hertzs, whereas the remainder of the real-time subsystems use 16-bit microcontrollers running
at less than 1 MHz. Multicore ECUs are envisioned as the next-generation solution for auto-
motive applications with intense computing and high reliability requirements.

The body electronics ECUs, which serve the comfort functions (e.g., air-conditioning,
power window, seat control, and parking assistance), are mainly reactive systems with only a
few closed-loop control functions and have soft real-time requirements. For example, driver
and passengers issue supervisory commands to initiate power window movement by pressing
the appropriate buttons. These buttons are connected to a microprocessor that translates the
voltages corresponding to button up and down actions into messages that traverse over a
network to the power window controller. The body electronics ECUs communicate via a class
B CAN-bus typically operating at 100 kbps.

ECUs responsible for entertainment and office applications (e.g., video, sound, phone, and
global positioning system (GPS)) are software-intensive with millions of lines of code and
communicate via an optical data bus typically operating at 100 Mbps, which is the fastest bus
in automotive applications. Various CAN buses and optical buses that connect different types
of ECUs in automotive applications are in turn connected through a central gateway, which
enables the communication of all ECUs.

For high-speed communication of large volumes of data traffic generated by 360’ sensors
positioned around the vehicles, the automotive industry is moving toward the FlexRay
communication standard (a consortium that includes BMW, DaimlerChrysler, General
Motors, Freescale, NXP, Bosch, and Volkswagen/Audi as core members) [16]. The current

Introduction 9

CAN standard limits the communication speed to 500 kbps and imposes a protocol overhead
of more than 40%, whereas FlexRay defines the communication speed at 10 Mbps with
comparatively less overhead than the CAN. FlexRay offers enhanced reliability using a
dual-channel bus specification. The dual-channel bus configuration can exploit physical
redundancy and replicate safety-critical messages on both bus channels. The FlexRay
standard affords better scalability for distributed ECUs as compared to CAN because of a
time-triggered communication channel specification such that each node only needs to know
the time slots for its outgoing and incoming communications. To promote high scalability, the
node-assigned time slot schedule is distributed across the ECU nodes where each node stores
its own time slot schedule in a local scheduling table.

1.2 Characteristics of Embedded Systems Applications

Different embedded applications have different characteristics. Although a complete charac-
terization of embedded applications with respect to applications’ characteristics is outside the
scope of this chapter, following are some of the embedded application characteristics that are
discussed in context of their associated embedded domains.

1.2.1 Throughput-Intensive

Throughput-intensive embedded applications are applications that require high processing
throughput. Networking and multimedia applications, which constitute a large fraction of
embedded applications [17], are typically throughput-intensive due to ever increasing quality
of service (QoS) demands. An embedded system containing an embedded processor requires a
network stack and network protocols to connect with other devices. Connecting an embedded
device or a widget to a network enables remote device management including automatic appli-
cation upgrades. On a large scale, networked embedded systems can enable HPEC for solving
complex large problems traditionally handled only by supercomputers (e.g., climate research,
weather forecasting, molecular modeling, physical simulations, and data mining). However,
connecting hundreds to thousands of embedded systems for high-performance computing
(HPC) requires sophisticated and scalable interconnection technologies (e.g., packet-switched,
wireless interconnects). Examples of networking applications include server I/O devices, net-
work infrastructure equipment, consumer electronics (mobile phones, media players), and
various home appliances (e.g., home automation including networked TVs, VCRs, stereos,
refrigerators). Multimedia applications, such as video streaming, require very high through-
put of the order of several GOPS. A broadcast video with a specification of 30 frames/s with
720 x 480 pixels/frame requires approximately 400,000 blocks (group of pixels) to be pro-
cessed per second. A telemedicine application requires processing of 5 million blocks/s [18].

1.2.2 Thermal-Constrained

An embedded application is thermal-constrained if an increase in temperature above a thresh-
old could lead to incorrect results or even the embedded system failure. Depending on the

10 Modeling and Optimization of Parallel and Distributed Embedded Systems

target market, embedded applications typically operate above 45 °C (e.g., telecommunication
embedded equipment temperature exceeds 55 °C) in contrast to traditional computer systems,
which normally operate below 38 °C [19]. Meeting embedded application thermal constraints
is challenging due to typically harsh and high-temperature operating environments. Limited
space and energy budgets exacerbate these thermal challenges since active cooling systems
(fans-based) are typically infeasible in most embedded systems, resulting in only passive and
fanless thermal solutions.

1.2.3 Reliability-Constrained

Embedded systems with high reliability constraints are typically required to operate for
many years without errors and/or must recover from errors since many reliability-constrained
embedded systems are deployed in harsh environments where postdeployment removal
and maintenance are infeasible. Hence, hardware and software for reliability-constrained
embedded systems must be developed and tested more carefully than traditional computer
systems. Safety-critical embedded systems (e.g., automotive airbags, space missions, aircraft
flight controllers) have very high reliability requirements (e.g., the reliability requirement for
a flight-control embedded system on a commercial airliner is 10710 failures/h where a failure
could lead to aircraft loss [20]).

1.2.4 Real-Time

In addition to correct functional operation, real-time embedded applications have additional
stringent timing constraints, which impose real-time operational deadlines on the embedded
system’s response time. Although real-time operation does not strictly imply high perfor-
mance, real-time embedded systems require high performance only to the point that the dead-
line is met, at which time high performance is no longer needed. Hence, real-time embedded
systems require predictable high performance. Real-time operating systems (RTOSs) provide
guarantees for meeting the stringent deadline requirements for embedded applications.

1.2.5 Parallel and Distributed

Farallel and distributed embedded applications leverage distributed embedded devices to
cooperate and aggregate their functionalities or resources. Wireless sensor network (WSN)
applications use sensor nodes to gather sensed information (statistics and data) and use
distributed fault-detection algorithms. Mobile agent (autonomous software agent)-based
distributed embedded applications allow the process state to be saved and transported to
another new embedded system where the process resumes execution from the suspended
point (e.g., virtual migration). Many embedded applications exhibit varying degrees (low
to high levels) of parallelism, such as instruction-level parallelism (ILP) and thread-level
parallelism (TLP). Innovative architectural and software HPEEC techniques are required to
exploit an embedded application’s available parallelism to achieve high performance with
low power consumption.

Introduction 11

1.3 Embedded Systems—Hardware and Software

An interesting characteristic of embedded systems design is hardware/software codesign
(i.e., both hardware and software need to be considered together to find the right combination
of hardware and software that would result in the most-efficient product meeting the
requirement specifications). The mapping of application software to hardware must adhere
to the design constraints (e.g., real-time deadlines) and objective functions (e.g., cost, energy
consumption) (objective functions are discussed in detail in Section 1.4). In this section, we
give an overview of embedded systems hardware and software as depicted in Fig. 1.1.

1.3.1 Embedded Systems Hardware

Embedded systems hardware is less standardized as compared to that for desktop computers.
However, in many embedded systems, hardware is used within a loop where sensors gather
information about the physical environment and generate continuous sequences of analog
signals/values. Sample-and-hold circuits and analog-to-digital (A/D) converters digitize the
analog signals. The digital signals are processed, and the results are displayed and/or used to
control the physical environment via actuators. At the output, a digital-to-analog (D/A) con-
version is generally required because many actuators are analog. In the following sections, we
describe briefly the hardware components of a typical embedded system [1].

1.3.1.1 Sensors

Embedded systems contain a variety of sensors since there are sensors for virtually every phys-
ical quantity (e.g., weight, electric current, voltage, temperature, velocity, and acceleration).
A sensor’s construction can exploit a variety of physical effects including the law of induc-
tion (voltage generation in an electric field) and photoelectric effects. Recent advances in smart
embedded systems design (e.g., WSNs, CPSs) can be attributed to the large variety of available
Sensors.

1.3.1.2 Sample-and-Hold Circuits and A/D Converters

Sample-and-hold circuits and A/D converters work in tandem to convert incoming analog sig-
nals from sensors into digital signals. Sample-and-hold circuits convert an analog signal from
the continuous time domain to the discrete time domain. The circuit consists of a clocked tran-
sistor and a capacitor. The transistor functions similar to a switch where each time the switch is
closed by the clocked signal, the capacitor is charged to the voltage v(#) of the incoming volt-
age e(t). The voltage v(f) essentially remains the same even after opening the switch because
of the charge stored in the capacitor until the switch closes again. Each of the voltage values
stored in the capacitor are considered as an element of a discrete sequence of values generated
from the continuous signal e(7). The A/D converters map these voltage values to a discrete
set of possible values afforded by the quantization process that converts these values to digits.
There exists a variety of A/D converters with varying speed and precision characteristics.

12 Modeling and Optimization of Parallel and Distributed Embedded Systems

Processing units Embedded systems
ASIC AslP FPGA DSP GPU software
Microcontroller Microprocessor oS Midleware
. Application
Multicore Manycore coftware
A
Memory subsystems
A/D converter Caches Main memory
1 L1 L1-D
— y 4 Flash memory
L2
Scratchpad
L3 memory
Sample-and-hold » Display I
circuit 1
A
> D/A converter
_ ¥ Physical system/ -
78
/e Sensors <« envionment ¢ Actuators
A/D converter: Analog-to-digital converter GPU: Graphics processing unit
D/A converter: Digital-to-analog converter OS: Operating system -
ASIC: Application-specific integrated circuit L1-I: Level one instruction cache
ASIP: Application-specific instruction set processor L1-D: Level one data cache
FPGA: Field programmable gate array L2: Level two cache
DSP: Digital signal processor L3: Level three cache

Figure 1.1 Embedded systems hardware and software overview

Introduction 13

1.3.1.3 Processing Units

The processing units in embedded systems process the digital signals output from the A/D
converters. Energy efficiency is an important factor in the selection of processing units for
embedded systems. We categorize processing units into three main types:

(1) Application-Specific Integrated Circuits (ASICs): ASICs implement an embedded appli-
cation’s algorithm in hardware. For a fixed process technology, ASICs provide the highest
energy efficiency among available processing units at the cost of no flexibility (Fig. 1.1).

(2) Processors: Many embedded systems contain a general-purpose microprocessor and/or a
microcontroller. These processors enable flexible programming but are much less energy
efficient than ASICs. High-performance embedded applications leverage multicore/
manycore processors, application domain-specific processors (e.g., digital signal pro-
cessors (DSPs)), and application-specific instruction set processors (ASIPs) that can
provide the required energy efficiency. GPUs are often used as coprocessors in imaging
applications to accelerate and offload work from the general-purpose processors (Fig. 1.1).

(3) Field-Programmable Gate Arrays (FPGAs): Since ASICs are too expensive for
low-volume applications and software-based processors can be too slow or energy
inefficient, reconfigurable logic (of which FPGAs are the most prominent) can provide
an energy-efficient solution. FPGAs can potentially deliver performance comparable to
ASICs but offer reconfigurability using different, specialized configuration data that can
be used to reconfigure the device’s hardware functionality. FPGAs are mainly used for
hardware acceleration of low-volume applications and rapid prototyping. FPGAs can be
used for rapid system prototyping that emulates the same behavior as the final system and
thus can be used for experimentation purposes.

1.3.1.4 Memory Subsystems

Embedded systems require memory subsystems to store code and data. Memory subsystems in
embedded systems typically consist of on-chip caches and an off-chip main memory. Caches
in embedded systems have different hierarchy: level one instruction cache (L.1-1) for holding
instructions, level one data cache for holding data (L1-D), level two unified (instruction/data)
cache (L2), and recently level three cache (L3). Caches provide much faster access to code and
data as compared to the main memory. However, caches are not suitable for real-time embed-
ded systems because of limited predictability of hit rates and therefore access time. To offer bet-
ter timing predictability for memory subsystems, many embedded systems especially real-time
embedded systems use scratchpad memories. Scratchpad memories enable software-based
control for temporary storage of calculations, data, and other work in progress instead of
hardware-based control as in caches. For nonvolatile storage of code and data, embedded
systems use Flash memory that can be electrically erased and reprogrammed. Examples of
embedded systems using Flash memory include PDAs, digital audio and media players, digital
cameras, mobile phones, video games, and medical equipment, and so on.

1.3.1.5 D/A Converters

As many of the output devices are analog, embedded systems leverage D/A converters to
convert digital signals to analog signals. D/A converters typically use weighted resistors to

14 Modeling and Optimization of Parallel and Distributed Embedded Systems

generate a current proportional to the digital number. This current is transformed into a pro-
portional voltage by using an operational amplifier.

1.3.1.6 Output Devices

Embedded systems’ output devices include displays and electro-mechanical devices known as
actuators. Actuators can directly impact the environment based on the processed and/or control
information from embedded systems. Actuators are key elements in reactive and interactive
embedded systems, especially CPSs.

1.3.2 Embedded Systems Software

Embedded systems software consists of an operating system (OS), a middleware, and an appli-
cation software (Fig. 1.1). Embedded software has more stringent resource constraints (e.g.,
small memory footprint, small data word sizes) than traditional desktop software. In the fol-
lowing sections, we describe the main software components of embedded systems.

1.3.2.1 Operating System

Except for very simple embedded systems, most embedded systems require an operating sys-
tem (OS) for scheduling, task switching, and I/O. Embedded operating systems (EOSs) differ
from traditional desktop OSs because EOSs provide limited functionality but a high-level con-
figurability in order to accommodate a wide variety of application requirements and hardware
platform features. Many embedded system’s applications (e.g., CPSs) are real-time and require
support from a RTOS. An RTOS leverages deterministic scheduling policies and provides pre-
dictable timing behavior with guarantees on the upper bound of a task’s execution time.

1.3.2.2 Middleware

Middleware is a software layer between the application software and the EOS. Middleware
typically includes communication libraries (e.g., message passing interface (MPI), ilib API for
Tilera [21]). We point out that real-time embedded systems require a real-time middleware.

1.3.2.3 Application Software

Embedded systems contain application software specific to an embedded application (e.g., a
portable media player, a phone framework, a healthcare application, and an ambient condition
monitoring application). Embedded applications leverage communication libraries provided
by the middleware and EOS features. Application software development for embedded sys-
tems requires knowledge of the target hardware architecture as assembly language fragments
are often embedded within the software code for hardware control or performance purposes.
The software code is typically written in a high-level language, such as C, which promotes
application software conformity to stringent resource constraints (e.g., limited memory foot-
print and small data word sizes).

Introduction 15

Application software development for real-time applications must consider real-time issues,
especially the worst-case execution time (WCET). The WCET is defined as the largest exe-
cution time of a program for any input and any initial execution state. We point out that the
exact WCET can only be computed for certain programs and tasks such as programs with-
out recursions, without while loops, and loops with a statically known iteration count [1].
Modern pipelined processor architectures with different types of hazards (e.g., data hazards,
control hazards) and modern memory subsystems composed of different cache hierarchies with
limited hit rate predictability make WCET determination further challenging. To offer better
timing predictability for memory subsystems, many embedded systems (real-time embedded
systems in particular) use scratchpad memories. Scratchpad memories enable software-based
control for temporary storage of calculations, data, and other work in progress instead of
hardware-based control as in caches. Since exact WCET determination is extremely difficult,
designers typically specify upper bounds on the WCET.

1.4 Modeling—An Integral Part of the Embedded Systems
Design Flow

Modeling stems from the concept of abstraction (i.e., defining a real-world object in a
simplified form). Formally, a model is defined as [1]: “A model is a simplification of another
entity, which can be a physical thing or another model. The model contains exactly those
characteristics and properties of the modeled entity that are relevant for a given task. A model
is minimal with respect to a task if it does not contain any other characteristics than those
relevant for the task.”

The design of embedded systems increasingly depends on a hierarchy of models. Models
have been used for decades in computer science to provide abstractions. Since embedded sys-
tems have very complex functionality built on top of very sophisticated platforms, designers
must use a series of models to successfully accomplish the system design. Early stages of the
design process require simple models of reasonable accuracy; later design stages need more
sophisticated and accurate models [3].

The key phases in the embedded systems design flow are as follows: requirement spec-
ifications, hardware/software (HW/SW) partitioning, preliminary design, detailed design,
component implementation, component test/validation, code generation, system integration,
system verification/evaluation, and production [15]. The first phase, requirement specifica-
tions, outlines the expected/desired behavior of the SUD, and use cases describe potential
applications of the SUD. Young et al. [22] commented on the importance of requirement
specifications: “A design without specifications cannot be right or wrong, it can only be
surprising!”. HW/SW partitioning partitions an application’s functionality into a combination
of interacting hardware and software. Efficient and effective HW/SW partitioning can enable
a product to more closely meet the requirement specifications. The preliminary design is
a high-level design with minimum functionality that enables designers to analyze the key
characteristics/functionality of an SUD. The detailed design specifies the details that are
absent from the preliminary design such as detailed models or drivers for a component. Since
embedded systems are complex and are comprised of many components/subsystems, many
embedded systems are designed and implemented component-wise, which adds component
implementation and component testing/validation phases to the design flow. Component
validation may involve simulation followed by a code generation phase that generates the

16 Modeling and Optimization of Parallel and Distributed Embedded Systems

appropriate code for the component. System integration is the process of integrating the
design of the individual components/subsystem into the complete, functioning embedded
system. Verification/evaluation is the process of verifying quantitative information of key
objective functions/characteristics (e.g., execution time, reliability) of a certain (possibly
partial) design. Once an embedded systems design has been verified, the SUD enters that
production phase that produces/fabricates the SUD according to market requirements dictated
by supply and demand economic model. Modeling is an integral part of the embedded
systems design flow, which abstracts the SUD and is used throughout the design flow, from
the requirement specifications’ phase to the formal verification/evaluation phase.

Most of the errors encountered during embedded systems design are directly or indirectly
related to incomplete, inconsistent, or even incorrect requirement specifications. Currently, the
requirement specifications are mostly given in sentences of a natural language (e.g., English),
which can be interpreted differently by the OEMs and the suppliers (e.g., Bosch, Siemens
that provide embedded subsystems). To minimize the design errors, the embedded industry
prefers to receive the requirement specifications in a modeling tool (e.g., graphical or lan-
guage based). Modeling facilitates designers to deduce errors and quantitative aspects (e.g.,
reliability, lifetime) early in the design flow.

Once the SUD modeling is complete, the next phase is validation through simulation
followed by code generation. Validation is the process of checking whether a design
meets all of the constraints and performs as expected. Simulating embedded systems may
require modeling the SUD, the operating environment, or both. Three terminologies are
used in the literature depending on whether the SUD or the real environment or both are
modeled: “Software-in-the-loop” refers to the simulation where both the SUD and the real
environment are modeled for early system validation; ‘“Rapid prototyping” refers to the
simulation where the SUD is modeled and the real environment exists for early POC; and
“Hardware-in-the-loop” refers to the simulation where the physical SUD exists and real
environment is modeled for exhaustive characterization of the SUD.

Scalability in modeling/verification means that if a modeling/verification technique can be
used to abstract/verify a specific small system/subsystem, the same technique can be used to
abstract/verify large systems. In some scenarios, modeling/verification is scalable if the cor-
rectness of a large system can be inferred from a small verifiable modeled system. Reduction
techniques such as partial order reduction and symmetry reduction address this scalability
problem; however, this area requires further research.

1.4.1 Modeling Objectives

Embedded systems design requires characterization of several objectives, or design metrics,
such as the average execution time and WCETS, code size, energy/power consumption, safety,
reliability, temperature/thermal behavior, electromagnetic compatibility, cost, and weight. We
point out that some of these objectives can be taken as design constraints since in many opti-
mization problems, objectives can be replaced by constraints and vice versa. Considering
multiple objectives is a unique characteristic of many embedded systems and can be accu-
rately captured using mathematical models. A system or subsystem’s mathematical model is
a mathematical structure consisting of sets, definitions, functions, relations, logical predicates
(true or false statements), formulas, and/or graphs. Many mathematical models for embedded

Introduction 17

Figure 1.2 A linear objective function for reliability

systems use objective function(s) to characterize some or all of these objectives, which aids in
early evaluation of embedded systems design by quantifying information for key objectives.

The objectives for an embedded system can be captured mathematically using linear, piece-
wise linear, or nonlinear functions. For example, a linear objective function for the reliability
of an embedded system operating in a state s (Fig. 1.2) can be given as [23]

1, r>Ug
() =90 —Lg)/(Ug—Lg), Lg<r<Ug (1.1)
0, r<Lg

where r denotes the reliability offered in the current state s (denoted as s, in Fig. 1.2), and
the constant parameters Lr and Up denote the minimum and maximum allowed/tolerated
reliability, respectively. The reliability may be represented as a multiple of a base reliability
unit equal to 0.1, which represents a 10% packet reception rate [24].

Embedded systems with multiple objectives can be characterized by using either multiple
objective functions, each representing a particular design metric/objective, or a single objective
function that uses a weighted average of multiple objectives. A single overall objective function
can be formulated as

F($) =Y opfi(s)
k=1

st. sES

0,20, k=1,2, ... ,m

o, <1, k=1,2,m
ka=1 (1.2)
k=1

where f}(s) and w, denote the objective function and weight factor for the K'th objective/design
metric (weight factors signify the weightage/importance of objectives with respect to each
other), respectively, given that there are m objectives. Individual objectives are characterized
by their respective objective functions f,(s) (e.g., a linear objective function for reliability is
given in Eq. (1.1) and depicted in Fig. 1.2).

A single objective function allows selection of a single design from the design space (the
design space represents the set containing all potential designs); however, the assignments
of weights for different objectives in the single objective function can be challenging using
informal requirement specifications. Alternatively, the use of multiple, separate objective

18 Modeling and Optimization of Parallel and Distributed Embedded Systems

functions returns a set of designs from which a designer can select an appropriate design that
meets the most critical objectives optimally/suboptimally. Often embedded systems modeling
focuses on optimization of an objective function (e.g., power, throughput, reliability) subject
to design constraints. Typical design constraints for embedded systems include safety,
hard real-time requirements, and tough operating conditions in a harsh environment (e.g.,
aerospace) though some or all of these constraints can be added as objectives to the objective
function in many optimization problems as described earlier.

1.4.2 Modeling Paradigms

Since embedded systems contain a large variety of abstraction levels, components, and aspects
(e.g., hardware, software, functional, verification) that cannot be supported by one language
or tool, designers rely on various modeling paradigms, each of which target a partial aspect
of the complete design flow from requirement specifications to production. Each modeling
paradigm describes the system from a different point of view, but none of the paradigms cover
all aspects. We discuss some of the modeling paradigms used in embedded systems design in
the following sections, each of which may use different tools to assist with modeling.

1.4.2.1 Differential Equations

Differential equations-based modeling can either use ordinary differential equations (ODEs)
or partial differential equations (PDEs). ODEs (linear and nonlinear) are used to model sys-
tems or components characterized by quantities that are continuous in value and time, such
as voltage and current in electrical systems, speed and force in mechanical systems, or tem-
perature and heat flow in thermal systems [15]. ODE-based models typically describe analog
electrical networks or the mechanical behavior of the complete system or component. ODEs
are especially useful for studying feedback control systems that can make an unstable sys-
tem into a stable one (feedback systems measure the error (i.e., difference between the actual
and desired behavior) and use this error information to correct the behavior). We emphasize
that ODEs work for smooth motion where linearity, time invariance, and continuity proper-
ties hold. Nonsmooth motion involving collisions requires hybrid models that are a mixture of
continuous and discrete time models [25].

PDEs are used for modeling behavior in space and time, such as moving electrodes in
electromagnetic fields and thermal behavior. Numerical solutions for PDEs are calculated by
finite-element methods (FEMs) [25].

1.4.2.2 State Machines

State machines are used for modeling discrete dynamics and are especially suitable for reac-
tive systems. Finite-state machines (FSMs) and state-charts are some of the popular examples
of state machines. Communicating Finite-state machines (CFSMs) represent several FSMs
communicating with each other. State-charts extend FSMs with a mechanism for describ-
ing hierarchy and concurrency. Hierarchy is incorporated using super-states and sub-states,
where super-states are states that comprise other sub-states [1]. Concurrency in state-charts

Introduction 19

is modeled using AND-states. If a system containing a super-state S is always in all of the
sub-states of S whenever the system is in S, then the super-state S is an AND-super-state.

1.4.2.3 Dataflow

Dataflow modeling identifies and models data movement in an information system. Dataflow
modeling represents processes that transform data from one form to another, external entities
that receive data from a system or send data into the system, data stores that hold data, and
dataflow that indicates the routes over which the data can flow. A dataflow model is represented
by a directed graph where the nodes/vertices, actors, represent computation (computation
maps input data streams into output data streams) and the arcs represent communication chan-
nels. Synchronous dataflow (SDF) and Kahn process networks (KPNs) are common examples
of dataflow models. The key characteristics of these dataflow models is that SDFs assume that
all actors execute in a single clock cycle, whereas KPNs permit actors to execute with any
finite delay [1].

1.4.2.4 Discrete Event-Based Modeling

Discrete event-based modeling is based on the notion of firing or executing a sequence of
discrete events, which are stored in a queue and are sorted by the time at which these events
should be processed. An event corresponding to the current time is removed from the queue,
processed by performing the necessary actions, and new events may be enqueued based on the
action’s results [1]. If there is no event in the queue for the current time, the time advances.
Hardware description languages (e.g., VHDL, Verilog) are typically based on discrete event
modeling. SystemC, which is a system-level modeling language, is also based on discrete event
modeling paradigm.

1.4.2.5 Stochastic Models

Numerous stochastic models exist, which mainly differ in the assumed distributions of the
state residence times, to describe and analyze system performance and dependability. Ana-
lyzing the embedded system’s performance in an early design phase can significantly reduce
late-detected, and therefore cost-intensive, problems. Markov chains and queueing models
are popular examples of stochastic models. The state residence times in Markov chains are
typically assumed to have exponential distributions because exponential distributions lead to
efficient numerical analysis, although other generalizations are also possible. Performance
measures are obtained from Markov chains by determining steady-state and transient-state
probabilities. Queueing models are used to model systems that can be associated with some
notion of queues. Queueing models are stochastic models since these models represent the
probability of finding a queueing system in a particular configuration or state.

Stochastic models can capture the complex interactions between an embedded system and
its environment. Timeliness, concurrency, and interaction with the environment are primary
characteristics of many embedded systems, and nondeterminism enables stochastic models to
incorporate these characteristics. Specifically, nondeterminism is used for modeling unknown

20 Modeling and Optimization of Parallel and Distributed Embedded Systems

aspects of the environment or system. Markov decision processes (MDPs) are discrete stochas-
tic dynamic programs, an extension of discrete time Markov chains, that exhibit nondetermin-
ism. MDPs associate a reward with each state in the Markov chain.

1.4.2.6 Petri Nets

A Petri net is a mathematical language for describing distributed systems and is represented
by a directed, bipartite graph. The key elements of Petri nets are conditions, events, and a
flow relation. Conditions are either satisfied or not satisfied. The flow relation describes the
conditions that must be met before an event can fire as well as prescribes the conditions that
become true when after an event fires. Activity charts in unified modeling language (UML)
are based on Petri nets [1].

1.4.3 Strategies for Integration of Modeling Paradigms

Describing different aspects and views of an entire embedded system, subsystem, or com-
ponent over different development phases requires different modeling paradigms. However,
sometimes partial descriptions of a system need to be integrated for simulation and code gen-
eration. Multiparadigm languages integrate different modeling paradigms. There are two types
of multiparadigm modeling [15]:

(1) One model describing a system complements another model resulting in a model of the
complete system.
(2) Two models give different views of the same system.

UML is an example of multiparadigm modeling, which is often used to describe
software-intensive system components. UML enables the designer to verify a design before
any hardware/software code is written/generated [26] and allows generation of the appropriate
code for the embedded system using a set of rules. UML offers a structured and repeatable
design: if there is a problem with the behavior of the application, then the model is changed
accordingly; and if the problem lies in the performance of the code, then the rules are adjusted.
Similarly, MATLAB’s Simulink modeling environment integrates a continuous time and
discrete time model of computation based on equation solvers, a discrete event model, and an
FSM model.

Two strategies for the integration of heterogeneous modeling paradigms are [15] as follows:

(1) Integration of operations (analysis, synthesis) on models
(2) Integration of models themselves via model translation.

We briefly describe several different integration approaches that leverage these strategies in
the following sections.

1.4.3.1 Cosimulation

Cosimulation permits simulation of partial models of a system in different tools and inte-
grates the simulation process. Cosimulation depends on a central cosimulation engine, called a

Introduction 21

simulation backplane, that mediates between the distributed simulations run by the simulation
engines of the participating computer-aided software engineering (CASE) tools. Cosimula-
tion is useful and sufficient for model validation when simulation is the only purpose of model
integration. In general, cosimulation is useful for the combination of a system model with a
model of the system’s environment since the system model is constructed completely in one
tool and enters into the code generation phase, whereas the environment model is only used
for simulation. Alternatively, cosimulation is insufficient if both of the models (the system and
its environment model) are intended for code generation.

1.4.3.2 Code Integration

Many modeling tools have associated code generators, and code integration is the process of
integrating the generated codes from multiple modeling tools. Code integration tools expedite
the design process because in the absence of a code integration tool, subsystem codes generated
by different tools have to be integrated manually.

1.4.3.3 Code Encapsulation

Code encapsulation is a feature offered by many CASE tools that permits code encapsulation of
a subsystem model as a block box in the overall system model. Code encapsulation facilitates
automated code integration as well as overall system simulation.

1.4.3.4 Model Encapsulation

In model encapsulation, an original subsystem model is encapsulated as an equivalent subsys-
tem model in the modeling language of the enclosing system. Model encapsulation permits
coordinated code generation in which the code generation for the enclosing system drives the
code generator for the subsystem. The enclosing system tool can be regarded as a master tool
and the encapsulated subsystem tool as a slave tool; therefore, model encapsulation requires
the master tool to have knowledge of the slave tool.

1.4.3.5 Model Translation

In model translation, a subsystem model is translated syntactically and semantically to the
language of the enclosing system. This translation results in a homogeneous overall system
model so that one tool chain can be used for further processing of the complete system.

1.5 Optimization in Embedded Systems

General-purpose computing systems are designed to work well in a variety of contexts.
Although embedded computing systems must be flexible, the embedded systems can often be
tuned or optimized to a particular application. Consequently, some of the design precepts that
are commonly adhered in the design of general-purpose computers do not hold for embedded
computers. Given the huge number of embedded computers sold each year, many application
areas make it worthwhile to spend the time to create a customized and optimized architecture.

22 Modeling and Optimization of Parallel and Distributed Embedded Systems

Optimization techniques at different design levels (e.g., hardware and software, data link
layer, routing, OS) assist designers in meeting application requirements. Embedded systems
optimization techniques can be generally categorized as static or dynamic. Static optimizations
optimize an embedded system at deployment time and remain fixed for the embedded system’s
lifetime. Static optimizations are suitable for stable/predictable applications, whereas they are
inflexible and do not adapt to changing application requirements and environmental stim-
uli. Dynamic optimizations provide more flexibility by continuously optimizing an embedded
system during runtime, providing better adaptation to changing application requirements and
actual environmental stimuli.

Parallel and distributed embedded systems add more facets to optimization problem
than traditional embedded systems as a growing number of distributed embedded systems
leverage wireless communication to connect with different embedded devices. This wireless
connectivity between distributed embedded systems requires optimization of radios (aka data
transceivers) and various layers of Open Systems Interconnect (OSI) model of the International
Standards Organization (ISO) implemented in these embedded systems. Embedded systems’
radios carry digital information and are used to connect to networks. These networks may
be specialized, as in cell phones, but increasingly radios are used as the physical layer in the
Internet protocol systems [3]. The radios in these distributed wireless embedded systems must
perform several tasks: demodulate the signal down to the baseband, detect the baseband signal
to identify bits, and correct errors in the raw bit stream. Wireless data radios in these embedded
systems may be built from combinations of analog, hardwired digital, configurable, and pro-
grammable components. Software-defined radios (SDRs) are also being used in some parallel
and distributed embedded systems. A software radio is a radio that can be programmed; the
term SDR is often used to mean either a purely or a partly programmable radio [3].

Although it may seem that embedded systems would be too simple to require the use of
the OSI model, embedded systems increasingly implement multiple layers of the OSI model.
Even relatively simple embedded systems provide physical, data link, network, and appli-
cation services. An increasing number of embedded systems provide Internet service that
requires implementing the full range of functions in the OSI model. The OSI model defines a
seven-layer model for network services [3]:

(1) Physical: The electrical and physical connection

(2) Data link: Access and error control across a single link

(3) Network: Basic end-to-end service

(4) Transport: Connection-oriented services

(5) Session: Activity control, such as checkpointing

(6) Presentation: Data exchange formats

(7) Application: The interface between the application and the network.

The OSI model layers can be implemented in hardware and/or software in embedded sys-
tems depending on the embedded application requirements. Embedded systems are optimized
for various application requirements and design metrics in almost all design phases. Embedded
systems optimization benefits in particular from the following design phases:

e Modeling at different levels of abstraction
e Profiling and analysis revamp system requirements and software models into more specific
requirements on the platform hardware architecture

Introduction 23

e Design space exploration (whether exhaustive or some heuristic-based) evaluates hardware
alternatives.

The design phases in embedded systems optimize various design metrics, such as perfor-
mance, power, cost, and reliability. The remainder of this section focuses on optimization of
these design metrics for embedded systems.

1.5.1 Optimization of Embedded Systems Design Metrics

An embedded application determines the basic functional requirements, such as input and
output relationship. The embedded system designer must also determine the nonfunctional
requirements, such as performance, power, cost, some of which are derived directly from
the application and some from other factors, such as marketing. Design metrics are gener-
ally derived from application requirements. Often design metrics derived from nonfunctional
requirements are equally important as those from functional requirements. An embedded sys-
tems applications may have many design metrics, such as performance, power, reliability, and
quality. Some of these metrics can be accurately measured and predicted while others are
less so.

Various optimization techniques at different levels (e.g., architecture, middleware, and soft-
ware) can be used to enable an embedded platform to optimize various design metrics and
meet the embedded application requirements. In the following, we elaborate the optimization
of a few design metrics: performance, power, temperature, cost, design time, reliability, and
quality.

1.5.1.1 Performance

Performance metric refers to some aspect of speed. Performance can be measured in
many different ways: average performance versus worst-case or best-case performance,
throughput versus latency, and peak versus sustained performance [3]. Chapter 7 of this book
discusses various performance optimization techniques for embedded systems. For example,
throughput-intensive applications can leverage architectural innovations (e.g., tiled multicore
architectures, high-bandwidth interconnects), hardware-assisted middleware techniques (e.g.,
speculative approaches, dynamic voltage and frequency scaling (DVFS), hyperthreading),
and software techniques (e.g., data forwarding, task scheduling, and task migration). Please
refer to Chapter 7 of this book for a comprehensive discussion on performance optimization
techniques.

1.5.1.2 Energy/Power

Energy and/or power consumption are critical metrics for many embedded systems. Energy
consumption is particularly important for battery-operated embedded systems as reduced
energy consumption leads to an increased battery life of the embedded system. Power
consumption also affects heat generation. Less power consumption not only engenders less
cooling costs but also enables sustainable long-term functioning without damaging the chip
due to overheating. Energy/power optimization techniques for embedded systems include

24 Modeling and Optimization of Parallel and Distributed Embedded Systems

DVFES, power gating, and clock gating. Please refer to Chapter 7 of this book for details on
energy optimization techniques.

1.5.1.3 Temperature

Thermal-aware design has become a prominent aspect of microprocessor and SoC design due
to the large thermal dissipation of modern chips. In very high-performance systems, heat may
be difficult to dissipate even with fans and thermally controlled ambient environments. Many
consumer devices avoid the use of cooling fans due to size constraints [3].

Heat transfer in integrated circuits relies on the thermal resistance and thermal capacitance
of the chip, its package, and the associated heat sink. Thermal resistance is a heat property
and a measurement of a temperature difference by which an object or material resists a heat
flow. Absolute thermal resistance is the temperature difference across a structure when a unit
of heat energy flows through the structure in unit time. Thermal capacitance is equal to the
ratio of the heat added to (or subtracted from) an object to the resulting temperature change.
Thermal models can be solved in the same manner as are electrical resistor—capacitor (RC)
circuit models. The activity of the architectural units determines the amount of heat generated
in each unit.

There exists various techniques to optimize temperature design metric, such as
temperature-aware task scheduling [27], temperature-aware DVES [28], thermal profile
management [29], proactive scheduling for processor temperature [30], and reactive schedul-
ing for processor temperature [31]. To illustrate optimization of temperature design metric,
we summarize the approach in reactive scheduling for processor temperature in the following.

Wang and Bettati [31] developed a reactive scheduling algorithm while ensuring that
the processor temperature remained below a threshold T,. Let S(f) represent the processor
speed/frequency at time ¢. The processor power consumption is modeled as:

P(t) = KS*(1) (1.3)

where K is a constant and a > 1 (usually, it is assumed that @ = 3). The thermal properties of
the system can be modeled as

K

a=— (1.4)
Cth

h=—L (1.5)
Rthcth

where b is a positive constant that represents the power dissipation rate. The equilibrium speed
Sp is defined as the speed at which the processor stays at the threshold temperature 7, and is
given as

Sy = <§TH>W (1.6)

According to reactive scheduling for processor temperature:

e When the processor has useful work to do and is at its threshold temperature, the processor
clock speed is set to the Sg.

Introduction 25

e When the processor has useful work to do and the temperature is below the threshold temper-
ature, increase the processor speed (the processor speed can be increased up to the maximum
available processor frequency/speed).

1.5.14 Cost

The monetary cost of a system is an important design metric. Cost can be measured in several
ways. Manufacturing costis determined by the cost of components and the manufacturing pro-
cesses used. Unit cost is the monetary cost of manufacturing each copy of the system, excluding
nonrecurring engineering (NRE) cost. NRE cost is the one-time monetary cost of designing
the system. NRE cost is also known as design cost. Design cost is determined both by labor
and by the equipment used to support the designers. The server farm and computer-aided
design (CAD) tools needed to design a large chip cost several million dollars. Lifetime cost
comprises of software and hardware maintenance and upgrades. The fotal cost of producing a
certain number of units of an embedded design can be given as [32]

Total cost = NRE cost + (unit cost X number of units) (1.7)

The per-product cost can be given as [32]

total cost
number of units
_ (NRE cost
~ \number of units

Per-product cost =

) + unit cost (1.8)

Let us consider an example for the illustration of different costs. Suppose NRE cost of design-
ing an embedded system is $3000 and the unit cost is $100. If 20 units are produced for that
embedded system, then total cost from Eq. (1.7) is as follows: total cost=$3000 + (20 x
$100) = $3000 + $2000 = $5000. Per-product cost for that embedded system from Eq. (1.8) is
as follows: per-product cost = $3000/20 + $100=$150 + $100 = $250.

Many optimization problems deal with reducing the cost of an embedded systems design
while meeting application requirements. In general, a cost minimization problem takes a form
similar to the following equation:

min f,(x,y,z)
st. x<a
y<b
z<c (1.9)

where f,(x, y, z) represents the cost function to be minimized and is a function of parameters
x, y, and z. The constraints of the optimization problem are also specified in Eq. (1.9) where
a, b, and ¢ denote some constants that restrict parameters x, y, and z, respectively.

1.5.1.5 Design Time

The time required to design a system is an important metric for many embedded systems.
Design time is often constrained by time-to-market. Time-to-market is the time required to

26 Modeling and Optimization of Parallel and Distributed Embedded Systems

develop a system to the point that it can be released and sold to customers. If an embedded
systems design takes too long to complete, the product may miss its intended market. Revenue
for an embedded product depends on market window, which is the period during which the
product would have highest sales. Delays can be costly in the delayed entry of an embedded
product in the market window. For example, calculators must be ready for the back-to-school
market each fall. Various modeling and CAD tools are used in embedded systems design to
reduce the design time and meet the time-to-market constraints.

1.5.1.6 Reliability

Different embedded systems have different reliability requirements. In some consumer mar-
kets, customers do not expect to keep the product (e.g., mobile phone) for a long period.
Automobiles, in contrast, must be designed to be safe and reliable. Dependability assimila-
tion in safety-critical embedded systems (e.g., automobiles, aircrafts) is paramount because of
product liability legislations, ISO standards, and increasing customer expectations. The prod-
uct liability law holds responsible the manufacturers, distributors, suppliers, and retailers for
the injuries caused by those products. According to the law, the manufacturer’s product liabil-
ity is excluded if a failure cannot be detected using the state-of-the-art science and technology
at the time of product release.

Reliability techniques that help in designing a reliable embedded system include N-modular
redundancy, watchdog timers, coding techniques (e.g., parity codes, checksum, cyclic codes),
algorithm-based fault tolerance, acceptance tests, and checkpointing. Various reliability mod-
eling methodologies also assist the designers in meeting reliability requirements of an embed-
ded design.

1.5.1.7 Quality

Quality is a design metric that is often hard to quantify and measure. Quality or QoS is often
considered as a performance measure. In some markets (e.g., few consumer devices), factors
such as user interface design, availability of the connection, speed of data streaming, and pro-
cessing may be associated with quality. In safety-critical systems, such as automobiles, QoS
must be considered as a dependability or reliability measure that can impact the system’s avail-
ability and safety. For example, if the end-to-end delay in a cyber-physical automotive system
exceeds beyond a certain critical threshold, the driver can totally lose the control of his/her car.

1.5.2 Multiobjective Optimization

Embedded systems design must meet several different design objectives. The traditional oper-
ations research approach of defining a single objective function and possibly some minor
objective functions, along with design constraints, may not befittingly capture an embedded
system’s requirements. Economist Vilfredo Pareto proposed a theory for multiobjective anal-
ysis known as Pareto optimality. The theory also delineates the method by which optimal
solutions are assessed: an optimal solution cannot be improved without making some other
part of the solution worse [3]. Optimization of embedded systems is often multiobjective, and

Introduction 27

the designer has to make trade-offs between different objectives depending on the criticality
(weight factor) of an objective (Eq. (1.2)).

1.6 Chapter Summary

This chapter introduced parallel and distributed embedded systems. We elaborated on several
embedded systems applications domains including CPSs, space, medical, and automotive.
The chapter discussed various characteristics of embedded systems applications, such as
throughput-intensive, thermal-constrained, reliability-constrained, real-time, and parallel and
distributed. We elucidated the main components of a typical embedded system’s hardware and
software. We presented an overview of modeling, modeling objectives, and various modeling
paradigms. Finally, we elaborated optimization of various design metrics, such as performance,
energy/power, temperature, cost, design time, reliability, and quality, for embedded systems.

		2015-11-20T06:03:21-0500
	Certified PDF 2 Signature

