
1

1

Introduction and
Mathematical Preliminaries

1.1 Introduction

1.1.1 Preliminary Comments

The phrase “energy principles” or “energy methods” in the present study refers
to methods that make use of the total potential energy (i.e., strain energy and
potential energy due to applied loads) of a system to obtain values of an un-
known displacement or force, at a specific point of the system. These include
Castigliano’s theorems, unit dummy load and unit dummy displacement meth-
ods, and Betti’s and Maxwell’s theorems. These methods are often limited to
the (exact) determination of generalized displacements or forces at fixed points
in the structure; in most cases, they cannot be used to determine the com-
plete solution (i.e., displacements and/or forces) as a function of position in
the structure. The phrase “variational methods,” on the other hand, refers to
methods that make use of the variational principles, such as the principles of
virtual work and the principle of minimum total potential energy, to determine
approximate solutions as continuous functions of position in a body. In the clas-
sical sense, a variational principle has to do with the minimization or finding
stationary values of a functional with respect to a set of undetermined param-
eters introduced in the assumed solution. The functional represents the total
energy of the system in solid and structural mechanics problems, and in other
problems it is simply an integral representation of the governing equations. In
all cases, the functional includes all the intrinsic features of the problem, such
as the governing equations, boundary and/or initial conditions, and constraint
conditions.

1.1.2 The Role of Energy Methods and Variational Principles

Variational principles have always played an important role in mechanics. Vari-
ational formulations can be useful in three related ways. First, many problems
of mechanics are posed in terms of finding the extremum (i.e., minima or max-
ima) and thus, by their nature, can be formulated in terms of variational state-
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2 INTRODUCTION AND MATHEMATICAL PRELIMINARIES

ments. Second, there are problems that can be formulated by other means,
such as by vector mechanics (e.g., Newton’s laws), but these can also be formu-
lated by means of variational principles. Third, variational formulations form a
powerful basis for obtaining approximate solutions to practical problems, many
of which are intractable otherwise. The principle of minimum total potential
energy, for example, can be regarded as a substitute to the equations of equilib-
rium of an elastic body, as well as a basis for the development of displacement
finite element models that can be used to determine approximate displacement
and stress fields in the body. Variational formulations can also serve to unify
diverse fields, suggest new theories, and provide a powerful means for studying
the existence and uniqueness of solutions to problems. In many cases they can
also be used to establish upper and/or lower bounds on approximate solutions.

1.1.3 A Brief Review of Historical Developments

In modern times, the term “variational formulation” applies to a wide spectrum
of concepts having to do with weak, generalized, or direct variational formu-
lations of boundary- and initial-value problems. Still, many of the essential
features of variational methods remain the same as they were over 200 years
ago when the first notions of variational calculus began to be formulated.1

Although Archimedes (287–212 B.C.) is generally credited as the first to
use work arguments in his study of levers, the most primitive ideas of varia-
tional theory (the minimum hypothesis) are present in the writings of the Greek
philosopher Aristotle (384–322 B.C.), to be revived again by the Italian math-
ematician/engineer Galileo (1564–1642), and finally formulated into a principle
of least time by the French mathematician Fermat (1601–1665). The phrase
virtual velocities was used by Jean Bernoulli in 1717 in his letter to Varignon
(1654–1722). The development of early variational calculus, by which we mean
the classical problems associated with minimizing certain functionals, had to
await the works of Newton (1642–1727) and Leibniz (1646–1716). The earli-
est applications of such variational ideas included the classical isoperimetric
problem of finding among closed curves of given length the one that encloses
the greatest area, and Newton’s problem of determining the solid of revolu-
tion of “minimum resistance.” In 1696, Jean Bernoulli proposed the problem
of the brachistochrone: among all curves connecting two points, find the curve
traversed in the shortest time by a particle under the influence of gravity. It
stood as a challenge to the mathematicians of their day to solve the problem
using the rudimentary tools of analysis then available to them or whatever new
ones they were capable of developing. Solutions to this problem were presented
by some of the greatest mathematicians of the time: Leibniz, Jean Bernoulli’s
older brother Jacques Bernoulli, L’Hopital, and Newton.

1Many of the developments came from European scientists, whose works appeared in their
native language and were not accessible to the whole scientific community.
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The first step toward developing a general method for solving variational
problems was given by the Swiss genius Leonhard Euler (1707–1783) in 1732
when he presented a “general solution of the isoperimetric problem,” although
Maupertuis is credited to have put forward a law of minimal property of poten-
tial energy for stable equilibrium in his Mémoires de lÁcadémie des Sciences
in 1740. It was in Euler’s 1732 work and subsequent publication of the princi-
ple of least action (in his book Methodus inveniendi lineas curvas ...) in 1744
that variational concepts found a welcome and permanent home in mechanics.
He developed all ideas surrounding the principle of minimum potential energy
in his work on the elastica, and he demonstrated the relationship between his
variational equations and those governing the flexure and buckling of thin rods.

A great impetus to the development of variational mechanics began in the
writings of Lagrange (1736–1813), first in his correspondence with Euler. Euler
worked intensely in developing Lagrange’s method but delayed publishing his
results until Lagrange’s works were published in 1760 and 1761. Lagrange used
D’Alembert’s principle to convert dynamics to statics and then used the princi-
ple of virtual displacements to derive his famous equations governing the laws
of dynamics in terms of kinetic and potential energy. Euler’s work, together
with Lagrange’s Mécanique analytique of 1788, laid down the basis for the vari-
ational theory of dynamical systems. Further generalizations appeared in the
fundamental work of Hamilton in 1834. Collectively, all these works have had
a monumental impact on virtually every branch of mechanics.

A more solid mathematical basis for variational theory began to be devel-
oped in the eighteenth and early nineteenth century. Necessary conditions for
the existence of “minimizing curves” of certain functionals were studied during
this period, and we find among contributors of that era the familiar names of
Legendre, Jacobi, and Weierstrass. Legendre gave criteria for distinguishing
between maxima and minima in 1786, and Jacobi gave sufficient conditions for
existence of extrema in 1837. A more rigorous theory of existence of extrema
was put together by Weierstrass, who established in 1865 the conditions on
extrema for variational problems.

During the last half of the nineteenth century, the use of variational ideas
was widespread among leaders in theoretical mechanics. We mention the works
of Kirchhoff on plate theory; Lamé, Green, and Kelvin on elasticity; and the
works of Betti, Maxwell, Castigliano, Menabrea, and Engesser on discrete struc-
tural systems. Lamé was the first in 1852 to prove a work equation, named after
his colleague Claperon, for deformable bodies. Lamé’s equation was used by
Maxwell [1]2 to the solution of redundant frame-works using the unit dummy
load technique. In 1875 Castigliano published an extremum version of this tech-
nique but attributed the idea to Menabrea. A generalization of Castigliano’s
work is due to Engesser [2].

2The references are listed at the end of the book.
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Among the prominent contributors to the subject near the end of the nine-
teenth century and in the early years of the twentieth century, particularly in
the area of variational methods of approximation and their applications, were
Rayleigh [3], Ritz [4], and Galerkin [5]. Modern variational principles began
in the works of Hellinger [6], Hu [7], and Reissner [8–10] on mixed variational
principles for elasticity problems. A short historical account of early varia-
tional methods in mechanics can be found in the book of Lanczos [11] and
Truesdell and Toupin [12]; additional information can be found in Dugas [13]
and Timoshenko [14], and historical development of energetical principles in
elastomechanics can be found in the paper by Oravas and McLean [15, 16].
Reference to much of the relevant contemporary literature can be found in the
books by Washizu [17] and Oden and Reddy [18]. Additional historical papers
and textbooks on variational principles and methods can be found in [19-60].

1.1.4 Preview

The objective of the present book is to introduce energy methods and variational
principles of solid and structural mechanics and to illustrate their use in the
derivation and solution of the equations of applied mechanics, including plane
elasticity, beams, frames, and plates. Of course, variational formulations and
methods presented in this book are also applicable to problems outside solid
mechanics. To keep the scope of the book within reasonable limits, mostly
linear problems of solid and structural mechanics are considered.

In the remaining part of the chapter, we review the algebra and calculus of
vectors and tensors. In Chapter 2, a brief review of the equations of solid me-
chanics is presented, and the concepts of work and energy and elements from
calculus of variations are discussed in Chapter 3. Principles of virtual work
and their special cases are presented in Chapter 4. The chapter also includes
energy theorems of structural mechanics, namely, Castigliano’s theorems I and
II, dummy displacement and dummy force methods, and Betti’s and Maxwell’s
reciprocity theorems of elasticity. Chapter 5 is dedicated to Hamilton’s princi-
ple for dynamical systems of solid mechanics. In Chapter 6 we introduce the
Ritz, Galerkin, and weighted-residual methods. Chapter 7 contains the appli-
cations of variational methods to the formulation of plate theories and their
solution by variational methods. For the sake of completeness and comparison,
analytical solutions of bending, vibration, and buckling of circular and rectan-
gular plates are also presented. An introduction to the finite element method
and its application to displacement finite element models of beams and plates
are discussed in Chapter 8. Chapter 9 is devoted to the discussion of mixed
variational principles and mixed finite element models of beams and plates. Fi-
nally, theories and analytical as well as finite element solutions of functionally
graded beams and plates are presented in Chapter 10.
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1.2 Vectors

1.2.1 Introduction

Our approach in this book is evolutionary, that is, we wish to begin with con-
cepts that are simple and intuitive and then generalize these concepts to a
broader and more abstract body of analysis. This is a natural inductive ap-
proach, more or less in accord with the development of the subject of variational
methods.

In analyzing physical phenomena, we set up, with the help of physical prin-
ciples, relations between various quantities that represent the phenomena. As
a means of expressing a natural law, a coordinate system in a chosen frame of
reference can be introduced, and the various physical quantities involved can
be expressed in terms of measurements made in that system. The mathemati-
cal form of the law thus depends upon the chosen coordinate system and may
appear different in another type of coordinate system. The laws of nature,
however, should be independent of the artificial choice of a coordinate system,
and we may seek to represent the law in a manner independent of a particular
coordinate system. A way of doing this is provided by vector and tensor anal-
ysis. When vector notation is used, a particular coordinate system need not
be introduced. Consequently, the use of vector notation in formulating natural
laws leaves them invariant to coordinate transformations. A study of physical
phenomena by means of vector equations often leads to a deeper understand-
ing of the problem in addition to bringing simplicity and versatility into the
analysis.

The term vector is used often to imply a physical vector that has “magnitude
and direction” and obeys certain rules of vector addition and scalar multipli-
cation. In the sequel we consider more general, abstract objects than physical
vectors, which are also called vectors. It transpires that the physical vector
is a special case of what is known as a “vector from a linear vector space.”
Then the notion of vectors in modern mathematical analysis is an abstraction
of the elementary notion of a physical vector. While the definition of a vector
in abstract analysis does not require the vector to have a magnitude, in nearly
all cases of practical interest, the vector is endowed with a magnitude, in which
case the vector is said to belong to a normed vector space.

Like physical vectors, which have direction and magnitude and satisfy the
parallelogram law of addition, tensors are more general objects that are en-
dowed with a magnitude and multiple direction(s) and satisfy rules of tensor
addition and scalar multiplication. In fact, vectors are often termed the first-
order tensors. As will be shown shortly, the stress (i.e., force per unit area)
requires a magnitude and two directions – one normal to the plane on which
the stress is measured and the other is the direction of the force – to specify
it uniquely. For additional details, References [61–88] listed at the end of the
book may be consulted.



6 INTRODUCTION AND MATHEMATICAL PRELIMINARIES

1.2.2 Definition of a Vector

In the analysis of physical phenomena, we are concerned with quantities that
may be classified according to the information needed to specify them com-
pletely. Consider the following two groups:

Scalars Nonscalars

Mass Force
Temperature Moment
Density Stress
Volume Acceleration
Time Displacement

After units have been selected, the scalars are given by a single number.
Nonscalars need not only a magnitude specified but also additional information,
such as direction. Nonscalars that obey certain rules (such as the parallelogram
law of addition) are called vectors. Not all nonscalar quantities are vectors. The
specification of a stress requires not only a force, which is a vector, but also an
area upon which the force acts. A stress is a second-order tensor, as will be
shown shortly.

In written or typed material, it is customary to place an arrow or a bar over
the letter denoting the vector, such as ~A. Sometimes the typesetter’s mark of
a tilde under the letter is used. In printed material the vector letter is denoted
by a boldface letter, A, such as used in this book. The magnitude of the vector
A is denoted by |A| or just A. The computation of the magnitude of a vector
will be defined in the sequel, after the concept of scalar product of vectors is
discussed.3

Two vectors A and B are equal if their magnitudes are equal, |A| = |B|, and
if their directions and sense are equal. Consequently a vector is not changed if
it is moved parallel to itself. This means that the position of a vector in space
may be chosen arbitrarily. In certain applications, however, the actual point of
location of a vector may be important (for instance, a moment or a force acting
on a body). A vector associated with a given point is known as a localized or
bound vector.

Let A and B be any two vectors. Then we can add them as shown in
Fig. 1.2.1(a). The combination of the two diagrams in Fig. 1.2.1(a) gives the
parallelogram shown in Fig. 1.2.1(b). Thus we say the vectors add according
to the parallelogram law of addition so that

C = A + B = B + A. (1.2.1)

We thus see that vector addition is commutative.

3Mathematically, the length of a vector can be computed only when its components with
respect to a basis are known.
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Fig1-2-1

Fig. 1.2.1 (a) Addition of vectors. (b) Parallelogram law of addition.

Subtraction of vectors is carried out along the same lines. To form the
difference A−B, we write

A−B = A + (−B) (1.2.2)

and subtraction reduces to the operation of addition. The negative vector −B
has the same magnitude as B but has the opposite sense.

With the rules of addition in place, we can define a (geometric) vector. A
vector is a quantity that possesses both magnitude and direction and obeys the
parallelogram law of addition. Obeying the law is important because there are
quantities having both magnitude and direction that do not obey this law. A
finite rotation of a rigid body is not a vector although infinitesimal rotations
are. The definition given above is a geometrical definition. That vectors can
be represented graphically is an incidental rather than a fundamental feature
of the vector concept.

A vector of unit length is called a unit vector. The unit vector may be
defined as follows:

êA =
A

A
. (1.2.3)

We may now write
A = AêA. (1.2.4)

Thus any vector may be represented as a product of its magnitude and a unit
vector. A unit vector is used to designate direction. It does not have any
physical dimensions. We denote a unit vector by a “hat” (caret) above the
boldface letter.

A vector of zero magnitude is called a zero vector or a null vector. All null
vectors are considered equal to each other without consideration as to direction:

A + 0 = A and 0A = 0. (1.2.5)

The laws that govern addition, subtraction, and scalar multiplication of
vectors are identical with those governing the operations of scalar algebra.
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1.2.3 Scalar and Vector Products

Besides addition, subtraction, and multiplication by a scalar, we must consider
the multiplication of two vectors. There are several ways the product of two
vectors can be defined. We consider first the so-called scalar product. Let
us recall the concept of work. When a force F acts on a mass point and
moves through an infinitesimal displacement vector ds, the work done by the
force vector is defined by the projection of the force in the direction of the
displacement times the magnitude of the displacement (see Fig. 1.2.2). Such an
operation may be defined for any two vectors. Since the result of the product
is a scalar, it is called the scalar product. We denote this product as follows:

F · ds = Fds cos θ, 0 ≤ θ ≤ π. (1.2.6)

The scalar product is also known as the dot product or inner product.
Fig1-2-2

Fig. 1.2.2 Representation of work.

To understand the vector product, consider the concept of the moment due
to a force. Let us describe the moment about a point O of a force F acting at a
point P, as shown in Fig. 1.2.3(a). By definition, the magnitude of the moment
is given by

M = F l, F = |F| =
√

F · F, (1.2.7)

where l is the lever arm for the force about the point O. If r denotes the vec-
tor OP and θ the angle between r and F as shown, such that 0 ≤ θ ≤ π, we have

Fig1-2-3

Fig. 1.2.3 (a) Representation of a moment. (b) Direction of rotation.
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l = r sin θ, and thus
M = Fr sin θ. (1.2.8)

A direction can now be assigned to the moment. Drawing the vectors F and
r from the common origin O, we note that the rotation due to F tends to bring
r into F [see Fig. 1.2.3(b)]. We now set up an axis of rotation perpendicular to
the plane formed by F and r. Along this axis of rotation we set up a preferred
direction as that in which a right-handed screw would advance when turned in
the direction of rotation due to the moment [see Fig. 1.2.4(a)]. Along this axis
of rotation, we draw a unit vector êM and agree that it represents the direction
of the moment M. Thus we have

M = Fr sin θ êM = r× F. (1.2.9)

According to this expression, M may be looked upon as resulting from a special
operation between the two vectors F and r. It is thus the basis for defining a
product between any two vectors. Since the result of such a product is a vector,
it may be called the vector product.

Fig1-2-4

Fig. 1.2.4 (a) Axis of rotation. (b) Representation of the vector.

The vector product of two vectors A and B is a vector C whose magnitude
is equal to the product of the magnitude of A and B times the sine of the angle
measured from A to B such that 0 ≤ θ ≤ π, and whose direction is specified
by the condition that C be perpendicular to the plane of the vectors A and B
and points to the direction where a right-handed screw advances when turned
so as to bring A into B.

The vector product is usually denoted by

C = A×B = AB sin(A,B) ê, (1.2.10)

where sin(A,B) denotes the sine of the angle between vectors A and B. This
product is called the cross product, skew product, and also outer product, as well
as the vector product [see Fig. 1.2.4(b)].
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Now consider the various products of three vectors:

A(B ·C), A · (B×C), A× (B×C). (1.2.11)

The product A(B ·C) is merely a multiplication of the vector A by the scalar
B · C. The product A · (B×C) is a scalar. It can be seen that the product
A · (B×C), except for the algebraic sign, is the volume of the parallelepiped
formed by the vectors A, B, and C, as shown in Fig. 1.2.5.

Fig1-2-5

Fig. 1.2.5 Scalar triple product as the volume of a parallelepiped.

We also note the following properties:

1. The dot and cross can be interchanged without changing the value:

A ·B×C = A×B ·C ≡ [ABC]. (1.2.12)

2. A cyclical permutation of the order of the vectors leaves the result un-
changed:

A ·B×C = C ·A×B = B ·C×A ≡ [ABC]. (1.2.13)

3. If the cyclic order is changed, the sign changes:

A ·B×C = −A ·C×B = −C ·B×A = −B ·A×C. (1.2.14)

4. A necessary and sufficient condition for any three vectors, A, B, and C
to be coplanar is that A · (B×C) = 0. Note also that the scalar triple
product is zero when any two vectors are the same.

The product A× (B×C) is a vector normal to the plane formed by A and
(B×C). The vector (B×C), however, is perpendicular to the plane formed by
B and C. This means that A× (B×C) lies in the plane formed by B and C
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and is perpendicular to A (see Fig. 1.2.6). Thus A× (B×C) can be expressed
as a linear combination of B and C:

A× (B×C) = m1B + n1C. (1.2.15)

Likewise, we would find that

(A×B)×C = m2A + n2B. (1.2.16)

Thus the parentheses cannot be interchanged or removed. It can be shown that

m1 = A ·C, n1 = −A ·B,

and hence that
A× (B×C) = (A ·C)B− (A ·B)C. (1.2.17)

Fig1-2-6

Fig. 1.2.6 The vector triple product.

Example 1.2.1

Find the equation of a plane perpendicular to a vector A and passing through the terminal
point of vector B without the use of any coordinate system (see Fig. 1.2.7).

Solution: Let O be the origin and B the terminal point of vector B. Draw a directed line
segment from O to Q, such that OQ is parallel to A and Q is in the plane. Then OQ = αA,
where α is a scalar. Let P be an arbitrary point on the line BQ. If the position vector of the
point P is r, then

BP = OP−OB = r−B.

Since BP is perpendicular to OQ = αA, we must have

BP ·OQ = 0 or (r−B) ·A = 0,

which is the equation of the plane in question.
The perpendicular distance from point O to the plane is the magnitude of OQ. However,

we do not know its magnitude (or α is not known). The distance is also given by the projection
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Fig1-2-7

Fig. 1.2.7 Plane perpendicular to A and passing through the terminal point of B.

of vector B along OQ:

d = B · OQ

|OQ| = B · êA,

where êA is the unit vector along A, êA = A/A.

Example 1.2.2

Let A and B be any two vectors in space. Then express the vector A in terms of components
along (i.e., parallel) and perpendicular to B.

Solution: The component of A along B is given by (A · êB), where êB = B/B. The
component of A perpendicular to B and in the plane of A and B is given by the vector triple
product êB × (A× êB). Thus,

A = (A · êB)êB + êB × (A× êB). (1)

Alternately, using Eq. (1.2.17) with A = C = êB and B = A, we obtain

êB × (A× êB) = A− (êB ·A)êB . (2)

1.2.4 Components of a Vector

So far we have proceeded on a geometrical description of a vector as a directed
line segment. We now embark on an analytical description of a vector and some
of the operations associated with this description. Such a description yields a
connection between vectors and ordinary numbers and relates operation on
vectors with those on numbers. The analytical description is based on the
notion of components of a vector.

In what follows, we shall consider a three-dimensional space, and the exten-
sions to n dimensions will be evident (except for a few exceptions). A set of n
vectors is said to be linearly dependent if a set of n numbers β1, β2, · · · , βn can
be found such that

β1A1 + β2A2 + · · ·+ βnAn = 0, (1.2.18)
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where β1, β2, · · · , βn cannot all be zero. If this expression cannot be satisfied,
the vectors are said to be linearly independent.

In a three-dimensional space, a set of no more than three linearly indepen-
dent vectors can be found. Let us choose any set and denote it as follows:

e1, e2, e3. (1.2.19)

This set is called a basis (or a base system).
It is clear from the concept of linear dependence that we can represent any

vector in three-dimensional space as a linear combination of the basis vectors
(see Fig. 1.2.8):

A = A1e1 +A2e2 +A3e3. (1.2.20)

The vectors A1e1, A2e2, and A3e3 are called the vector components of A, and
A1, A2, and A3 are called scalar components of A associated with the basis
(e1, e2, e3). Also, we use the notation A = (A1, A2, A3) to denote a vector by
its components.

Fig1-2-8

Fig. 1.2.8 Components of a vector.

1.2.5 Summation Convention

It is useful to abbreviate a summation of terms by understanding that a repeated
index means summation over all values of that index. Thus the summation

A =
3∑

i=1

Aiei (1.2.21)

can be shortened to
A = Aiei. (1.2.22)

The repeated index is a dummy index and thus can be replaced by any other
symbol that has not already been used. Thus we can also write

A = Aiei = Amem, and so on.

When a basis is unit and orthogonal, that is, orthonormal, we have

[e1e2e3] = 1. (1.2.23)
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In many situations an orthonormal basis simplifies the calculations.
For an orthonormal basis, the vectors A and B can be written as

A = A1ê1 +A2ê2 +A3ê3 = Aiêi

B = B1ê1 +B2ê2 +B3ê3 = Biêi,

where ei ≡ êi (i = 1, 2, 3) is the orthonormal basis and Ai and Bi are the
corresponding physical components (i.e., the components have the same physical
dimensions as the vector).

It is convenient at this time to introduce the Kronecker delta δij and alter-
nating symbol εijk for representing the dot product and cross product of two
orthonormal vectors in a right-handed basis system. We define the dot product
êi · êj between the orthonormal basis vectors of a right-handed system as

êi · êj ≡ δij =

{
1, if i = j, for any fixed value of i, j
0, if i 6= j, for any fixed value of i, j,

(1.2.24)

where δij is called the Kronecker delta symbol. Similarly, we define the cross
product êi × êj for a right-handed system as

êi × êj ≡ εijkêk, (1.2.25)

where

εijk =


1, if i, j, k are in cyclic order

and not repeated (i 6= j 6= k),
−1, if i, j, k are not in cyclic order

and not repeated (i 6= j 6= k),
0, if any of i, j, k are repeated.

(1.2.26)

The symbol εijk is called the alternating symbol or permutation symbol.
In an orthonormal basis, the scalar and vector products can be expressed in

the index form using the Kronecker delta and alternating symbols as

A ·B = (Aiêi) · (Bj êj) = AiBjδij = AiBi,
(1.2.27)

A×B = (Aiêi)× (Bj êj) = AiBjεijkêk.

Thus, the length of a vector in an orthonormal basis can be expressed as A =√
A ·A =

√
AiAi. The Kronecker delta and the permutation symbol are related

by the identity, known as the ε-δ identity:

εijkεimn = δjmδkn − δjnδkm. (1.2.28)

The permutation symbol and the Kronecker delta prove to be very useful
in proving vector identities. Since a vector form of any identity is invariant
(i.e., valid in any coordinate system), it suffices to prove it in one coordinate
system. In particular, an orthonormal system is very convenient because of the
permutation symbol and the Kronecker delta. The following example illustrates
some of the uses of δij and εijk.
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Example 1.2.3

Express the vector operation (A×B) · (C×D) in an alternate vector form.

Solution: We have

(A×B) · (C×D) = (AiBjεijkêk) · (CmDnεmnpêp)
= AiBjCmDnεijkεmnpδkp

= AiBjCmDnεijkεmnk

= AiBjCmDn(δimδjn − δinδjm)

= AiBjCmDnδimδjn −AiBjCmDnδinδjm,

where we have used the ε–δ identity in Eq. (1.2.28). Since Cmδim = Ci (or Aiδim = Am,
etc.), we have

(A×B) · (C×D) = AiBjCiDj −AiBjCjDi
= AiCiBjDj −AiDiBjCj
= (A ·C)(B ·D)− (A ·D)(B ·C).

Although the above vector identity is established in an orthonormal coordinate system, it
holds in a general coordinate system. That is, the vector identity is invariant.

We can establish the relationship between the components of two different
orthonormal coordinate systems, say, unbarred and barred. Consider the un-
barred coordinate basis (ê1, ê2, ê3) and the barred coordinate basis (ˆ̄e1, ˆ̄e2, ˆ̄e3).
Then, we can express the same vector in the two coordinate systems as

A = Aj êj in unbarred basis,

= Āj ˆ̄ej in barred basis.

Now taking the dot product of the both sides with the vector ˆ̄ei (from the left),
we obtain the following relation between the components of a vector in two
different coordinate systems:

Āi = βij Aj , βij = ˆ̄ei · êj . (1.2.29)

Thus, the relationship between the components (Ā1, Ā2, Ā3) and (A1, A2, A3)
is called the transformation rule between the barred and unbarred components
in the two orthogonal coordinate systems. The coefficients βij are the direction
cosines of the barred coordinate system with respect to the unbarred coordinate
system:

βij = cosine of the angle between ˆ̄ei and êj . (1.2.30)

Note that the first subscript of βij comes from the barred coordinate system and
the second subscript from the unbarred system. Obviously, βij is not symmetric
(i.e., βij 6= βji). The direction cosines allow us to relate components of a vector
(or a tensor) in the unbarred coordinate system to components of the same
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vector (or tensor) in the barred coordinate system. Example 1.2.4 illustrates
the computation of direction cosines.

Example 1.2.4

Let êi (i = 1, 2, 3) be a set of orthonormal base vectors, and define new right-handed coordinate
base vectors by (ˆ̄e1.ˆ̄e2 = 0):

ˆ̄e1 =
2ê1 + 2ê2 + ê3

3
, ˆ̄e2 =

ê1 − ê2√
2

.

Determine the direction cosines of the transformation between the two coordinate systems.

Solution: First we compute the third base vector in the barred coordinate system by

ˆ̄e3 = ˆ̄e1 × ˆ̄e2 =
ê1 + ê2 − 4ê3

3
√

2
.

An arbitrary vector A can be represented in either coordinate system:

A = Aiêi = Āiˆ̄ei.

The components of the vector in the two different coordinate systems are related by

{Ā} = [β]{A}, βij = ˆ̄ei · êj .

For the case at hand, we have

β11 = ˆ̄e1 · ê1 =
2

3
, β12 = ˆ̄e1 · ê2 =

2

3
, β13 = ˆ̄e1 · ê3 =

1

3
,

β21 = ˆ̄e2 · ê1 =
1√
2
, β22 = ˆ̄e2 · ê2 = − 1√

2
, β23 = ˆ̄e2 · ê3 = 0,

β31 = ˆ̄e3 · ê1 =
1

3
√

2
, β32 = ˆ̄e3 · ê2 =

1

3
√

2
, β33 = ˆ̄e3 · ê3 = − 4

3
√

2
,

or

[β] =
1

3
√

2

 2
√

2 2
√

2
√

2
3 −3 0
1 1 −4

 .

When the basis vectors are constant, that is, with fixed lengths (with the
same units) and directions, the basis is called Cartesian. The general Cartesian
system is oblique. When the basis vectors are unit and orthogonal (orthonor-
mal), the basis system is called rectangular Cartesian, or simply Cartesian. In
much of our study, we shall deal with Cartesian bases.

Let us denote an orthonormal Cartesian basis by

{êx, êy, êz} or {ê1, ê2, ê3}.

The Cartesian coordinates are denoted by (x, y, z) or (x1, x2, x3). The familiar
rectangular Cartesian coordinate system is shown in Fig. 1.2.9. We shall always
use right-handed coordinate systems.
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Fig1-2-9

•

Fig. 1.2.9 Rectangular Cartesian coordinates.

A position vector to an arbitrary point (x, y, z) or (x1, x2, x3), measured
from the origin, is given by

r = xêx + yêy + zêz

= x1ê1 + x2ê2 + x3ê3,

or, in summation notation, by

r = xj êj . (1.2.31)

The distance between two infinitesimally removed points is given by

dr · dr = (ds)2 = dxjdxj

= (dx)2 + (dy)2 + (dz)2. (1.2.32)

1.2.6 Vector Calculus

The basic notions of vector and scalar calculus, especially with regard to phys-
ical applications, are closely related to the rate of change of a scalar field with
distance. Let us denote a scalar field by φ = φ(r). In general coordinates we
can write φ = φ(q1, q2, q3). The coordinate system (q1, q2, q3) is referred to as
the unitary system.

We now define the unitary basis (e1, e2, e3) as follows:

e1 ≡
∂r

∂q1
, e2 ≡

∂r

∂q2
, e3 ≡

∂r

∂q3
. (1.2.33)

Hence, an arbitrary vector A is expressed as

A = A1e1 +A2e2 +A3e3, (1.2.34)

and a differential distance is denoted by

dr = dq1e1 + dq2e2 + dq3e3 = dqiei. (1.2.35)
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Observe that the A’s and dq’s have superscripts, whereas the unitary basis
(e1, e2, e3) has subscripts. The dqi are referred to as the contravariant com-
ponents of the differential vector dr, and Ai are the contravariant components
of vector A. The unitary basis can be described in terms of the rectangular
Cartesian basis (êx, êy, êz)=(ê1, ê2, ê3) as follows:

e1 =
∂r

∂q1
=

∂x

∂q1
êx +

∂y

∂q1
êy +

∂z

∂q1
êz,

e2 =
∂r

∂q2
=

∂x

∂q2
êx +

∂y

∂q2
êy +

∂z

∂q2
êz,

e3 =
∂r

∂q3
=

∂x

∂q3
êx +

∂y

∂q3
êy +

∂z

∂q3
êz.

In the summation convention, we have

ei ≡
∂r

∂qi
=
∂xj

∂qi
êj , i = 1, 2, 3. (1.2.36)

Associated with any arbitrary basis is another basis that can be derived
from it. We can construct this basis in the following way: Taking the scalar
product of the vector A in Eq. (1.2.34) with the cross product e1×e2, we obtain

A · (e1 × e2) = A3e3 · (e1 × e2)

since e1 × e2 is perpendicular to both e1 and e2. Solving for A3 gives

A3 = A · e1 × e2

e3 · (e1 × e2)
= A · e1 × e2

[e1e2e3]
.

In similar fashion, we can obtain expressions for A1 and A2. Thus, we have

A1 = A · e2 × e3

[e1e2e3]
, A2 = A · e3 × e1

[e1e2e3]
, A3 = A · e1 × e2

[e1e2e3]
. (1.2.37)

We thus observe that we can obtain the components A1, A2, and A3 by taking
the scalar product of the vector A with special vectors, which we denote as
follows:

e1 =
e2 × e3

[e1e2e3]
, e2 =

e3 × e1

[e1e2e3]
, e3 =

e1 × e2

[e1e2e3]
. (1.2.38)

The set of vectors (e1, e2, e3) is called the dual or reciprocal basis. Notice from
the basic definitions that we have the following relations:

ei · ej = δij =

{1, i = j

0, i 6= j
(1.2.39)
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It is possible, since the dual basis is linearly independent (the reader should
verify this), to express a vector A in terms of the dual basis:

A = A1e
1 +A2e

2 +A3e
3. (1.2.40)

Notice now that the components associated with the dual basis have subscripts,
and Ai are the covariant components of A.

By an analogous process as that above, we can show that the original basis
can be expressed in terms of the dual basis in the following way:

e1 =
e2 × e3

[e1e2e3]
, e2 =

e3 × e1

[e1e2e3]
, e3 =

e1 × e2

[e1e2e3]
. (1.2.41)

Of course in the evaluation of the cross products, we shall always use the right-
hand rule. It follows from the above expressions that

A1 = A · e1, A2 = A · e2, A3 = A · e3, or Ai = A · ei,
(1.2.42)

A1 = A · e1, A2 = A · e2, A3 = A · e3, or Ai = A · ei.

Returning to the scalar field φ, the differential change is given by

dφ =
∂φ

∂q1
dq1 +

∂φ

∂q2
dq2 +

∂φ

∂q3
dq3. (1.2.43)

The differentials dq1, dq2, and dq3 are components of dr (see Eq. (1.2.35)). We
would now like to write dφ in such a way that we elucidate the direction as well
as the magnitude of dr. Since e1 · e1 = 1, e2 · e2 = 1, and e3 · e3 = 1, we can
write

dφ = e1 ∂φ

∂q1
· e1dq

1 + e2 ∂φ

∂q2
· e2dq

2 + e3 ∂φ

∂q3
· e3dq

3

= (dq1e1 + dq2e2 + dq3e3) ·
(

e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3

)
= dr ·

(
e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3

)
. (1.2.44)

Let us now denote the magnitude of dr by ds ≡ |dr|. Then ê = dr/ds is a unit
vector in the direction of dr, and we have(

dφ

ds

)
ê

= ê ·
(

e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3

)
. (1.2.45)

The derivative (dφ/ds)ê is called the directional derivative of φ. We see that it
is the rate of change of φ with respect to distance and that it depends on the
direction ê in which the distance is taken.

The vector that is scalar multiplied by ê can be obtained immediately when-
ever the scalar field is given. Because the magnitude of this vector is equal to
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the maximum value of the directional derivative, it is called the gradient vector
and is denoted by grad φ:

grad φ ≡ e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3
. (1.2.46)

From this representation it can be seen that

∂φ

∂q1
,

∂φ

∂q2
,

∂φ

∂q3

are the covariant components of the gradient vector.
When the scalar function φ(r) is set equal to a constant, φ(r) = constant,

a family of surfaces is generated. A different surface is designated by different
values of the constant, and each surface is called a level surface (see Fig. 1.2.10).
If the direction in which the directional derivative is taken lies within a level
surface, then dφ/ds is zero, since φ is a constant on a level surface. In this
case the unit vector ê is tangent to a level surface. It follows, therefore, that if
dφ/ds is zero, then gradφ must be perpendicular to ê and thus perpendicular
to a level surface. Thus if any surface is given by φ(r) = constant, the unit
normal to the surface is determined by

n̂ = ± grad φ

|grad φ|
. (1.2.47)

The plus or minus sign appears because the direction of n̂ may point in either
direction away from the surface. If the surface is closed, the usual convention
is to take n̂ pointing outward.

It is convenient to write the gradient vector as

grad φ ≡
(

e1 ∂

∂q1
+ e2 ∂

∂q2
+ e3 ∂

∂q3

)
φ (1.2.48)

•

Fig1-2-10

Fig. 1.2.10 Level surfaces and gradient to a surface.
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and interpret grad φ as some operator operating on φ, that is, grad φ ≡ ∇φ.
This operator is denoted by

∇ ≡ e1 ∂

∂q1
+ e2 ∂

∂q2
+ e3 ∂

∂q3
(1.2.49)

and is called the “del operator.” The del operator is a vector differential op-
erator, and the “components” ∂/∂q1, ∂/∂q2, and ∂/∂q3 appear as covariant
components.

It is important to note that whereas the del operator has some of the prop-
erties of a vector, it does not have them all, because it is an operator. For
instance, ∇ · A is a scalar (called the divergence of A), whereas A · ∇ is a
scalar differential operator. Thus the del operator does not commute in this
sense.

In the rectangular Cartesian system, we have the simple form

∇ ≡ êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
,

or, in the summation convention, we have

∇ ≡ êi
∂

∂xi
. (1.2.50)

The dot product of del operator with a vector is called the divergence of a
vector and denoted by

∇ ·A ≡ divA =
∂Ai

∂xi
. (1.2.51)

If we take the divergence of the gradient vector, we have

div(grad φ) ≡∇ ·∇φ = (∇ ·∇)φ = ∇2φ. (1.2.52)

The notation ∇2 = ∇ ·∇ is called the Laplacian operator. In Cartesian systems
this reduces to the simple form

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
=

∂2φ

∂xi∂xi
. (1.2.53)

The Laplacian of a scalar appears frequently in the partial differential equations
governing physical phenomena.

The curl of a vector is defined as the del operator operating on a vector by
means of the cross product:

curl A = ∇×A = êj
∂

∂xj
× êkAk =

∂Ak

∂xj
(êj × êk) =

∂Ak

∂xj
εjki êi. (1.2.54)

Thus the ith component of (∇×A) is ∂Ak
∂xj

εjki.
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Example 1.2.5

Using the index-summation notation, prove the following vector identity:

∇× (∇× v) ≡∇(∇ · v)−∇2v,

where v is a vector function of the coordinates, xi.

Solution: Observe that

∇× (∇× v) = êi
∂

∂xi
×
(

êj
∂

∂xj
× vkêk

)
= êi

∂

∂xi
×
(
εjk`

∂vk
∂xj

ê`

)
= εi`m εjk`

∂2vk
∂xi∂xj

êm.

Using the ε-δ identity, we obtain

∇× (∇× v) ≡ (δmjδik − δmkδij)
∂2vk
∂xi∂xj

êm

=
∂2vi
∂xi∂xj

êj −
∂2vk
∂xi∂xi

êk = êj
∂

∂xj

(
∂vi
∂xi

)
− ∂2

∂xi∂xi
(vkêk)

= ∇(∇ · v)−∇2v.

This result is sometimes used as the definition of the Laplacian of a vector, that is,

∇2v = ∇(∇ · v)−∇× (∇× v).

A summary of vector operations in both general vector notation and in
Cartesian component form is given in Table 1.2.1, and some useful vector op-
erations for cylindrical and spherical coordinate systems (see Fig. 1.2.11) are
presented in Table 1.2.2.

1.2.7 Gradient, Divergence, and Curl Theorems

Useful expressions for the integrals of the gradient, divergence, and curl of a
vector can be established between volume integrals and surface integrals. Let
Ω denote a region in space surrounded by the closed surface Γ. Let dΓ be a
differential element of surface and n̂ the unit outward normal, and let dΩ be a
differential volume element. The following integral relations are proven to be
useful in the coming chapters.

Gradient theorem:∫
Ω

grad φdΩ =

∮
Γ

n̂φdΓ

[∫
Ω

êi
∂φ

∂xi
dΩ =

∮
Γ

êiniφdΓ

]
. (1.2.55)
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Curl theorem:∫
Ω

curl A dΩ =

∮
Γ

n̂×A dΓ

[∫
Ω
εijkêk

∂Aj

∂xi
dΩ =

∮
Γ
εijkêkniAj dΓ

]
.

(1.2.56)
Divergence theorem:∫

Ω
div A dΩ =

∮
Γ

n̂ ·A dΓ

[∫
Ω

∂Ai

∂xi
dΩ =

∮
Γ
niAi dΓ

]
. (1.2.57)

Table 1.2.1 Vector expressions and their Cartesian component forms (A, B, and C are vector
functions, U is a scalar function, x is the position vector, and (ê1, ê2, ê3) are the Cartesian
unit vectors in a rectangular Cartesian coordinate system; see Fig. 1.2.9).

No. Vector form and its equivalence Component form

1. A ·B AiBi
2. A×B εijkAiBj êk
3. A · (B×C) εijkAiBjCk
4. A× (B×C) = B(A ·C)−C(A ·B) εijkeklmAjBlCmêi

5. ∇A
∂Aj
∂xi

êiêj

6. ∇ ·A ∂Ai
∂xi

7. ∇×A εijk
∂Aj
∂xi

êk

8. ∇ · (∇×A) = 0 εijk
∂2Aj
∂xi∂xk

9. ∇× (∇U) = 0 εijk êk
∂2U

∂xi∂xj

10. ∇ · (A×B) = B · (∇×A)−A · (∇×B) εijk
∂
∂xi

(AjBk)

11. (∇×A)×B = B · [∇A− (∇A)T] εijk εklmBl
∂Aj
∂xi

êm

12. A× (∇×A) = 1
2
∇(A ·A)− (A ·∇)A εnim εjkmAi

∂Ak
∂xj

ên

13. ∇ · (∇A) = ∇2A
∂2Aj
∂xi∂xi

êj

14. ∇× (∇×A) = ∇(∇ ·A)− (∇ ·∇)A εmil εjkl
∂2Ak
∂xi∂xj

êm

φ

φ

Fig1-2-11

φ

θ
φ

Fig. 1.2.11 (a) Cylindrical coordinate system. (b) Spherical coordinate system.
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Table 1.2.2 Base vectors and operations with the del operator in cylindrical and spherical
coordinate systems; see Fig. 1.2.11.

• Cylindrical coordinate system (r, θ, z)
x = r cos θ, y = r sin θ, z = z, R = r êr + z êz, A = Arêr +Aθêθ +Az êz (a vector)

êr = cos θ êx + sin θ êy, êθ = − sin θ êx + cos θ êy, êz = êz

∂êr
∂θ

= − sin θ êx + cos θ êy = êθ,
∂êθ
∂θ

= − cos θ êx − sin θ êy = −êr

All other derivatives of the base vectors are zero.

∇ = êr
∂
∂r

+ 1
r
êθ

∂
∂θ

+ êz
∂
∂z

, ∇2 = 1
r

[
∂
∂r

(
r ∂
∂r

)
+ 1

r
∂2

∂θ2
+ r ∂

2

∂z2

]
∇ ·A = 1

r

[
∂(rAr)
∂r

+ ∂Aθ
∂θ

+ r ∂Az
∂z

]
∇×A =

(
1
r
∂Az
∂θ
− ∂Aθ

∂z

)
êr +

(
∂Ar
∂z
− ∂Az

∂r

)
êθ + 1

r

[
∂(rAθ)
∂r

− ∂Ar
∂θ

]
êz

∇A = ∂Ar
∂r

êrêr + ∂Aθ
∂r

êrêθ + 1
r

(
∂Ar
∂θ
−Aθ

)
êθêr + ∂Az

∂r
êrêz + ∂Ar

∂z
êz êr

+ 1
r

(
Ar + ∂Aθ

∂θ

)
êθêθ + 1

r
∂Az
∂θ

êθêz + ∂Aθ
∂z

êz êθ + ∂Az
∂z

êz êz

• Spherical coordinate system (R,φ, θ)

x = R sinφ cos θ, y = R sinφ sin θ, z = R cosφ, R = R êR, A = ARêR +Aφêφ +Aθêθ

êR = sinφ (cos θ êx + sin θ êy) + cosφ êz, êφ = cosφ (cos θ êx + sin θ êy)− sinφ êz
êθ = − sin θ êx + cos θ êy

êx = cos θ (sinφ êR + cosφ êφ)− sin θ êθ, êy = sin θ (sinφ êR + cosφ êφ) + cos θ êθ
êz = cosφ êR − sinφ êφ

∂êR
∂φ

= êφ, ∂êR
∂θ

= sinφ êθ,
∂êφ
∂φ

= −êR,
∂êφ
∂θ

= cosφ êθ,
∂êθ
∂θ

= − sinφ êR − cosφ êφ

All other derivatives of the base vectors are zero.

∇ = êR
∂
∂R

+
êφ
R

∂
∂φ

+ êθ
R sinφ

∂
∂θ

, ∇2 = 1
R2

[
∂
∂R

(
R2 ∂

∂R

)
+ 1

sinφ
∂
∂φ

(
sinφ ∂

∂φ

)
+ 1

sin2 φ
∂2

∂θ2

]
∇ ·A = 2AR

R
+ ∂AR

∂R
+ 1

R sinφ

∂(Aφ sinφ)

∂φ
+ 1

R sinφ
∂Aθ
∂θ

∇×A = 1
R sinφ

[
∂(sinφAθ)

∂φ
− ∂Aφ

∂θ

]
êR +

[
1

R sinφ
∂AR
∂θ
− 1

R
∂(RAθ)
∂R

]
êφ

+ 1
R

[
∂(RAφ)

∂R
− ∂AR

∂φ

]
êθ

∇A = ∂AR
∂R

êR êR +
∂Aφ
∂R

êR êφ + 1
R

(
∂AR
∂φ
−Aφ

)
êφ êR + ∂Aθ

∂R
êR êθ

+ 1
R sinφ

(
∂AR
∂θ
−Aθ sinφ

)
êθ êR + 1

R

(
AR +

∂Aφ
∂φ

)
êφ êφ + 1

R
∂Aθ
∂φ

êφ êθ

+ 1
R sinφ

(
∂Aφ
∂θ
−Aθ cosφ

)
êθ êφ + 1

R sinφ

(
AR sinφ+Aφ cosφ+ ∂Aθ

∂θ

)
êθ êθ

Let A = grad φ in Eq. (1.2.57). Then the divergence theorem gives∫
Ω

div(grad φ) dv ≡
∫

Ω
∇2φdv =

∮
Γ

n̂ · gradφds. (1.2.58)

The quantity n̂ ·grad φ is called the normal derivative of φ on the surface s and
is denoted by (n is the coordinate along the unit normal vector n̂)

∂φ

∂n
≡ n̂ · grad φ = n̂ · ∇φ. (1.2.59)
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In a Cartesian system, this becomes

∂φ

∂n
=
∂φ

∂x
nx +

∂φ

∂y
ny +

∂φ

∂z
nz,

where nx, ny and nz are the direction cosines of the unit normal,

n̂ = nxêx + nyêy + nzêz. (1.2.60)

The next example illustrates the relation between the integral relations
Eqs. (1.2.55) to (1.2.57) and the so-called integration by parts.

Example 1.2.6

Consider a rectangular region R = {(x, y) : 0 < x < a, 0 < y < b} with boundary C,
which is the union of line segments C1, C2, C3, and C4 (see Fig. 1.2.12). Evaluate the integral∫
R
∇2φdxdy over the rectangular region.

Fig1-2-12

Fig. 1.2.12 Integration over rectangular regions.

Solution: From Eq. (1.2.58) we have∫
R

∇2φdxdy =

∫
R

∇ · (∇φ) dxdy =

∮
c

∂φ

∂n
ds.

The line integral can be simplified for the region under consideration as follows (note that in
two dimensions, the volume integral becomes an area integral):∮

C

∂φ

∂n
ds =

∫
C1

∂φ

∂n
ds+

∫
C2

∂φ

∂n
ds+

∫
C3

∂φ

∂n
ds+

∫
C4

∂φ

∂n
ds

=

∫ a

0

(
−∂φ
∂y

)∣∣∣∣
y=0

dx+

∫ b

0

(
∂φ

∂x

)∣∣∣∣
x=a

dy

+

∫ 0

a

(
∂φ

∂y

)∣∣∣∣
y=b

(−dx) +

∫ 0

b

(
−∂φ
∂x

)∣∣∣∣
x=0

(−dy)

=

∫ a

0

[(
∂φ

∂y

)
y=b

−
(
∂φ

∂y

)
y=0

]
dx+

∫ b

0

[(
∂φ

∂x

)
x=a

−
(
∂φ

∂x

)
x=0

]
dy.
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The same result can be obtained by means of integration by parts:∫
R

∇2 φdxdy =

∫ b

0

∫ a

0

(
∂2φ

∂x2
+
∂2φ

∂y2

)
dxdy

=

∫ b

0

∫ a

0

∂

∂x

(
∂φ

∂x

)
dxdy +

∫ a

0

∫ b

0

∂

∂y

(
∂φ

∂y

)
dydx

=

∫ b

0

(
∂φ

∂x

) ∣∣∣∣∣
x=a

x=0

dy +

∫ a

0

(
∂φ

∂y

) ∣∣∣∣∣
y=b

y=0

dx

=

∫ b

0

[(
∂φ

∂x

)
x=a

−
(
∂φ

∂x

)
x=0

]
dy +

∫ a

0

[(
∂φ

∂y

)
y=b

−
(
∂φ

∂y

)
y=0

]
dx.

Thus integration by parts is a special case of the gradient or the divergence theorem.

1.3 Tensors

1.3.1 Second-Order Tensors

To introduce the concept of a second-order tensor, also called a dyad, we con-
sider the equilibrium of an element of a continuum acted upon by forces. The
surface force acting on a small element of area in a continuous medium depends
not only on the magnitude of the area but also upon the orientation of the
area. It is customary to denote the direction of a plane area by means of a unit
vector drawn normal to that plane [see Fig. 1.3.1(a)]. To fix the direction of
the normal, we assign a sense of travel along the contour of the boundary of
the plane area in question. The direction of the normal is taken by convention
as that in which a right-handed screw advances as it is rotated according to the
sense of travel along the boundary curve or contour [see Fig. 1.3.1(b)]. Let the
unit normal vector be given by n̂. Then the area can be denoted by s = sn̂.

Fig1-3-1

Fig. 1.3.1 (a) Plane area as a vector. (b) Unit normal vector and sense of travel.

If we denote by ∆F(n̂) the force on a small area n̂∆s = ∆s located at the
position r (see Fig. 1.3.2), the stress vector can be defined as follows:

t(n̂) = lim
∆s→0

∆F(n̂)

∆s
. (1.3.1)



1.3. TENSORS 27

We see that the stress vector is a point function of the unit normal n̂, which
denotes the orientation of the surface ∆s. The component of t that is in the
direction of n̂ is called the normal stress. The component of t that is normal to
n̂ is called a shear stress. Because of Newton’s third law for action and reaction,
we see that t(−n̂) = −t(n̂).

Fig1-3-2

Fig. 1.3.2 Force on an area element.

At a fixed point r for each given unit vector n̂, there is a stress vector t(n̂)
acting on the plane normal to n̂. Note that t(n̂) is, in general, not in the
direction of n̂. It is fruitful to establish a relationship between t and n̂. To
do this we now set up an infinitesimal tetrahedron in Cartesian coordinates, as
shown in Fig. 1.3.3.

If −t1,−t2,−t3, and t denote the stress vectors in the outward directions
on the faces of the infinitesimal tetrahedron whose areas are ∆s1, ∆s2, ∆s3,
and ∆s, respectively, we have by Newton’s second law for the mass inside the
tetrahedron:

t∆s− t1∆s1 − t2∆s2 − t3∆s3 + ρ∆vf = ρ∆va, (1.3.2)

where ∆v is the volume of the tetrahedron, ρ is the density, f is the body force
per unit mass, and a is the acceleration. Since the total vector area of a closed
surface is zero (see the gradient theorem; set φ = 1 in Eq. (1.2.55)), we have

∆sn̂−∆s1ê1 −∆s2ê2 −∆s3ê3 = 0.

It follows that

∆s1 = (n̂ · ê1)∆s, ∆s2 = (n̂ · ê2)∆s, ∆s3 = (n̂ · ê3)∆s. (1.3.3)

The volume of the element ∆v can be expressed as

∆v =
∆h

3
∆s, (1.3.4)

where ∆h is the perpendicular distance from the origin to the slant face.
The result in Eq. (1.3.4) can also be obtained from the divergence theorem
in Eq. (1.2.57) by setting A = r.
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Fig1-3-3

−

−
−

•

•
•

•

Fig. 1.3.3 Tetrahedral element in Cartesian coordinates.

Substitution of Eqs (1.3.3) and (1.3.4) in Eq. (1.3.2) and dividing throughout
by ∆s reduces it to

t = (n̂ · ê1)t1 + (n̂ · ê2)t2 + (n̂ · ê3)t3 + ρ
∆h

3
(a− f).

In the limit when the tetrahedron shrinks to a point, ∆h→ 0, we are left with

t = (n̂ · ê1)t1 + (n̂ · ê2)t2 + (n̂ · ê3)t3

= (n̂ · êi)ti. (1.3.5)

It is now convenient to display the above equation as

t = n̂ · (ê1t1 + ê2t2 + ê3t3) . (1.3.6)

The terms in the parenthesis are to be treated as a dyad, called stress dyad or
stress tensor σ:

σ ≡ ê1t1 + ê2t2 + ê3t3. (1.3.7)

The stress tensor is a property of the medium that is independent of the n̂.
Thus, we have

t(n̂) = n̂ · σ (ti = njσji) (1.3.8)

and the dependence of t on n̂ has been explicitly displayed. Equation (1.3.8) is
known as Cauchy’s formula.

It is useful to resolve the stress vectors t1, t2, and t3 into their orthogonal
components. We have

ti = σi1ê1 + σi2ê2 + σi3ê3

= σij êj (1.3.9)

for i = 1, 2, 3. Hence, the stress dyad can be expressed in summation notation
as

σ = êiti = σij êiêj . (1.3.10)
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The component σij represents the stress (force per unit area) on an area perpen-
dicular to the ith coordinate and in the jth coordinate direction (see Fig. 1.3.4).
The stress vector t represents the vectorial stress on an area perpendicular to
the direction n̂. Equation (1.3.8) is known as the Cauchy stress formula and σ
is termed the Cauchy stress tensor.

Fig1-3-4

σ

σ
σ

σ σ

σ

σ
σ

σ

Fig. 1.3.4 Definition of stress components in Cartesian rectangular coordinates.

1.3.2 General Properties of a Dyadic

Because of its utilization in physical applications, a dyad is defined as two
vectors standing side by side and acting as a unit. A linear combination of
dyads is called a dyadic. Let A1,A2, . . . ,An and B1,B2, · · · ,Bn be arbitrary
vectors. Then we can represent a dyadic as

Φ = A1B1 + A2B2 + · · ·+ AnBn. (1.3.11)

Here, we limit our discussion to Cartesian tensors. For a Cartesian ten-
sor, the basis vectors are constants and thus do not take roles as variables in
differentiation and integration.

One of the properties of a dyadic is defined by the dot product with a vector,
say V:

Φ ·V = A1(B1 ·V) + A2(B2 ·V) + · · ·+ An(Bn ·V),
(1.3.12)

V ·Φ = (V ·A1)B1 + (V ·A2)B2 + · · ·+ (V ·An)Bn.

The dot operation with a vector produces another vector. In the first case,
the dyadic acts as a prefactor and in the second case as a postfactor. The two
operations in general produce different vectors.

The conjugate, or transpose, of a dyadic is defined as the result obtained by
the interchange of the two vectors in each of the dyads:

ΦT = B1A1 + B2A2 + · · ·+ BnAn. (1.3.13)
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It is clear that we have

V ·Φ = ΦT ·V,
(1.3.14)

Φ ·V = V ·ΦT.

1.3.3 Nonion Form and Matrix Representation of a Dyad

We can display all of the components of a dyad Φ = φij êiêj by letting the j
index run to the right and the i index run downward:

Φ = φ11ê1ê1 + φ12ê1ê2 + φ13ê1ê3

+ φ21ê2ê1 + φ22ê2ê2 + φ23ê2ê3

+ φ31ê3ê1 + φ32ê3ê2 + φ33ê3ê3. (1.3.15)

This form is called the nonion form. Equation (1.3.15) illustrates that a dyad
in three-dimensional space, or what we shall call a second-order tensor, has nine
independent components in general, each component associated with a certain
dyadic pair. The components are thus said to be ordered. When the ordering is
understood, such as suggested by the nonion form in Eq. (1.3.15), the explicit
writing of the dyads can be suppressed and the dyadic written as an array:

[Φ] =

φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33

 and Φ =


ê1

ê2

ê3


T

[Φ]


ê1

ê2

ê3

 . (1.3.16)

This representation is simpler than Eq. (1.3.15), but it is taken to mean the
same.

This rectangular array [Φ] of scalars φij is called a matrix, and the quantities
φij are called the elements of [Φ].4 If a matrix has m rows and n columns, we
say that is m by n (m×n), the number of rows is always being listed first. The
element in the ith row and jth column of a matrix [A] is generally denoted by
aij , and we will sometimes designate a matrix by [A] = [aij ]. A square matrix
is one that has the same number of rows as columns. An n × n matrix is said
to be of order n. The elements of a square matrix for which the row number
and the column number are the same (i.e., aij for i = j) are called diagonal
elements or simply the diagonal. A square matrix is said to be a diagonal matrix
if all of the off-diagonal elements are zero. An identity matrix, denoted by [I]
(i.e., matrix representation of the second-order identity tensor I), is a diagonal
matrix whose elements are all 1’s.

4The word “matrix” was first used in 1850 by James Sylvester (1814–1897), an English al-
gebraist. However, Arthur Caley (1821–1895), professor of mathematics at Cambridge, was
the first one to explore properties of matrices. Significant contributions in the early years
were made by Charles Hermite, Georg Frobenius, and Camille Jordan, among others.
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If the matrix has only one row or one column, we normally use only a single
subscript to designate its elements. For example,

{X} =


x1

x2

x3

 and {Y } = {y1 y2 y3}

denote a column matrix and a row matrix, respectively. Row and column
matrices can be used to represent the components of a vector.

The reader is expected to have a working knowledge of matrix theory, that
is, addition of matrices, multiplication of a matrix by a scalar, and product of
two matrices, determinant of a matrix, inverse of a matrix, and so on. Readers
who wish to refresh their background on this topic may consult the textbooks
[73, 74].

In the general scheme that is thus developed, vectors are called first-order
tensors and dyads are called second-order tensors. Scalars are called zeroth-
order tensors. The generalization to third-order tensors thus leads, or is derived
from, triads, or three vectors standing side by side. It follows that higher-order
tensors are developed from polyads.

Example 1.3.1

With reference to a rectangular Cartesian system (x1, x2, x3), the components of the stress
dyadic at a certain point of a continuous medium are given by

[σ] =

 200 400 300
400 0 0
300 0 −100

 psi.

Determine the stress vector t at the point and normal to the plane, p(x1, x2, x3) = x1 + 2x2 +
2x3 − 6 = 0, and then compute the normal and tangential components of the stress vector at
the point.

Solution: First we should find the unit normal to the plane on which we are required to find
the stress vector. The unit normal is given by (see Eq. (1.2.47))

n̂ =
∇p
|∇p| , p(x1, x2, x3) = x1 + 2x2 + 2x3 − 6,

n̂ =
1

3
(ê1 + 2ê2 + 2ê3).

The components of the stress vector are displayed in an array t1
t2
t3

 =

 200 400 300
400 0 0
300 0 −100

 1

3

 1
2
2

 =
1

3

 1600
400
100

 psi,

or

t(n̂) =
1

3
(1600ê1 + 400ê2 + 100ê3) psi.
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The normal component tn of the stress vector t on the plane is given by

tn = t(n̂) · n̂ =
2600

9
psi,

and the tangential component is given by (the Pythagorean theorem)

ts =
√
|t|2 − t2n =

102

9

√
(256 + 16 + 1)9− 26× 26 psi

= 100

√
1781

9
= 468.9 psi.

A second-order Cartesian tensor Φ may be represented in unbarred and
barred coordinate systems as

Φ = φij êiêj

= φ̄klˆ̄ek ˆ̄el. (1.3.17)

The unit base vectors in the unbarred and barred systems are related by

êi =
∂x̄j
∂xi

ˆ̄ej ≡ βjiˆ̄ej , βij = ˆ̄ei · êj , (1.3.18)

where βij denote the direction cosines between unbarred and barred systems
(see Eq. (1.2.29)). Thus the components of a second-order tensor transform
according to

φ̄kl = φijβkiβlj or [φ̄] = [β][φ][β]T. (1.3.19)

Equation (1.3.19) is used to define a second-order tensor, that is, Φ is a second-
order tensor if and only if its components φij transform according to Eq. (1.3.19).
In a right-handed orthogonal system, the determinant of the transformation
matrix is unity, and we have

[β]−1 = [β]T. (1.3.20)

The unit tensor is defined as

I = êiêi. (1.3.21)

With the help of the Kronecker delta symbol, this can be written alternatively
as

I = δij êiêj . (1.3.22)

Clearly the unit tensor is symmetric.
The sum of the diagonal terms of a Cartesian tensor is called the trace of

the tensor:
trace Φ = φii. (1.3.23)



1.3. TENSORS 33

The trace of a tensor is invariant, called the first invariant, and it is denoted
by I1, that is, it is invariant with coordinate transformations (φii = φ̄ii). The
three invariants of a Cartesian tensor are given by

I1 = φii, I2 =
1

2
(φijφij − φiiφjj) , I3 = det[φ] = |φ|. (1.3.24)

The double-dot product between two dyadics is very useful in many prob-
lems. The double-dot product between a dyad (AB) and another (CD) is
defined as the scalar:

(AB) : (CD) ≡ (B ·C)(A ·D). (1.3.25)

The double-dot product, by this definition, is commutative. The double-dot
product between two dyads is given by

Φ : Ψ = (φij êiêj) : (ψmnêmên)

= φijψmn(êi · ên)(êj · êm)

= φijψmnδinδjm

= φijψji. (1.3.26)

Note that the double-dot product of a Cartesian tensor Φ with the unit tensor
I produces its trace I1 = φii.

We note that the gradient of a vector is a second-order tensor:

∇A = êi
∂

∂xi
(Aj êj)

=
∂Aj

∂xi
êiêj . (1.3.27)

It can be expressed as the sum of

∇A =
1

2

(
∂Aj

∂xi
+
∂Ai

∂xj

)
êiêj +

1

2

(
∂Aj

∂xi
− ∂Ai

∂xj

)
êiêj . (1.3.28)

Analogously to the divergence of a vector, the divergence of a (second-order)
Cartesian tensor is defined as

divΦ = ∇ ·Φ

= êi
∂

∂xi
· (φmnêmên)

=
∂φmn

∂xi
(êi · êm)ên

=
∂φin
∂xi

ên.

Thus the divergence of a second-order tensor is a vector.
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The integral theorems of vectors presented in Section 1.2.7 are also valid for
tensors (second-order and higher):∫

Ω
gradA dv =

∮
Γ

n̂A ds,∫
Ω

divΦ dv =

∮
Γ

n̂ ·Φ ds, (1.3.29)∫
Ω

curlΦ dv =

∮
Γ

n̂×Φ ds.

It is important that the order of the operations be observed in the above ex-
pressions.

1.3.4 Eigenvectors Associated with Dyads

It is conceptually useful to regard a dyadic as an operator that changes a vector
into another vector (by means of the dot product). In this regard it is of interest
to inquire whether there are certain vectors that have only their lengths, and
not their orientation, changed when operated upon by a given dyadic or tensor.
If such vectors exist, they must satisfy the equation

Φ ·A = λA. (1.3.30)

The vectors A are called characteristic vectors, or eigenvectors, associated with
Φ. The parameter λ is called an eigenvalue, and it characterizes the change in
length (and possibly sense) of the eigenvector A after it has been operated upon
by Φ. The eigenvalues of a stress tensor are known as the principal stresses and
the eigenvectors are called the principal planes.

Since A can be expressed as A = I ·A, Eq. (1.3.30) can also be written as

(Φ− λI) ·A = 0. (1.3.31)

When written in matrix for Cartesian components, this equation becomesφ11 − λ φ12 φ13

φ21 φ22 − λ φ23

φ31 φ32 φ33 − λ


A1

A2

A3

 =


0
0
0

 . (1.3.32)

Because this is a homogeneous set of equations for A1, A2, and A3, a nontrivial
solution will not exist unless the determinant of the matrix [Φ − λI] vanishes.
The vanishing of this determinant yields a cubic equation for λ, called the
characteristic equation, the solution of which yields three values of λ, that is,
three eigenvalues λ1, λ2, and λ3. The character of these eigenvalues depends on
the character of the dyadic Φ. At least one of the eigenvalues must be real. The
other two may be real and distinct, real and repeated, or complex conjugates.
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In the preponderance of practical problems, the dyadic Φ is symmetric,
that is, Φ = ΦT (e.g., Cauchy stress tensor). Of course, Φ is always real in our
considerations. For example, the moment-of-inertia dyadic is symmetric, and
the stress tensor σ is usually but not always symmetric. We limit our discussion
to symmetric dyadics.

The vanishing of the determinant assures that three eigenvectors are not
unique to within a multiplicative constant; however, an infinite number of so-
lutions exist having at least three different orientations. Since only orientation
is important, it is thus useful to represent the three eigenvectors by three unit
eigenvectors ê∗1, ê∗2, and ê∗3, denoting three different orientations, each associ-
ated with a particular eigenvalue.

Suppose now that λ1 and λ2 are two distinct eigenvalues and A1 and A2

are their corresponding eigenvectors:

Φ ·A1 = λ1A1,
(1.3.33)

Φ ·A2 = λ2A2.

Scalar product of the first equation by A2 and the second by A1, and then
subtraction, yields

A2 ·Φ ·A1 −A1 ·Φ ·A2 = (λ1 − λ2)A1 ·A2. (1.3.34)

Since Φ is symmetric, one can establish that the left-hand side of this equation
vanishes. Thus

0 = (λ1 − λ2)A1 ·A2. (1.3.35)

Now suppose that λ1 and λ2 are complex conjugates such that λ1−λ2 = 2iλ1i,
where i =

√
−1 and λ1i is the imaginary part of λ1. Then A1 ·A2 is always

positive since A1 and A2 are complex conjugate vectors associated with λ1 and
λ2. It then follows from Eq. (1.3.35) that λ1i = 0 and hence that the three
eigenvalues associated with a symmetric dyadic are all real.

Now assume that λ1 and λ2 are real and distinct such that λ1 − λ2 is not
zero. It then follows from Eq. (1.3.35) that A1 ·A2 = 0. Thus the eigenvectors
associated with distinct eigenvalues of a symmetric dyadic are orthogonal. If
the three eigenvalues are all distinct, then the three eigenvectors are mutually
orthogonal.

If λ1 and λ2 are distinct, but λ3 is repeated, say λ3 = λ2, then A3 must
also be perpendicular to A1 as deducted by an argument similar to that for A2

stemming from Eq. (1.3.35). Neither A2 nor A3 is preferred, and they are both
arbitrary, except insofar as they are both perpendicular to A1. It is useful,
however, to select A3 such that it is perpendicular to both A1 and A2. We do
this by choosing A3 = A1×A2 and thus establishing a mutually orthogonal set
of eigenvectors. This sort of behavior arises when there is an axis of symmetry
present in a problem.
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In a Cartesian system the characteristic equation associated with a dyadic
can be expressed in the form

λ3 − I1λ
2 − I2λ− I3 = 0, (1.3.36)

where I1, I2, and I3 are the invariants associated with the matrix of Φ. The
invariants can also be expressed in terms of the eigenvalues:

I1 = λ1 + λ2 + λ3, I2 = −(λ1λ2 + λ2λ3 + λ3λ1), I3 = λ1λ2λ3. (1.3.37)

Finding the roots of the cubic Eq.(1.3.36) is not always easy. However, when
the matrix under consideration is of the formφ11 0 0

0 φ22 φ23

0 φ32 φ33

 ,
one of the roots is λ1 = φ11, and the remaining two roots can be found from
the quadratic equation

(φ22 − λ)(φ33 − λ)− φ23φ32 = 0.

That is,

λ2,3 =
φ22 + φ33

2
± 1

2

√
(φ22 + φ33)2 − 4(φ22φ33 − φ23φ32). (1.3.38)

In cases where one of the roots is not obvious, an alternative procedure given
below proves to be useful.

In the alternative method we seek the eigenvalues of the so-called deviatoric
tensor associated with Φ:

φ′ij ≡ φij − 1
3φkkδij . (1.3.39)

Note that
φ′ii = φii − φkk = 0. (1.3.40)

That is, the first invariant I ′1 of the deviatoric tensor is zero. As a result the
characteristic equation associated with the deviatoric tensor is of the form,

(λ′)3 − I ′2λ′ − I ′3 = 0, (1.3.41)

where λ′ is the eigenvalue of the deviatoric tensor. The eigenvalues associated
with φij itself can be computed from

λ = λ′ + 1
3φkk. (1.3.42)
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The cubic equation in Eq. (1.3.41) is of a special form that allows a di-
rect computation of its roots. Equation (1.3.41) can be solved explicitly by
introducing the transformation

λ′ = 2(1
3I
′
2)1/2 cosα, (1.3.43)

which transforms Eq. (1.3.41) into

2(1
3I
′
2)3/2[4 cos3 α− 3 cosα] = I ′3. (1.3.44)

The expression in square brackets is equal to cos 3α. Hence

cos 3α =
I ′3
2

(
3

I ′2

)3/2

. (1.3.45)

If α1 is the angle satisfying 0 ≤ 3α1 ≤ π whose cosine is given by Eq. (1.3.45),
then 3α1, 3α1 + 2π, and 3α1 − 2π all have the same cosine, and furnish three
independent roots of Eq. (1.3.41):

λ′i = 2
(

1
3I
′
2

)1/2
cosαi, i = 1, 2, 3, (1.3.46)

where

α1 = 1
3

{
cos−1

[
I ′3
2

(
3

I ′2

)3/2
]}

, α2 = α1 + 2
3π, α3 = α1 − 2

3π. (1.3.47)

Finally we can compute λi from Eq. (1.3.42).

Example 1.3.2

Determine the eigenvalues and eigenvectors of the matrix:

[φ] =

 2 1 0
1 4 1
0 1 2

 .
Solution: The characteristic equation is obtained by setting det (φij − λ δij) to zero:∣∣∣∣∣∣

2− λ 1 0
1 4− λ 1
0 1 2− λ

∣∣∣∣∣∣ = (2− λ)[(4− λ)(2− λ)− 1]− 1 · (2− λ) = 0,

or
(2− λ)[(4− λ)(2− λ)− 2] = 0.

Hence
λ1 = 3 +

√
3 = 4.7321, λ2 = 3−

√
3 = 1.2679, λ3 = 2.
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Alternatively,

[φ′] =

 2− 8
3

1 0
1 4− 8

3
1

0 1 2− 8
3


I ′2 =

1

2
(φ′ijφ

′
ij − φ′iiφ′jj) =

1

2
φ′ijφ

′
ij

=
1

2

[(
−2

3

)2

+

(
−2

3

)2

+

(
4

3

)2

+ 2 + 2

]
=

10

3

I ′3 = det(φ′ij) =
52

27
.

From Eq. (1.3.47),

α1 =
1

3

{
cos−1

[
52

54

(
9

10

)3/2
]}

= 11.565◦

α2 = 131.565◦, α3 = −108.435◦,

and from Eq. (1.3.46),

λ′1 = 2.065384, λ′2 = −1.3987, λ′3 = −0.66667.

Finally, using Eq. (1.3.42), we obtain the eigenvalues

λ1 = 4.7321, λ2 = 1.2679, λ3 = 2.00.

The eigenvector corresponding to λ3 = 2, for example, is calculated as follows. From
(φij − λ3δij)Aj = 0, we have 2− 2 1 0

1 4− 2 1
0 1 2− 2

A1

A2

A3

 =

 0
0
0

 .

This gives
A2 = 0, A1 = −A3.

Using A2
1 + A2

2 + A2
3 = 1 (called the normalization of the eigenvectors; the normalization

of eigenvectors is not necessary as we are only interested in the planes represented by the
vectors), we obtain

Â3 = ± 1√
2

(1, 0,−1), for λ3 = 2.

Similarly, the eigenvectors corresponding to λ1,2 = 3±
√

3 are calculated as

Â1 = ± (3−
√

3)

12

(
1,
(

1 +
√

3
)
, 1
)
, for λ1 = 3 +

√
3,

Â2 = ± (3 +
√

3)

12

(
1,
(

1−
√

3
)
, 1
)
, for λ2 = 3−

√
3.

When matrix [φ] represents the matrix associated with the stress tensor [σ], the eigenvalues
are called the principal stresses (i.e., maximum and minimum values of the stress at a point)
and eigenvectors are called the principal planes (or directions).
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1.4 Summary

In this chapter a brief review of vectors and tensors is presented. Operations
with vectors and tensors, such as the scalar product (dot product) and vector
product (cross product), and calculus of vectors and tensors are discussed. The
index notation and summation convention are also introduced. The stress vec-
tor and Cauchy stress tensor are introduced and Cauchy’s formula is derived.
The determination of eigenvalues and eigenvectors of a second-order tensor is
detailed, which provides a procedure for determining the principal values and
principal planes of stress and strain tensors in solid and structural mechan-
ics problems. The ideas presented in this chapter will be used in the coming
chapters.

The main results of this chapter are summarized here using the rectangular
Cartesian system.

Kronecker delta [Eq. (1.2.24)]:

δij =

{
1, if i = j, for any fixed value of i, j
0, if i 6= j, for any fixed value of i, j.

(1.4.1)

Permutation symbol [Eq. (1.2.26)]:

εijk =


1, if i, j, k are in cyclic order

and not repeated (i 6= j 6= k),
−1, if i, j, k are not in cyclic order

and not repeated (i 6= j 6= k),
0, if any of i, j, k are repeated.

(1.4.2)

ε-δ identity [Eq. (1.2.28)]:

εijkεimn = δjmδkn − δjnδkm. (1.4.3)

Scalar and vector products of vectors [Eq. (1.2.27)]:

A ·B = AiBi, A×B = AiBjεijkêk. (1.4.4)

Transformation of the rectangular Cartesian components of vectors
[Eq. (1.2.29)]:

Āi = βij Aj , βij = ˆ̄ei · êj . (1.4.5)

The “nabla” operator in the rectangular Cartesian coordinate system
[(Eq. (1.2.50)]:

∇ = êi
∂

∂xi
= êx

∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
. (1.4.6)
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The gradient, curl, and divergence operations in the rectangular
Cartesian coordinate system [Eqs (1.2.46), (1.2.54), and (1.2.51)]:

∇φ ≡ gradφ = êi
∂φ

∂xi
,

∇×A ≡ curlA = εijk
∂Aj

∂xi
êk, (1.4.7)

∇ ·A ≡ divA =
∂Ai

∂xi
.

The gradient, curl, and divergence theorems in the rectangular Carte-
sian coordinate system [Eqs (1.2.55), (1.2.56), and (1.2.57)]:∫

Ω
grad φdΩ =

∮
Γ

n̂φdΓ

[∫
Ω

êi
∂φ

∂xi
dΩ =

∮
Γ

êiniφdΓ

]
. (1.4.8)∫

Ω
curl A dΩ =

∮
Γ

n̂×A dΓ

[∫
Ω
εijkêk

∂Aj

∂xi
dΩ =

∮
Γ
εijkêkniAj dΓ

]
.(1.4.9)∫

Ω
div A dΩ =

∮
Γ

n̂ ·A dΓ

[∫
Ω

∂Ai

∂xi
dΩ =

∮
Γ
niAi dΓ

]
. (1.4.10)

Cauchy’s formula and stress tensor [Eqs (1.3.8) and (1.3.10)]:

t = n̂ · σ (ti = njσji); σ = σij êi êj . (1.4.11)

Transformation of the rectangular Cartesian components of second-
order tensors [Eq. (1.3.19)]:

[φ̄] = [β][φ][β]T; φ̄ij = βimβjnφmn. (1.4.12)

Eigenvalues of a second-order tensor [Eqs (1.3.31) and (1.3.36)]:

|S− λI| = 0 ⇒ λ3 − I1λ
2 − I2λ− I3 = 0, (1.4.13)

where

I1 = skk, I2 = −1

2
(siisjj − sijsji), I3 = det S = |S|. (1.4.14)

are the three invariants of the tensor S.

Problems

1.1 Find the equation of a line (or a set of lines) passing through the terminal point of a
vector A and in the direction of vector B.

1.2 Find the equation of a plane connecting the terminal points of vectors A, B, and C.
Assume that all three vectors are referred to a common origin.
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1.3 Prove with the help of vectors that the diagonals of a parallelogram bisect each other.

1.4 Prove the following vector identity without the use of a coordinate system:

A× (B×C) = (A ·C)B− (A ·B)C.

1.5 If ê is any unit vector and A an arbitrary vector, show that

A = (A · ê)ê + ê× (A× ê).

This identity shows that a vector can resolved into a component parallel to and one
perpendicular to an arbitrary direction ê.

1.6 Verify the following identities:

(a) δii = 3.

(b) δijδij = δii.

(c) δijδjk = δik.

(d) εmjkεnjk = 2δmn.

(e) εijkεijk = 6.

(f) AiAjεijk = 0.

1.7 Using the index notation, prove the identity

(A×B) · (B×C)× (C×A) = (A · (B×C))2.

1.8 Prove the following vector identity in an orthonormal system using index-summation
notation:

(A×B)× (C×D) = [A · (C×D)]B− [B · (C×D]A.

1.9 Determine whether the following set of vectors is linearly independent:

A = ê1 + ê2, B = ê2 + ê4, C = ê3 + ê4, D = ê1 + ê2 + ê3 + ê4.

Here êi are orthonormal unit base vectors in a four-dimensional space.

1.10 Determine whether the following set of vectors is linearly independent:

A = 2ê1 − ê2 + ê3, B = ê2 − ê3, C = −ê1 + ê2.

Here êi are orthonormal unit base vectors in <3.

1.11 Determine which of the following sets of vectors span <3:

(a) A = ê1 + 3ê2 − ê3, B = −4ê1 + 3ê2 − 5ê3, C = 2ê1 + ê2 + ê3.

(b) A = ê1 + ê2, B = ê1 + ê2 − 2ê3, C = ê1 − ê3.

Here êi are orthonormal unit base vectors in <3.

1.12 Consider two rectangular Cartesian coordinate systems that are rotated with respect to
each other and have a common origin. Let one system be denoted as a barred system,
so that a position vector can be written in each of the systems as

r = xiêi,

= x̄j ˆ̄ej ,
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where {êj} and {ˆ̄ej} are the respective orthonormal Cartesian bases in the unbarred and
barred systems. By requiring that the position vector r be invariant under a rotation
of the coordinate systems, deduce that the transformation between the coordinates is
given by

x̄1 = a11x1 + a12x2 + a13x3

x̄2 = a21x1 + a22x2 + a23x3

x̄3 = a31x1 + a32x2 + a33x3,

or more compactly,
x̄i = aijxj , i, j = 1, 2, 3,

where the terms aij can be identified as the direction cosines

aij ≡ ˆ̄ei · êj = cos
(
ˆ̄ei, êj

)
.

Deduce further that the basis vectors obey the same transformation

ˆ̄ei = aij êj ,

and that the following orthogonality conditions hold:

aijakj = δik.

1.13 Determine the transformation matrix relating the orthonormal basis vectors (ê1, ê2, ê3)
and the orthonormal basis vectors (ê′1, ê

′
2, ê
′
3), when ê′i are given by

(a) ê′1 along the vector ê1− ê2 + ê3 and ê′2 is perpendicular to the plane 2x1 + 3x2 +
x3 − 5 = 0.

(b) ê′1 along the line segment connecting point (1,−1, 3) to (2,−2, 4) and ê′3 = (−ê1+
ê2 + 2ê3)/

√
6.

(c) ê′3 = ê3, and the angle between x′1-axis and x1-axis is 30◦.

1.14 The angles between the barred and unbarred coordinate lines are given as follows:
ê1 ê2 ê3

ˆ̄e1 60◦ 30◦ 90◦

ˆ̄e2 150◦ 60◦ 90◦

ˆ̄e3 90◦ 90◦ 0◦

Determine the direction cosines of the transformation.

1.15 The angles between the barred and unbarred coordinate lines are given as follows:
x1 x2 x3

x̄1 45◦ 90◦ 45◦

x̄2 60◦ 45◦ 120◦

x̄3 120◦ 45◦ 60◦

Determine the transformation matrix.

1.16 In a rectangular Cartesian coordinate system, find the length and direction cosines of
a vector A that extends from the point (1,−1, 3) to the midpoint of the line segment
from the origin to the point (6,−6, 4).

1.17 The vectors A and B are defined as follows:

A = 3̂i− 4k̂,

B = 2̂i− 2ĵ + k̂,

where î, ĵ, and k̂ are an orthonormal basis.

(a) Find the orthogonal projection of A in the direction of B.
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(b) Find the angle between the positive directions of the vectors.

1.18 Prove the following identities (see Eq. (1.2.12) for the definition of [ABC]):

(a) d
dt

[ABC] =
[
dA
dt

BC
]

+
[
A dB

dt
C
]

+
[
AB dC

dt

]
.

(b) d
dt

[
A dA

dt
d2A
dt2

]
=
[
A dA

dt
d3A
dt3

]
.

1.19 Let r denote a position vector r = xiêi (r2 = xixi) and A an arbitrary constant vector.
Show that (div = ∇· ; grad = ∇; curl = ∇×):

(a) grad(r) = r
r
.

(b) grad(rn) = nrn−2r.

(c) ∇2(rn) = n(n+ 1)rn−2.

(d) grad (r ·A) = A.

(e) div(r×A) = 0.

(f) curl(r×A) = −2A.

(g) div(rA) = 1
r
(r ·A).

(h) curl (rA) = 1
r
(r×A).

1.20 Let A and B be continuous vector functions of the position vector r with continuous
first derivatives, and let F and G be continuous scalar functions of r with continuous
first and second derivatives. Show that (div = ∇· ; grad = ∇; curl = ∇×):

(a) curl (grad F ) = 0.

(b) div (curl A) = 0.

(c) div (grad F× grad G) = 0.

(d) grad (FG) = F grad G + G grad F .

(e) div (FA) = A· grad F + F div A.

(f) curl (FA) = F curl A - A× grad F .

(g) grad (A ·B) = A · gradB + B · gradA + A× curlB + B× curlA.

(h) div(A×B) = B · curlA−A · curlB.

(i) curl(A×B) = B ·∇A−A ·∇B + AdivB−BdivA.

(j) ∇2(FG) = F ∇2G+ 2∇F ·∇G+G∇2F .

1.21 Find the gradient of a vector A in the (a) cylindrical and (b) spherical coordinate
systems.

1.22 Show that the vector area of a closed surface is zero, that is,∮
Γ

n̂ ds = 0.

1.23 Show that the volume enclosed by a surface Γ is

volume =
1

6

∮
Γ

grad(r2) · n̂ ds,

or

volume =
1

3

∮
Γ

r · n̂ ds.
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1.24 Let φ(r) be a scalar field. Show that∫
Ω

∇2φdv =

∮
Γ

∂φ

∂n
ds,

where ∂φ/∂n ≡ n̂ · gradφ is the derivative of φ in the outward direction normal to the
boundary Γ of the domain Ω.

1.25 In the divergence theorems, set A = φ gradψ and A = ψ gradφ successively and obtain
the integral forms∫

Ω

[
φ∇2ψ +∇φ · ∇ψ

]
dr =

∮
Γ

φ
∂ψ

∂n
ds, (1)∫

Ω

[
φ∇2ψ − ψ∇2φ

]
dr =

∮
Γ

[
φ
∂ψ

∂n
− ψ∂φ

∂n

]
ds, (2)∫

Ω

[
φ∇4ψ −∇2φ∇2ψ

]
dr =

∮
Γ

[
φ
∂

∂n
(∇2ψ)−∇2ψ

∂φ

∂n

]
ds, (3)

where Ω denotes a (2D or 3D) region with boundary Γ. The first two identities are
sometimes called Green’s first and second theorems.

1.26 Determine the rotation transformation matrix such that the new base vector ˆ̄e1 is along
ê1 − ê2 + ê3, and ˆ̄e2 is along the normal to the plane 2x1 + 3x2 + x3 = 5. If T is the
dyadic whose components in the unbarred system are given by T11 = 1, T12 = 0, T13 =
−1, T22 = 3, T23 = −2, and T33 = 0, find the components in the barred coordinates.

1.27 Show that the characteristic equation for a second-order tensor σij can be expressed as

λ3 − I1λ2 − I2λ− I3 = 0,

where
I1 = σkk,

I2 = −1

2
(σiiσjj − σijσji),

I3 =
1

6
(2σijσjkσki − 3σijσjiσkk + σiiσjjσkk) = det (σij)

are the three invariants of the tensor.

1.28 Find the eigenvalues and eigenvectors of the following matrices:

(a)

 4 −4 0
−4 0 0

0 0 3

 , (b)

 2 −
√

3 0

−
√

3 4 0
0 0 4

 ,
(c)

 1 0 0
0 3 −1
0 −1 3

 , (d)

 2 −1 1
−1 0 1

1 1 2

 ,
(e)

 3 5 8
5 1 0
8 0 2

 , (f)

 1 −1 0
−1 2 −1

0 −1 2

 .
1.29 Evaluate the three invariants of the matrices in Problem 1.28 and check them against

the invariants obtained by using the eigenvalues.

1.30 The components of a stress dyadic at a point, referred to the (x1, x2, x3) system, are
(in ksi = 1000 psi):

(a)

 12 9 0
9 −12 0
0 0 6

 , (b)

 9 0 12
0 −25 0

12 0 16

 , (c)

 1 −3
√

2

−3 1 −
√

2√
2 −
√

2 4

 .
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Find the following:

(a) The stress vector acting on a plane perpendicular to the vector 2ê1 − 2ê2 + ê3

passing through the point

(b) The magnitude of the stress vector and the angle between the stress vector and
the normal to the plane

(c) The magnitudes of the normal and tangential components of the stress vector

1.31 If A is an arbitrary vector, Φ is an arbitrary dyad, and I is the identity tensor, verify
that

(a) I ·Φ = Φ · I = Φ.

(b) (I×A) ·Φ = A×Φ.

(c) (A× I) ·Φ = A×Φ.

(d) (Φ×A)T = −A×ΦT.

1.32 If p(x) = a0 + a1x + a2x
2 + · · · + anx

n, and [A] is any square matrix, we define the
polynomial in [A] by

p([A]) = a0[I] + a1[A] + a2[A]2 + · · ·+ an[A]n.

If

[A] =

[
1 −1
−1 1

]
,

and p(x) = 1− 2x+ x2, compute p(A).

1.33 Cayley–Hamilton theorem Consider a square matrix [S] of order n. Denote by p(λ) the
determinant of [S]− λ[I] (i.e., p(λ) ≡ |(S − λI)|), called the characteristic polynomial.
Then the Cayley–Hamilton theorem states that p([S]) = 0 (i.e., every matrix satisfies
its own characteristic equation). Here p([S]) is as defined in Problem 1.32. Use
matrix computation to verify the Cayley–Hamilton theorem for each of the following
matrices:

(a)

[
1 −1
2 1

]
, (b)

 2 −1 1
0 1 0
1 −2 1

 .
1.34 Consider the matrix

[S] =

 2 1 0
1 4 1
0 1 2

 .
Verify the Cayley–Hamilton theorem and use it to compute the inverse of [S].

“If a man is in too big a hurry to give up an error, he is liable to give up some truth with it.”

– Wilbur Wright (developed the world’s first successful airplane)






