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. Introduction

Modulation instability (MI) of a continuous wave (CW) background solution of the non-
linear Schrödinger (NLS) equation is a well-known phenomenon that occurs in a variety
of fields, such as nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein
condensation [1, 2]. In the nonlinear optics context, MI is the main mechanism for the
generation of optical solitons, supercontinuum (SC) [3,4], and rogue waves [5]. MI may
be induced either by quantum noise or by a weak seed signal [6]: in the latter case,
the initial stage of exponential signal amplification is followed first by the generation
of higher-order sideband pairs by cascade four-photon mixing processes. Next, nonlin-
ear gain saturation occurs, owing to pump depletion. After the maximum level of pump
depletion is reached, which depends on the initial sideband detuning, the pump power
and the fiber dispersion, energy flows back from the sidebands into the pump, until the
initial condition is recovered, and so on. This phenomen provides a classical example of
the so-called Fermi-Pasta-Ulam (FPU) recurrence [7, 8]. This process can be described
in terms of exact solutions of the NLS equation [9–12], and has been experimentally
observed in different physical settings, such as deep water waves [13, 14], in nonlinear
optical fibers [15–20], in nematic liquid crystals [21], magnetic film strip-based active
feedback rings [22], and bimodal electrical transmission lines [23]. Important qualitative
physical insight into the FPU recurrence dynamics (e.g., the existence of a homoclinic
structure and the associated dependence of the FPU recurrence period upon the input
relative phase between pump and initial sidebands) may be obtained by means of a trun-
cation to a finite number of Fourier modes, which may lead to simple, low-dimensional
models [24–26].

In Section 1.1, we present an overview of the analysis of the nonlinear dynamics of
MI by means of a simple three-mode truncation. Next we discuss how the coupling
between two polarization modes in a birefringent optical fiber may extend the domain
of MI to the normal dispersion regime. Also in the vector case, an important qualitative
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insight into the dynamics of the nonlinear development of MI may be obtained by using
a three-mode truncation. We also briefly discuss the case where the MI is induced by two
pumps and occurs on top of multiple four-wave mixing. We further present the effect of
higher-order MI, which occurs whenever not only the initial modulation seed but also
some of its harmonics are modulationally unstable. In this case, at some distance along
the fiber one can observe the development of a full modulation of the CW pump with
a frequency which is double the initial modulation. A similar situation also occurs in
a random birefringence telecom fiber that may be described by means of the Manakov
system. In this case, the doubling of the initial modulation frequency occurs whenever
the CW pump and the signal are orthogonally polarized. We conclude the first section
by examining the competition between spontaneous or noise-induced MI and induced
MI, which leads to a break-up of the FPU recurrence after a small number of periods.

MI is a time domain description of a degenerate four-wave mixing (FWM) process in
the frequency space. Interestingly, in optical fibers there are a variety of FWM processes:
in Section 1.2, we present a peculiar non-degenerate MI process which is also known
as Bragg scattering FWM. In this process, two intense pumps lead to a periodic power
exchange between a seed signal and an idler, without any exponential amplification of
the sidebands. Because of its conservative nature, Bragg scattering FWM has interesting
potential applications to quantum optical signal processing.

Finally, in Section 1.3, we present the MI processes that occur in a coherently pumped
passive fiber cavity. Again the presence of a phase-sensitive cavity feedback permits the
extension of the MI domain into the normal dispersion regime. Moreover, cavity MI is
a dissipative type of instability, which leads to the generation of stable trains of optical
solitons also known as cavity solitons. We conclude the section by analyzing the MI
of the Ikeda map which describes field recirculation in an externally driven cavity in
situations (e.g., at high pump powers) that cannot be described by means of the cavity-
averaged or mean-field model.

. Modulation Instability

In this section, we first present the linear stability analysis of a plane wave background
solution of the NLS. Next we generalize the model to include pump depletion and
describe a truncated three-wave model for the pump and its immediate sidebands. A
phase space description of the nonlinear MI process in terms of Stokes parameters will
be introduced and applied to describing the periodic coupling between amplitude and
frequency modulated signals. We also discuss the relationship between the temporal MI
process, and its equivalent description in the frequency domain in terms of a degenerate
four-wave mixing process.

1.2.1 Linear and Nonlinear Theory of MI

The NLS equation for the slowly varying envelope E of the electric field that propagates
along the distance z in a dispersive fiber is given by

𝜕E(z, 𝜏)
𝜕z

+ i
𝛽2
2
𝜕2E(z, 𝜏)

𝜕𝜏2 − i𝛾|E(t, 𝜏)|2E(z, 𝜏) = 0 (1.1)

where 𝛽2 is the group velocity dispersion (GVD) coefficient, 𝛾 = 𝜔0n2∕(cAeff ) is the non-
linear coefficient, and 𝜏 is a retarded time for a pulse moving at the group velocity at 𝜔0.
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MI of the CW solution of Eq. (1.1) may be analyzed by considering a perturbed solution
of the type E(z, 𝜏) = (|E0| + u + iv)eiArg{E0}. By linearizing Eq. (1.1) around the steady-
state CW solution, one obtains

(ũz + iṽz) − i
𝛽2
2
𝜔2(ũ + iṽ) − 2i𝛾|E0|2ũ = 0 (1.2)

where tilde denotes the Fourier transform with respect to 𝜏 . The real and imaginary parts
of the previous expression provide two separate linear equations: the possible growth of
initial perturbations to the CW background may be investigated by studying the eigen-
values of their coefficient matrix. One finds that the eigenvalues associated with poten-
tially unstable eigenmodes are given by the expression

𝜆 = ±
|𝛽2|𝜔

2

√
−sgn(𝛽2)𝜔2

c − 𝜔2, (1.3)

where 𝜔2
c = 4𝛾|E0|2∕|𝛽2|. Perturbations will experience growth, and the CW solution

experiences MI, at those frequencies where the real part of these eigenvalues is posi-
tive. From Eq. (1.3) it is clear that no MI is possible in the normal GVD regime where
𝛽2 > 0. Whereas for anomalous GVD 𝛽2 < 0, MI occurs for 𝜔 < 𝜔c, with a maximum
exponential growth rate 2𝜆 of the sideband powers equal to 2𝛾|E0|2 at the frequency
detuning from the pump 𝜔p = 𝜔c∕

√
2. Physically, this maximum exponential growth

is due to the fact that, at this frequency, the four-photon interaction between the pump
and the sidebands turns out to be nonlinearly phase matched. Henceforth in this section
we consider the anomalous GVD case only.

For the analysis of the nonlinear development of MI past the initial stage of expo-
nential growth of the sidebands, it is convenient to consider a dimensionless version of
Eq. (1.1), namely

i𝜕U
𝜕z

+ 1
2
𝜕2U
𝜕t2 + |U|2U = 0. (1.4)

Here z and t denote dimensionless distance and retarded time, respectively. For the study
of the nonlinear development of induced MI, we set the following input condition for
Eq. (1.4):

U(z = 0, t) = 1 + 𝜖 exp
{

i𝜙0∕2
}
cos(Ωt), (1.5)

where 𝜖 ≪ 1, and Ω is the sideband detuning. In the units of Eq. (1.4), MI occurs for
Ω < 2, with peak gain for Ω =

√
2. In real units, the pump power |E0|2 = (𝛾z0)−1, where

z0 = 𝜏2
0∕|𝛽2|, and 𝜏0 = Ω∕𝜔.

Clearly, the linear stability analysis of Eq. (1.2) cannot give any information about the
saturation of MI owing to pump depletion. Exact solutions of Eq. (1.4) with the initial
condition Eq. (1.5) have been found by direct substitution methods. Quite interestingly,
for 𝜙0 = ±𝜋∕2, which corresponds to maximum MI gain, the exact solution of the NLS
equation is periodic in time t but aperiodic in the distance coordinate z. In general,
the exact solutions of the NLS equation are either periodic or quasi-periodic in both
time t and space z. Thus, the aperiodic solution obtained for 𝜙0 = ±𝜋∕2 represents a
separatrix solution (or homoclinic loop) in the space of time periodic solutions of the
NLS equation.

A visualization of the periodic solutions of the NLS equation that are obtained
inside, outside and exactly on the separatrix, is provided in Figure 1.1, where the initial
frequency modulationΩ =

√
2. As can be seen in Figure 1.1, the initial weak modulation
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Figure . Evolutions of a modulated wave. (a) 𝜖 = 10−2 and 𝜙0 = 0 (amplitude modulation);
(b) 𝜖 = 10−2 and 𝜙0 = 𝜋 (frequency modulation); (c) 𝜖 = 10−4 and 𝜙0 = −𝜋∕2 (separatrix). Source: Trillo
1991 [26].

is amplified until most of the energy is transferred from the pump into the sidebands.
Past that point, the flow of energy is reversed and the energy flows back from the side-
bands into the pump, until the initial weakly modulated state is recovered, and so on.
This periodic behavior of the energy flow among the pump and sidebands provides a
typical example of the FPU recurrence effect. Figure 1.1 suggests that the FPU recur-
rence could be captured by using a finite and possibly small number of Fourier modes
An exp(−inΩt), with n = 0,±1,….

The simplest, yet accurate, model to study the nonlinear evolution of MI is provided
by a three-wave truncation [25, 26]

U(z, t) = A0(z, t) + A−1(z, t) exp(iΩt) + A+1(z, t) exp(−iΩt), (1.6)

where A0, A−1 and A+1 are the pump, Stokes and anti-Stokes wave amplitudes, respec-
tively. By inserting Eq. (1.6) in Eq. (1.4), one obtains the three coupled NLS equations

i
𝜕A0
𝜕z

+ 1
2
𝜕2A0
𝜕t2 +

(|A0|2 + 2|A−1|2 + 2|A+1|2)A0 + 2A−1A+1A∗
0 = 0

i
𝜕A−1
𝜕z

− Ω2

2
A−1 + iΩ

𝜕A−1
𝜕t

+ 1
2
𝜕2A−1
𝜕t2 +

(
2|A0|2 + |A−1|2 + 2|A+1|2)A−1 +A∗

+1A2
0 = 0

i
𝜕A+1
𝜕z

− Ω2

2
A+1 − iΩ

𝜕A+1
𝜕t

+ 1
2
𝜕2A+1
𝜕t2 +

(
2|A0|2 + 2|A−1|2 + |A+1|2)A+1 +A∗

−1A2
0 = 0

(1.7)
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The stationary solution Aj(z, t) = Āj(z) of Eqs. (1.7) is exactly integrable by quadra-
tures [25]. We may set 𝜂(z) = |Ā0(z)|2∕P0 and 𝜙 = 𝜙−1 + 𝜙+1 − 2𝜙0, with Āj(z) =|Āj(z)| exp{i𝜙j(z)}, where P0 = |Ā0|2 + |Ā−1|2 + |Ā+1|2 is the (conserved) total power of
the three waves. Supposing for simplicity that the sidebands have initially equal ampli-
tudes as in Eq. (1.5), i.e., Ā−1(z = 0) = Ā+1(z = 0), one obtains the following equivalent
particle Hamiltonian which describes the spatial evolution of (𝜂,𝜙)

d𝜂
dZ

= dH
d𝜙

, d𝜙
dZ

= −dH
d𝜂

, (1.8)

where Z = P0z, and H is written as

H = 2𝜂 (1 − 𝜂) cos(𝜙) − (𝜅 − 1) 𝜂 − 3
2
𝜂2, (1.9)

where 𝜅 = −Ω2∕P0 is a normalized phase mismatch between pump and sidebands. The
solutions of Eqs. (1.8) and (1.9) are given in terms of Jacobian elliptic or hyperbolic func-
tions [25]. Even though higher-order sidebands with |n| ≥ 2 are neglected by the three
mode truncation Eq. (1.6) and, accordingly, pump depletion is underestimated, Eqs. (1.8)
and (1.9) provide a useful simple model to qualitatively describe the nonlinear dynam-
ics of the induced MI process, as long as the initial sideband detuning is sufficiently
large (i.e., 1 ≤ Ω ≤ 2), so that the higher-order sidebands are not MI unstable [24, 26].
The qualitative agreement between the predictions of the three-wave truncated model
Eqs. (1.8) and (1.9) and the numerical solutions of the NLS equations (1.4) and (1.5) is
illustrated in Figure 1.2. Here we show the solutions of Eq. (1.8) (or curves with con-
stant Hamiltonian H) in the plane (𝜂 sin(𝜙), 𝜂 cos(𝜙)) in the anomalous GVD regime for
𝜅 = −2 or Ω =

√
2: note the presence of the separatrix solution which divides two dif-

ferent domains of oscillations in both the analytical and in the numerical solutions.
The validity of the three-mode truncation is based on the fact that, from the numerical

solution of Eqs. (1.4) and (1.5), one finds that, at the point of maximum pump deple-
tion which is observed for 𝜅 = −1 or Ω = 1, more than 70% of the pump energy is
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Figure . Phase space evolutions of nonlinear MI for 𝜅 = −2. (a) truncated three-wave model; (b)
numerical solution of the NLS equation. Source: Trillo 1991 [26].
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converted into the first-order sidebands with n = ±1 alone. Note that the numerical
solutions reveal, in agreement with recent experiments, that maximum pump depletion
occurs for a modulation frequency which is lower by a factor of

√
2 than the value cor-

responding to peak MI gain. Physically this is due to the fact that pump depletion leads
to a progressive decrease of the effective optimal MI gain frequency along the fiber.

An alternative geometrical representation of the truncated dynamics of nonlinear
modulations is provided by rewriting Eqs. (1.8) and (1.9) in terms of the Stokes param-
eters si ≡ Si∕S0, where S0 ≡ P0 = |Ā0|2 + 2|Ā1|2, S1 ≡ |Ā0|2 − 2|Ā1|2, S2 ≡

√
2Ā0Ā∗

1 +
c.c., and S3 ≡ −i

√
2Ā0Ā∗

1 + c.c. [27]. In vector notation, one obtains

ds
dz

=
(
ΩL + ΩNL(s)

)
× s (1.10)

which describes the field evolution on the modulation sphere (analogous to the Poincaré
sphere for polarization optics) as the motion of a rigid body subject to the sum of the
fixed and the position-dependent angular velocities ΩL ≡ (𝜅, 0, 0) and ΩNL = (10s1 −
1, 17s2, 9s3)∕4, respectively.

In the modulation sphere shown in Figure 1.3, the two points s1 = (±1, 0, 0) repre-
sent the CW and the sidebands, respectively. Whereas the points on the equator with
s3 = 0 represent a pure amplitude modulation (AM), and points on the meridian s2 = 0
represent a pure frequency modulation (FM). For Ω < 2, MI is present and a separatrix
trajectory emanates from the CW (see Figure 1.3 where Ω = 1). At the same time, two
new stable AM eigenmodulations are generated, which are analogous to the elliptically
polarized eigenstates that are present in a nonlinear birefringent fiber at high powers.
Note that the bifurcation of the sideband mode may also lead to the generation of new
stable FM eigenmodulations.

FM

AM
S2S1

S3

t

t

z
z

Figure . AM/FM conversion in MI from the
numerical solution of the NLS equation with
𝜅 = −1. Source: Trillo 1991 [27].
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1.2.2 Polarization MI (PMI) in Birefringent Fibers

Based on the coupled NLS equations describing linear and nonlinear coupling in bire-
fringent optical fibers, we present the stability analysis of pump waves with different
states of polarization, and show that the range of MI can be extended into the normal
dispersion regime. Let us consider for simplicity the case of fibers with low birefringence
(with coherent nonlinear coupling terms included). In terms of the circularly polarized
components, Eq. (1.1) extends to the system of coherently coupled NLS equations [28]

𝜕E+
𝜕z

+ i
𝛽2
2
𝜕2E+
𝜕𝜏2 − iΔ𝛽

2
E− − 2i𝛾

3
[|E+|2 + 2|E−|2]E+ = 0

𝜕E−
𝜕z

+ i
𝛽2
2
𝜕2E−
𝜕𝜏2 − iΔ𝛽

2
E+ − 2i𝛾

3
[|E−|2 + 2|E+|2]E− = 0 (1.11)

where Δ𝛽 = 𝛽x − 𝛽y > 0 is the linear fiber birefringence. In general, the steady-state (i.e,
𝜏-independent) solutions of Eqs. (1.11) can be expressed in terms of z-periodic Jacobian
elliptic functions. The MI analysis of these solutions can be carried out by computing
the spectrum of the associated Floquet exponents over one spatial period. A simpler
insight can be obtained by considering the stability analysis of the spatial eigenmodes
of Eqs. (1.11), for example, when the state of polarization of the input beam of power P
is linear and aligned with the fast axis of the fiber. In terms of the circular polarization
components and in the presence of a weak modulation, one has

Ef
± = ±

[
i
√

P∕2 + u± + iv±
]

ei
[
𝛾P+𝛽yz

]
. (1.12)

By inserting Eqs. (1.12) into Eqs. (1.11) and keeping linear terms only, one obtains
𝜕ũ+
𝜕z

+ i
𝜕ṽ+
𝜕z

− i
𝛽2
2
𝜔2(ũ+ + iṽ+) − iΔ𝛽

2
(
ũ+ + iṽ+ − ũ− − iṽ−

)
− 2

3
i𝛾P

(
ṽ+ + 2ṽ+

)
= 0

(1.13)

along with a similar equation for ũ− and ṽ− which can be obtained from Eq. (1.13) by
interchanging + with −. By separating the equations for the real and imaginary parts of
both circular polarization components of the perturbations, one obtains four separate
linear equations. By examining the eigenvalues of the corresponding coefficient matrix,
one finds that polarization coupling may lead to MI even in the normal GVD regime,
provided that 𝜔 < 𝜔c1 where 𝜔2

c1 = 𝜂(p − 1) and p > 1, where p = P∕Pc, 𝜂 = 2Δ𝛽∕|𝛽2|
and the critical power Pc = 3Δ𝛽∕(2𝛾). The corresponding power growth rate reads as
2𝜆, where

𝜆 =
|𝛽2|

2

√
(𝜂 + 𝜔2)(𝜔2

c1 − 𝜔2). (1.14)

Note that, unlike the scalar MI of Eq. (1.3), in the vector case Eq. (1.14) predicts nonzero
gain also for vanishing modulation frequency𝜔 = 0, which corresponds to the condition
of CW polarization instability of the fast axis. On the other hand, in the anomalous GVD
regime, besides experiencing the usual scalar MI as described by Eq. (1.3), the pump
wave polarized along the fast axis is MI unstable for 𝜔 < 𝜔c2 whenever p > 1, otherwise
for𝜔c3 < 𝜔 < 𝜔c2 whenever p ≤ 1, where𝜔2

c2 = 𝜂 is the low-power phase matching con-
dition between the pump and the orthogonal sidebands, and 𝜔2

c3 = 𝜂(1 − p). In both the
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normal and anomalous GVD regimes, the described MI is of vector nature, since the
unstable Stokes and anti-Stokes eigenmodes are linearly polarized and orthogonal to
the pump, that is they are oriented along the slow axis of the fiber [28].

The MI of a pump initially oriented along the slow axis of the fiber can be similarly
studied by considering the perturbed eigenmode

Es
± =

[√
P∕2 + u± + iv±

]
ei[𝛾P+𝛽xz]. (1.15)

By proceeding as outlined before, one finds that in the anomalous GVD regime the
slow axis solution Eq. (1.15) is only subject to scalar MI. On the other hand, in the nor-
mal GVD regime there is only vector (i.e., with growing sidebands orthogonal to the
pump) MI whenever 𝜔c2 < 𝜔 < 𝜔c5, with 𝜔2

c5 = 𝜂(1 + p). The corresponding MI gain is
obtained from the eigenvalue

𝜆 =
|𝛽2|

2

√
(𝜔2 − 𝜔2

c5)(𝜔2
c2 − 𝜔2). (1.16)

Therefore with a pump on the slow axis, the MI always occurs at high frequencies above
𝜔c2, and there is no CW polarization instability.

As we have already done for the scalar case, to study the nonlinear stage of vector MI
in a birefringent fiber, we consider the dimensionless version of Eqs. (1.11):

i𝜕U
𝜕z

± 1
2
𝜕2U
𝜕t2 + Δ

2
U + (|U|2 + 2

3
|V |2)U + 1

3
U2V ∗ = 0.

i𝜕V
𝜕z

± 1
2
𝜕2V
𝜕t2 − Δ

2
V + (|V |2 + 2

3
|U|2)V + 1

3
V 2U∗ = 0. (1.17)

where U , V are the linear polarization components of the field, and Δ is the dimension-
less linear birefringence [29]. We may then consider the truncation of the solutions of
Eqs. (1.17) by using the following ansatz:

U(z, t) = A0(z) exp(∓iΩ2z∕4),

V (z, t) =
√

2A1(z) exp(∓iΩ2z∕4) cos(Ωt). (1.18)

Accordingly, we now define 𝜂(z) = |A0(z)|2∕P0 and 𝜙 = 2𝜙+1 − 2𝜙0, with Aj(z) =|Aj(z)| exp{i𝜙j(z)}, j = 0, 1, where P0 = |A0|2 + |A1|2 is the total power. The spatial evo-
lution of (𝜂,𝜙) is again described by the motion of an equivalent particle that obeys the
evolution equations [29–31]

d𝜂
dZ

= dH
d𝜙

, d𝜙
dZ

= −dH
d𝜂

, (1.19)

where Z = P0z∕3, and the Hamiltonian H reads as

H = 2𝜂 (1 − 𝜂) cos(𝜙) − (𝜅 + 5) 𝜂 + 7
2
𝜂2, (1.20)

where 𝜅 = −12(Δ∕2 ± Ω2∕4)∕P0 is the normalized phase mismatch between pump and
sidebands.

We briefly mention that in fibers with high birefringence, a different type of PMI
occurs, characterized by growing sidebands which are orthogonally polarized along the
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birefringence axes whereas the pump is linearly polarized at 45 degrees (or more gen-
erally at any angle, though the efficiency of the process reduces) [32, 33]. This process,
which also allows for extending MI to the normal dispersion regime, is described in
terms of linearly polarized components U , V by incoherently coupled NLS (IC-NLS)
equations where the group-velocity mismatch must be taken into account. The IC-NLS
model reads in dimensionless units as

i𝜕U
𝜕z

+ i𝛿 𝜕U
𝜕t

± 1
2
𝜕2U
𝜕t2 + (|U|2 + X|V |2)U = 0.

i𝜕V
𝜕z

− i𝛿 𝜕U
𝜕t

± 1
2
𝜕2V
𝜕t2 + (|V |2 + X|U|2)V = 0. (1.21)

where X = 2∕3 is the cross-phase modulation (XPM) coefficient in silica fibers.
When 𝛿 is sufficiently large, the nonlinear stage of MI can be investigated by
means of the two-mode truncation U = [A0(z) + A1(z) exp(iΩt)]∕

√
2, V = [A0(z) +

A1(z) exp(−iΩt)]∕
√

2, where P0 = |A0|2 + |A1|2 is the conserved power. Following the
same approach outlined above, the dynamics is described by an equivalent integrable
oscillator with Hamiltonian [34–36]

H = 2
3
𝜂 (1 − 𝜂) cos(𝜙) − (𝜅 − 1) 𝜂 − 𝜂2, (1.22)

where 𝜂 and 𝜙 have the same meaning as in Eqs. (1.19) and (1.20). Conversely, in
this case, the normalized phase mismatch of the underlying four-photon process reads
as 𝜅 = (±Ω2 − 𝛿Ω)∕P0. When 𝛿 is not large enough, the nature of the MI ruled by
Eq. (1.21) changes, since the sidebands possess both polarization components, and six
scalar modes become effective. Under this regime the reduced Hamiltonian become
two-dimensional and spatially chaotic regimes sets in [35].

1.2.3 Collective MI of Four-Wave-Mixing

On the basis of the same type of IC-NLS equations (1.21), it was predicted that MI
induced by XPM can occur also by injecting two pumps with the same polarization
but different frequencies 𝜔0 ± Ωd [37], 2Ωd being the real-world frequency separation
between the pumps. In this case U and V represent the field envelopes at the two carrier
frequencies, whereas X = 2. However, the beating between the two pumps induces, via
the Kerr effect, a process usually termed multiple four-wave mixing (mFWM), i.e., the
generation of a cascade of multiple sideband pairs at 𝜔0 ± nΩd, n odd integer, which is
due to coherent terms neglected in the derivation of Eqs. (1.21) [38]. It was argued that,
in the normal GVD regime, the most unstable MI frequencies are resonant with the
generated mFWM leading-order modes, which invalidates the approach based on the
IC-NLS equations [39, 40]. However, the dynamics of mFWM could be correctly cap-
tured in the framework of the single NLS equation (1.1) and a relative four-mode trun-
cation (pump and the leading-order mFWM mode pairs) [41]. By exploiting the fact that
mFWM leads, in a wide range of frequency detuning and powers, to periodic exchange
of power between the pump pair and the cascaded modes, the MI linear stability analy-
sis could be reformulated by accounting for the mFWM phenomenon. Indeed, one can
linearize around the periodic orbits which describe the mFWM leading-order modes,
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Figure . (a) Output spectra from a NLS simulation showing the onset of collective MI from noise in
the anomalous GVD regime (𝛽 = 𝛽2∕|𝛽2| = −1). The frequencies are scaled in units of

√
𝛾P0∕𝛽2, e.g.

Ω = Ωd

√
𝛽2∕(𝛾P0) = 1.5 for the pump detuning. For comparison we report the calculated collective MI

gain around the pumps (pale gray; the gain peaks at 𝜔 = 𝜔p = 1 consistently with the normalized
power 0.5 for each pump (normalized total power is 1); (b) Corresponding periodic evolution of pump
power fraction; (c) as in (a) for larger pump detuning Ω = 4; (d) Stable FWM in normal GVD regime,
𝛽 = 1. Source: Armaroli 2011 [42].

and study by means of Floquet techniques, the stability of the whole process against
the growth of a modulation (i.e., sideband pairs) at the same frequency 𝛿𝜔 around all
the mFWM orders. The outcome of such analysis (for details, see [40, 42]) shows that,
in the anomalous GVD regime, the mFWM pattern is unstable against the growth of
MI sidebands at the frequency detuning 𝛿𝜔 = ±𝜔p, where 𝜔p = 𝜔c∕

√
2 is the peak fre-

quency corresponding to the power of a single pump line, predicted by the standard
scalar MI. This process has been termed collective MI because the modulation is trans-
ferred with the same frequency from the two pumps to all the other mFWM products.
In other words the MI frequency does not scale with the power of the cascaded mFWM
modes, as it would be in the event that each mFWM order would develop its own MI
[see Figure 1.4 (a)].

An example of the spectrum calculated from the NLS is shown in Figure 1.4 (a). Here
the MI develops on top of the spatially periodic evolution of the pumps displayed in
Figure 1.4 (b). At larger frequency separations between the pumps also harmonics of
the fundamental MI unstable frequency can be observed, as shown in Figure 1.4 (c).
The same analysis shows that, for normal GVD, the mFWM is modulationally stable,
as shown in Figure 1.4 (d) [40]. These results have been experimentally confirmed, by
carefully measuring single spectra as well as the spectral behavior of mFWM, as the
frequency detuning Ωd was continuously varied [43].



JWST802-c01 JWST802-Boscolo February 21, 2017 7:25 Printer Name: Trim: 244mm × 170mm

Modulation Instability, Four-Wave Mixing and their Applications 

1.2.4 Induced MI Dynamics, Rogue Waves, and Optimal Parametric Amplification

We briefly discuss here the nonlinear dynamics of the evolution of MI beyond the
approximation intrinsic in the simple truncated models, that is, including all harmon-
ics 𝜔0 ± nΩ, n ≥ 2 of the initial modulating signal (n = 1). These harmonics are indeed
generated via the Kerr effect and can be important especially in the scalar MI process. In
this case, thanks to the integrability of the NLS equation, the FPU recurrent evolutions
that entail a periodic power exchange among the pump and the full comb of harmonics
can still be described exactly in terms of doubly-periodic (in time and space) analyt-
ical solutions. Such solutions describe the homoclinic structure of the MI illustrated
in Figures 1.1 and 1.2. In particular, the separatrix of Eq. (1.4) corresponds to the so-
called Akhmediev breather (AB), i.e., a solution that connects the unit background to
itself after a full cycle of evolution (strictly speaking, the AB is heteroclinic rather than
homoclinic to the background due to the different phase at z = ±∞)

uAB(t) =

[
1 + 2(1 − 2a) cosh(bz) + i sinh(bz)√

2a cos(𝜔t) − cosh(bz)

]
eiz, (1.23)

where the parameters 2a =
√

1 − (𝜔∕2)2 and b =
√

8a(1 − 2a) are fixed by the normal-
ized frequency 𝜔 = Ω

√|𝛽2|∕(𝛾P0). Equation (1.23) describes the single cycle of conver-
sion in the whole range of MI, namely 0 ≤ 𝜔 ≤ 2 (i.e., 1∕2 ≥ a ≥ 0). A remarkable limit
of Eq. (1.23) is obtained for 𝜔 = 0, which gives the rational soliton solution known as the
Peregrine soliton [19], a prototype of (deterministic) rogue wave. Moreover for a > 1∕2,
Eq. (1.23) describes the Kuznetsov-Ma breathers [20]. The nonlinear stage of MI devel-
oping from noise usually exhibits evidence for the random excitation of AB, Peregrine
and Kuznetsov-Ma structures [44]. Conversely, when the MI is induced by a sufficiently
small seed, the dynamics can be accurately described in terms of ABs [4, 45], since the
doubly periodic solutions lie sufficiently close to the separatrix.

Importantly, from the AB solutions one can derive a simple analytical condition for the
optimum modulation frequency, that leads to maximum pump depletion. This optimum
frequency does not coincide with the maximally unstable (or nonlinear phase matching)
normalized frequency 𝜔 =

√
2, due to the fact that the depletion tunes the underlying

four-photon process out of phase-matching. Conversely, at lower modulation frequen-
cies, even though the modulation grows initially with lower rate, it can be amplified
more efficiently since pump depletion tunes the mixing process towards phase matching
[25]. Quantitatively, the optimal condition for conversion can be obtained by expanding
the AB at its apex [peak conversion occurring at z = 0 in Eq. (1.23)] in Fourier series
upeak

AB (t) =
∑

n ũn exp(in𝜔t), where ũn are the Fourier modal amplitudes. In this way, one
can obtain simple expressions for the peak fraction of the pump (n = 0) and harmonic
sideband modes (±n)

|ũpeak
0 |2 = (𝜔 − 1)2; |ũpeak

n |2 = 𝜔2
(2 − 𝜔

2 + 𝜔

)n
. (1.24)

Equation (1.24) implies that the pump is totally depleted at 𝜔 = 1. As shown in Fig-
ure 1.5 (a), numerical integration of the normalized NLS Eq. (1.4) with initial condi-
tion u =

√
𝜂0 +

√
1 − 𝜂0 exp(i𝜔t), confirms that, at 𝜔 = 1, total pump depletion occurs

in favor of multiple sideband pairs at a characteristic distance zd, which depends on
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Figure . (a) Evolution of the power fraction of the pump (n = 0) and first four sideband pairs at
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Residual pump power fraction vs. 𝜔: estimate from AB [Eq. (1.24)], solid line compared with NLS
simulations (circles and crosses) for two values of input pump fraction 𝜂0 = 0.97 and 𝜂0 = 0.9998.

the power fraction of the input seed. Such simulations, repeated for different mod-
ulation frequencies 𝜔, confirm that the parabolic law of Eq. (1.24) indeed provides
a quantitatively accurate description of the maximally depleted pump in the whole
range 1 ≤ 𝜔 ≤ 2, regardless of the initial power fraction of the signal. This agreement
is displayed in Figure 1.5 (b), where we compare the results of the simulations, carried
out for two different input pump fractions 𝜂0 = 0.9998 and 𝜂0 = 0.97 (signal fractions
𝜂s = 0.02%, 3%), to the analytical expression [Eq. (1.24)]. As can be seen, slight discrep-
ancies only appear for significantly high input signal fractions (see crosses for 𝜂0 = 0.97),
and in the range of modulation frequencies well below the optimum value 𝜔 = 1. The
validity of such arguments has been experimentally validated by measuring a 95% deple-
tion at a frequency lower than the measured peak gain frequency, in good agreement
with the normalized value 𝜔 = 1 (see Figure 1.6, left panel) [47]. Noteworthy, Figure 1.6
shows that the signal probe (n = 1) peaks at a slightly higher frequency (yet lower than
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the peak gain frequency), in agreement with Eq. (1.24) that gives a maximum of |ũpeak
1 |2

at 𝜔 ≃ 1.24.
In the case of PMI processes, the deviation of optimal parametric amplification from

nonlinear phase matching is even more striking. Indeed, on the basis of the Hamiltonian
oscillators Eqs. (1.20)–(1.22), it was shown that the optimal conversion in the strongly
depleted regime occurs outside the gain bandwidth of the MI. Despite the fact that the
pump is stable, in this region the dynamics are indeed ruled by unstable phase-locked
eigenmodulations, which bifurcate from the pump at the edge of the MI gain bandwidth
[29–31]. As a result, a critical frequency turns out to exist, around which the conversion
reaches a maximum value and then abruptly drops. In this case the three-mode trun-
cation constitutes a good description of this regime too, since the generation of higher-
order sidebands remains negligible. This has been confirmed experimentally in [46] for
the low-birefringence case, as well as in [36] for the high-birefringence case. The latter
case is illustrated in Figure 1.6 (right panel), which shows the measured idler fraction as
a function of modulation frequency compared with the MI gain curve. Here the pump
is polarized at 45 degrees and has total power P = 56 W, whereas the input signal is a
10% fraction of the pump.

1.2.5 High-Order Induced MI

Whenever the MI is induced in a fiber by a signal, whose harmonic is also modulationally
unstable, then the so-called higher-order MI occurs. In this case, after a first stage of
FPU recurrence that leads to the peak pump depletion and maximum amplification of
the signal and all of its harmonics, there is a second stage of pump depletion, which
is characterized by the development of the second harmonic of the initial modulation
[48]. For 0 ≤ Ω ≤ 1, some higher-order sidebands (e.g., the first-harmonic of the input
modulation ±2Ω for 0.5 ≤ Ω ≤ 1) experience exponential growth with distance [48].
Consider the solution of Eq. (1.4) with the initial condition Eq. (1.5): Figure 1.7 compares
the evolution with distance z of the field amplitude with either an initial AM (that is
𝜙0 = 0) or FM (𝜙0 = 𝜋) perturbation. As can be seen, the initial weak modulation grows

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

3
2
1
0

–20

0

20

0

20

0 5 10

Distance
Time

Time

(a)

(b)

A
m

p
lit

u
d

e
 |
u

|

3
2
1
0

–20

A
m

p
lit

u
d

e
 |
u

|

15 20 25

0 5 10

Distance

15 20 25

1

Distance

A
m

p
lit

u
d

e

Pump

Ω
2Ω

Figure . Evolution with distance of the field amplitude with 𝜖 = 0.01, Ω = 0.8718, and initial (a) AM or
(b) FM. The rightmost plot shows the evolution of the energy in the pump and sidebands for the AM
case. Source: Wabnitz 2010 [48]. Reproduced with permission of Elsevier.



JWST802-c01 JWST802-Boscolo February 21, 2017 7:25 Printer Name: Trim: 244mm × 170mm

 Shaping Light in Nonlinear Optical Fibers

until at z ≃ 5 the input CW pump is nearly fully depleted into the sidebands at frequency
Ω and their harmonics. Next, the field energy flows back into the pump according to the
usual FPU recurrence.

However, Figure 1.7 (a) also shows that in the AM case, at approximately the mid-
point z ≃ 13 of the FPU recurrence period, a modulation develops with frequency 2Ω.
Whereas Figure 1.7 (b), where a pure FM is present at the fiber input, shows that no
development of the second-harmonic component occurs. We may thus conclude that
the development of the frequency-doubled modulation is strongly sensitive to the rel-
ative phase between the pump and the initial sidebands. Note that the field evolution
may be analytically expressed as a nonlinear superposition of all linearly unstable modes,
which leads to the emergence of multiple spatial periods [49,50]. A potential application
of the frequency doubling effect is the possibility of obtaining a high-extinction ratio
modulation of a CW laser at frequency 2Ω by seeding its propagation in a nonlinear
optical fiber with a weak modulation at frequency Ω.

An interesting extension of the MI frequency doubling can be obtained by using
polarized beams in a randomly birefringent telecom fiber, where pulse propagation is
described by the Manakov system

i𝜕U
𝜕z

+ 1
2
𝜕2U
𝜕t2 + (|U|2 + |V |2)U = 0,

i𝜕V
𝜕z

+ 1
2
𝜕2V
𝜕t2 + (|V |2 + |U|2)V = 0. (1.25)

where the initial condition reads as

U(z = 0, t) = U0 + 𝜖U exp
{

i𝜙U∕2
}
cos(Ωt),

V (z = 0, t) = V0 + 𝜖V exp
{

i𝜙V∕2
}
cos(Ωt), (1.26)

When the CW pump and its modulation are orthogonally polarized at the fiber input
(e.g., with V0 = 0 and 𝜖U = 0 in Eq. (1.5)), no scalar MI occurs. However, MI is induced
upon propagation on the CW via cross-polarization modulation (XPolM) [51]. As a
result, as shown in Figure 1.8, one still observes a break-up of the pump into a pulse
train which only contains even harmonics of the initial modulation. Moreover, the CW
pedestal that accompanies MI-induced pulse trains in the scalar case is fully suppressed
in the vector case, thus permitting in principle very large extinction ratios to be achieved.
The all-optical generation of a 80-GHz high-contrast pulse train from a cross-polarized
40-GHz electro-optical weak modulation was recently experimentally demonstrated.

1.2.6 MI Recurrence Break-Up and Noise

Although the nonlinear stage of MI is characterized by the FPU recurrence, the devel-
opment of supercontinuum (SC) is associated with the irreversible evolution toward a
thermalization state, i.e., a nearly equal distribution of spectral energy among all fre-
quency components [3,4]. For example, it was predicted and experimentally confirmed
that third-order dispersion induced losses in Cherenkov radiation lead to the energy
dissipation of the pump field, that eventually breaks the FPU recurrence [52, 53]. In
fact, nonlinear fiber optics experiments typically demonstrate FPU recurrence up to a
single spatial period [15–19, 47]. In addition, recent studies regarding noise-induced
MI have highlighted the complex dynamics associated with the onset stage of noise
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amplification [54, 55] and their links with the mechanisms of rogue wave generation
[4, 56]. For example, seeding the initial stage of SC generation with a weak modulation
could lead to the stabilization of the SC output [56–58], and thus reduce the impact of
noise on the complex dynamics associated with SC and rogue wave generation.

We want to discuss how, in the presence of initial quantum noise, spontaneous MI
competes with the induced MI process. This is a fundamental instability mechanism
which breaks the FPU recurrence and leads to the irreversible evolution into statistically
stationary spectra [59]. The stability of periodic nonlinear mode coupling was previously
studied in the context of polarization MI in birefringent fibers [60], parametric mixing
[61] or second harmonic generation in quadratic materials [62], and, more recently,
in the closely related problem of dual-frequency pumped mFWM in optical fibers
[40, 42, 43].

In the following, we numerically solved the NLS equation Eq. (1.4) with the initial
condition Eq. (1.5), and added a broadband quantum noise floor corresponding to one
photon per frequency bin with random initial phase in the spectral domain. Figure 1.9 (a)
shows the evolution of the field intensity |U(z, t)|2, for a particular realization of the
random input noise seed (single shot case). As can be seen, after just two FPU recurrence
periods, spontaneous MI leads to the field break-up into an irregular structure exhibiting
frequency doubling and irregular intensity peaks formation.

Break-up of the FPU recurrence is due to the exponential growth of the initial quan-
tum noise background, owing to MI of the periodically evolving pump and multi-
ple FWM sidebands. This is clearly shown in the single-shot spectral domain plot of
Figure 1.9 (b), showing the evolution of the log-scale spectral intensity of the field as a
function of the angular frequency detuning from the pump, 𝜔. Figure 1.9 (b) also shows



JWST802-c01 JWST802-Boscolo February 21, 2017 7:25 Printer Name: Trim: 244mm × 170mm

 Shaping Light in Nonlinear Optical Fibers

T
e
m

p
o
ra

l 
In

te
n
s
it
y
 (

a
.u

.)

0

2

12

4

14

6

8

10

0

−20

−80

−60

−40

−100

−120
S

p
e
c
tr

a
l 
In

te
n
s
it
y
 (

d
B

)

Time t
0 10

D
is

ta
n
c
e
 z

0

10

20

30

40

D
is

ta
n
c
e
 z

0

10

20

30

40

Frequency ω

−10−20 20

0 10−10−20 20

(a) Temporal Evolution (single-shot)

(b) Spectral Evolution (single-shot)

Figure . Evolution of (a) field intensity |U|2; and (b) spectrum (in log scale) for Ω = 1 for 𝜖 = 0.05 and
𝜙0 = 0. Source: Wabnitz 2014 [59].

that, after two periods of the FPU recurrence, the temporal field break-up is associated
with the growth of a broad frequency continuum among all FWM sidebands, which
leads to the irreversible equipartition of energy in frequency space [59].

The break-up of the FPU recurrence shown in Figure 1.9 is clearly displayed in terms
of the spatial evolution of the power of the pump and the initial modulation sidebands.
Indeed, Figure 1.10 shows that after two periods of FPU recurrence, the pump power
suddenly drops down, and it exhibits an irregular evolution around a low average value.
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permission of Elsevier.
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. Four-Wave Mixing Dynamics

Optical fibers permit the cubic nonlinear response of glass with long interaction lengths
to be exploited. If we consider two pump wavelengths at angular frequencies 𝜔1 and 𝜔2,
and a third signal at frequency 𝜔s, it is possible, for instance, to generate by FWM an
idler at frequency 𝜔i = 𝜔1 + 𝜔2 − 𝜔s. When the frequencies of the two pumps coincide
𝜔1 = 𝜔2, the FWM is called degenerated. The nearly instantaneous response time of the
Kerr nonlinearity makes it very interesting, for instance, for amplification or frequency
conversion of optical signals with all-optical devices that are agnostic to the modulation
format and directly compatible with fiber transmission systems. However, a real exper-
iment would reveal a more complex situation: for instance, for each pump wavelength,
degenerated FWM would also be possible. The efficiency of these processes is governed
by different phase matching conditions.

Considering the simple case of a unique guided mode, the nonlinear dynamics of
the four interacting waves with two pump wavelengths have been studied in [41] even
beyond the common assumption of the undepleted pump approximation, which is
instead limited to a weak signal and idler. A variety of four-photon interactions under
various polarization states have been predicted and observed in optical fibers [63]; the
scenario can be further expanded considering multimode waveguides, where FWM can
permit energy exchange among guided modes of different temporal frequencies. The
emergence of new technologies for fiber micro structuring has substantially enhanced
the possibility of the application of FWM, since the dispersion profile and therefore the
phase matching condition and hence the efficiency can be more easily controlled in these
fibers.

The FWM process can also naturally be found as an undesired shortcoming in long
fiber transmission systems with wavelength division multiplexing: the energy exchange
among the interacting waves is in these cases a source of cross-talk among channels and
therefore of transmission impairments.

1.3.1 FWM Processes with Two Pumps

The first type of application of FWM with two pumps is fiber optic parametric ampli-
fication. The same effect can also be obtained with a single pump with the degenerate
FWM. It is possible to show that the input signal 𝜔s can be amplified in an optical fiber,
and that at the same time an idler𝜔i is created on another wavelength and with the capa-
bility of carrying the same information of the signal. The interest in using two pumps is
in the gain flatness that one can obtain with the proper choice of pump wavelengths.

Another important application of FWM with two pump wavelengths is the so-called
phase-sensitive amplification. The optical amplifiers commonly deployed today in fiber
transmission systems are phase-insensitive, which means that they amplify an opti-
cal signal, disregarding its input phase. The introduction of more advanced modula-
tion formats, especially phase-shift keying, has increased the interest in new types of
optical amplifiers able to amplify the in-phase signal quadrature and to attenuate the
out-of-phase signal quadrature. A possible implementation of a phase-sensitive ampli-
fication can be based on a FWM comprising a signal wavelength and two pump wave-
lengths so that 𝜔s = (𝜔1 + 𝜔2)∕2. Some of the features of FWM for phase-sensitive
amplification are illustrated in [64], and an example of experimental implementation is
given in [65].
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1.3.2 Bragg Scattering FWM

A common feature of the FWM interactions briefly listed in Section 1.3.1 is the pres-
ence of an exponential gain. The Bragg-scattering FWM (BS-FWM) is instead a spe-
cial type of parametric interaction that can permit frequency translations of signals
in the absence of exponential gain. The terminology has been inspired by the spatial
equivalent effect [66] and this type of FWM was also previously known as wavelength
exchange [67].

The absence of gain implies the absence of spontaneous noise emission: for this reason
BS-FWM can permit a frequency translation that keeps preserved the quantum state of
a signal and this key feature has been extensively developed by McKinstrie and cowork-
ers [68, 69].

BS-FWM can in principle permit a unitary transformation involving a weak signal and
an idler, with the same formal properties of the transformation operated by a (quantum)
beam splitter involving incident reflected and transmitted waves. BS-FWM requires
two pumps at two different wavelengths and the maximum conversion efficiency can
be obtained at phase matching under various configurations of polarization states and
wavelengths for pumps, signal and idler [68, 70, 71].

In practice, a signal at a given wavelength can be up-converted or down-converted
by a frequency-shift amount equal to the beating frequency between two distinct pump
wavelengths. The energy conservation requires that 𝜔i = 𝜔s ± (𝜔1 − 𝜔2), where 𝜔1, 𝜔2
are the angular frequencies of the two pumps (1,2) and𝜔s,𝜔i are the angular frequencies
of signal and idler respectively. The presence of the two signs reminds us that for a given
signal wavelength and a pair of pump wavelengths, two distinct idler wavelengths are
possible in principle.

Both up-conversion or down-conversion can be implemented in two ways, as illus-
trated by panels (a) and (b) of Figure 1.11. In the first implementation, shown in panel (a),
the pumps are interleaved with the signal and idler, permitting broad frequency transla-
tions. In the second implementation, illustrated in panel (b), signal and idler are instead
spectrally separated from the two pumps: this configuration permits a narrow-band fre-
quency exchange, and can be of interest in quantum applications where it is important
and also technically challenging to separate the pumps from the signal and idler with
optical filters.

Considering for simplicity the up-conversion case shown in Figure 1.11 (a), the
BS-FWM conversion efficiency is ruled by the phase matching condition

𝛽(𝜔i) = 𝛽(𝜔s) + [𝛽(𝜔1) − 𝛽(𝜔2)] + 𝛾(P2 − P1) (1.27)

(a) (b)

Figure . Different configurations for BS-FWM.
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where 𝛽(𝜔) = n(𝜔)𝜔∕c is the linear wave-vector at the angular frequency 𝜔 and P1, P2
are the powers of pumps 1 and 2. Following [68] it is convenient to identify all inter-
acting waves by frequency detunings ΩB,ΩC from a common reference frequency 𝜔Ref .
In doing so, it is possible to develop a Taylor series expansion of the wave-vector 𝛽(𝜔)
around 𝜔Ref to highlight the role that is played by the different orders of dispersion.
Similar to what happens in the case of MI, the summation of wave-vectors of opposite
detuning causes the algebraic cancellation of the odd-order dispersion terms. When the
expansion is truncated to the fourth order, the phase matching Eq. (1.27) imposes a con-
dition between the second and the fourth order dispersion as follows:(

Ω2
B − Ω2

C
) [

𝛽2 +
𝛽4
12

(
Ω2

B + Ω2
C
)]

= 0 (1.28)

In particular, Eq. (1.28) shows that the phase-matching of BS-FWM requires opposite
signs for 𝛽2 and 𝛽4: in normal dispersion (𝛽2 > 0) it then requires negative values of 𝛽4;
in anomalous dispersion instead 𝛽4 should be positive. Both BS-FWM with positive and
negative 𝛽4 have been experimentally demonstrated [71].

The dynamical equations coupling the complex envelope of signal as and idler ai
by BS-FWM can be obtained from the standard procedure of analyzing the interplay
among two pumps and two sidebands from the NLS equation [41,66]. Equations for sig-
nal and idler can be linearized in the undepleted pump approximation and the resulting
coupled mode equations are⎡⎢⎢⎢⎣

das
dz
dai
dz

⎤⎥⎥⎥⎦ =
[

iΔ iΓ

iΓ∗ −iΔ

][
as

ai

]
(1.29)

where 2Δ = 𝛽(𝜔s) + 𝛽(𝜔1) − 𝛽(𝜔i) − 𝛽(𝜔2) + 𝛾(P2 − P1) and Γ = 2𝛾A2A∗
1. The corre-

sponding Hamiltonian H(as, a∗
s , ai, a∗

i ) is

H = Δ(|as|2 − |ai|2) + Γa∗
s ai + Γ∗asa∗

i (1.30)
and then the coupled mode Eqs. (1.29) can be obtained directly from dah∕dz = i𝜕H∕𝜕a∗

h,
with h = s, i.

The solutions of Eqs. (1.29) at a distance z from the origin z = 0 are

as(z) = 𝜇(z)as(0) + v(z)ai(0)
ai(z) = −v∗(z)as(0) + 𝜇∗(z)ai(0)

(1.31)

with 𝜇(z) = cos(𝜅z) + iΔsin(𝜅z)∕𝜅, v(z) = iΓsin(𝜅z)∕𝜅, and 𝜅2 = Δ2 + |Γ|2. At phase
matching, the maximum conversion efficiency is obtained when 𝜅z = 𝜋∕2: a slightly
longer fiber length would cause a re-translation of the idler toward the signal. BS-FWM
has been experimentally demonstrated in highly nonlinear fibers [72] and photonic crys-
tal fibers (PCFs) [69] but has also been reported in other cubic nonlinear materials such
as silicon nitride waveguides [73] as well as in Rb-filled PCF [74].

A similar type of noiseless parametric frequency conversion can be obtained in crys-
tals with quadratic nonlinearities by the process of sum-frequency generation: both
BS-FWM in fibers and SFG in quadratic crystals can be then represented by an equiv-
alent geometrical interpretation through real-valued Stokes parameters and visualized
as a trajectory along the surface of the Poincaré sphere [75, 76].
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1.3.3 Applications of BS-FWM to Quantum Frequency Conversion

Spontaneous FWM processes have been extensively studied when generating single
photons in an all-fiber configuration [77]. Quantum frequency conversions requires
instead a combination of a quantum source and a noiseless parametric translation.
Quantum frequency translation was first observed by sum-frequency generation in
quadratic crystals (see, for instance, [78]).

The first experimental observation of single photon emission and subsequent fre-
quency translation by BS-FWM in an experimental setup entirely based on PCF was
reported by McGuinness and coworkers in [69]. To reveal the non-classical nature of
the converted signals, besides conversion efficiency and signal to noise ratio, it is nec-
essary to measure correlations. For instance, the authors of [69] measured the condi-
tional second-order degree of coherence g2(𝜏), which is proportional to the probability
of detecting a second photon at time t = 𝜏 given the fact that a first photon was detected
at time t = 0. The authors measured a value of g2(0) < 1 that is an indicator of a non-
classical state of light for translated and untranslated light.

Although the process of BS-FWM is intrinsically noiseless, the presence of two pumps
generates a series of competitive spontaneous emissions by FWM that can degrade the
signal-to-noise ratio in the quantum channels. In optical fibers the spontaneous Raman
effect also contributes to generate optical noise at room temperature due to the nature
of glass (see, for instance, [70]). Spontanous Raman noise can be reduced by drastically
lowering the temperature (for instance, with liquid nitrogen), or by using different mate-
rials with lower Raman gain. Silicon has a narrowband Raman gain, and chalcogenide
glasses have a spectral window of low spontaneous Raman scattering [79].

. Fiber Cavity MI and FWM

1.4.1 Dynamics of MI in a Passive Fiber Cavity

A fiber ring cavity is a simple optical device that can be made by connecting the two
ends of an optical fiber into a loop configuration using a beam splitter or a fiber coupler.
The fiber ring allows light to recirculate inside the cavity over multiple round trips to
create an optical resonator. In the following we will focus on passive fiber cavities that are
pumped using an external continuous wave (CW) laser source and that do not contain
any gain medium. This is in constrast to active fiber cavities that may contain a gain
medium such as an erbium doped fiber amplifier and can be used to create a fiber ring
laser.

The field in a fiber cavity will experience losses, both due to propagation (intrinsic
absorption) and output coupling. The condition when the absorption losses are equal to
the coupling losses is known as critical coupling and allows for the complete extraction
of the output field when the pump frequency is resonant. A low power sweep of the
pump frequency across the resonance will then result in the pump field power showing
a dip with zero transmission on resonance. The frequency separation between the pump
laser and the resonant frequency of the pump mode is referred to as the pump detuning.

The intracavity field will interfere constructively with itself and be resonant with the
cavity whenever the length L of the resonator circumference corresponds to an inte-
ger number m of wavelengths. This is expressed by the condition 𝛽mL = 2𝜋m, where
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𝛽m = kmneff is the propagation constant of the mode with vacuum wavenumber km =
2𝜋∕𝜆m and effective refractive index neff . The resonances are in the absence of disper-
sion separated by an equidistant frequency spacing known as the free-spectral-range
(FSR) given by Δ𝜈FSR = 1∕(𝛽1L), with 𝛽1 = d𝛽m∕d𝜔|𝜔m

= (1∕c)(n + 𝜔dn∕d𝜔) being the
inverse group velocity.

Resonators are commonly characterized either by their quality factor or their optical
finesse. The finesse  is inversely proportional to the losses as  = 𝜋∕𝛼 and is a mea-
sure of the ratio between the FSR and the resonance linewidth Δ𝜈, i.e.,  = Δ𝜈FSR∕Δ𝜈.
Meanwhile, the quality or Q-factor measures the ratio between the frequency and the
linewidth, i.e., Q = 𝜈∕Δ𝜈, and is related to the finesse as = Q𝜆Δ𝜈FSR∕c. The Q-factor is
further related to the photon lifetime which is the characteristic decay time of the mode
by Q = 𝜔tph.

We now consider the temporal evolution of the intracavity field in the so-called mean-
field approximation. This approximation assumes that the field envelope changes little
between each round trip so that the input pump field and the coupling losses can be
taken as being distributed along the length of the cavity. The mean-field approximation
is particularly convenient since it allows for the evolution of the field over multiple round
trips to be modeled by a single partial differential equation in the form of a driven and
damped nonlinear Schrödinger (NLS) equation. The validity of this approximation and
the derivation of the evolution equation will be considered further in the next section.

The driven and damped NLS equation for the slowly varying envelope E of the intra-
cavity electric field in a dispersive fiber ring cavity is given by [80]

tR
𝜕E(t, 𝜏)

𝜕t
+ i

𝛽2L
2

𝜕2E(t, 𝜏)
𝜕𝜏2 − i𝛾L|E(t, 𝜏)|2E(t, 𝜏) = −(𝛼 + i𝛿0)E(t, 𝜏) +

√
𝜃Ein (1.32)

where tR = 1∕Δ𝜈FSR is the round trip time, 𝛼 the total round trip loss, 𝛿0 the pump detun-
ing, 𝜃 the (intensity) coupling coefficient and Ein the driving field. Equation (1.32) is
written using two different time-scales, with a fast time 𝜏 corresponding to the ordi-
nary retarded time for a pulse moving at the group velocity and a separate slow time t
that measures the evolution of the field over multiple round trips. Equation (1.32) is also
known as the Lugiato-Lefever equation (LLE) since it is formally equivalent to a model
originally used for describing spatially transverse structures in diffractive and dissipa-
tive nonlinear cavities [81]. The LLE has also recently been used for modeling the for-
mation of optical frequency combs in crystalline whispering-gallery-mode resonators
and glass-based microring resonators [82, 83]. These are very similar to fiber ring res-
onators in most regards except for their smaller dimensions and larger FSR. Note that
the LLE is often generalized by including higher-order dispersion and other effects such
as self-steepening and Raman scattering when describing broadband fields.

The constant CW solution of Eq. (1.32) is found by setting the derivative terms to
zero and is given by E0 =

√
𝜃Ein∕(𝛼 + i(𝛿0 − 𝛾L|E0|2)), where the intracavity power |E0|2

satisfies the bistable cubic equation

𝜃|Ein|2 = |E0|2[(𝛿0 − 𝛾L|E0|2)2 + 𝛼2]. (1.33)

This equation has either one or three simultaneous real solutions depending on
the pump detuning. It is single valued for 𝛿0 ≤

√
3𝛼 and displays bistability with

three solutions for 𝛿0 >
√

3𝛼, see Figure 1.12. The middle branch of the response
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Figure . Bistability of the continuous wave solution induced by nonlinear Kerr tilt. The solid line
shows the resonance bistability for the intracavity power as a function of the detuning parameter
while the dashed line is the corresponding resonance in the absence of any nonlinearity (𝛾 → 0).
Parameters 𝛼 = 𝜃 = 0.13, 𝛾 = 1.8 W−1 km−1, L = 380 m and Pin = 200 mW.

curve is, however, always unstable to CW perturbations and is not observable in
practice.

In the presence of dispersion, the driven and damped NLS Eq. (1.32) can also exhibit
modulational instability with qualitatively new features compared to propagation in
a straight length of fiber due to the extra degree of freedom provided by the detun-
ing. In particular, one finds that Eq. (1.32) can display modulational instability not
only for anomalous dispersion, but also in the normal dispersion regime [80, 84]. To
analyse the stability we look for a perturbed solution of the form E = (|E0| + u(t, 𝜏) +
iv(t, 𝜏))eiArg{E0} and linearize Eq. (1.32) around the steady-state CW solution to obtain

tR(ũt + iṽt) − i
𝛽2L

2
𝜔2(ũ + iṽ) − i𝛾L|E0|2(3ũ + iṽ) = −(𝛼 + i𝛿0)(ũ + iṽ) (1.34)

where again the tilde denotes the Fourier transform with respect to 𝜏 . The real and imag-
inary part of this expression provides two separate linear equations and the potential
growth of the perturbations can be investigated by studying the eigenvalues of their
coefficient matrix. Performing the calculation, one finds that the eigenvalues are given
by the expression

𝜆 = −𝛼 ±
√

(𝛾L|E0|2)2 − (𝛿0 − (𝛽2L∕2)𝜔2 − 2𝛾L|E0|2)2. (1.35)

Modulational instability is observed whenever the real part of an eigenvalue is positive.
The maximum growth rate is 𝜆max = 𝛾L|E0|2 − 𝛼 and is found for frequencies satisfying
the condition that the wavevector mismatch Δk = 𝛿0 − (𝛽2L∕2)𝜔2 − 2𝛾L|E0|2 is equal
to zero, i.e., 𝜔2

max = (2∕𝛽2L)(𝛿0 − 2𝛾L|E0|2). Contrary to the case of propagation in a
straight fiber we see that this equation can have real solutions, and thus be modulational
unstable, also in the normal dispersion regime when 𝛽2 > 0, provided that the detuning
𝛿0 > 2𝛾L|E0|2. From the maximum growth rate we also find that there is a minimum
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power threshold for the instability to occur, namely, |E0|2 ≥ 𝛼∕(𝛾L). This threshold can
be understood to signify that the parametric gain must balance the round trip losses.

To further investigate the influence of the detuning we introduce g± = 2𝛾L|E0|2 ±√
(𝛾L|E0|2)2 − 𝛼2 and write the threshold condition 𝜆 = 0 for the instability as

(𝛽2L∕2)𝜔2 = 𝛿0 − g±. For anomalous dispersion (𝛽2 < 0) we must then require a detun-
ing 𝛿0 < g+ for MI to occur, while we should have 𝛿0 > g− for normal dispersion (𝛽2 > 0).

It should, however, be kept in mind that the stability analysis involves the power of
the intracavity field, which is related to the pump field though Eq. (1.33), rather than the
experimentally accessible power of the pump field itself. This means that even though MI
can occur also in the normal dispersion regime, it will not arise spontaneously unless the
detuning and power are in the correct range. Beyond the initial growth of the sidebands
the subsequent dynamics of the modulational instability within the dissipative cavity can
in different regimes give rise not only to unstable MI, but also to the formation of stable
patterns of periodic temporal structures as well as localized cavity soliton solutions, cf.
Section 1.4.3.

1.4.2 Parametric Resonances and Period Doubling Phenomena

The mean-field equation of the previous section is very convenient for modeling the cav-
ity dynamics and the formation of frequency combs when the intracavity field is chang-
ing slowly. More generally the evolution of the field inside a fiber ring resonator can
be modeled using an infinite-dimensional Ikeda map [85] that consists of an ordinary
NLS equation for the propagation of the field inside the fiber waveguide, together with
boundary conditions that relates the fields between each round trip. The evolution of
the slowly varying field envelope at round trip m is then described by [80, 86, 87]

Em+1(𝜏 , 0) =
√
𝜃Ein +

√
1 − 𝜃ei𝜙0 Em(𝜏 , L) (1.36)

𝜕Em(𝜏 , z)
𝜕z

= −
𝛼i
2

Em(𝜏 , z) − i
𝛽2
2
𝜕2Em(𝜏 , z)

𝜕𝜏2 + i𝛾|Em(𝜏 , z)|2Em(𝜏 , z) (1.37)

where z is the coordinate along the circumference of the fiber, 𝛼i is the intrinsic fiber
loss (𝛼 = (𝛼iL + 𝜃)∕2) and 𝜙0 = 2𝜋l − 𝛿0 is the linear phase-shift of the pump mode,
which is assumed to correspond to longitudinal mode number l = 0. The driven and
damped NLS Eq. (1.32) is obtained by averaging this map over one round trip, which is
permissible if the detuning is small 𝛿0 ≪ 1 and the characteristic nonlinear length scale
Lnl = 1∕(𝛾|E|2) is much longer than the cavity length L. However, if the intracavity field
changes appreciably over a single round trip, it is necessary to consider the dynamics
using the full map Eqs. (1.36, 1.37). As we shall see, the presence of the boundary condi-
tions will in fact give rise to new instabilities which leads to phenomena such as period
doubling that cannot be modeled using the simple mean-field theory [86, 88].

The CW solution of the map that is periodically restored after each round trip is a fixed
point of the equation E0 = 𝜌e𝜙E0 +

√
𝜃Ein with 𝜌 =

√
1 − 𝜃e−𝛼iL∕2, 𝜙 = 𝛿0 − 𝛾Leff |E0|2

and Leff = (1 − e−𝛼iL)∕𝛼i. The intracavity power satisfies an equation similar to Eq. (1.33),
namely

𝜃|Ein|2 = |E0|2[4𝜌 sin2(𝜙∕2) + (1 − 𝜌)2]. (1.38)
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Figure . Comparison of pump dependence on the intracavity power for multi-valued stationary
continuous wave solutions of the LLE (dashed) and the Ikeda map (solid). Parameters 𝛼 = 𝜃 = 0.13,
𝛾 = 1.8 W−1 km−1, L = 380 m and 𝛿0 = 0.5.

However, contrary to the mean-field case, this equation is not only bistable, but multi-
stable and may have additional simultaneous real solutions, cf. Figure 1.13. In fact, it is
easily seen that resonances occur whenever the nonlinear phase 𝜙(|E0|2) is an integer
multiple of 2𝜋.

The stability of the CW solution of the map Eqs. (1.36, 1.37) can be analysed by lin-
earizing Eq. (1.37) while assuming a perturbation of the form Em(𝜏 , z) = [E0 + um(𝜏 , z) +
ivm(𝜏 , z)] exp [−𝛼iz∕2 + i𝛾(1 − e−𝛼iz)|E0|2∕𝛼i + iArg{E0}]. The Fourier transform of the
real and imaginary part of the perturbation functions wm(z) = [ũm(𝜔, z), ṽm(𝜔, z)]T is
then found to satisfy the linear equation system

dwm

dz
=
[ 0 −(𝛽2∕2)𝜔2

(𝛽2∕2)𝜔2 + 2𝛾|E0|2e−𝛼iz 0

]
wm. (1.39)

In the absence of absorption losses, i.e., 𝛼i → 0, the coefficient matrix becomes indepen-
dent of z which allows the eigenvalues to be calculated explicitly in order to recover the
familiar result for the modulational instability gain in a lossless fiber described by the
NLS equation (cf. Eq. (1.3)), namely

𝜇 = 𝜔

√
−𝛽2𝛾|E0|2 − (𝛽2∕2)2𝜔2. (1.40)

Although it is possible to analytically calculate the instability gain of the Ikeda map for
the case when the absorption losses are ignored, it is generally simpler to use numer-
ical Floquet analysis to investigate the stability [87]. The Floquet analysis is based on
investigating the eigenvalues of the fundamental matrix W = [wm+1

1 (0), wm+1
2 (0)]. This

fundamental matrix can be obtained by first integrating Eq. (1.39) numerically over one
round trip for two independent initial conditions, e.g., wm

1,2(0) = [1, 0]T , [0, 1]T , in order
to find wm

1,2(L) before applying the boundary condition Eq. (1.36) to finally get wm+1
1,2 (0).

Contrary to the case of the driven and damped NLS Eq. (1.32), the Ikeda map
Eqs. (1.36, 1.37) has multiple instability bands for high intracavity power that form
so-called resonance tongues, see Figure 1.14 in the color plate section. These occur
alternatively under both resonant and anti-resonant conditions. For the resonant case
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Figure . Parametric instability tongues of the Ikeda map for anomalous dispersion. The red contour
shows the predicted range of modulational instability for the LLE. Below a cross-section corresponding
to the dashed line is shown with the MI growth rate. Parameters 𝛼 = 𝜃 = 0.13, 𝛽2 = −20 ps2 km−1,
𝛾 = 1.8 W−1 km−1, L = 380 m and 𝛿0 = 0. For a color version of this figure please see color plate section.

the unstable perturbation repeats itself periodically each round trip, while for the anti-
resonant case the perturbation will be 𝜋 out of phase after one round trip and will not
recover its original phase until two round trips have elapsed. The latter case is a form
of period doubling instability which is referred to as P2-MI to distinguish it from the
ordinary resonant instability or CW-MI [86]. The P2-MI is in fact usually the first insta-
bility to occur, i.e., the instability with the lowest power threshold, for normal dispersion
fibers where the detuning has not been exploited in order to achieve phase matching for
the lowest order CW-MI tongue that corresponds to the mean-field MI considered in
the previous section.

Finally, we point out that parametric instabilities of similar origin might occur also
in the driven and damped NLS Eq. (1.32) in the presence of dispersion (or nonlinearity)
intracavity management. In this case the periodicity can occur on a scale 1∕n, n = 1, 2,…
in units of the cavity length, and for odd n the instability is of the P2-MI type [89].
Recently, such a cavity has been implemented and employed to observe, for the first
time, the steady-state excitation of sidebands on the lower branch due to the mean-
field MI (temporal Turing instability) in the normal dispersion regime. This instability
competes with the parametric (Faraday) instability on the upper branch of the bistable
response induced by the dispersion map [90].

1.4.3 FWM in a Fiber Cavity for Optical Buffer Applications

In this section we briefly consider an application of the four-wave mixing process in pas-
sive fiber cavities. This application relies on the fact that the growth rate of the cavity
MI is purely real and can give rise to stationary periodic patterns and temporal cavity
solitons. The cavity solitons are a special kind of localized pulse structures that can be
found in driven and damped nonlinear cavities [91]. The spectral signature of a tempo-
ral cavity soliton is a mode-locked optical frequency comb having the frequency spacing
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Figure . Intensity profile and normalized spectrum for a stationary temporal cavity soliton
obtained from numerical solution of Eq. (1.32). The dense mode spectrum is treated as a continuum
and only a portion of the round trip duration is simulated in order to simultaneously achieve sufficient
temporal and spectral resolution with only 4096 sampling points. Note that the soliton is much less
energetic than the continuous wave background so the latter has been filtered out from the spectrum.
Parameters 𝛼 = 𝜃 = 0.13, 𝛽2 = −20 ps2 km−1, 𝛾 = 1.8 W−1 km−1, L = 380 m, 𝛿0 = 0.5 and Pin = 150 mW.

of a single FSR. Like other temporal solitons they represent a balance between disper-
sion and nonlinearity, but being dissipative structures they also simultaneously balance
the gain originating from the driving beam with losses due to absorption and output
coupling. An example of a cavity soliton solution of Eq. (1.32) is shown in Figure 1.15.
The cavity soliton coexists with a constant low-intensity CW background correspond-
ing to the lowest lying solution branch of Eq. (1.33) that is stable against MI, and can
be considered as a compound object of a soliton plus background that is a form of low-
dimensional dynamical attractor.

For a given set of pump parameters, i.e., pump power and detuning, there is a single
type of cavity soliton with both amplitude and width proportional to the square root of
the detuning. The solitons are phase-locked to the pump in such a way that the nonlinear
phase-shift compensates for the pump field detuning. Although not integrable, these
solitons are remarkably robust against different sorts of perturbations which suggests
that they may be suitable candidates for use as optical bits to encode binary data [92].
By dividing the round trip time of the cavity into time slots and using cavity solitons to
indicate logical one and the absence of a soliton, the logical zero, it is possible to form an
optical buffer memory that in the presence of the pump beam can hold an arbitrary bit
pattern for a potentially indefinite amount of time. This has possible applications, e.g.,
for all-optical signal processing which can benefit from the higher speeds afforded by
optics in comparison to electronics.
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A benefit of an all-optical bit buffer using cavity solitons in a passive fiber cavity is
that it will, contrary to an active system where amplification is used, not suffer from
signal degradation due to the accumulation of noise. Moreover, the soliton formation
process is rather robust, which allows for pulse reshaping and wavelength conversion.
The excitation of individual cavity solitons can be accomplished using an addressing
beam with pulses that are close in shape and frequency to the final soliton profile.
Numerical simulations have shown that such pulses can simultaneously both write
and erase cavity solitons in a way that is reminiscent of XOR (eXclusive OR) gate
logic.

The first experimental demonstration of temporal Kerr cavity solitons was performed
by Leo et al. in 2010 [93]. In their experiment they used a passive fiber ring resonator
made of 380 m of standard single-mode telecom fiber and having a round trip time of
1.85 μs to demonstrate the stable storage of individual cavity solitons and cavity soliton
patterns without distortion for a time duration of over 1 s. The system was pumped with
225 mW of power using an ultra-narrow linewidth continuous wave laser operating at
1550 nm and the 4 ps cavity soliton pulses were characterized using both direct time
domain oscilloscope measurements as well as frequency domain measurements using
an optical spectrum analyzer. To excite the cavity solitons an additional mode-locked
fiber laser was used to produce writing pulses that could address individual time slots.
The writing process was confirmed to be very robust, as well as wavelength- and phase-
insensitive, so that the addressing pulse did not have to precisely match the cavity soliton
profile. The particular configuration studied was estimated to allow for the potential all-
optical storage of up to 45000 bits at a bitrate of 25 Gbit/s.

The maximum storage time of the cavity solitons in the above experiment was limited
by environmental perturbations. However, an additional limit is also set by the interac-
tions due to the tail overlap between individual solitons that can lead to either attractive
or repulsive behavior when the solitons are closely spaced in time. This relative motion of
soliton pairs can result in timing-jitter and even the annihilation of solitons due to col-
lisions. Various method for controlling these interactions have been proposed: it has,
for example, been shown that they can be completely suppressed by the injection of
CW light above a certain amplitude [94]. Alternatively, by introducing a shallow peri-
odic modulation, it has been found that the solitons will be attracted to the peaks of
the modulation phase profile [95]. Yet another method of suppressing the interactions
between cavity solitons is using bichromatic pumping. Two pumps with equal ampli-
tude and phase but with a frequency separation corresponding to a multiple of the FSR
have also been shown to be capable of supporting cavity solitons [96]. In this case there
is no continuous wave background and the solitons are superimposed on a periodic low
intensity pattern with the motion of the solitons constrained by the need for them to
remain on the crests of the pattern.
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