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Introduction

Robot programming is the specification of the desired motions of the
robot such that it may perform sequences of prestored motions or
motions computed as functions of sensory input (Lozano-Pérez, 1983).
In today’s competitive global economy, shortened life cycles and diver-

sification of the products have pushed the manufacturing industry to
adopt more flexible approaches. In themeanwhile, advances in automated
flexible manufacturing have made robotic technology an intriguing
prospect for small- and medium-sized enterprises (SMEs). However,
the complexity of robot programming remains one of the major barriers
in adopting robotic technology for SMEs. Moreover, due to the strong
competition in the global robot market, historically each of themain robot
manufacturers has developed their own proprietary robot software, which
further aggravates the matter. As a result, the cost of robotic tasks inte-
gration could be many folds of the cost of robot purchase. On the other
hand, the applications of robots have gone well beyond the manufacturing
to the domains such as household services, where a robot programmer’s
intervention would be scarce or even impossible. Interaction with robots
is increasingly becoming a part of humans’ daily activities. Therefore,
there is an urgent need for new programming paradigms enabling
novice users to program and interact with robots. Among the variety of
robot programming approaches, programming by demonstration (PbD)
holds a great potential to overcome complexities of many programming
methods.
This introductory chapter reviews programming approaches and illus-

trates the position of PbD in the spectrum of robot programming techni-
ques. The PbD architecture is explained next. The chapter continues with
applications of PbD and concludes with an outline of the open research
problems in PbD.
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1.1 Robot Programming Methods

A categorization of the robot programming modes based on the taxonomy
reported by Biggs and MacDonald (2003) is illustrated in Figure 1.1.
The conventional methods for robot programming are classified into
manual and automatic, both of which rely heavily on expensive program-
ming expertise for encoding desired robot motions into executable
programs.
Themanual programming systems involve text-based programming and

graphical interfaces. In text-based programming, a user develops a pro-
gram code using either a controller-specific programming language or
extensions of a high-levelmultipurpose language, for example, C++or Java
(Kanayama andWu, 2000; Hopler and Otter, 2001; Thamma et al., 2004).
In both cases, developing the program code is time-consuming and tedi-
ous. It requires a robot programming expert and an equipped program-
ming facility, and the outcomes rely on programmer’s abilities to
successfully encode the required robot performance. Moreover, since
robotmanufacturers have developed proprietary programming languages,
in industrial environments with robots from different manufacturers,
programming robots would be even more expensive. The graphical
programming systems employ graphs, flowcharts, or diagrams as a
medium for creating a program code (Dai and Kampker, 2000; Bischoff
et al., 2002). In these systems, low-level robot actions are represented
by blocks or icons in a graphical interface. The user creates programs by
composing sequences of elementary operations through combination
of the graphical units. A subclass of the graphical programming systems
is the robotic simulators, which create a virtual model of the robot and
the working environment, whereby the virtual robot is employed for emu-
lating themotions of the actual robot (Rooks, 1997). Since the actual robot
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Figure 1.1 Classification of robot programming methods. (Data from Biggs and
MacDonald (2003).)
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is not utilized during the program development phase, this programming
method is referred to as off-line programming (OLP).
The conventional automatic programming systems employ a teach-

pendant or a panel for guiding the robot links through a set of states to
achieve desired goals. The robot’s joint positions recorded during the
teaching phase are used to create a program code for task execution.
Although programming by teach-pendants or panel decreases the level
of required expertise, when compared to the text-based programming sys-
tems, it still requires trained operators with high technical skills. Other
important limitations of the guided programming systems include the dif-
ficulties in programming tasks with high accuracy requirements, absence
of means for tasks generalizations or for transfer of the generated pro-
grams to different robots, etc.
The stated limitations of the conventional programming methods

inspired the emergence of a separate class of automatic programming sys-
tems, referred to as learning systems. The underlying idea of robot learn-
ing systems originates from the way we humans acquire new skills and
knowledge. Biggs and MacDonald (2003) classified these systems based
on the corresponding forms of learning and solving problems in cognitive
psychology: exploration, instruction, and observation. In exploration-
based systems, a robot learns a task with gradually improving the perfor-
mance by autonomous exploration. These systems are often based on
reinforcement learning techniques, which optimize a function of the
robot states and actions through assigning rewards for the undertaken
actions (Rosenstein and Barto, 2004; Thomaz and Breazeal, 2006; Luger,
2008). Instructive systems utilize a sequence of high-level instructions by a
human operator for executing preprogrammed robot actions. Gesture-
based (Voyles and Khosla, 1999), language-based (Lauria et al., 2002),
and multimodal communication (McGuire et al., 2002) approaches have
been implemented for programming robots using libraries of primitive
robot actions. Observation-based systems learn from observation of
another agent while executing the task. The PbD paradigm is associated
with the observation-based learning systems (Billard et al., 2008).

1.2 Programming by Demonstration

Robot PbD is an important topic in robotics with roots in the way human
beings ultimately expect to interact with a robotic system. Robot PbD
refers to automatic programming of robots by demonstrating sample
tasks and can be viewed as an intuitive way of transferring skill and tasks
knowledge to a robot. The term is often used interchangeably with
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learning by demonstration (LbD) and learning from demonstration (LfD)
(Argall et al., 2009; Konidaris et al., 2012). PbD has evolved as an inter-
disciplinary field of robotics, human–robot interaction (HRI), sensor
fusion, machine learning, machine vision, haptics, and motor control.
A few surveys of robot PbD are available in the literature (e.g., Argall
et al., 2009). PbD can be perceived as a class of supervised learning pro-
blems because the robot learner is presented with a set of labeled training
data, and it is required to infer an output function with the capability of
generalizing the function to new contexts. In the taxonomy of program-
ming approaches shown in Figure 1.1, PbD is a superior learning-based
approach. Compared to the exploration-based learning systems (as an
unsupervised learning problem), PbD systems reduce the search space
for solutions to a particular task, by relying on the task demonstrations.
The learning is also faster because the trial and errors associated with
the reinforcement methods are eliminated.
In summary, the main purpose in PbD is to overcome the major

obstacles for natural and intuitive way of programming robots, namely
lack of programming skills and scarcity of task knowledge. In industrial
settings, this translates to reduced time and cost of programming robots
by eliminating the involvement of a robot programmer. In interactive
robotic platforms, PbD systems can help to better understand the
mechanisms of HRI, which is central to social robotics challenges.
Moreover, PbD creates a collaborative environment in which humans
and robots participate in a teaching/learning process. Hence, PbD
can help in developing methods for robot control which integrate safe
operation and awareness of the human presence in human–robot col-
laborative tasks.

1.3 Historical Overview of Robot PbD

Approaches for automatic programming of robots emerged in the 1980s.
One of the earlier works was the research by Dufay and Latombe (1984)
who implemented inductive learning for the robot assembly tasks of
mating two parts. The assembly tasks in this work were described by
the geometric models of the parts, and their initial and final relations.
Synthesis of program codes in the robotic language was obtained from
training and inductive (planning) phases for sets of demonstrated trajec-
tories. In this pioneering work on learning from observation, the
sequences of states and actions were represented by flowcharts, where
the states described the relations between the mating parts and the sen-
sory conditions.
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Another early work on a similar topic is the assembly-plan-from-
observation (APO) method (Ikeuchi and Suehiro, 1993). The authors pre-
sented a method for learning assembly operations of polyhedral objects.
The APO paradigm comprises the following six main steps: temporal seg-
mentation of the observed process into meaningful subtasks, scene
objects recognition, recognition of performed assembly task, grasp recog-
nition of the manipulated objects, recognition of the global path of
manipulated objects for collision avoidance, and task instantiation for
reproducing the observed actions. The contact relations among the
manipulated objects and environmental objects were used as a basis for
constraining the relative objects movements. Abstract task models were
represented by sequences of elementary operations accompanied by sets
of relevant parameters (i.e., initial configurations of objects, grasp points,
and goal configurations).
Munch et al. (1994) elaborated on the role of the teacher as a key ele-

ment for successful task reproduction. The learning was accomplished
through recognition of elementary operations for the observed tasks.
The demonstrator supervised and guided the robot’s knowledge acquisi-
tion by (i) taking into considerations the structure of robot’s perceptibility
sensors when providing examples, (ii) taking part in preprocessing and
segmentation of the demonstrations, and (iii) evaluating the proposed
task solution.
Ogawara et al. (2002a) proposed to generate a task model from obser-

vations of multiple demonstrations of the same task, by extracting
particular relationships between the scene objects that are maintained
throughout all demonstrations. Each demonstration was represented as
a sequence of interactions among the user’s hand, a grasped object and
the environmental objects. The interactions that were observed in all
demonstrations were called essential interactions, whereas the variable
parts of the demonstrations called nonessential interactions were ignored
in the task planning step. Generalization across multiple demonstrations
was carried out by calculating the mean and variance of all trajectories for
the essential interactions. A robot program was generated from the mean
trajectory, and mapped to robot joints’ motors using an inverse kinemat-
ics controller.
The advancements in the fields of machine learning and artificial

intelligence in the past two decades produced an abundance of new
methods and approaches. This trend was reflected by the implementation
of approaches in robot PbD based on neural networks (Liu and
Asada, 1993; Billard and Hayes, 1999), fuzzy logic (Dillmann et al.,
1995), statistical models (Yang et al., 1994; Tso and Liu, 1997; Calinon,
2009), regression techniques (Atkeson et al., 1997; Vijayakumar and
Schaal, 2000), etc.
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Significant body of work in PbD concentrated on utilizing virtual reality
(VR) as an interaction medium to substitute the actual workspace
(Takahashi and Sakai, 1991; Aleotti et al., 2004). The main advantages
of performing demonstrations in VR include the availability of direct
information for the positions and orientations of teacher’s motions and
the environmental objects during the demonstration phase, the accessible
simulation of generated task solutions before the execution in the real
world, reduced efforts and fatigue, increased safety of the user compared
to physical demonstrations, etc. The concept of virtual fixtures, which
refers to the use of virtual guidance and assistance to simplify and improve
the tasks demonstration, was employed in Payandeh and Stanisic (2002)
via provision of prior task information with an aim to restrict the demon-
strated workspace and achieve more consistent performance. Aleotti et al.
(2004) used visual and tactile virtual fixtures in PbD context, whereas
adaptive virtual fixtures that correspond to different subtasks of a com-
plex task were proposed by Aarno et al. (2005).
The recent progress in the field of HRI was also taken into consideration

by several authors as a basis for improving the process of transfer of
knowledge through demonstrations. Since building and developing social
mechanisms between robots and humans in a PbD setting rely on successful
training, Calinon and Billard (2007a) highlighted several interaction aspects
that a demonstratormust reflect on before the demonstrations, such as what
are the best ways to convey the knowledge considering the robot’s abilities,
which parts of the demonstration need special attention, etc. (Figure 1.2).
The latest research in the fields of neuroscience and bioinspiration also

stimulated a new stream of research in PbD, and further enhanced its
interdisciplinary character. Several researchers drew inspiration from
the similar concepts in imitation learning among animals and children,
where imitation is not only regarded as a product of social connection,
but it also represents an important learning mechanism (Dautenhahn
and Nehaniv, 2002).
Today, the PbD paradigm represents a multidisciplinary field which

encompasses several research areas. From a general point of view, its goals
are to enhance the process of transfer of knowledge to machines by pro-
viding motor skill examples through demonstrations.

1.4 PbD System Architecture

The principal steps in solving a typical PbD problem are depicted in
Figure 1.3 (Billard et al., 2008). Note that some PbD systems include addi-
tional steps (e.g., dashed lines in Figure 1.3), such as evaluation of the
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Figure 1.2 The user demonstrates the task in front of a robot learner, and is afterward
actively involved in the learning process by moving the robot’s arms during the task
reproduction attempts to refine the learned skills (Calinon and Billard (2007a).
Reproduced with permission of John Benjamins Publishing Company, Amsterdam/
Philadelphia, https://www.benjamins.com/#catalog/journals/is.8.3/main)
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Figure 1.3 Block diagram of the information flow in a general robot PbD system.
(Billard et al. (2008).)
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reproduced task by the end-user and/or provision of additional informa-
tion for improved robot performance (Chernova and Veloso, 2008a) and
simulation of the planned solution before the deployment to robot exec-
utive code (Aleotti et al., 2004).

1.4.1 Learning Interfaces

During the observation or perception phase of a PbD process, the teacher
demonstrates the task, while the learner observes the teacher’s actions and
the environment. The learner must have abilities to record the move-
ments of the teacher and the changes in the environment. In other words,
the learner agent must possess attributes of perceptibility of actions and
states in the world.
The presentation of demonstrations and quality of learning also

depends on the learning interface (Figure 1.3). As the PbD advances, it will
replace the traditional ways of guiding robots by more user-friendly inter-
faces, such as sensor-based techniques. The focus of this book will be on
sensor-based learning methods. A brief review of all techniques is pro-
vided here.
The interfaces used in PbD can be categorized as follows:

• Kinesthetic guidance

• Direct control (through a control panel)

• Teleoperation

• Sensor based (e.g., vision, haptics, force, magnetic, and inertia)

• Virtual reality/augmented reality (VR–AR) environment

In the kinesthetic approach, the robot links are moved manually as
shown in Figure 1.4, while in direct control technique the robot links
are guided using a provided interface such as control panel. The joint
angle or end-point trajectories are recorded and used in the next steps.
Alternatively, robots can be controlled using teleoperation, as shown in
Figures 1.5 and 1.6. Comparison of nonobservational methods shows that
kinesthetic guidance outperforms the other two options in terms of effi-
ciency and effectiveness. However, kinesthetic guidance has usability
issues (Fischer et al., 2016). Sensor-based approaches provide ergonomic
convenience and ease of task demonstrations. When different sensor-
based methods are compared, vision-based observation has the advantage
of conveying natural task demonstrations in an unobtrusive way because
no sensors are required to be attached to the demonstrator’s body or
demonstrated objects. Such attachments often lead to increased con-
sciousness on the demonstrator side degrading his/her performance
and efficacy.
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In order to avoid damaging the actual robot, recent approaches also rely
on three-dimensional (3D) simulators before executing the program on a
real robot. Examples of such platforms include V-REP (Freese et al., 2010)
and Gazebo (Koenig and Howard, 2004), which are also open source. The
main issue with the simulators is that even if accurate geometric models of

Figure 1.4 Kinesthetic teaching of feasible postures in a confined workspace. During
kinesthetic teaching the human operator physically grabs the robot and executes the
task. (Seidel et al. (2014). Reproduced with permission of IEEE.)

Figure 1.5 The PbD setup for teaching peg-in-hole assembly tasks includes a
teleoperated robot gripper and the objects manipulated by a human expert. Tracking
is done using magnetic sensors. (Yang et al. (2014). Reproduced with permission
of IEEE.)
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the objects become available, the dynamics and control effects are not
considered in the simulations, and hence the actual behavior of the robots
will deviate from those in the simulations (Angelidis and Vosniakos,
2014). AR, VR, and mixed reality (MR) methods have also been proposed
(Fang et al., 2012; Aleotti et al., 2014) to eliminate the need for program-
ming setup. VR–AR techniques bring the advantage of using setups and
objects that might not be immediately available or affordable. They also
present improved information content because they allow intermittent
offline and online programming, enabling a user to modify digital model
of the robots while enhancing cognition by adding extra models (AR) or
through presenting parts of the real world (MR). AR–VR methods with
embedded perceptual/cognitive aids (Figures 1.7 and 1.8) have been
shown to outperform working with real robots in training of online pro-
gramming of industrial robots (Nathanael et al., 2016).

1.4.1.1 Sensor-Based Techniques
Tracking of teacher’s hand is an essential observation goal for many tasks,
because it is closely related to the grasping states, guiding of the tools, and/
or manipulation of the objects of interest. The tracking is usually accom-
plished by data acquisition from sensing devices mounted directly on the
teacher’s body (Figure 1.9). In most of the research works on PbD, elec-
tromagnetic sensors and data gloves have been used for tracking the tea-
cher’smovements (Dillmann, 2004;Martinez and Kragic, 2008). Although
these sensing systems are characterized with high measurement accuracy,
their operation is sensitive to presence of ferrous parts in the working

Figure 1.6 Teleoperation scheme for PbD—master arm (on the left) and slave arm (on
the right) used for human demonstrations. (Shimizu et al. (2013). Reproduced with
permission of IEEE.)
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environment. In addition, the measurement volume of the magnetic
trackers is limited, as well as the sensor response becomes nonlinear
toward the edges of the measurement volume. PbD interfaces with inertial
sensors have also been used for capturing the demonstrator’s movements
(Calinon, 2009). This type of motion capture device employs gyroscopes
for measurement of the rotational rates of the sensors. They are charac-
terized by a large measurement volume, although on the account of
reduced accuracy. The main disadvantages of inertial sensory systems

Figure 1.7 AR training of an assembly task using adaptive visual aids (AVAs).
(Webel et al. (2013). Reproduced with permission of Elsevier.)

Figure 1.8 Mobile AR component including a haptic bracelet. (Webel et al. (2013).
Reproduced with permission of Elsevier.)
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are the limited positional tracking accuracy, as well as the positional drift
that increases over time. Some researchers employed optical marker-
based motion capturing for observation of demonstrator’s actions in
PbD (Kruger et al., 2010). The optical tracking systems are highly accu-
rate, and do not suffer from the interference problems encountered with
the magnetic systems. In addition, the measurement volume of the optical
systems is large, and it is easily expanded by adding multiple sensors in the
working space.
Different from the approaches that involve perception of demonstra-

tions with sensing devices mounted directly on teacher’s body, the per-
ception sensors can also be placed externally with respect to the teacher
(Argall et al., 2009), as shown in Figure 1.9. This modality for recording
of the teacher’s motions usually employs vision sensors, for example, a
single vision camera (Ogino et al., 2006; Kjellstrom et al., 2008),
stereo cameras (Asada et al., 2000), or multiple cameras (Ekvall
et al., 2006). The external form of perception is more challenging,
due to the difficulties associated with object recognition in cluttered
and dynamic environments, determining depths of the scene objects
from projections onto the image space, occlusion problems, sensitivity
to lighting conditions, etc. On the other hand, this type of perception
enables manipulation of scene objects in a natural way without the
motion intrusions caused by sensors’ wires, and it represents an impor-
tant step toward the expansion of robotic applications in the service
industries.
Fusion of measurements from multiple sensory systems in order to

extract the maximum possible information from the demonstrations
was proposed by Ehrenmann et al. (2001). This work presented an
approach for fusing force sensors, a data glove, and an active vision system
in a PbD setting, as shown in Figure 1.9. Subsequently, the next generation
of intelligent robots must be furnished with efficient techniques for data
fusion frommultiple sensors, in order to achieve reliable perception of the
environment.

1.4.2 Task Representation and Modeling

The learning process in PbD typically relies on the similarities of demon-
strated tasks which can be represented in either the symbolic level (sym-
bolic encoding) or trajectory level (trajectory encoding) (Billard et al.,
2008). Hybrid approaches combining trajectory and symbolic learning
have also been proposed in the literature, for example, by Ogawara
et al. (2003). An illustration of different learning levels in PbD is given
in Figure 1.10.
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1.4.2.1 Symbolic Level
Symbolic task representation (Figure 1.10) is based on high-level machine
learning methods for skills acquisition as a hierarchical sequence of pre-
defined behaviors, referred to as elementary actions or motion primitives
(Friedrich et al., 1998; Aramaki et al., 1999; Dillmann, 2004; Saunders
et al., 2006). Thus, high-level tasks can be learned through hierarchy rules
among a pool of acquired low-level actions (Figure 1.11). Simple elemen-
tary actions can be of the form “end-effector moves forward,” whereas an
example of a goal-directed behavior is “grasp the red box.” Symbolic-level
learning often uses graph-based or first-order logic for knowledge repre-
sentation and learning. The encoding involves description of a sequence
of known and given primitives. For instance, Nicolescu and Mataric
(2001) used a behavior-based network to construct tasks representation,
where the nodes in the network represent the behaviors, and the links rep-
resent the preconditions and postconditions dependencies. The basic
behaviors (i.e., elementary actions) were associated with the state of the
environment required for their activation and the predecessor behaviors
(preconditions), and also with the effects of the behaviors on the environ-
ment and the successor behaviors (postconditions). For instance, the
authors evaluated the approach in a task where the goal is to pick up a
small box, pass it through a gate formed by a blue and a yellow object
in the scene, and drop off the carried box next to an object with orange
color. A mobile robot with a manipulator arm was employed for learning
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Figure 1.10 Learning levels in PbD.
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the task from human demonstrations. The robot learner built the network
links based on sequential dependencies of the basic behaviors extracted
from the observations. The library of basic behaviors included pick up,
track green object, track yellow object, track orange object, and drop.
The preconditions for picking up the box require that the drop behavior
is active, i.e., the gripper is empty, and that the box is detected. Similarly,
postconditions for dropping off the box are that the robot has passed
through the gate and has reached the orange object.
The symbolic form of task representation allows predefined behaviors

to be reused for different tasks. However, the task representation can fail
upon occurrence of a behavior that does not have a corresponding match
within the library of preprogrammed behaviors. The main drawbacks of
the symbolic task representation are the requirement for efficient seg-
mentation of demonstrations into elementary actions, the requirement
to predefine a large set of basic controllers for reproduction of the task
sections related to the elementary actions, and their limited applicability
with tasks that demand high level of accuracy.

1.4.2.2 Trajectory Level
The trajectory task representation (Figure 1.10) entails encoding of
demonstrated actions as continuous signals in the Cartesian space or in
the joint angle space. An example of trajectory learning is shown in
Figure 1.12. Trajectory-level learning is a low-level learning that relies
on the observed trajectories to approximate the underlying demonstra-
tor’s policy directly and generalize the trajectories. Representing the
demonstrations at a trajectory level is convenient for specifying the velo-
cities and accelerations at different phases of the demonstrated tasks, as
well as for defining the spatial task constraints. This type of task represen-
tation also allows encoding of arbitrary gestures and motions, conversely
to the symbolic-based representation, where the task representation
requires prior knowledge about the elementary components that com-
prise the demonstrated motions. Encoding often involves the use of tech-
niques (i.e., statistical models) to reduce the dimensionality of the
segmented signals.
Statistical models can capture the inherently stochastic character of

human demonstrated trajectories, and thus many authors employed such
models to approximate the demonstrator’s policy. These approaches offer
compact parametric representation of the observed movements, through
probabilistic representation of the variability in the recorded signals. In
the work of Calinon and Billard (2008), a Gaussian mixture model
(GMM) was exploited for encoding observed tasks, by representing the
recorded continuous trajectories as mixtures of Gaussian distributions.
Gaussian process regression (GPR) (Schneider and Ertel, 2010) and
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Gaussian mixture regression (GMR) (Calinon et al., 2007) have also been
used for encoding the trajectories. HMMhas been employed by a number
of authors (Tso and Liu, 1997; Yang et al., 1997; Aleotti and Caselli, 2006)
to model a set of multiple demonstrations, captured as either Cartesian or
joint angle trajectories. Due to its robustness to spatiotemporal variations
of the observed time sequences, in recent years, HMM has become one
of the preferred methods for modeling and analysis of human
motions. Alternatively, dynamic systems such as dynamic motion primi-
tives (DMPs) (Ijspeert et al., 2002a) can be utilized where differential
equations are introduced to generate 1D movements, and their shapes
are approximated by weighted Gaussian basis functions. Such DMPs
are used as building blocks for more complex tasks. The main disadvan-
tage of trajectory-level task representation is its inability to reproduce
high-level skills.
Initially, PbD had focused on position and velocity trajectories for

reproducing efficient task-oriented motions. However, these trajectories
might be problematic when tasks involve contact with the environment
or a human collaborator. Thus, both force and motion trajectories need
to be learned (Kronander and Billard, 2014) for tasks involving compliant
motions. The research work on compliant PbD has focused on the follow-
ing three categories: (i) design of compliant mechanisms with active (e.g.,
Barret WAM arm), passive (Jafari et al., 2011), or hybrid (Grebenstein
et al., 2011) robot joints to provide adaptive robot joint impedance for safe
implementation of PbD; (ii) online tuning of impedance for given tasks
using accurate model of robot–environment interactions (Chan and Liaw,
1996); and (iii) impedance adaptation skills learning through demonstra-
tions of human’s adaptive compliance (Ajoudani et al., 2012) to enable
variation of robot (joint or task) stiffness during physical interactions with
a human collaborator. Sensory data from electromyography (EMG) sig-
nals (Peternel et al., 2014) and haptic information (Kronander and Billard,
2014) can be used for learning the impedance regulation.

1.4.3 Task Analysis and Planning

The task analysis and planning phases in PbD consist of establishing a
mapping between the demonstrated actions and the corresponding
actions the robot learner should undertake to achieve the task goals.

1.4.3.1 Symbolic Level
For tasks represented at a symbolic level, the task analysis is often related
to recognition of the relevant relationships between the teacher’s hand,
the manipulated objects, and the environmental objects. Hence, it is
important in this phase to establish relations between the states of the
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environment and the corresponding actions, for example, conclusions
about which states and actions must occur before other states. The task
analysis can also involve elimination of suboptimal demonstrations,
extraction of task constraints, aggregation of the demonstrations into dif-
ferent patterns, etc.
The task planning refers to generating a sequence of robot actions for

attaining the desired states. It involves interpretation of the spatial rela-
tionships of the relevant objects and generation of an appropriate sequen-
tial behavior that will accomplish the task goals without violation of the
task constraints. For instance, in the behavior-based network architecture
reported by Nicolescu and Mataric (2001), the basic predefined behaviors
were activated when all the preconditions (observed states in the environ-
ment) and the postconditions (action effects) were satisfied. Similarly, in
the article by Ekvall and Kragic (2008), a variant of the Stanford Research
Institute Problem Solver (STRIPS) planner was employed for teaching a
robot the essential order of the subtasks for accomplishing the task goals.

1.4.3.2 Trajectory Level
The task analysis and planning in trajectory-based approaches imposes
generation of a trajectory for accomplishing the task goals. A body of lit-
erature applied imitation of a single demonstrated trajectory by a robot
learner (Asada et al., 2000). However, these frameworks for transfer of
knowledge do not provide cognitive abilities to the learning system.
A type of learning system that possesses advanced cognitive abilities relies
on learning frommultiple demonstrated trajectories and selecting a single
trajectory from the demonstrated set, which is the most adequate for
reproducing the task objectives (Tso and Liu, 1997; Calinon and Billard,
2004). The drawback of these approaches is that the reproduction trajec-
tory is retrieved from only one of the demonstrated trajectories, which is
selected as the most consistent across the demonstrated set. The PbD sys-
tems with a higher level of cognition are capable of generalizing from a set
of repetitive demonstrations in creating a trajectory for task reproduction.
The step of planning a reproduction strategy at a trajectory level of rep-

resentation is often based on regression techniques. For instance, the
work by Calinon et al. (2007) used GMR to obtain a generalized version
of tasks modeled by GMM. This method produces smooth generalized
trajectories by taking into consideration the covariances of the Gaussian
distributions, and is also suitable for representing the spatial task con-
straints based on the variance across the demonstrated motions. Third-
order spline regression (Calinon and Billard, 2004) and nonuniform
rational B-splines (NURBS) (Aleotti and Caselli, 2005) have also been
used for creating a generalized trajectory from sets of extracted key points
in the observations (Inamura et al., 2003) based on statistical task

1.4 PbD System Architecture 19

0002886684.3D 19 5/1/2017 12:46:14 PM



modeling with HMM. Atkeson et al. (1997) proposed to use locally
weighted regression for skill acquisition, whereas Schaal and Atkeson
(1998) employed receptive field weighted regression in the context of
incremental learning of a fitting function.
In addition, several works employed the theory of dynamical systems for

reproduction of trajectories modeled as a critically damped mass-spring-
damper system (Ijspeert et al., 2003; Gribovskaya et al., 2010). The advan-
tage of such systems is the independence of explicit time indexing in
creating a reproduction strategy, in a sense that the system dynamics
can evolve toward achieving a discrete goal or toward maintaining a
periodic motion (Ijspeert et al., 2002b) without temporal dependence
on the demonstrated data (Figure 1.12).

1.4.4 Program Generation and Task Execution

In the program generation step, the problem solution strategy from the
task planning is translated into an executable robot program, which is
afterward transferred to the robotic platform for execution of the desired
motions.
For tasks represented by a sequence of symbolic cues, the planned

actions for achieving the task goals are mapped onto a repertoire of pre-
programmed robot primitives, i.e., elementary actions (Nicolescu and
Mataric, 2001; Dillmann, 2004). The resulting program code in the native
robot language is deployed on the robot learner platform and the planned
sequence of elementary actions is executed in the actual environment.
Translation of the generated plans for task reproduction onto a different
robotic platform is straightforward, provided that the required elementary
actions are predefined with the other robot, and it supplies the basic cap-
abilities for achieving the task goals, such as degrees of freedom (DoFs)
and workspace.
Generating a program for tasks represented at a trajectory level largely

depends on the used parameters for generation of reproduction strategy.
For plans described with Cartesian poses of robot’s end-effector or
manipulated objects, the inverse kinematics problem is solved for calcu-
lating the robot joint angles, which are sent as command signals to the
robot controller. In fact, most often an inverse differential kinematics
algorithm is used, since these algorithms provide a linear mapping
between the joint space variables and the operational space variables.
Examples are the least norm (i.e., pseudoinverse) method (Whitney,
1969), weighted least-norm method (Whitney, 1972), damped least-
squares method (Nakamura and Hanafusa, 1986; Wampler, 1986), etc.
On the other hand, in some PbD approaches, the joint angles of the
demonstrator’s hand are recorded, and the planned strategy for task
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reproduction is expressed in the desired joint angles for the robot learner.
In that case, the program generation may be preceded by scaling of the
joint angles trajectories, to accommodate for the different kinematic para-
meters between the teacher and learner agents (Calinon et al., 2005). The
task reproduction step involves deployment of the executable program
onto the robot’s low-level controller and execution of the program.
Some PbD systems endow validation of the generated robot programs

via a simulation phase before the actual execution by the robot. For
instance, in the work of Ehrenmann et al. (2002), the task abstraction
and the generated reproduction plans were shown on a graphical inter-
face, and a human supervisor was prompted to accept or reject the pro-
posed sequence of actions. Only after the approval by the end-user, the
code was transferred to a robot and the task was executed in the real-
world conditions.

1.5 Applications

From application point of view, PbD will not be limited to programming
industrial manipulators. An important growing area of application is
service robotics, where the service recipients are often novice users, for
example, use of homecare robots by the elderly. Entertainment and secu-
rity robotics are other important areas of growth, where a PbD capability
will extend quality and quantity of such applications. PbD has also been
extended for use in humanoid robots.
Various applications of PbD under development have been summarized

as follows:
Industrial robots—These robots are usually referred to as robotic

manipulators with special-purpose end-effector. However, automated
guided vehicles (AGVs) can also be treated as industrial robots. The work-
ing environment of industrial robots is mostly structured. The main
industrial application is for manufacturing automation across a variety
of applications including material handling, assembly, welding, dispen-
sing, processing (e.g., sealing, cutting, casting, and surface finishing),
and inspection. Due to the increased demand for flexibility and reduced
structured environments, programming costs of industrial robots con-
tribute significantly to the production costs. Therefore, PbD could play
a major role in reducing the time and cost of production. Examples
include robotics assembly and surface finishing.

1) Robotic assembly—PbD has been used for teaching difficult task of
peg-in-hole for assembly operations (Yang et al., 2014). In new direc-
tions of manufacturing (i.e., just-in-time manufacturing), the assembly
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operations need to be highly flexible and adaptive to many tasks. Addi-
tionally, programming of small parts assembly is difficult as the clear-
ance may exceed the robot motion accuracy. The robot must master
different control modes from free to compliant motions and their
coordination. Therefore, to lower the cost and time of programming,
the use of PbD is very encouraging.

2) Robotic surface finishing—Variations in the objects geometry, surface
roughness, and required tolerances require highly skilled operation
knowledge to adapt to such changes and adjust tool paths and para-
meters. Subsequently, research is underway to use PbD to capture suit-
able finishing parameters and to adjust industrial robots tool path for a
given surface finishing task (Ng et al., 2014).

Humanoid robots—Large number of DoFs and kinematic redundancies
in humanoid robots make their programming quite challenging
(Figure 1.13). Therefore, PbD approaches have been adopted to teach var-
ious tasks such as visuomotor coordination (Lemme et al., 2013), and nat-
ural interactions with a human by a social robot (Liu et al., 2014).
Service robots—Robots are expected to work closely with humans to

help them in their daily lives. An important feature of these robots is their
close interaction and even collaborations with a human being. For this
purpose, a common understanding of the collaborative tasks is a key ele-
ment of the future service robots (Rozo et al., 2016). While in some sce-
narios, such collaboration is meant to increase process efficiency, in many
tasks such as those in houses and hospitals, physical contact is necessary.
Additionally, such robots will face many variations in their scenes on a
day-to-day basis. Many users of service robots will also lack programming
skills. Obviously, conventional programming approaches cannot be
adopted for service robots. Alternatively, PbD approaches hold great
potential for ease of programming through capturing the task models
by demonstrations. One such example is shown in Figure 1.14.
Medical robots—Many medical procedures require high dexterity and

specialized skills which are usually acquired through intensive training
and pose high financial burden to healthcare systems. In the meanwhile,
many medical procedures follow similar steps and tasks. Besides, in the

Figure 1.13 Control of a 19 DoFs humanoid robot using PbD. (Field et al. (2016).
Reproduced with permission of IEEE.)
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absence of a specialist, robotic intervention could prove vital. Therefore,
medical robotics are good candidates for integrating PbD (van den Berg
et al., 2010). For instance, the extended focused assessment with sonog-
raphy in trauma (eFAST) has been proved very effective in identifying the
internal bleedings in prehospital settings like ambulances. Despite its
advantages such as portability and noninvasiveness, the lack of experi-
enced sonography operators has limited its applications. In Mylonas
et al. (2013), a lightweight robot is programmed by expert demonstrations
for eFAST scanning and is shown in Figure 1.15.

Figure 1.14 A kitchen helping robot learns the sequence of actions for cooking from
observation of human demonstrations. (Wachter et al. (2013). Reproduced with
permission of IEEE.)
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In addition to motion trajectory and task learning in the aforemen-
tioned domains of applications, PbD platform can be used for control
and planning purposes as well. From this perspective, typical applications
include motion planning, grasp planning, and compliance planning.
Social robots—The presence of robots in human populated environ-

ments will inevitably increase in the years to come, thereby dictating the
development of complex interactions between robots and humans. PbD
can provide a platform for learning and building social mechanisms
between humans and machines. For instance, transferring knowledge
to a robot can also be perceived from the educational point of view. That
is, such transfer of knowledge would have similar effects as the
transfer of knowledge to the children or other humans, and this can
stimulate interest in the humans to observe and support the learning
progress by the robot. Thus, such interactions can cause emotional
involvement in the interaction with the robot learner (Calinon and
Billard, 2007a).
Robot motion planning—With increased number of DoFs and presence

of obstacles in human–robot collaborative workspaces, motion planning
problem could become quite challenging. In particular, some of the obsta-
cles might change from each task to another task (Seidel et al., 2014). PbD
approach can be used to create incrementally a graph-based representa-
tion of the demonstrated obstacle-free task space which can be utilized
for planning of safe paths. A real-time trajectory modification algorithm
can also be integrated to change the learned trajectory by PbD when
additional task constraints such as short distance and obstacle avoidance
constraints are introduced (Kim et al., 2015).

Figure 1.15 The experimental setup used for teaching (on the left) includes an
ultrasound machine, an ultrasound phantom model and a handheld ultrasound
transducer with force sensing and built-in 3D position markers for optical tracking
system. The robotically controlled ultrasound scanning is also shown (on the right).
(Mylonas et al. (2013). Reproduced with permission of IEEE.)
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Robot grasp planning—Planning quality grasps for given objects and
tasks with complex robotic hands could be quite challenging. PbD can
be used to plan effective human-like grasps (Figure 1.16). After recogni-
tion of contact states and each finger approach direction taught by an
expert as the basis of understanding grasp, it can be mapped onto a robot
gripper device which is usually very different from human hand. Task
knowledge is then applied via high-level reasoning to choose among
the applicable grasps (Aleotti and Caselli, 2010).
Robot compliance planning (impedance learning)—In addition to

motion trajectory learning, impedance learning can enable robots to
reproduce many collaborative tasks and compliant motions with the envi-
ronment. Various sensors or combinations of them can be used. For
example, EMG signals can be used to teach various compliance levels
to a robot for a given task (Peternel et al., 2014). In another work
(Kronander and Billard, 2014), a teacher shook and also firmly held the
robot and the haptic information was used to teach when low and high
stiffness gains were required.

1.6 Research Challenges

Despite the significant advances in PbD and robotic technology, there are
open issues that remain to be addressed. At the present time, transfer of
skills to robots with PbD poses many challenges. In order to learn from
demonstrations, the robotic systemmust possess certain level of cognitive
skills. It must be able to reliably perceive the states and actions of the envi-
ronment, to create an abstract representation of demonstrated tasks, and

Figure 1.16 Robot grasp planning application. (Aleotti and Caselli (2010). Reproduced
with permission of Elsevier.)
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to generate a plan for reproduction of the demonstrated actions. Further-
more, the learning system should have the ability of generalizing the
observed task solutions across different initial arrangements of the scene
objects. Examples of open issues include the following:

• Creating robot programs from demonstrations for generic tasks

• Correct interpretation of the intent of the demonstrator when accom-
plishing a task

• Compensating for the differences in kinematic and dynamic para-
meters, and differences in the DoFs when the teacher and the learner
have dissimilar bodies

• Relating the model of the human kinematics to task learning and
reproduction

• Dealing effectively with nonoptimal and ambiguous demonstrations, or
with the failures in executing the task

• Developing robust learning methods for achieving the desired perfor-
mance under disturbances and changes in the environment

• Evaluating the performance of the robot in skills acquisition, and the
performance of the teacher in skills transfer

• Provision of prior knowledge in a balanced way to speed up learning

The remaining text in this section discusses several of the above
research challenges in robot PbD.

1.6.1 Extracting the Teacher’s Intention from Observations

Certainly, one crucial element in learning from observation of demonstra-
tions is the interpretation of the teacher’s intention by the robot learner.
One aspect of it is to interpret the interactions among the subtasks, that is,
to determine for which of the subtasks the order of execution is important,
and for which subtasks it is not. For example, it is important to know
whether achieving the final goal of the task is sufficient for successful task
reproduction (e.g., peg-in-hole task), or whether the task requires achiev-
ing many subgoals (e.g., trajectory following for a welding task). With
regard to these questions, most of the studies in PbD relied on one of
the following: (i) the teacher instructs the robot about the possible inten-
tions during the demonstrations, or (ii) the teacher’s intentions are
extracted from multiple observations of demonstrations.
An example of the first set is the work of Wu and Kofman (2008) who

proposed the teacher to give a brief task description to the learner before
the demonstration phase. The description provided information about the
overall structure of the task and its subgoals, which helped the learner in
creating the task hierarchy before the demonstrations. In addition, during
the demonstrations, the teacher provided short voice descriptions in the
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transitions between the subtasks, which alleviated the task segmentation
by the robot. Several works proposed to use pointing and gazing cues dur-
ing the demonstrations (Scassellati, 1999; Calinon and Billard, 2006). In
that scenario, the teacher gazes toward the object of interest and/or points
with his hand toward the object, so that the learner can infer the intents of
the teacher’s actions.
The second type of approaches revolves around extracting the teacher’s

intention from multiple demonstrations of the same skill. For instance,
the methods for robot PbD using statistical models as a mathematical tool
for task representation (e.g., HMM) employ latent states in describing the
intention of the teacher during the demonstrations. The mental states of
the teacher, that is, his/her intentions in performing particular tasks, are
observed through a measurable process, which are the teacher’s executed
actions (Yang et al., 1997). The learner observes the demonstrations and
attempts to extract the teacher’s intentions from the constraints on the
demonstrations described in a probabilistic framework. In the work of
Calinon (2009), for demonstrations encoded with mixtures of Gaussians,
the covariance matrix of the corresponding Gaussian distribution for each
segment of the demonstrations was used to induce the task constraints.
The segments of the task with small variability across demonstrations
were associated with highly constrained motions. Thus, the learner could
infer whether the teacher intended to perform precise or loose move-
ments for the different parts of the trajectories.
The research work in the book concentrates on extracting the teacher’s

intentions from multiple demonstrations of the same task. Hence, the
robot learner should possess abilities to identify the relevant task con-
straints and to extract task-specific knowledge from the observed task
examples. Although augmenting the robot’s task knowledge with tea-
cher’s instructions is also beneficial and leverages the learning, the topic
is beyond the scope of the book.

1.6.2 Robust Learning from Observations

1.6.2.1 Robust Encoding of Demonstrated Motions
Robust encoding of human demonstrations relates to the selection of a set
of training examples that conveys quantitative and qualitative information
about a skill, which is sufficient for deriving a model of the skill. Efficient
learning implies fast skill transfer from a few examples, since providing
a large number of demonstrations for the same task can be irritating for
the demonstrator, and it can cause fatigue and poor demonstrating perfor-
mance. However, a limited number of demonstrations can lead to unde-
monstrated portions of the task. Therefore, an important question in
robot PbD is the extent of training examples, i.e., how many
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demonstrations are enough to teach a skill.Within the PbD literature, gen-
erally between four and six demonstrations are employed for skill transfer
to robots, although in some cases greater number of demonstrations are
exploited (e.g., 10 demonstrations in the approach of Martinez and Kragic
(2008) and 25 demonstrations in the work of Gams and Ude (2009)).
In addition, the approaches for robust learning should provide a means

for dealing with ambiguity and suboptimality in the demonstrations. The
demonstrated dataset can be ambiguous with respect to the possibilities
for the teacher to achieve the same effect on the environment with differ-
ent actions. Another source of possible ambiguities relates to the difficul-
ties of the robot learner to distinguish two similar but different tasks,
based on the recorded data with the available sensory system. Further-
more, the demonstrated set can be suboptimal in a sense that the individ-
ual demonstrations differ significantly, and the robot learner is not able to
generate a successful reproduction plan.
The most intuitive approach for dealing with suboptimal and ambiguous

demonstrations is to let the teacher select the demonstrated examples that
will transmit enough information to the learner about the demonstrated
task. This approach assumes that the teacher would speed up the learning
by removing the nonimportant demonstration examples, using his/her nat-
ural abilities for generalization. Some authors proposed learning from
demonstrations performed by several teachers, which can reduce the sub-
optimality of the performance by the individual teachers (Pook and Ballard,
1993). In the approach proposed by Chernova and Veloso (2008b) if the
robot is not confident about some elements of the demonstrated task, it
requests the teacher to perform additional demonstration(s). This way
the robot incrementally builds the task model until the level of confidence
for the entire task is above a certain threshold value.
Still, it is not clear how to automate the process of selection of training

examples without relying on the generalization abilities of the teacher.
Aleotti and Caselli (2006) proposed a distance metric for clustering the
demonstrations into similar patterns, so that the clusters of trajectories
can be treated as different skills. This approach can fail for sets containing
large temporal variations across the demonstrations, or for sets with
sparse solution space. On the other hand, enhanced robustness of the
learning process can be achieved by eliminating the demonstrations that
are too dissimilar to the set. Namely, once an appropriate model of the
skill is created, the likelihood that a training example is generated by
the learned model can be employed as a metric for deciding whether to
use that specific training example for further processing and learning
(Ogawara et al., 2002b). Nevertheless, themodel of the skill is only as good
as the demonstrated examples so that deriving a model from a set of sub-
optimal demonstrations can result in a suboptimal model.
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1.6.2.2 Robust Reproduction of PbD Plans
Another challenge in PbD is designing a controller that will ensure robust
execution of the planned strategy for task reproduction.
In general, most of the PbD methods rely on strict temporal ordering of

the states in the reproduction strategy. Hence, during the execution of the
planned strategy, the robot attempts to attain the specified sequence of
joint configurations, employing the explicit temporal ordering. The disad-
vantage of these PbD systems is the lack of flexibility in the task execution,
that is, the systems lack robustness to perturbations and deviations from
the ideal task configurations.
On the other hand, the design of robust controllers that will achieve the

task goals in presence of perturbations (i.e., modeling errors andmeasure-
ment noise) and changes in the environment is an open question in the
PbD field. Within the literature, a body of work employed the dynamical
systems approach (Ijspeert et al., 2003) for generating reproduction stra-
tegies with enhanced robustness properties. For tasks where the only
important goal is to attain a particular state at the end of the movement
(so-called discrete tasks), the dynamical systems approaches ensure con-
vergence toward the final state in presence of perturbations. However, for
complex tasks (that involve accomplishing several subgoals), it is chal-
lenging to develop controllers that will execute under disturbances. Such
advanced controllers should be able to perform replanning in real time by
devising an alternative control strategy for achieving the desired goals
(Gribovskaya et al., 2010). Under significant level of perturbations that
can cause large deviations from the initial strategy for task reproduction,
it may be unclear for the robot how to proceed with the task execution in
the new situation. The replanned strategy may require reconsidering the
relative importance for execution of the different components of the task,
and reformulation of the task constraints for obstacle avoidance, robot
workspace limitations, etc.

1.6.3 Metrics for Evaluation of Learned Skills

The field of robot PbD currently lacks criteria for evaluation of the learn-
ing performance of the system. The difficulties arise from the fact that
most of the studies in the literature focus on solving specific robotic appli-
cations, using different levels of task abstraction and task representation.
The development of comprehensive evaluation metrics for the robot
learning will enable comparison between the different approaches and
application domains, and will provide a basis for solutions to generic tasks.
This section briefly overviews several proposed techniques for evaluation
of the skill acquisition in trajectory-based learning.
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Pomplun and Mataric (2000) proposed a set of metrics based on the
mean-square difference between the corresponding joint angles in
the demonstrated and reproduced movements. The results showed that
the metric based on segmented trajectories into sequences of high-level
movements yields the most satisfactory results. Calinon and Billard
(2007b) argued that assessment of the imitation performance should
put more weight on those dimensions of the trajectories that are more
constrained across the demonstrations, and thus are more important
for successful reproduction. Calinon et al. (2005) introduced a metric that
encapsulates goal-directed task constraints, that is, it enables the repro-
duced performance by the robot to be evaluated with a combination of
functions involving distance metrics and task goals (Billard et al.,
2004). The method introduced a set of weighting factors for the level of
importance of each of the several cost functions; however, the weights
were manually selected by the demonstrator based on his understanding
of the task goals.
A set of metrics for evaluation of the HRI in PbD was presented by

Steinfeld et al. (2006). The proposed metrics pertain to assessment of
the individual and joint efforts of a human and a robot in performing a
task. Accordingly, the robot performance was evaluated through the
degree of autonomous operation, abilities of self-assessment, aware-
ness of human’s presence, etc. The human operator performance
was rated based on his/her level of knowledge of the task, mental abil-
ities, knowledge of robot’s abilities, etc. Evaluation of the performance
of the human–robot as a team involved: effectiveness (percentage of
the task that was performed with the designed autonomy); time effi-
ciency; rate of utilization (e.g., percentage of request for help made
by the robot, or by the human); etc. The authors also listed a number
of biasing factors that have effects on the evaluation and many task-
specific metrics.

1.6.4 Correspondence Problem

The process of skill transfer in PbD imposes the correspondence problem
between the agent embodiments. In situations where both the teacher and
the learner are robots with identical body structure, the transfer of knowl-
edge infers direct mapping of the corresponding movements. On the
other hand, learning of skills from demonstrations performed by a human
teacher (or robots with different structures) involves solving the corre-
spondence problems of workspace constraints, different DoFs, different
kinematic and dynamic characteristics, etc.
Nehaniv and Dautenhahn (2001) examined the correspondence prob-

lem for a general case of imitation, which can be applied to biological
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or artificial agents. Their work developed a mathematical approach to
model the mapping in task imitation, using the concept of relational
homomorphisms. The level of success in imitation was exploited through
the effects on the environment, in a sense that a successful imitation refers
to accomplishing a desired effect using the affordances of the agent–
environment coupling. Starting from the fact that a demonstrator defines
the goal of the task, the authors held that the evaluation of the task repro-
duction is also demonstrator-dependent.
Alissandrakis et al. (2007) presented linear correspondence matrices for

describing the mapping of the different DoFs between the teacher and the
learner. State and action metrics for evaluation of the imitation matching
were introduced, with the imitation process aiming tominimize the values
of the states and action metrics. However, the proposed solutions based
on linear mapping of the corresponding DoFs have limited applicability.
In fact, in a PbD environment with a human teacher and a robot learner,
the embodiment mapping is nonlinear and highly complex.
The research presented in the book is not concentrated on solving the

correspondence problem in PbD, which nevertheless remains one of the
open areas for future research.

1.6.5 Role of the Teacher in PbD

The level of HRI varies in different robot programming systems. For
instance, traditional robot programming systems based on manually
writing the program codes do not require interaction between the user
and the robot, whereas the robot programming systems based on guiding
the robot’s links through required trajectories with a teach-pendant
involve higher level of interaction. The HRI in PbD is more intense,
and it can affect the speed of skill acquisition by the robot. Hence,
one of the open questions in the PbD learning relates to the role of
the demonstrator.
Several authors suggested that the human teacher should play an

active role in the process of skill transfer to a robot. Starting from the
fact that in transferring knowledge among humans both the teacher
and the learner have active roles, the same concept can be implemented
for the robot PbD problem by putting the teacher in the loop of learning.
For instance, in the work of Friedrich et al. (1998), the teacher overviews
the entire learning process, and either approves the execution of the final
program code or rejects the proposed code and re-explains some parts of
the task.
Calinon and Billard (2007a) suggested that both the teacher and the

learner should have active roles not only during the demonstration and
learning phases but also during the task execution phase. Namely, when
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the teacher observes the robot executing the task, he/she recognizes which
parts of the task were not performed at a satisfactory level. Subsequently,
the teacher would help the learner to improve the task reproduction by pro-
viding feedback and refining the robot performance. The same work also
reviewed the physiological and sociological aspects of teaching robots
and evaluation of the reproduction attempts. Accordingly, the degree of
HRI during the teaching can be evaluated based on the human’s involve-
ment in the interaction and the enthusiasm in transferring knowledge.
However, the quantification of teacher’s involvement/enthusiasm in the
teaching interaction is even more challenging in comparison to the evalu-
ation of learner’s ability to encode skills and to create a generalized version
of the skill from a set of demonstrations. Using insights from pedagogy and
developmental sciences, the authors suggested several benchmarks for eval-
uating the success of the knowledge transfer in PbD scenarios. Further-
more, it was argued that the teacher should be knowledgeable about the
learner’s abilities, in terms of the ways of learning skills, but also the range
of motions, velocities limits, and similar characteristics of the learning
agent. Consequently, he/she should adapt the teaching techniques to max-
imize the probability of fast and proper transfer of knowledge.
Investigation of the social mechanisms in HRI is not among the objec-

tives of the book. However, with the increased presence of robots around
us and the increased number of services that will be provided by robots in
the near future, it will be inevitable that we learn how to interact with the
robots in effective and safe ways. Many research resources are currently
devoted to this topic outside the PbD field.

1.7 Summary

The chapter provides an introduction to robot PbD. The motivations for
the development of PbD systems along with an overview of the existing
literature related to the PbD paradigm are presented. Several important
early works and approaches from the PbD domain are reviewed, followed
by discussion on recent advancements and state of the art. The main steps
in solving the PbD problem are classified into perception, task represen-
tation and modeling, task analysis and planning, program generation, and
task execution. An overview of the methods for solving the individual
phases of PbD is presented for task represented at both symbolic and tra-
jectory level of abstraction. Examples of PbD applications in the domains
of industrial and service robotics are presented. The major challenges
and open questions within the robot PbD field are discussed in the last
section of the chapter.
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