
�

� �

�

1
AREVIEW OF ELEMENTARY MATRIX
ALGEBRA

1.1 INTRODUCTION

In this chapter, we review some of the basic operations and fundamental properties
involved in matrix algebra. In most cases, properties will be stated without proof, but
in some cases, when instructive, proofs will be presented. We end the chapter with a
brief discussion of random variables and random vectors, expected values of random
variables, and some important distributions encountered elsewhere in the book.

1.2 DEFINITIONS AND NOTATION

Except when stated otherwise, a scalar such as α will represent a real number. A
matrix A of size m × n is the m × n rectangular array of scalars given by

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ ,

and sometimes it is simply identified as A = (aij). Sometimes it also will be conve-
nient to refer to the (i, j)th element of A, as (A)ij ; that is, aij = (A)ij . If m = n,
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2 A REVIEW OF ELEMENTARY MATRIX ALGEBRA

then A is called a square matrix of order m, whereas A is referred to as a rectangular
matrix when m �= n. An m × 1 matrix

a =

⎡
⎢⎢⎢⎣

a1
a2
...

am

⎤
⎥⎥⎥⎦

is called a column vector or simply a vector. The element ai is referred to as the ith
component of a. A 1 × n matrix is called a row vector. The ith row and jth column
of the matrix A will be denoted by (A)i· and (A)·j , respectively. We will usually use
capital letters to represent matrices and lowercase bold letters for vectors.

The diagonal elements of the m × m matrix A are a11, a22, . . . , amm. If all
other elements of A are equal to 0, A is called a diagonal matrix and can be
identified as A = diag(a11, . . . , amm). If, in addition, aii = 1 for i = 1, . . . ,m
so that A = diag(1, . . . , 1), then the matrix A is called the identity matrix of
order m and will be written as A = Im or simply A = I if the order is obvious.
If A = diag(a11, . . . , amm) and b is a scalar, then we will use Ab to denote the
diagonal matrix diag(ab

11, . . . , ab
mm). For any m × m matrix A, DA will denote

the diagonal matrix with diagonal elements equal to those of A, and for any m × 1
vector a, Da denotes the diagonal matrix with diagonal elements equal to the
components of a; that is, DA = diag(a11, . . . , amm) and Da = diag(a1, . . . , am).

A triangular matrix is a square matrix that is either an upper triangular matrix or a
lower triangular matrix. An upper triangular matrix is one that has all of its elements
below the diagonal equal to 0, whereas a lower triangular matrix has all of its elements
above the diagonal equal to 0. A strictly upper triangular matrix is an upper triangular
matrix that has each of its diagonal elements equal to 0. A strictly lower triangular
matrix is defined similarly.

The ith column of the m × m identity matrix will be denoted by ei; that is, ei is
the m × 1 vector that has its ith component equal to 1 and all of its other components
equal to 0. When the value of m is not obvious, we will make it more explicit by
writing ei as ei,m. The m × m matrix whose only nonzero element is a 1 in the
(i, j)th position will be identified as Eij .

The scalar zero is written 0, whereas a vector of zeros, called a null vector, will be
denoted by 0, and a matrix of zeros, called a null matrix, will be denoted by (0). The
m × 1 vector having each component equal to 1 will be denoted by 1m or simply 1
when the size of the vector is obvious.

1.3 MATRIX ADDITION AND MULTIPLICATION

The sum of two matrices A and B is defined if they have the same number of rows
and the same number of columns; in this case,

A + B = (aij + bij).
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The product of a scalar α and a matrix A is

αA = Aα = (αaij).

The premultiplication of the matrix B by the matrix A is defined only if the number
of columns ofA equals the number of rows of B. Thus, ifA ism × p andB is p × n,
then C = AB will be the m × n matrix which has its (i, j)th element, cij , given by

cij = (A)i·(B)·j =
p∑

k=1

aikbkj .

A similar definition exists for BA, the postmultiplication of B by A, if the number
of columns of B equals the number of rows of A. When both products are defined,
we will not have, in general, AB = BA. If the matrix A is square, then the product
AA, or simply A2, is defined. In this case, if we have A2 = A, then A is said to be an
idempotent matrix.

The following basic properties of matrix addition and multiplication in Theorem
1.1 are easy to verify.

Theorem 1.1 Let α and β be scalars and A, B, and C be matrices. Then, when the
operations involved are defined, the following properties hold:

(a) A + B = B + A.
(b) (A + B) + C = A + (B + C).
(c) α(A + B) = αA + αB.
(d) (α + β)A = αA + βA.
(e) A − A = A + (−A) = (0).
(f) A(B + C) = AB + AC.
(g) (A + B)C = AC + BC.
(h) (AB)C = A(BC).

1.4 THE TRANSPOSE

The transpose of an m × n matrix A is the n × m matrix A′ obtained by interchang-
ing the rows and columns of A. Thus, the (i, j)th element of A′ is aji. If A is m × p
and B is p × n, then the (i, j)th element of (AB)′ can be expressed as

((AB)′)ij = (AB)ji = (A)j·(B)·i =
p∑

k=1

ajkbki

= (B′)i·(A
′)·j = (B′A′)ij .

Thus, evidently (AB)′ = B′A′. This property alongwith some other results involving
the transpose are summarized in Theorem 1.2.
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Theorem 1.2 Let α and β be scalars andA andB be matrices. Then, when defined,
the following properties hold:

(a) (αA)′ = αA′.

(b) (A′)′ = A.

(c) (αA + βB)′ = αA′ + βB′.

(d) (AB)′ = B′A′.

If A is m × m, that is, A is a square matrix, then A′ is also m × m. In this case, if
A = A′, then A is called a symmetric matrix, whereas A is called a skew-symmetric
if A = −A′.

The transpose of a column vector is a row vector, and in some situations, we may
write a matrix as a column vector times a row vector. For instance, the matrix Eij

defined in Section 1.2 can be expressed as Eij = eie
′
j . More generally, ei,me′

j,n

yields an m × n matrix having 1, as its only nonzero element, in the (i, j)th position,
and if A is an m × n matrix, then

A =
m∑

i=1

n∑
j=1

aijei,me′
j,n.

1.5 THE TRACE

The trace is a function that is defined only on square matrices. If A is an m × m
matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the diagonal
elements of A; that is,

tr(A) =
m∑

i=1

aii.

Now if A is m × n and B is n × m, then AB is m × m and

tr(AB) =
m∑
i=1

(AB)ii =
m∑

i=1

(A)i·(B)·i =
m∑

i=1

n∑
j=1

aijbji

=
n∑

j=1

m∑
i=1

bjiaij =
n∑

j=1

(B)j·(A)·j

=
n∑

j=1

(BA)jj = tr(BA).

This property of the trace, along with some others, is summarized in Theorem 1.3.
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Theorem1.3 Letα be a scalar andA andB bematrices. Then, when the appropriate
operations are defined, we have the following properties:

(a) tr(A′) = tr(A).
(b) tr(αA) = α tr(A).
(c) tr(A + B) = tr(A) + tr(B).
(d) tr(AB) = tr(BA).
(e) tr(A′A) = 0 if and only if A = (0).

1.6 THE DETERMINANT

The determinant is another function defined on square matrices. If A is an m × m
matrix, then its determinant, denoted by |A|, is given by

|A| =
∑

(−1)f(i1, ... ,im)a1i1
a2i2

· · · amim

=
∑

(−1)f(i1, ... ,im)ai11ai22 · · · aimm,

where the summation is taken over all permutations (i1, . . . , im) of the set of inte-
gers (1, . . . ,m), and the function f(i1, . . . , im) equals the number of transpositions
necessary to change (i1, . . . , im) to an increasing sequence of components, that is,
to (1, . . . ,m). A transposition is the interchange of two of the integers. Although f
is not unique, it is uniquely even or odd, so that |A| is uniquely defined. Note that the
determinant produces all products of m terms of the elements of the matrix A such
that exactly one element is selected from each row and each column of A.

Using the formula for the determinant, we find that |A| = a11 when m = 1. If A
is 2 × 2, we have

|A| = a11a22 − a12a21,

and when A is 3 × 3, we get

|A| = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31.

The following properties of the determinant in Theorem 1.4 are fairly straightfor-
ward to verify using the definition of a determinant.

Theorem 1.4 If α is a scalar and A is an m × m matrix, then the following prop-
erties hold:

(a) |A′| = |A|.
(b) |αA| = αm|A|.
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(c) If A is a diagonal matrix, then |A| = a11 · · · amm =
∏m

i=1 aii.

(d) If all elements of a row (or column) of A are zero, |A| = 0.
(e) The interchange of two rows (or columns) of A changes the sign of |A|.
(f) If all elements of a row (or column) of A are multiplied by α, then the deter-

minant is multiplied by α.

(g) The determinant of A is unchanged when a multiple of one row (or column) is
added to another row (or column).

(h) If two rows (or columns) of A are proportional to one another, |A| = 0.

An alternative expression for |A| can be given in terms of the cofactors of A.
The minor of the element aij , denoted by mij , is the determinant of the (m − 1) ×
(m − 1) matrix obtained after removing the ith row and jth column from A. The
corresponding cofactor of aij , denoted by Aij , is then given as Aij = (−1)i+jmij .

Theorem 1.5 For any i = 1, . . . ,m, the determinant of the m × m matrix A can
be obtained by expanding along the ith row,

|A| =
m∑

j=1

aijAij , (1.1)

or expanding along the ith column,

|A| =
m∑

j=1

ajiAji. (1.2)

Proof. We will just prove (1.1), as (1.2) can easily be obtained by applying (1.1) to
A′. We first consider the result when i = 1. Clearly

|A| =
∑

(−1)f(i1, ... ,im)a1i1
a2i2

· · · amim

= a11b11 + · · · + a1mb1m,

where
a1jb1j =

∑
(−1)f(i1, ... ,im)a1i1

a2i2
· · · amim

,

and the summation is over all permutations for which i1 = j. Since (−1)f(j,i2, ... ,im)

= (−1)j−1(−1)f(i2, ... ,im), this implies that

b1j =
∑

(−1)j−1(−1)f(i2, ... ,im)a2i2
· · · amim

,

where the summation is over all permutations (i2, . . . , im) of (1, . . . , j − 1, j +
1, . . . ,m). If C is the (m − 1) × (m − 1) matrix obtained from A by deleting its
1st row and jth column, then b1j can be written
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b1j = (−1)j−1
∑

(−1)f(i1, ... ,im−1)c1i1
· · · cm−1im−1

= (−1)j−1|C|

= (−1)j−1m1j = (−1)1+jm1j = A1j ,

where the summation is over all permutations (i1, . . . , im−1) of (1, . . . ,m − 1) and
m1j is the minor of a1j . Thus,

|A| =
m∑

j=1

a1jb1j =
m∑

j=1

a1jA1j ,

as is required. To prove (1.1) when i > 1, let D be the m × m matrix for which
(D)1· = (A)i·, (D)j· = (A)j−1·, for j = 2, . . . , i, and (D)j· = (A)j· for j = i +
1, . . . ,m. Then Aij = (−1)i−1D1j , aij = d1j and |A| = (−1)i−1|D|. Thus, since
we have already established (1.1) when i = 1, we have

|A| = (−1)i−1|D| = (−1)i−1
m∑

j=1

d1jD1j =
m∑

j=1

aijAij ,

and so the proof is complete. �

Our next result indicates that if the cofactors of a row or column are matched with
the elements from a different row or column, the expansion reduces to 0.

Theorem 1.6 If A is an m × m matrix and k �= i, then

m∑
j=1

aijAkj =
m∑

j=1

ajiAjk = 0. (1.3)

Example 1.1 We will find the determinant of the 5 × 5 matrix given by

A =

⎡
⎢⎢⎢⎢⎣

2 1 2 1 1
0 0 3 0 0
0 0 2 2 0
0 0 1 1 1
0 1 2 2 1

⎤
⎥⎥⎥⎥⎦ .

Using the cofactor expansion formula on the first column of A, we obtain

|A| = 2

∣∣∣∣∣∣∣∣
0 3 0 0
0 2 2 0
0 1 1 1
1 2 2 1

∣∣∣∣∣∣∣∣
,
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and then using the same expansion formula on the first column of this 4 × 4 matrix,
we get

|A| = 2(−1)

∣∣∣∣∣∣
3 0 0
2 2 0
1 1 1

∣∣∣∣∣∣ .

Because the determinant of the 3 × 3 matrix above is 6, we have

|A| = 2(−1)(6) = −12.

Consider the m × m matrix C whose columns are given by the vectors
c1, . . . , cm; that is, we can write C = (c1, . . . , cm). Suppose that, for some m × 1
vector b = (b1, . . . , bm)′ and m × m matrix A = (a1, . . . ,am), we have

c1 = Ab =
m∑
i=1

biai.

Then, if we find the determinant of C by expanding along the first column of C, we
get

|C| =
m∑

j=1

cj1Cj1 =
m∑

j=1

(
m∑

i=1

biaji

)
Cj1

=
m∑

i=1

bi

⎛
⎝ m∑

j=1

ajiCj1

⎞
⎠ =

m∑
i=1

bi|(ai, c2, . . . , cm)|,

so that the determinant of C is a linear combination of m determinants. If B is an
m × mmatrix and we now defineC = AB, then by applying the previous derivation
on each column of C, we find that

|C| =

∣∣∣∣∣
(

m∑
i1=1

bi11ai1
, . . . ,

m∑
im=1

bimmaim

)∣∣∣∣∣
=

m∑
i1=1

· · ·
m∑

im=1

bi11 · · · bimm|(ai1
, . . . ,aim

)|

=
∑

bi11 · · · bimm|(ai1
, . . . ,aim

)|,

where this final sum is only over all permutations of (1, . . . ,m), because Theorem
1.4(h) implies that

|(ai1
, . . . ,aim

)| = 0

if ij = ik for any j �= k. Finally, reordering the columns in |(ai1
, . . . ,aim

)| and
using Theorem 1.4(e), we have



�

� �

�

THE INVERSE 9

|C| =
∑

bi11 · · · bimm(−1)f(i1, ... ,im)|(a1, . . . ,am)| = |B||A|.

This very useful result is summarized in Theorem 1.7.

Theorem 1.7 If both A and B are square matrices of the same order, then

|AB| = |A||B|.

1.7 THE INVERSE

Anm × mmatrixA is said to be a nonsingular matrix if |A| �= 0 and a singular matrix
if |A| = 0. If A is nonsingular, a nonsingular matrix denoted by A−1 and called the
inverse of A exists, such that

AA−1 = A−1A = Im. (1.4)

This inverse is unique because, if B is another m × m matrix satisfying the inverse
formula (1.4) for A, then BA = Im, and so

B = BIm = BAA−1 = ImA−1 = A−1.

The following basic properties of the matrix inverse in Theorem 1.8 can be easily
verified by using (1.4).

Theorem 1.8 If α is a nonzero scalar, and A and B are nonsingular m × m matri-
ces, then the following properties hold:

(a) (αA)−1 = α−1A−1.
(b) (A′)−1 = (A−1)′.
(c) (A−1)−1 = A.
(d) |A−1| = |A|−1.
(e) If A = diag(a11, . . . , amm), then A−1 = diag(a−1

11 , . . . , a−1
mm).

(f) If A = A′, then A−1 = (A−1)′.
(g) (AB)−1 = B−1A−1.

As with the determinant of A, the inverse of A can be expressed in terms of the
cofactors of A. Let A#, called the adjoint of A, be the transpose of the matrix of
cofactors of A; that is, the (i, j)th element of A# is Aji, the cofactor of aji. Then

AA# = A#A = diag(|A|, . . . , |A|) = |A|Im,

because (A)i·(A#)·i = (A#)i·(A)·i = |A| follows directly from (1.1) and (1.2), and
(A)i·(A#)·j = (A#)i·(A)·j = 0, for i �= j follows from (1.3). The equation above
then yields the relationship

A−1 = |A|−1A#
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when |A| �= 0. Thus, for instance, if A is a 2 × 2 nonsingular matrix, then

A−1 = |A|−1
[

a22 −a12
−a21 a11

]
.

Similarly when m = 3, we get A−1 = |A|−1A#, where

A# =

⎡
⎣ a22a33 − a23a32 −(a12a33 − a13a32) a12a23 − a13a22
−(a21a33 − a23a31) a11a33 − a13a31 −(a11a23 − a13a21)

a21a32 − a22a31 −(a11a32 − a12a31) a11a22 − a12a21

⎤
⎦ .

The relationship between the inverse of a matrix product and the product of the
inverses, given in Theorem 1.8(g), is a very useful property. Unfortunately, such a nice
relationship does not exist between the inverse of a sum and the sum of the inverses.
We do, however, have Theorem 1.9 which is sometimes useful.

Theorem 1.9 SupposeA andB are nonsingular matrices, withA beingm × m and
B being n × n. For any m × n matrix C and any n × m matrix D, it follows that if
A + CBD is nonsingular, then

(A + CBD)−1 = A−1 − A−1C(B−1 + DA−1C)−1DA−1.

Proof. The proof simply involves verifying that (A + CBD)(A + CBD)−1 = Im

for (A + CBD)−1 given above. We have

(A + CBD){A−1 − A−1C(B−1 + DA−1C)−1DA−1}

= Im − C(B−1 + DA−1C)−1DA−1 + CBDA−1

− CBDA−1C(B−1 + DA−1C)−1DA−1

= Im − C{(B−1 + DA−1C)−1 − B

+ BDA−1C(B−1 + DA−1C)−1}DA−1

= Im − C{B(B−1 + DA−1C)(B−1 + DA−1C)−1 − B}DA−1

= Im − C{B − B}DA−1 = Im,

and so the result follows. �

The expression given for (A + CBD)−1 in Theorem 1.9 involves the inverse of
the matrix B−1 + DA−1C. It can be shown (see Problem 7.12) that the conditions
of the theorem guarantee that this inverse exists. If m = n and C and D are identity
matrices, then we obtain Corollary 1.9.1 of Theorem 1.9.
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Corollary 1.9.1 Suppose thatA,B andA + B are allm × m nonsingular matrices.
Then

(A + B)−1 = A−1 − A−1(B−1 + A−1)−1A−1.

We obtain Corollary 1.9.2 of Theorem 1.9 when n = 1.

Corollary 1.9.2 Let A be an m × m nonsingular matrix. If c and d are both m × 1
vectors and A + cd′ is nonsingular, then

(A + cd′)−1 = A−1 − A−1cd′A−1/(1 + d′A−1c).

Example 1.2 Theorem 1.9 can be particularly useful when m is larger than n and
the inverse of A is fairly easy to compute. For instance, suppose we have A = I5,

B =
[
1 1
1 2

]
, C =

⎡
⎢⎢⎢⎢⎣

1 0
2 1

−1 1
0 2
1 1

⎤
⎥⎥⎥⎥⎦ , D′ =

⎡
⎢⎢⎢⎢⎣

1 −1
−1 2

0 1
1 0

−1 1

⎤
⎥⎥⎥⎥⎦ ,

from which we obtain

G = A + CBD =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0
−1 6 4 3 1
−1 2 2 0 1
−2 6 4 3 2
−1 4 3 2 2

⎤
⎥⎥⎥⎥⎦ .

It is somewhat tedious to compute the inverse of this 5 × 5 matrix directly. However,
the calculations in Theorem 1.9 are fairly straightforward. Clearly, A−1 = I5 and

B−1 =
[

2 −1
−1 1

]
,

so that

(B−1 + DA−1C) =
[

2 −1
−1 1

]
+

[
−2 0

3 4

]
=

[
0 −1
2 5

]

and

(B−1 + DA−1C)−1 =
[
2.5 0.5
−1 0

]
.

Thus, we find that

G−1 = I5 − C(B−1 + DA−1C)−1D
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=

⎡
⎢⎢⎢⎢⎣
−1 1.5 −0.5 −2.5 2
−3 3 −1 −4 3

3 −2.5 1.5 3.5 −3
2 −2 0 3 −2

−1 0.5 −0.5 −1.5 2

⎤
⎥⎥⎥⎥⎦ .

1.8 PARTITIONED MATRICES

Occasionally we will find it useful to partition a given matrix into submatrices. For
instance, suppose A is m × n and the positive integers m1, m2, n1, n2 are such that
m = m1 + m2 and n = n1 + n2. Then one way of writing A as a partitioned matrix
is

A =
[
A11 A12
A21 A22

]
,

where A11 is m1 × n1, A12 is m1 × n2, A21 is m2 × n1, and A22 is m2 × n2. That
is, A11 is the matrix consisting of the first m1 rows and n1 columns of A, A12 is the
matrix consisting of the first m1 rows and last n2 columns of A, and so on. Matrix
operations can be expressed in terms of the submatrices of the partitioned matrix. For
example, suppose B is an n × p matrix partitioned as

B =
[
B11 B12
B21 B22

]
,

whereB11 isn1 × p1,B12 isn1 × p2,B21 isn2 × p1,B22 isn2 × p2, and p = p1 + p2.
Then the premultiplication of B by A can be expressed in partitioned form as

AB =
[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]
.

Matrices can be partitioned into submatrices in other ways besides this 2 × 2 par-
titioned form. For instance, we could partition only the columns of A, yielding the
expression

A =
[
A1 A2

]
,

where A1 is m × n1 and A2 is m × n2. A more general situation is one in which the
rows of A are partitioned into r groups and the columns of A are partitioned into c
groups so that A can be written as

A =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
...

Ar1 Ar2 · · · Arc

⎤
⎥⎥⎥⎦ ,
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where the submatrix Aij is mi × nj and the integers m1, . . . ,mr and n1, . . . , nc

are such that
r∑

i=1

mi = m and
c∑

j=1

nj = n.

This matrix A is said to be in block diagonal form if r = c, Aii is a square matrix for
each i, and Aij is a null matrix for all i and j for which i �= j. In this case, we will
write A = diag(A11, . . . , Arr); that is,

diag(A11, . . . , Arr) =

⎡
⎢⎢⎢⎣

A11 (0) · · · (0)
(0) A22 · · · (0)
...

...
...

(0) (0) · · · Arr

⎤
⎥⎥⎥⎦ .

Example 1.3 Suppose we wish to compute the transpose product AA′, where the
5 × 5 matrix A is given by

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

−1 −1 −1 2 0
−1 −1 −1 0 2

⎤
⎥⎥⎥⎥⎦ .

The computation can be simplified by observing that A may be written as

A =
[

I3 131
′
2

−121
′
3 2I2

]
.

As a result, we have

AA′ =
[

I3 131
′
2

−121
′
3 2I2

] [
I3 −131

′
2

121
′
3 2I2

]

=
[

I3 + 131
′
2121

′
3 −131

′
2 + 2131

′
2

−121
′
3 + 2121

′
3 121

′
3131

′
2 + 4I2

]

=
[
I3 + 2131

′
3 131

′
2

121
′
3 3121

′
2 + 4I2

]

=

⎡
⎢⎢⎢⎢⎣

3 2 2 1 1
2 3 2 1 1
2 2 3 1 1
1 1 1 7 3
1 1 1 3 7

⎤
⎥⎥⎥⎥⎦ .
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1.9 THE RANK OF A MATRIX

Our initial definition of the rank of an m × n matrix A is given in terms of submatri-
ces. We will see an alternative equivalent definition in terms of the concept of linearly
independent vectors in Chapter 2. Most of the material we include in this section can
be found in more detail in texts on elementary linear algebra such as Andrilli and
Hecker (2010) and Poole (2015).

In general, any matrix formed by deleting rows or columns of A is called a
submatrix of A. The determinant of an r × r submatrix of A is called a minor of
order r. For instance, for an m × m matrix A, we have previously defined what we
called the minor of aij ; this is an example of a minor of order m − 1. Now the rank
of a nonnull m × n matrix A is r, written rank(A) = r, if at least one of its minors
of order r is nonzero while all minors of order r + 1 (if there are any) are zero. If A
is a null matrix, then rank(A) = 0. If rank(A) = min(m,n), then A is said to have
full rank. In particular, if rank(A) = m, A has full row rank, and if rank(A) = n,
A has full column rank.

The rank of a matrix A is unchanged by any of the following operations, called
elementary transformations:

(a) The interchange of two rows (or columns) of A.

(b) The multiplication of a row (or column) of A by a nonzero scalar.

(c) The addition of a scalar multiple of a row (or column) of A to another row (or
column) of A.

Thus, the definition of the rank of A is sometimes given as the number of nonzero
rows in the reduced row echelon form of A.

Any elementary transformation ofA can be expressed as themultiplication ofA by
a matrix referred to as an elementary transformation matrix. An elementary transfor-
mation of the rows of A will be given by the premultiplication of A by an elementary
transformation matrix, whereas an elementary transformation of the columns corre-
sponds to a postmultiplication. Elementary transformation matrices are nonsingular,
and any nonsingular matrix can be expressed as the product of elementary transfor-
mation matrices. Consequently, we have Theorem 1.10.

Theorem 1.10 Let A be an m × n matrix, B be an m × m matrix, and C be an
n × n matrix. Then if B and C are nonsingular matrices, it follows that

rank(BAC) = rank(BA) = rank(AC) = rank(A).

By using elementary transformation matrices, any matrix A can be transformed
into another matrix of simpler form having the same rank as A.
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Theorem 1.11 If A is an m × n matrix of rank r > 0, then nonsingular m × m
and n × n matrices B and C exist, such that H = BAC and A = B−1HC−1,
where H is given by

(a) Ir if r = m = n, (b)
[
Ir (0)

]
if r = m < n,

(c)
[

Ir

(0)

]
if r = n < m, (d)

[
Ir (0)
(0) (0)

]
if r < m, r < n.

Corollary 1.11.1 is an immediate consequence of Theorem 1.11.

Corollary 1.11.1 LetA be anm × nmatrix with rank(A) = r > 0. Then anm × r
matrix F and an r × n matrix G exist, such that rank(F ) = rank(G) = r and A =
FG.

1.10 ORTHOGONAL MATRICES

An m × 1 vector p is said to be a normalized vector or a unit vector if p′p = 1. The
m × 1 vectors, p1, . . . ,pn, where n ≤ m, are said to be orthogonal if p′

ipj = 0 for
all i �= j. If in addition, each pi is a normalized vector, then the vectors are said to
be orthonormal. An m × m matrix P whose columns form an orthonormal set of
vectors is called an orthogonal matrix. It immediately follows that

P ′P = Im.

Taking the determinant of both sides, we see that

|P ′P | = |P ′||P | = |P |2 = |Im| = 1.

Thus, |P | = +1 or −1, so that P is nonsingular, P−1 = P ′, and PP ′ = Im in
addition to P ′P = Im; that is, the rows of P also form an orthonormal set of
m × 1 vectors. Some basic properties of orthogonal matrices are summarized in
Theorem 1.12.

Theorem 1.12 Let P and Q be m × m orthogonal matrices and A be any m × m
matrix. Then

(a) |P | = ±1,
(b) |P ′AP | = |A|,
(c) PQ is an orthogonal matrix.
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One example of an m × m orthogonal matrix, known as the Helmert matrix, has
the form

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
m

1√
m

1√
m

· · · 1√
m

1√
2

− 1√
2

0 · · · 0
1√
6

1√
6

− 2√
6

· · · 0
...

...
...

. . .
...

1√
m(m−1)

1√
m(m−1)

1√
m(m−1)

· · · − (m−1)√
m(m−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For instance, if m = 4, the Helmert matrix is

H =

⎡
⎢⎢⎣

1/2 1/2 1/2 1/2
1/
√

2 −1/
√

2 0 0
1/
√

6 1/
√

6 −2/
√

6 0
1/
√

12 1/
√

12 1/
√

12 −3/
√

12

⎤
⎥⎥⎦ .

Note that if m �= n, it is possible for an m × n matrix P to satisfy one of the
identities, P ′P = In or PP ′ = Im, but not both. Such a matrix is sometimes referred
to as a semiorthogonal matrix.

An m × m matrix P is called a permutation matrix if each row and each column
of P has a single element 1, while all remaining elements are zeros. As a result, the
columns of P will be e1, . . . ,em, the columns of Im, in some order. Note then that
the (h, h)th element of P ′P will be e′

iei = 1 for some i, and the (h, l)th element
of P ′P will be e′

iej = 0 for some i �= j if h �= l; that is, a permutation matrix is a
special orthogonal matrix. Since there are m! ways of permuting the columns of Im,
there are m! different permutation matrices of order m. If A is also m × m, then PA
creates an m × m matrix by permuting the rows of A, and AP produces a matrix by
permuting the columns of A.

1.11 QUADRATIC FORMS

Let x be an m × 1 vector, y an n × 1 vector, and A an m × n matrix. Then the
function of x and y given by

x′Ay =
m∑

i=1

n∑
j=1

xiyjaij

is sometimes called a bilinear form in x and y. We will be most interested in the spe-
cial case in which m = n, so that A is m × m, and x = y. In this case, the function
above reduces to the function of x,

f(x) = x′Ax =
m∑

i=1

m∑
j=1

xixjaij ,
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which is called a quadratic form in x; A is referred to as the matrix of the quadratic
form. We will always assume that A is a symmetric matrix because, if it is not, A
may be replaced by B = 1

2(A + A′), which is symmetric, without altering f(x);
that is,

x′Bx =
1
2
x′(A + A′)x =

1
2
(x′Ax + x′A′x)

=
1
2
(x′Ax + x′Ax) = x′Ax

because x′A′x = (x′A′x)′ = x′Ax. As an example, consider the function

f(x) = x2
1 + 3x2

2 + 2x2
3 + 2x1x2 − 2x2x3,

where x is 3 × 1. The symmetric matrix A satisfying f(x) = x′Ax is given by

A =

⎡
⎣1 1 0

1 3 −1
0 −1 2

⎤
⎦ .

Every symmetric matrix A and its associated quadratic form is classified into one
of the following five categories:

(a) If x′Ax > 0 for all x �= 0, then A is positive definite.

(b) If x′Ax ≥ 0 for all x and x′Ax = 0 for some x �= 0, then A is positive
semidefinite.

(c) If x′Ax < 0 for all x �= 0, then A is negative definite.

(d) If x′Ax ≤ 0 for all x and x′Ax = 0 for some x �= 0, then A is negative
semidefinite.

(e) If x′Ax > 0 for some x and x′Ax < 0 for some x, then A is indefinite.

Note that the null matrix is actually both positive semidefinite and negative semidef-
inite.

Positive definite and negative definite matrices are nonsingular, whereas positive
semidefinite and negative semidefinite matrices are singular. Sometimes the term
nonnegative definite will be used to refer to a symmetric matrix that is either pos-
itive definite or positive semidefinite. An m × m matrix B is called a square root of
the nonnegative definite m × m matrix A if A = BB′. Sometimes we will denote
such a matrix B as A1/2. If B is also symmetric, so that A = B2, then B is called the
symmetric square root of A.

Quadratic forms play a prominent role in inferential statistics. In Chapter 11, we
will develop some of the most important results involving quadratic forms that are of
particular interest in statistics.
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1.12 COMPLEX MATRICES

Throughout most of this text, we will be dealing with the analysis of vectors and
matrices composed of real numbers or variables. However, there are occasions in
which an analysis of a real matrix, such as the decomposition of a matrix in the form
of a product of other matrices, leads to matrices that contain complex numbers. For
this reason, we will briefly summarize in this section some of the basic notation and
terminology regarding complex numbers.

Any complex number c can be written in the form

c = a + ib,

where a and b are real numbers and i represents the imaginary number
√
−1. The

real number a is called the real part of c, whereas b is referred to as the imaginary
part of c. Thus, the number c is a real number only if b is 0. If we have two complex
numbers, c1 = a1 + ib1 and c2 = a2 + ib2, then their sum is given by

c1 + c2 = (a1 + a2) + i(b1 + b2),

whereas their product is given by

c1c2 = a1a2 − b1b2 + i(a1b2 + a2b1).

Corresponding to each complex number c = a + ib is another complex number
denoted by c and called the complex conjugate of c. The complex conjugate of c
is given by c = a − ib and satisfies cc = a2 + b2, so that the product of a complex
number and its conjugate results in a real number.

A complex number can be represented geometrically by a point in the complex
plane, where one of the axes is the real axis and the other axis is the complex or
imaginary axis. Thus, the complex number c = a + ib would be represented by the
point (a, b) in this complex plane. Alternatively, we can use the polar coordinates
(r, θ), where r is the length of the line from the origin to the point (a, b) and θ is the
angle between this line and the positive half of the real axis. The relationship between
a and b, and r and θ is then given by

a = r cos(θ), b = r sin(θ).

Writing c in terms of the polar coordinates, we have

c = r cos(θ) + ir sin(θ),

or, after using Euler’s formula, simply c = reiθ. The absolute value, also sometimes
called the modulus, of the complex number c is defined to be r. This is, of course,
always a nonnegative real number, and because a2 + b2 = r2, we have

|c| = |a + ib| =
√

a2 + b2.
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We also find that

|c1c2| =
√

(a1a2 − b1b2)2 + (a1b2 + a2b1)2

=
√

(a2
1 + b2

1)(a
2
2 + b2

2) = |c1||c2|.

Using this identity repeatedly, we also see that for any complex number c and any
positive integer n, |cn| = |c|n.

A useful identity relating a complex number c and its conjugate to the absolute
value of c is

cc = |c|2.

Applying this identity to the sum of two complex numbers c1 + c2 and noting that
c1c2 + c1c2 ≤ 2|c1||c2|, we get

|c1 + c2|2 = (c1 + c2)(c1 + c2) = (c1 + c2)(c1 + c2)

= c1c1 + c1c2 + c2c1 + c2c2

≤ |c1|2 + 2|c1||c2| + |c2|2

= (|c1| + |c2|)2.

From this result, we get the important inequality, |c1 + c2| ≤ |c1| + |c2|, known as
the triangle inequality.

A complex matrix is simply a matrix whose elements are complex numbers. As a
result, a complex matrix can be written as the sum of a real matrix and an imaginary
matrix; that is, if C is an m × n complex matrix then it can be expressed as

C = A + iB,

where both A and B are m × n real matrices. The complex conjugate of C, denoted
C, is simply the matrix containing the complex conjugates of the elements of C;
that is,

C = A − iB.

The conjugate transpose of C is C∗ = C
′
. If the complex matrix C is square and

C∗ = C, so that cij = cji, then C is said to be Hermitian. Note that if C is Hermitian
andC is a real matrix, thenC is symmetric. Them × mmatrixC is said to be unitary
if C∗C = Im, which is the generalization of the concept of orthogonal matrices to
complex matrices because if C is real, then C∗ = C ′.

1.13 RANDOM VECTORS AND SOME RELATED STATISTICAL
CONCEPTS

In this section, we review some of the basic definitions and results in distribution
theory that will be needed later in this text. A more comprehensive treatment of this
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subject can be found in books on statistical theory such as Casella and Berger (2002)
or Lindgren (1993). To be consistent with our notation in which we use a capital letter
to denote a matrix, a bold lowercase letter for a vector, and a lowercase letter for a
scalar, we will use a lowercase letter instead of the more conventional capital letter
to denote a scalar random variable.

A random variable x is said to be discrete if its collection of possible values, Rx,
is a countable set. In this case, x has a probability function px(t) satisfying px(t) =
P (x = t), for t ∈ Rx, and px(t) = 0, for t /∈ Rx. A continuous random variable x,
on the other hand, has for its range, Rx, an uncountably infinite set. Associated with
each continuous random variable x is a density function fx(t) satisfying fx(t) > 0,
for t ∈ Rx, and fx(t) = 0, for t /∈ Rx. Probabilities for x are obtained by integration;
if B is a subset of the real line, then

P (x ∈ B) =
∫

B

fx(t) dt.

For both discrete and continuous x, we have P (x ∈ Rx) = 1.
The expected value of a real-valued function of x, g(x), gives the average observed

value of g(x). This expectation, denoted E[g(x)], is given by

E[g(x)] =
∑
t∈Rx

g(t)px(t),

if x is discrete, and

E[g(x)] =
∫ ∞

−∞
g(t)fx(t) dt,

if x is continuous. Properties of the expectation operator follow directly from prop-
erties of sums and integrals. For instance, if x is a random variable and α and β are
constants, then the expectation operator satisfies the properties

E(α) = α

and
E[αg1(x) + βg2(x)] = αE[g1(x)] + βE[g2(x)],

where g1 and g2 are any real-valued functions. The expected values of a random vari-
able x given byE(xk), k = 1, 2, . . . are known as the moments of x. These moments
are important for both descriptive and theoretical purposes. The first few moments
can be used to describe certain features of the distribution of x. For instance, the first
moment or mean of x, μx = E(x), locates a central value of the distribution. The
variance of x, denoted σ2

x or var(x), is defined as

σ2
x = var(x) = E[(x − μx)2] = E(x2) − μ2

x,
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so that it is a function of the first and second moments of x. The variance gives a
measure of the dispersion of the observed values of x about the central value μx.
Using properties of expectation, it is easily verified that

var(α + βx) = β2 var(x).

All of the moments of a random variable x are embedded in a function called the
moment generating function of x. This function is defined as a particular expectation;
specifically, the moment generating function of x, mx(t), is given by

mx(t) = E(etx),

provided this expectation exists for values of t in a neighborhood of 0. Otherwise, the
moment generating function does not exist. If the moment generating function of x
does exist, then we can obtain any moment from it because

dk

dtk
mx(t)

∣∣∣∣
t=0

= E(xk).

More importantly, the moment generating function characterizes the distribution of x
in that, under certain conditions, no two different distributions have the same moment
generating function.

We now focus on some particular families of distributions that we will encounter
later in this text. A random variable x is said to have a univariate normal distribution
with mean μ and variance σ2, indicated by x ∼ N(μ, σ2), if the density of x is given
by

fx(t) =
1√
2πσ

e−(t−μ)2/2σ2
, −∞ < t < ∞.

The corresponding moment generating function is

mx(t) = eμt+σ2t2/2.

A special member of this family of normal distributions is the standard normal dis-
tribution N(0, 1). The importance of this distribution follows from the fact that if
x ∼ N(μ, σ2), then the standardizing transformation z = (x − μ)/σ yields a random
variable z that has the standard normal distribution. By differentiating the moment
generating function of z ∼ N(0, 1), it is easy to verify that the first six moments of
z, which we will need in Chapter 11, are 0, 1, 0, 3, 0, and 15, respectively.

If r is a positive integer, then a random variable v has a chi-squared distribution
with r degrees of freedom, written v ∼ χ2

r, if its density function is

fv(t) =
t(r/2)−1e−t/2

2r/2Γ(r/2)
, t > 0,

where Γ(r/2) is the gamma function evaluated at r/2. The moment generating
function of v is given by mv(t) = (1 − 2t)−r/2, for t < 1

2 . The importance of
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the chi-squared distribution arises from its connection to the normal distribution.
If z ∼ N(0, 1), then z2 ∼ χ2

1. Further, if z1, . . . , zr are independent random
variables with zi ∼ N(0, 1) for i = 1, . . . , r, then

r∑
i=1

z2
i ∼ χ2

r. (1.5)

The chi-squared distribution mentioned above is sometimes referred to as a central
chi-squared distribution because it is actually a special case of a more general family
of distributions known as the noncentral chi-squared distributions. These noncentral
chi-squared distributions are also related to the normal distribution. If x1, . . . , xr are
independent random variables with xi ∼ N(μi, 1), then

r∑
i=1

x2
i ∼ χ2

r(λ), (1.6)

where χ2
r(λ) denotes the noncentral chi-squared distribution with r degrees of free-

dom and noncentrality parameter

λ =
1
2

r∑
i=1

μ2
i ;

that is, the noncentral chi-squared density, which we will not give here, depends not
only on the parameter r but also on the parameter λ. Since (1.6) reduces to (1.5)
when μi = 0 for all i, we see that the distribution χ2

r(λ) corresponds to the central
chi-squared distribution χ2

r when λ = 0.
A distribution related to the chi-squared distribution is the F distribution with r1

and r2 degrees of freedom, denoted by Fr1,r2
. If y ∼ Fr1,r2

, then the density function
of y is

fy(t) =
Γ{(r1 + r2)/2}
Γ(r1/2)Γ(r2/2)

(
r1

r2

)r1/2

t(r1−2)/2
(

1 +
r1

r2
t

)−(r1+r2)/2

, t > 0.

The importance of this distribution arises from the fact that if v1 and v2 are indepen-
dent random variables with v1 ∼ χ2

r1
and v2 ∼ χ2

r2
, then the ratio

t =
v1/r1

v2/r2

has the F distribution with r1 and r2 degrees of freedom.
The concept of a random variable can be extended to that of a random vector.

A sequence of related random variables x1, . . . , xm is modeled by a joint or mul-
tivariate probability function px(t) if all of the random variables are discrete, and
a multivariate density function fx(t) if all of the random variables are continuous,
wherex = (x1, . . . , xm)′ and t = (t1, . . . , tm)′. For instance, if they are continuous
and B is a region in Rm, then the probability that x falls in B is
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P (x ∈ B) =
∫

· · ·
∫

B

fx(t) dt1 · · · dtm,

whereas the expected value of the real-valued function g(x) of x is given by

E[g(x)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(t)fx(t) dt1 · · · dtm.

The random variables x1, . . . , xm are said to be independent, a concept we have
already referred to, if and only if the joint probability function or density function
factors into the product of the marginal probability or density functions; that is, in the
continuous case, x1, . . . , xm are independent if and only if

fx(t) = fx1
(t1) · · · fxm

(tm),

for all t.
The mean vector of x, denoted μ, is the vector of expected values of the xi’s; that

is,
μ = (μ1, . . . , μm)′ = E(x) = [E(x1), . . . , E(xm)]′.

A measure of the linear relationship between xi and xj is given by the covariance of
xi and xj , which is denoted cov(xi, xj) or σij and is defined by

σij = cov(xi, xj) = E[(xi − μi)(xj − μj)] = E(xixj) − μiμj . (1.7)

When i = j, this covariance reduces to the variance of xi; that is, σii = σ2
i =

var(xi). When i �= j and xi and xj are independent, then cov(xi, xj) = 0 because
in this case E(xixj) = μiμj . If α1, α2, β1 and β2 are constants, then

cov(α1 + β1xi, α2 + β2xj) = β1β2 cov(xi, xj).

The matrix Ω, which has σij as its (i, j)th element, is called the variance–covariance
matrix, or simply the covariance matrix, of x. This matrix will be also denoted some-
times by var(x) or cov(x,x). Clearly, σij = σji so that Ω is a symmetric matrix.
Using (1.7), we obtain the matrix formulation for Ω,

Ω = var(x) = E[(x − μ)(x − μ)′] = E(xx′) − μμ′.

If α is an m × 1 vector of constants and we define the random variable y = α′x,
then

E(y) = E(α′x) = E

(
m∑

i=1

αixi

)
=

m∑
i=1

αiE(xi)

=
m∑

i=1

αiμi = α′μ.
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If, in addition, β is another m × 1 vector of constants and w = β′x, then

cov(y, w) = cov(α′x,β′x) = cov

⎛
⎝ m∑

i=1

αixi,

m∑
j=1

βjxj

⎞
⎠

=
m∑

i=1

m∑
j=1

αiβj cov(xi, xj) =
m∑

i=1

m∑
j=1

αiβjσij = α′Ωβ.

In particular, var(y) = cov(y, y) = α′Ωα. Because this holds for any choice of α
and because the variance is always nonnegative, Ω must be a nonnegative definite
matrix. More generally, if A is a p × m matrix of constants and y = Ax, then

E(y) = E(Ax) = AE(x) = Aμ, (1.8)

var(y) = E[{y − E(y)}{y − E(y)}′] = E[(Ax − Aμ)(Ax − Aμ)′]

= E[A(x − μ)(x − μ)′A′] = A{E[(x − μ)(x − μ)′]}A′

= AΩA′. (1.9)

Thus, the mean vector and covariance matrix of the transformed vector, Ax, is Aμ
and AΩA′. If v and w are random vectors, then the matrix of covariances between
components of v and components of w is given by

cov(v,w) = E(vw′) − E(v)E(w)′.

In particular, if v = Ax and w = Bx, then

cov(v,w) = A cov(x,x)B′ = A var(x)B′ = AΩB′.

A measure of the linear relationship between xi and xj that is unaffected by the
measurement scales of xi and xj is called the correlation. We denote this by ρij and
it is defined as

ρij =
cov(xi, xj)√

var(xi) var(xj)
=

σij√
σiiσjj

.

When i = j, ρij = 1. The correlation matrix P , which has ρij as its (i, j)th element,
can be expressed in terms of the corresponding covariance matrix Ω and the diagonal
matrix D

−1/2
Ω = diag(σ−1/2

11 , . . . , σ
−1/2
mm ); specifically,

P = D
−1/2
Ω ΩD

−1/2
Ω . (1.10)

For any m × 1 vector α, we have

α′Pα = α′D
−1/2
Ω ΩD

−1/2
Ω α = β′Ωβ,
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where β = D
−1/2
Ω α, and so P must be nonnegative definite because Ω is. In partic-

ular, if ei is the ith column of the m × m identity matrix, then

(ei + ej)
′P (ei + ej) = (P )ii + (P )ij + (P )ji + (P )jj

= 2(1 + ρij) ≥ 0

and

(ei − ej)
′P (ei − ej) = (P )ii − (P )ij − (P )ji + (P )jj

= 2(1 − ρij) ≥ 0,

from which we obtain the inequality, −1 ≤ ρij ≤ 1.
Typically, means, variances, and covariances are unknown and so they must be

estimated from a sample. Suppose x1, . . . , xn represents a random sample of a ran-
dom variable x that has some distribution with mean μ and variance σ2. These quan-
tities can be estimated by the sample mean and the sample variance given by

x =
1
n

n∑
i=1

xi,

s2 =
1

n − 1

n∑
i=1

(xi − x)2 =
1

n − 1

(
n∑

i=1

x2
i − nx2

)
.

In the multivariate setting, we have analogous estimators for μ and Ω; if x1, . . . ,xn

is a random sample of an m × 1 random vector x having mean vector μ and covari-
ance matrix Ω, then the sample mean vector and sample covariance matrix are given
by

x =
1
n

n∑
i=1

xi,

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)′ =
1

n − 1

(
n∑

i=1

xix
′
i − nxx′

)
.

The sample covariance matrix can be then used in (1.10) to obtain an esti-
mator of the correlation matrix, P ; that is, if we define the diagonal matrix
D

−1/2
S = diag(s−1/2

11 , . . . , s
−1/2
mm ), then the correlation matrix can be estimated by

the sample correlation matrix defined as

R = D
−1/2
S SD

−1/2
S .

One particular joint distribution that we will consider is the multivariate normal
distribution. This distribution can be defined in terms of independent standard normal



�

� �

�

26 A REVIEW OF ELEMENTARY MATRIX ALGEBRA

random variables. Let z1, . . . , zm be independently distributed as N(0, 1), and put
z = (z1, . . . , zm)′. The density function of z is then given by

f(z) =
m∏

i=1

1√
2π

exp
(
−1

2
z2
i

)
=

1
(2π)m/2 exp

(
−1

2
z′z

)
.

Because E(z) = 0 and var(z) = Im, this particular m-dimensional multivariate
normal distribution, known as the standard multivariate normal distribution, is
denoted as Nm(0, Im). If μ is an m × 1 vector of constants and T is an m × m
nonsingular matrix, then x = μ + Tz is said to have them-dimensional multivariate
normal distribution with mean vector μ and covariance matrix Ω = TT ′. This
is indicated by x ∼ Nm(μ,Ω). For instance, if m = 2, the vector x = (x1, x2)

′

has a bivariate normal distribution and its density, induced by the transformation
x = μ + Tz, can be shown to be

f(x) =
1

2π
√

σ11σ22(1 − ρ2)
exp

(
− 1

2(1 − ρ2)

{
(x1 − μ1)

2

σ11

−2ρ

(
x1 − μ1√

σ11

) (
x2 − μ2√

σ22

)
+

(x2 − μ2)
2

σ22

})
, (1.11)

for all x ∈ R2, where ρ = ρ12 is the correlation coefficient. When ρ = 0, this density
factors into the product of the marginal densities, so x1 and x2 are independent if and
only if ρ = 0. The cumbersome-looking density function given in (1.11) can be more
conveniently expressed by using matrix notation. It is straightforward to verify that
this density is identical to

f(x) =
1

2π|Ω|1/2 exp
{
−1

2
(x − μ)′Ω−1(x − μ)

}
. (1.12)

The density function of an m-variate normal random vector is very similar to the
function given in (1.12). If x ∼ Nm(μ,Ω), then its density is

f(x) =
1

(2π)m/2|Ω|1/2 exp
{
−1

2
(x − μ)′Ω−1(x − μ)

}
, (1.13)

for all x ∈ Rm.
If Ω is positive semidefinite, then x ∼ Nm(μ,Ω) is said to have a singular normal

distribution. In this case, Ω−1 does not exist and so the multivariate normal density
cannot be written in the form given in (1.13). However, the random vector x can still
be expressed in terms of independent standard normal random variables. Suppose that
rank(Ω) = r and U is an m × r matrix satisfying UU ′ = Ω. Then x ∼ Nm(μ,Ω) if
x is distributed the same as μ + Uz, where now z ∼ Nr(0, Ir).

An important property of the multivariate normal distribution is that a linear trans-
formation of a multivariate normal vector yields a multivariate normal vector; that
is, if x ∼ Nm(μ,Ω) and A is a p × m matrix of constants, then y = Ax has a
p-variate normal distribution. In particular, from (1.8) and (1.9), we know that y ∼
Np(Aμ, AΩA′).
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We next consider spherical and elliptical distributions that are extensions of mul-
tivariate normal distributions. In particular, a spherical distribution is an extension of
the standard multivariate normal distributionNm(0, Im), whereas an elliptical distri-
bution is an extension of the multivariate normal distribution Nm(μ,Ω). An m × 1
random vector x has a spherical distribution if x and Px have the same distribu-
tion for all m × m orthogonal matrices P . If x has a spherical distribution with a
density function, then this density function depends on x only through the value of
x′x; that is, the density function of x can be written as g(x′x) for some function
g. The term spherical distribution then arises from the fact that the density function
is the same for all points x that lie on the sphere x′x = c, where c is a nonnegative
constant. Clearly z ∼ Nm(0, Im) has a spherical distribution because for anym × m
orthogonal matrix P , Pz ∼ Nm(0, Im). An example of a nonnormal spherical dis-
tribution is the uniform distribution; that is, if u is a randomly selected point on the
surface of the unit sphere in Rm, then u has a spherical distribution. In fact, if the
m × 1 random vector x has a spherical distribution, then it can be expressed as

x = wu, (1.14)

where u is uniformly distributed on the m-dimensional unit sphere, w is a nonnega-
tive random variable, and u and w are independently distributed. It is easy to verify
that when z has the distribution Nm(0, Im), then (1.14) takes the form

z = vu,

where v2 ∼ χ2
m. Thus, if them × 1 random vectorx has a spherical distribution, then

it can also be expressed as

x = wu = wv−1z = sz,

where again z has the distribution Nm(0, Im), s = wv−1 is a nonnegative random
variable, and z and s are independently distributed. The contaminated normal distri-
butions and the multivariate t distributions are other examples of spherical distribu-
tions. A random vectorx having a contaminated normal distribution can be expressed
as x = sz, where z ∼ Nm(0, Im) independently of s, which takes on the values σ
and 1 with probabilities p and 1 − p, respectively, and σ �= 1 is a positive constant.
If z ∼ Nm(0, Im) independently of v2 ∼ χ2

n, then the random vector x = n1/2z/v
has a multivariate t distribution with n degrees of freedom.

We generalize from spherical distributions to elliptical distributions in the same
way that Nm(0, Im) was generalized to Nm(μ,Ω). An m × 1 random vector y has
an elliptical distribution with parameters μ and Ω if it can be expressed as

y = μ + Tx,

where T is m × r, TT ′ = Ω, rank(Ω) = r, and the r × 1 random vector x has a
spherical distribution. Using (1.14), we then have

y = μ + wTu,

where the random variablew ≥ 0 is independent ofu, which is uniformly distributed
on the r-dimensional unit sphere. If Ω is nonsingular and y has a density, then it
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depends on y only through the value of (y − μ)′Ω−1(y − μ); that is, the density is
the same for all points y that lie on the ellipsoid (y − μ)′Ω−1(y − μ) = c, where c
is a nonnegative constant. A more detailed discussion about spherical and elliptical
distributions can be found in Fang et al. (1990).

One of the most widely used procedures in statistics is regression analysis. We will
briefly describe this analysis here and later use regression analysis to illustrate some
of the matrix methods developed in this text. Some good references on regression are
Kutner et al. (2005), Rencher and Schaalje (2008), and Sen and Srivastava (1990).
In the typical regression problem, one wishes to study the relationship between some
response variable, say y, and k explanatory variables x1, . . . , xk. For instance, y
might be the yield of some product of a manufacturing process, whereas the explana-
tory variables are conditions affecting the production process, such as temperature,
humidity, pressure, and so on. A model relating the xj’s to y is given by

y = β0 + β1x1 + · · · + βkxk + ε, (1.15)

where β0, . . . , βk are unknown parameters and ε is a random error, that is, a
random variable, with E(ε) = 0. In what is known as ordinary least squares
regression, we also have the errors as independent random variables with common
variance σ2; that is, if εi and εj are random errors associated with the responses
yi and yj , then var(εi) = var(εj) = σ2 and cov(εi, εj) = 0. The model given
in (1.15) is an example of a linear model because it is a linear function of the
parameters. It need not be linear in the xj’s so that, for instance, we might have
x2 = x2

1. Because the parameters are unknown, they must be estimated and this will
be possible if we have some observed values of y and the corresponding xj’s. Thus,
for the ith observation, suppose that the explanatory variables are set to the values
xi1, . . . , xik yielding the response yi, and this is done for i = 1, . . . , N , where
N > k + 1. If model (1.15) holds, then we should have, approximately,

yi = β0 + β1xi1 + · · · + βkxik

for each i. This can be written as the matrix equation

y = Xβ

if we define

y =

⎡
⎢⎢⎢⎣

y1
y2
...

yN

⎤
⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎣

β0
β1
...

βk

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x11 · · · x1k

1 x21 · · · x2k
...

...
...

1 xN1 · · · xNk

⎤
⎥⎥⎥⎦ .

One method of estimating the βj’s, which we will discuss from time to time in this
text, is called the method of least squares. If β̂ = (β̂0, . . . , β̂k)′ is an estimate of the
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parameter vector β, then ŷ = Xβ̂ is the vector of fitted values, whereas y − ŷ gives
the vector of errors or deviations of the actual responses from the corresponding fitted
values, and

f(β̂) = (y − Xβ̂)′(y − Xβ̂)

gives the sum of squares of these errors. The method of least squares selects as β̂
any vector that minimizes the function f(β̂). We will see later that any such vector
satisfies the system of linear equations, sometimes referred to as the normal equations,

X ′Xβ̂ = X ′y.

If X has full column rank, that is, rank(X) = k + 1, then (X ′X)−1 exists and so the
least squares estimator of β is unique and is given by

β̂ = (X ′X)−1X ′y.

PROBLEMS

1.1 Show that the scalar properties ab = 0 implies a = 0 or b = 0, and ab = ac for
a �= 0 implies that b = c do not extend to matrices by finding

(a) 2 × 2 nonnull matrices A and B for which AB = (0),
(b) 2 × 2 matrices A, B, and C, with A being nonnull, such that AB = AC,

yet B �= C.

1.2 Let A be an m × m idempotent matrix. Show that

(a) Im − A is idempotent,

(b) BAB−1 is idempotent, where B is any m × m nonsingular matrix.

1.3 Let A and B be m × m symmetric matrices. Show that AB is symmetric if and
only if AB = BA.

1.4 Prove Theorem 1.3(e); that is, if A is an m × n matrix, show that tr(A′A) = 0
if and only if A = (0).

1.5 Show that

(a) if x and y are m × 1 vectors, tr(xy′) = x′y,

(b) if A and B are m × m matrices and B is nonsingular, tr(BAB−1) =
tr(A).

1.6 Suppose A is m × n and B is n × m. Show that tr(AB) = tr(A′B′).
1.7 Suppose thatA,B, andC arem × mmatrices. Show that if they are symmetric

matrices, then tr(ABC) = tr(ACB).
1.8 Prove Theorem 1.4.

1.9 Show that any square matrix can be written as the sum of a symmetric matrix
and a skew-symmetric matrix.

1.10 Let A and B be m × m symmetric matrices. Show that AB − BA is a
skew-symmetric matrix.
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1.11 Suppose that A is an m × m skew-symmetric matrix. Show that −A2 is a non-
negative definite matrix.

1.12 Define the m × m matrices A, B, and C as

A =

⎡
⎢⎢⎢⎣

b11 + c11 b12 + c12 · · · b1m + c1m

a21 a22 · · · a2m
...

...
...

am1 am2 · · · amm

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣

b11 b12 · · · b1m

a21 a22 · · · a2m
...

...
...

am1 am2 · · · amm

⎤
⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎣

c11 c12 · · · c1m

a21 a22 · · · a2m
...

...
...

am1 am2 · · · amm

⎤
⎥⎥⎥⎦ .

Prove that |A| = |B| + |C|.
1.13 Verify the results of Theorem 1.8.

1.14 Suppose thatA andB arem × m nonnull matrices satisfyingAB = (0). Show
that both A and B must be singular matrices.

1.15 Consider the 4 × 4 matrix

A =

⎡
⎢⎢⎣

1 2 1 1
0 1 2 0
1 2 2 1
0 −1 1 2

⎤
⎥⎥⎦ .

Find the determinant of A by using the cofactor expansion formula on the first
column of A.

1.16 Using the matrix A from the previous problem, verify (1.3) when i = 1 and
k = 2.

1.17 Prove Theorem 1.6.

1.18 Let λ be a variable, and consider the determinant of A − λIm, where A is an
m × m matrix, as a function of λ. What type of function of λ is this?

1.19 Find the adjoint matrix of the matrixA given in Problem 1.15. Use this to obtain
the inverse of A.

1.20 Using elementary transformations, determine matrices B and C so that
BAC = I4 for the matrix A given in Problem 1.15. Use B and C to compute
the inverse of A; that is, take the inverse of both sides of the equation
BAC = I4 and then solve for A−1.
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1.21 Compute the inverse of
(a) Im + 1m1′

m,
(b) Im + e11

′
m.

1.22 Show that
(a) the determinant of a triangular matrix is the product of its diagonal

elements,
(b) the inverse of a lower triangular matrix is a lower triangular matrix.

1.23 Let a and b be m × 1 vectors and D be an m × m diagonal matrix. Use Corol-
lary 1.9.2 to find an expression for the inverse of D + αab′, where α is a scalar.

1.24 Let A# be the adjoint matrix of an m × m matrix A. Show that

(a) |A#| = |A|m−1,

(b) (αA)# = αm−1A#, where α is a scalar.
1.25 Consider the m × m partitioned matrix

A =
[
A11 (0)
A21 A22

]
,

where the m1 × m1 matrix A11 and the m2 × m2 matrix A22 are nonsingular.
Obtain an expression for A−1 in terms of A11, A22, and A21.

1.26 Let

A =
[
A11 A12
A′

12 A22

]
,

where A11 is m1 × m1, A22 is m2 × m2, and A12 is m1 × m2. Show that if A
is positive definite, then A11 and A22 are also positive definite.

1.27 Find the rank of the 4 × 4 matrix

A =

⎡
⎢⎢⎣

2 0 1 −1
1 −1 1 −1
1 −1 2 0
2 0 0 −2

⎤
⎥⎥⎦ .

1.28 Use elementary transformations to transform the matrix A given in Problem
1.27 to a matrixH having the form given in Theorem 1.11. Consequently, deter-
mine matrices B and C so that BAC = H .

1.29 Prove parts (b) and (c) of Theorem 1.12.
1.30 List all permutation matrices of order 3.
1.31 Consider the 3 × 3 matrix

P =
1√
6

⎡
⎣
√

2
√

2
√

2√
3 −

√
3 0

p31 p32 p33

⎤
⎦ .

Find values for p31, p32, and p33 so that P is an orthogonal matrix. Is your
solution unique?
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1.32 Give the conditions on the m × 1 vector x so that the matrix H = Im − 2xx′

is orthogonal.

1.33 Suppose the m × m orthogonal matrix P is partitioned as P = [P1 P2], where
P1 is m × m1, P2 is m × m2, and m1 + m2 = m. Show that P ′

1P1 = Im1
,

P ′
2P2 = Im2

, and P1P
′
1 + P2P

′
2 = Im.

1.34 Let A, B, and C be m × n, n × p, and n × n matrices, respectively, while x is
an n × 1 vector. Show that

(a) Ax = 0 for all choices of x if and only if A = (0),
(b) Ax = 0 if and only if A′Ax = 0,
(c) A = (0) if A′A = (0),
(d) AB = (0) if and only if A′AB = (0),
(e) x′Cx = 0 for all x if and only if C ′ = −C.

1.35 For each of the following, find the 3 × 3 symmetric matrix A so that the given
identity holds:

(a) x′Ax = x2
1 + 2x2

2 − x2
3 + 4x1x2 − 6x1x3 + 8x2x3.

(b) x′Ax = 3x2
1 + 5x2

2 + 2x2
3 + 2x1x2 + 2x1x3 + 4x2x3.

(c) x′Ax = 2x1x2 + 2x1x3 + 2x2x3.

1.36 Let x be a 4 × 1 vector. Find symmetric matrices A1 and A2 such that

x′A1x = (x1 + x2 − 2x3)
2 + (x3 − x4)

2,

x′A2x = (x1 − x2 − x3)
2 + (x1 + x2 − x4)

2.

1.37 Let A be an m × m matrix, and suppose that a real n × m matrix T exists such
that T ′T = A. Show that A must be nonnegative definite.

1.38 Prove that a nonnegative definite matrix must have nonnegative diagonal
elements; that is, show that if a symmetric matrix has any negative diagonal
elements, then it is not nonnegative definite. Show that the converse is not true;
that is, find a symmetric matrix that has nonnegative diagonal elements but is
not nonnegative definite.

1.39 Let A be an m × m nonnegative definite matrix, while B is an n × m matrix.
Show that BAB′ is a nonnegative definite matrix.

1.40 Define A as

A =
[
5 1
1 4

]
.

Find an upper triangular square root matrix of A; that is, find a 2 × 2 upper
triangular matrix B satisfying BB′ = A.

1.41 Use the standard normal moment generating function, mz(t) = et2/2, to show
that the first six moments of the standard normal distribution are 0, 1, 0, 3, 0,
and 15.



�

� �

�

PROBLEMS 33

1.42 Use properties of expectation to show that for random variables x1 and x2, and
scalars α1, α2, β1, and β2,

cov(α1 + β1x1, α2 + β2x2) = β1β2 cov(x1, x2).

1.43 Let S be the sample covariance matrix computed from the sample
x1, . . . ,xn, where each xi is m × 1. Define the m × n matrix X to be
X = (x1, . . . ,xn). Find a matrix expression for the symmetric matrix A
satisfying S = (n − 1)−1XAX ′.

1.44 Show that if x ∼ Nm(μ,Ω), where Ω is positive definite, then (x − μ)′Ω−1

(x − μ) ∼ χ2
m.

1.45 Suppose x ∼ N3(μ,Ω), where

μ =

⎡
⎣1

2
3

⎤
⎦ , Ω =

⎡
⎣ 2 1 −1

1 2 1
−1 1 3

⎤
⎦ ,

and let the 3 × 3 matrix A and 2 × 3 matrix B be given by

A =

⎡
⎣2 2 1

1 0 −1
0 1 −1

⎤
⎦ , B =

[
1 1 1

−1 1 0

]
.

(a) Find the correlation matrix of x.

(b) Determine the distribution of u = 1′
3x.

(c) Determine the distribution of v = Ax.

(d) Determine the distribution of

w =
[
Ax
Bx

]
.

(e) Which, if any, of the distributions obtained in (b), (c), and (d) are singular
distributions?

1.46 Suppose x is an m × 1 random vector with mean vector μ and covariance
matrix Ω. If A is an n × m matrix of constants and c is an m × 1 vector of
constants, give expressions for

(a) E[A(x + c)],
(b) var[A(x + c)].

1.47 Let x1, . . . , xm be a random sample from a normal population with mean μ
and variance σ2, so that x = (x1, . . . , xm)′ ∼ Nm(μ1m, σ2Im).
(a) What is the distribution of u = Hx, where H is the Helmert matrix?

(b) Show that
∑m

i=1 (xi − x)2 =
∑m

i=2 u2
i , and use this to establish that s2 is

distributed independently of x.
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1.48 Use the stochastic representation given in Section 1.13 for a random vector
x having a contaminated normal distribution to show that E(x) = 0 and
var(x) = {1 + p(σ2 − 1)}Im.

1.49 Show that if x has the multivariate t distribution with n degrees of freedom as
given in Section 1.13, then E(x) = 0 and var(x) = n

n−2Im if n > 2.


