
1

C H A P T E R 1

Introduction
to Trading
Algorithm Development

■ What Is an Algorithm?

An Algorithm is an effective procedure, a way of getting something done in a
finite number of discrete steps.

David Berlinski

Berlinski’s definition is exactly right on the money. The word algorithm sounds
mysterious as well as intellectual but it’s really a fancy name for a recipe. It explains
precisely the stuff and steps necessary to accomplish a task. Even though you can
perceive an algorithm to be a simple recipe, it must, like all things dealing with
computers, follow specific criteria:

1. Input: There are zero or more quantities that are externally supplied.

2. Output: At least one quantity is produced.

3. Definiteness: Each instruction must be clear and unambiguous.

4. Finiteness: If we trace out the instructions of an algorithm, then for all cases the
algorithm will terminate after a finite number of steps.

CO
PYRIG

HTED
 M

ATERIA
L

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

2

5. Effectiveness: Every instruction must be sufficiently basic that it can in principle
be carried out by a person using only pencil and paper. It is not enough that each
operation be definite as in (3), but it must also be feasible. [Fundamentals of Data
Structures: Ellis Horowitz and Sartaj Sahni 1976; Computer Science Press]

These criteria are very precise because they can be universally applied to any
type of problem. Don’t be turned off thinking this is going to be another computer
science text, because even though the criteria of an algorithm seem to be very
formal, an algorithm really is straightforward and quite eloquent. It is basically a
guide that one must follow to convert a problem into something a computer can
solve. Anybody can design an algorithm following these criteria with pencil and
paper. The only prerequisite is that you must think like a Vulcan from Star Trek.
In other words, think in logical terms by breaking ideas down into rudimentary
building blocks. This is the first step—translation of idea into an algorithm. It takes
practice to do this, and this is in part why programming can be difficult.

Another thing that makes programming difficult is understanding a computer
language’s syntax. Most people who have been exposed to a programming or
scripting language at one time or another in their lives have probably exclaimed
something like, ‘‘I forgot one stupid semicolon and the entire program crashed!
Isn’t the computer smart enough to know that? Arrgh! I will never be a computer
programmer!’’ The question that is proffered in this temper tantrum is the question
of the computer’s intelligence. Computers are not smart—they only do what we
tell them. It doesn’t matter if you spend $500 or $5,000 on the hardware. They
do things very quickly and accurately, but their intelligence is a reflection of their
programmer’s ability to translate idea into algorithmic form and then into proper
syntax.

Algorithmic (algo) traders don’t necessarily need to be programmers, but they
must understand what a computer needs to know to carry out a trading signal,
position sizing, and money management. If you can create an algorithm, then you
are more than 50 percent there. I say more than 50 percent because most traders
will utilize trading software and its associated programming or scripting language.
Learning the syntax of a scripting language or a small subset of a programming dialect
is much easier than learning an entire programming language like C# or C++. An
algo trader only needs to be concerned with the necessary tools to carry out a trading
system. The developers of EasyLanguage, AmiBroker, or TradersStudio’s main
objective was to provide only the necessary tools to put a trading idea into action.
They accomplished this by creating a vast library of trading functions, easy access to
these functions, and a simplified programming syntax. Now if you want to develop
your own testing platform and want to use a full-blown programming language to
do so, then you will need to know the language inside-out. If you are interested in
doing this, Chapters 5 and 6 will give you a head start. In these chapters, I show
how I developed testing platforms in Python and Microsoft VBA from scratch.

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

3

However, at this introductory stage, let’s take a look at a very simple trading
algorithm and the possible exchange between a computer and trader. Pretend a
trader wants to develop and test a simple moving-average crossover system and
wants to use software specifically designed for system testing. Let’s call this first
trader AlgoTrader1, and since he has used this particular testing platform he knows
it understands a trading vernacular and provides access to the common indicator
functions and data. Box 1.1 shows a possible exchange between trader and computer.

Box 1.1 Algo Testing Software

AlgoTrader1 – AlgoTester ON

Computer – AlgoTester ready

AlgoTrader1 – load crude oil futures data

Computer – data loaded

AlgoTrader1 – buy whenever close is above moving average

Computer – "moving average" function requires three inputs

AlgoTrader1 - help with moving average function

Computer - function calculates simple, weighted, exponential average

Computer - function syntax moving average (type, price, length)

AlgoTrader1 - buy whenever close is above moving average

(simple,close,21)

Computer – command completed

AlgoTrader1 –short whenever close is below moving average

(simple,close,21)

Computer – command completed

AlgoTrader1 – save algorithm as MovAvgCross

Computer – command completed

AlgoTrader1 – run MovAvgCross algorithm

Computer – run completed and results are:

$12,040 profit, $8,500 draw down, $1,200 avg. win

AlgoTrader1 – load euro currency data

Computer – command completed

AlgoTrader2 – run MovAvgCross algorithm

Computer – run completed and results are:

-$32,090 profit, $40,000 draw down, $400 avg. win

AlgoTrader1 – edit MovAvgCross algorithm

Computer – command completed

AlgoTrader2 – edit moving average function

Computer - command completed

AlgoTrader2 – change length input to 30

Computer – command completed

AlgoTrader2 – run MovAvgCross algorithm

Computer – run completed and blah blah blah

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

4

As you can see, the computer had to be somewhat spoon-fed the instructions.
The software recognized many keywords such as: load, buy, short, run, edit,
change, and save. It also recognized the moving average function and was able to
provide information on how to properly use it. The trading algorithm is now stored
in the computer’s library and will be accessible in the future.

This simple exchange between computer and AlgoTrader1 doesn’t reveal all the
computations or processes going on behind the scene. Loading and understanding
the data, applying the algorithm properly, keeping track of the trades, and, finally,
calculating all of the performance metrics did not involve any interaction with the
trader. All this programming was done ahead of time and was hidden from the trader
and this allows an algo trader to be creative without being bogged down in all the
minutiae of a testing platform.

Even though the computer can do all these things seamlessly it still needed to be
told exactly what to do. This scenario is similar to a parent instructing a child on
how to do his first long-division problem. A child attempting long division probably
knows how to add, subtract, multiply, and divide. However, even with these
‘‘built-in’’ tools, a child needs a list of exact instructions to complete a problem.
An extended vocabulary or a large library of built-in functions saves a lot of time,
but it doesn’t necessarily make the computer any smarter. This is an example of
knowledge versus intelligence—all the knowledge in the world will not necessarily
help solve a complex problem. To make a long story short, think like a computer
or child when developing and describing a trading algorithm. Box 1.2 shows an
algorithmic representation of the long-division process to illustrate how even a
simple process can seem complicated when it is broken down into steps.

Box 1.2 Procedure for Long Division

Suppose you are dividing two large numbers in the problem n ÷ m. In this
example, the dividend is n and the divisor ism.

If the divisor is not a whole number, simplify the problem by moving the decimal
of the divisor until it is to the right of the last digit. Then, move the decimal
of the dividend the same number of places. If you run out of digits in the
dividend, add zeroes as placeholders.

When doing long division, the numbers above and below the tableau should be
vertically aligned.

Now you are ready to divide. Look at the first digit of the dividend. If the divisor
can go into that number at least once, write the total number of times it fits

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

5

completely above the tableau. If the divisor is too big, move to the next digit
of the dividend, so you are looking at a two-digit number. Do this until the
divisor will go into the dividend at least once. Write the number of times the
divisor can go into the dividend above the tableau. This is the first number of
your quotient.

Multiply the divisor by the first number of the quotient and write the product
under the dividend, lining the digits up appropriately. Subtract the product
from the dividend. Then, bring the next digit from the quotient down to the
right of the difference. Determine how many times the divisor can go into that
number, and write it above the tableau as the next number of the quotient.

Repeat this process until there are no fully divisible numbers left. The number
remaining at the bottom of the subtraction under the tableau is the remainder.
To finish the problem, bring the remainder, r, to the top of the tableau and
create a fraction, r/m.

A few years ago a client came to me with the following trading system description
and hired me to program it. Before reading the description, see if you can see
any problems the programmer (me) or a computer might encounter before the
directives can be properly carried out.

Buy when the market closes above the 200-day moving average and
then starts to trend downward and the RSI bottoms out below 20 and
starts moving up. The sell short side is just the opposite.

Did you see the problems with this description? Try instructing a computer to
follow these directions. It doesn’t matter if a computer has a vast library of trading
functions; it still would not understand these instructions. The good news was,
the trader did define two conditions precisely: close greater than 200-day moving
average and relative strength index (RSI) below 20. The rest of the instructions were
open to interpretation. What does trending downward or bottoming out mean? Humans
can interpret this, but the computer has no idea what you are talking about. I was
finally able, after a couple of phone calls, to discern enough information from the
client to create some pseudocode. Pseudocode is an informal high-level description of
the operating principle of a computer program or algorithm. Think of it as the bridge
between a native language description and quasi-syntactically correct code that a
computer can understand. Translating an idea into pseudocode is like converting a

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

6

nebulous idea into something with structure. Here is the pseudocode of the client’s
initial trading idea:

Algorithm Pseudocode

if close > 200 day moving average and

close < close[1] and close [1] < close [2] and

close[2] < close[3] and yesterday’s 14 day RSI < 20 and

yesterday’s 14 day RSI < today’s 14 day RSI then BUY

If this looks like Latin (and you don’t know Latin), don’t worry about it. The [1]
in the code just represents the number of bars back. So close [2] represents the close
price prior to yesterday. If you are not familiar with RSI, you will be after Chapter 2.
By the time you are through with this book you will be able to translate this into
English, Python, EasyLanguage, AmiBroker, or Excel VBA. Here it is in English.

If today’s close is greater than the 200-day moving average of closing
prices and today’s close is less than yesterday’s close and yesterday’s
close is less than the prior day’s close and the prior day’s close is less
than the day before that and the 14-day RSI of yesterday is less than 20
and the 14-day RSI of yesterday is less than the 14-day RSI of today,
then buy at the market.

Notice how the words downward and bottoming out were removed and replaced
with exact descriptions:

downward: today’s close is less than yesterday’s close and yesterday’s close is
less than the prior day’s close and the prior day’s close is less than the day
before. The market has closed down for three straight days.

bottoming out: the 14-day RSI of yesterday is less than 20 and the 14-day RSI
of yesterday is less than the 14-day RSI of today. The RSI value ticked below
20 and then ticked up.

Also notice how the new description of the trading system is much longer than the
original. This is a normal occurrence of the evolution of idea into an exact trading
algorithm.

And now here it is in the Python programming language:

Actual Python Code

if myClose[D0] < sAverage(myClose,200,D0,1) and

myClose[D0] < myClose[D1] and myClose[D2] < myClose[D3] and

myClose[D1] < myClose[D2] and rsiVal[D1] < 20 and rsiVal[D1]

< rsiVal[D0]:

buyEntryName = 'rsiBuy'

entryPrice = myOpen

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

7

Don’t get bogged down trying to understand exactly what is going on; just notice
the similarity between pseudo and actual code. Now this is something the computer
can sink its teeth into. Unfortunately, reducing a trading idea down to pseudocode
is as difficult as programming it into a testing platform. The transformation from a
trader to an algo trader is very difficult and in some cases cannot be accomplished.
I have worked with many clients who simply could not reduce what they saw on a
chart into concise step-by-step instructions. In other cases the reduction of a trading
idea removes enough of the trader’s nuances that it turned something that seemed
plausible into something that wasn’t.

It goes without saying that if you don’t have an algorithm, then all the software
in the world will not make you a systematic trader. Either you have to design your
own or you have to purchase somebody else’s. Buying another person’s technology
is not a bad way to go, but unless the algorithm is fully disclosed you will not learn
anything. However, you will be systematic trader. I have spent 27 years evaluating
trading systems and have come across good and bad and really bad technology.
I can say without a doubt that one single type of algorithm does not stand head
and shoulders above all the others. I can also say without a doubt there isn’t a
correlation between the price of a trading system and its future profitability. The
description in Box 1.3 is very similar to a system that sold for over $10,000 in
the 1990s.

Box 1.3 Trading Algorithm Similar to One That Sold for $10K
in the 1990s Description

Entry Logic:

If the 13-day moving average of closes > the 65-day moving average of closes
and the 13-day moving average is rising and the 65-day moving average is rising
then buy the next day’s open

If the 13-day moving average of closes < the 65-day moving average of closes
and the 13-day moving average is falling and the 65-day moving average is falling
then sell the next day’s open

Exit Logic:

If in a long position then
set initial stop at the lowest low of the past 13 days

If in a short position then
set initial stop at the highest high of the past 13 days

Once profit exceeds or matches $700 pull stops to break even

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

8

If in a long position use the greater of:
Breakeven stop—if applicable
Initial stop
Lowest low of a moving window of the past 23 days

If in a short position use the lesser of:
Breakeven stop—if applicable
Initial stop
Highest high of the moving window of the past 23 days

That is the entire system, and it did in fact sell for more than $10K. This
boils down to a simple moving-average crossover system trading in the direction
of the shorter- and longer-term trend. The description also includes a complete
set of trade management rules: protective, breakeven, and trailing stop. This is a
complete trading system description, but as thorough as it seems there are a couple
of problems. The first is easy to fix because it involves syntax but the second involves
logic. There are two words that describe market direction that cannot be interpreted
by a computer. Do you see them? The two words in question are: rising and falling.
Again, descriptive words like these have to be precisely defined. This initial problem
is easy to fix—just inform the computer the exact meaning of rising and falling.
Second, it has a weakness from a logical standpoint. The algorithm uses $700 as the
profit level before the stop can be moved to break even. Seven hundred dollars in
the 1990s is quite a bit different than it is today. The robustness of this logic could
be dramatically improved by using a market-derived parameter. One could use a
volatility measure like the average range of the past N-days. If the market exhibits a
high level of volatility, then the profit objective is larger and the breakeven stop will
take longer to get activated. You may ask, ‘‘Why is this beneficial?’’ Market noise is
considered the same as volatility, and the more noise, the higher likelihood of wide
market swings. If trading in this environment, you want to make sure you adjust
your entries and exits so you stay outside the noise bands.

This algorithm was very successful in the 1980s and through a good portion the
1990s. However, its success has been hit-and-miss since. Is this algorithm worth
$10K? If you were sitting back in 1993 and looked at the historical equity curve, you
might say yes.With a testing platform,we canwalk forward the algorithm, and apply
it to the most recent data and see how it would have performed and then answer
the question. This test was done and the answer came out to be an emphatic no!

Had you bought this system and stuck with it through the steep drawdowns
that have occurred since the 1990s, you would have eventually made back your
investment (although not many people would have stuck with it). And you would
have learned the secret behind the system. Once the secret was revealed and your

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

9

checking account was down the $10K, you might have been a little disappointed
knowing that basic tenets of the system had been around for many years and freely
disseminated in books and trade journals of that era. The system may not be all that
great, but the structure of the algorithm is very clean and accomplishes the tasks
necessary for a complete trading system.

The most time-consuming aspect when developing a complete trading idea is
coming up with the trade entry. This seems somewhat like backward thinking
because it’s the exit that determines the success of the entry. Nonetheless, the lion’s
share of focus has always been on the entry. This system provides a very succinct
trade entry algorithm. If you want to develop your own trading algorithm, then
you must also provide the computer with logic just as precise and easy to interpret.
Getting from the nebula of a trading idea to this point is not easy, but it is absolutely
necessary. On past projects, I have provided the template shown in Box 1.4 to
clients to help them write their own entry rules in a more easily understood form.
You can download this form and a similar exit template at this book’s companion
website:www.wiley.com/go/ultimatealgotoolbox.

Box 1.4 Simple Template for Entry Rules

Long / Short Entries

Calculations and/or Indicators Involved (specify lookback period). Don’t use
ambiguously descriptive words like rising, falling, flattening, topping or bottom-
ing out.

Buy Condition—What must happen for a long signal to be issued? List steps

in chronological order. And remember, don’t use ambiguously descriptive words
like rising, falling, flattening, topping, or bottoming out.

Sell Condition—What must happen for a short signal to be issued? List steps

in chronological order.

Here is one of the templates filled out by a one-time client:

Calculations and/or Indicators Involved (specify lookback period)
Bollinger Band with a 50-day lookback

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

10

Buy Condition—What must happen for a long signal to be issued? List steps in
chronological order.

1. Close of yesterday is above 50-day upper Bollinger Band

2. Today’s close < yesterday’s close

3. Buy next morning’s open

Sell Condition—What must happen for a short signal to be issued? List steps in
chronological order.

1. Close of yesterday is below 50-day lower Bollinger Band

2. Today’s close > yesterday’s close

3. Sell next morning’s open

The simple Bollinger Band system shown in Box 1.4 is seeking to buy after
the upper Bollinger Band penetration is followed by a down close. The conditions
must occur within one daily bar of each other. In other words, things must happen
consecutively: the close of yesterday is> upper Bollinger Band and close of today<
yesterday’s close. The sell side of things uses just the opposite logic. The template
for exiting a trade is very similar to that of entering. Box 1.5 contains a simple
template for exit rules and shows what the client from Box 1.4 had completed for
his strategy.

Box 1.5 Simple Template for Exit Rules

Exits

Calculations and/or Indicators Involved (specify lookback period). Don’t use
ambiguously descriptive words like rising, falling, flattening, topping, or bottom-
ing out.

Long Liquidation Condition—What must happen to get out of a long position?

List steps in chronological order.

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

11

Short LiquidationCondition—Whatmust happen to get out of a short position?
List steps in chronological order.

Calculations and/or Indicators Involved (specify lookback period)
Average true range (ATR) with a 10-day lookback
Moving average with a 50-day lookback

Long Liquidation Condition—What must happen to get out of a long position?
List steps in chronological order.

1. Close of yesterday is less than entry price −3 ATR—get out on next open

2. Close of yesterday is less than 50-day moving average—get out on next
open

3. Close of yesterday is greater than entry price +5 ATR—get out on next
open

Short Liquidation Condition—What must happen to get out of a short position?
List steps in chronological order.

1. Close of yesterday is greater than entry price +3 ATR—get out on next
open

2. Close of yesterday is greater than 50-day moving average—get out on next
open

3. Close of yesterday is less than entry price −5 ATR—get out on next open

There are three conditions that can get you out of a long position. Unlike the entry
logic, the timing or sequence of the conditions do notmatter. The exit algorithm gets
you out on a volatility-based loss, amoving average–based loss/win, or a profit objec-
tive. The short liquidation criteria are just the opposite of the long liquidation criteria.

This is a complete, fully self-contained trend-following trading algorithm. It has
everything the computer would need to execute the entries and exits. And it could
be made fully automated; the computer could analyze the data and autoexecute
the trading orders. Any platform such as AmiBroker, TradeStation, Ninja Trader,
and even Excel could be used to autotrade this type of system. Any trading idea,
if reduced to the exact steps, can be tested, evaluated, and autotraded. Once the
programming code has been optimized, verified, validated, and installed on a trading

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

12

platform, the trader can just let the system run hands off. This is the true beauty
of algorithmic system trading: A computer can replicate a trader’s ideas and follow
them without any type of human emotion.

■ How to Get My Trading Idea into Pseudocode

The aforementioned template is a great way to get your ideas into written
instructions. However, just like with great writing, it will take many revisions
before you get to the pseudocode step. Over the years, I have discovered there are
two different paradigms when describing or programming a trading system. The first
is the easier to program and can be used to describe a systemwhere events occur on a
consecutive bar basis. For example: Buy when today’s close is greater than yesterday’s and
today’s high is greater than yesterday’s high and today’s low is less than yesterday’s low. The
other paradigm can be used to describe a trading system that needs things to happen
in a sequence but not necessarily on a consecutive bar-by-bar basis. Unfortunately,
the latter paradigm requires a heightened level of description and is more difficult
to program. Many trading systems can fit inside a cookie-cutter design, but most
traders are very creative, and so are their designs. Don’t fret, though, because any
idea that is reducible to a sequence of steps can be described and programmed.

The Tale of Two Paradigms

I have developed names for these two different models of describing/programming
trading algorithms:

1. The variable bar liberal sequence paradigm

2. The consecutive bar exact sequence paradigm

The variable bar paradigm can provide a very robust algorithm and at the same
time provide a nearly limitless expression of a trader’s creativity.We will begin with
this one since it is the less intuitive of the two. What you learn about the variable
bar sequence will make shifting to the simpler consecutive bar sequence that much
easier. The consecutive bar sequence can usually be programmed by using a single
if-then construct. You can see this by referring to my earlier example:

If today’s close is greater than yesterday’s close and today’s high is
greater than yesterday’s high and today’s low is less than yesterday’s
low, then buy at the market.

This paradigm is simple to explain, program, and deploy. There is nothing wrong
with this and, remember, many times a simple approach or idea to trading the
markets can deliver a very robust algorithm. Both paradigms will be exemplified in
different algorithms through the rest of the book. All trading algorithms fall into

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

13

One Bar
Strength

Two Bar
Strength

Three Bar
Strength

FIGURE 1.1 Examples of strength differences between pivot high points on daily bars.

either paradigm or across both, meaning that some systems require both approaches
to be fully described and programmed. Most traders can easily describe and probably
program a consecutive bar-type algorithm. However, traders that can’t put their
ideas into such a simple form and have had little or no programming experience have
a more difficult time reducing their ideas into a formal description, not to mention
pseudocode.

The Variable Bar Sequence Jumping headfirst into paradigm #1, the variable bar
sequence, here is a somewhat creative design that incorporates pivot points and a
sequence that can occur over a variable amount of days. For those of you who are
not familiar with pivot points, Figure 1.1 shows different examples of pivot high
points on daily bars and their differing strengths.

The strength of the pivot bar is based on the number of bars preceding and
following the high bar. A two-bar pivot is simply a high bar with two bars before
and after that have lower highs. The preceding/following highs do not necessarily
have to be in a stairstep fashion. Here is our long entry signal description using
step-by-step instructions.

Buy:

Step 1: Wait for a pivot high bar of strength 1 to appear on the chart and mark the
high price.

Step 2: Wait for the first low price that is 2 percent lower than the high price
marked in Step 1. If one occurs, move to Step 3. If the market moves above
the high marked in Step 1, then go back to Step 1 and wait for another
pivot high bar.

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

14

Step 3: Wait for another pivot high bar that exceeds the price in Step 1. Once a
high bar pivot occurs that fits the criteria, mark the high price.

Step 4: Once the subsequent pivot high bar is found, then wait for another low
price that is 2 percent below the high marked in Step 3. When a bar’s low
price fulfills the criteria buy that bar’s close. If the market moves above the
high marked in Step 3, then go back to Step 3 and wait for another pivot
high bar. The new high that just occurred may turn out to be the pivot high
bar that you are looking for in Step 3.

Additional notes: If 30 days transpire before proceeding from Step 1 to Step 4,
then reset.

Figure 1.2 illustrates the sequence the above description is trying to capture.
Ignore the state designations for now. They will become apparent in the following
discussion.

It is easy to see the designer/trader of this entry signal is trying to buy after two
pivot highs are separated and followed by a pullback of 2 percent. In addition, there
are a couple of conditions that must also be met before a buy signal is triggered:
(1) the second pivot high price must be higher than the first, and (2) the whole
sequence must take less than 30 bars to complete. When a system allows its entry
criteria to work across an unknown number of days or price levels, conditions must
be used to keep the integrity of the entry signal and limit the duration of the sequence.

Since there is variability in the instruction set, the programming of this paradigm is
definitelymore difficult. However, asmentioned earlier, it is very doable. As a young

State 1

State 1

State 1

State 3

Buy Here

State 3

State 3

State 4

State 4

State 4

State 2

21 28 11 18 25 9 16 23 30 6 13 20 27 SepAugJulJun4 10 17

State 2

Pivot Point Finite State

Machine

Showing Progression
Through Different States

State 2

FIGURE 1.2 A depiction of the variable-bar sequence described by the long entry signal.

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

15

and inexperienced trading system programmer, I tried to program these variable
sequences using a bunch of true/false Boolean flags. Box 1.6 shows an initial attempt
using thismethod to describe the pivot point sequence.The flags are bolded so you can
easily see how they are turned on and off. Comments are enclosed in brackets { }.

Box 1.6 Using Boolean Flags to Program a Trading Algorithm

HighPivotFound = High of yesterday > High of today and High

of yesterday > High of two days ago

If HPivot1 = False and HighPivotFound then {first Pivot high found}

HPivot1 = True

HPivot1Price = high of yesterday

HPivot1Cnt = currentBar

If HPivot1 = True and Low < HPivot1Price * 0.98 then

{2% retracement after first Pivot high}

LRetrace = True

If HPivot1 = True and LRetrace = False and High of today >

HighPivot1Price then

HPivot1Price = High of yesterday {another higher high but

not a 2% retracement – start over}

HPivot1Cnt = currentBar

If LRetrace = True and HighPivotFound and High of yesterday

> HPivot1Price then

HPivot2 = True {second Pivot high > first Pivot high and

2% retracement between the two}

HPivot2Price = High of yesterday

If HPivot2 = True and High of today > HPivot2Price then

HPivot2Price = High of today {another higher high > second

Pivot High – keep track of it}

If HPivot2 = True and Low < HPivot2Price * 0.98 then

Buy this bar on close {Buy Order Placed – entry criteria

has been met}

HPivot1 = False {Start Over}

LRetrace = False

HPivot2 = False

HPivot1Cnt = HPivot1Cnt + 1

If HPivot1Cnt >= 30 then {reset all Boolean flags – start over}

HPivot1 = False

LRetrace = False

HPivot2 = False

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

16

As you can see, the description using these flags is somewhat laborious and not
that flexible. The flags have to have descriptive names so that the correct flag is
being tested and subsequently turned on or off. In addition, all flags must eventually
be turned off when either the HPivot1Cnt variable grows equal to or greater than
30 or a LONG position is established. This type of programming will work but
isn’t very eloquent. Good programmers don’t like to use superfluous variable names
and many lines of code to complete a task. And really good programmers like for
others to easily read their code and comment on how clever the solution was to
the problem. Eloquent code is precise and clever. So, after much trial and error as
a young programmer, I finally realized that these types of trading algorithms (the
paradigm #1 variety) were simply looking for an occurrence of a certain sequence
or pattern in the data. When I say pattern, I don’t mean a certain price pattern like a
candlestick formation. As we have seen before, a trading algorithm is just a sequence
of instructions. Remembering back to my compiler design class in college and how
we had to write computer code to recognize certain tokens or words (patterns) in
a string of characters I felt I could use the same model to program these types of
systems, a universal model that could be molded to fit any trading system criteria.
This model that programmers use to parse certain words from a large file of words
is known as a finite state machine (FSM). The FSM concept is not as daunting as it
sounds. If we translate the geek-speak, a FSM is simply a model of a system that
shows the different possible states a system can reach and the transitions that move
the system from one state to another. The machine starts at a START state and then
moves methodically through several states by passing certain logical criteria and then
arrives at an ACCEPT state.

Don’t let this idea blow your mind because it is quite easy to understand and
implement. Let’s start off with a very simple FSM to illustrate its simplicity and
eloquence. Think of a combination lock that can only be unlocked by inputting the
following numbers: 6, 4, 2, 7, 5, and 1. Like most combination locks the numbers
need to be inputted in the exact sequence described or the lock will not open. This
lock is not very good because it lets you test to see if you have the right number
before proceeding to the next input. So you plug in a number, test it, and either try
again if it fails or move onto the next number if it is correct. Eventually, with time
the correct combination will be inputted and the lock will open. Remember this is
just a very simple example of something that can be modeled by a FSM. Without
an illustration or diagram, most nonprogrammers could not design even this simple
example. A picture is always worth a minimum of a thousand words and the easiest
way to create an appropriate FSM is to create a diagram. The diagram in Figure 1.3
describes the FSM that models the combination lock.

The diagram is made up of circles, which represent the different STATES and
connectors that show how the machine moves from one state to another. This FSM
has a total of seven states that include a START andACCEPT state. Pretend you are

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

17

Input <> 4 Input <> 2

Input <> 6
Input <> 1

Input <> 7 Input <> 5

State = 2 State = 3 State = 4

Input = 4

Input = 6

Input = 2 Input = 7 Input = 5

Input = 1Accept -
Lock

Is Unlocked

State = 5

Start

State = 1

FIGURE 1.3 An FSM that models the workings of a combination lock.

sitting in front of a small screen and a numeric touchpad similar to one that is found
on a cell phone, and it is prompting you to input a number from one to nine. At
this point, the machine is set to the START state. If you get lucky right off the bat,
you input the number six and the screen prompts you to input the second number.
If you aren’t lucky, it will ask you to re-input the first number in the combination.
So following along with the diagram, you can see how the number six moves the
machine from the START state to STATE 1. If the number six is not inputted, it
moves right back to the START state. The machine moves along the paths visiting
each STATE as long as the proper number is inputted. Notice you are not penalized
if you don’t input the proper number; the machine just sits in that particular state
until the proper number is inputted.

In our pivot point example, there will also be a START and ACCEPT state. Refer
back to the step-by-step instructions of the pivot point entry technique and visualize
the steps as different states. The START (STEP 1) state will be assigned the value
0 and the ACCEPT (STEP 4) state will have the value 4. In between, the START
and ACCEPT states will be three other states that the FSM can assume. These are
intermediate states that must be achieved in sequential order. The START state tries
to get the ball rolling and looks at every bar to see if a pivot high (of strength 1)
has occurred. If one does, then the machine moves onto the next state, and then
on to the next, and then on to the next, and then finally to the ACCEPT state. As
soon as the FSM assumes the ACCEPT state, a buy order is placed at the market.
The illustration in Figure 1.4 is the FSM diagram of our pivot-point long-entry
algorithm.

This FSM diagram looks to be much more complicated than the combination
lock, but it really isn’t. There are fewer states but many more connectors. In the

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

18

High Pivot Point of
Strength 1 Occurred STATE1

Store
Pivot1Hi

START
Bar Count = 1

STATE 2

A Low < = Pivot1Hi by 2%

A Low < Pivot2Hi by 2%

High Pivot Point of
Strength 1 >

Pivot1Hi

Bar Count =
Bar Count + 1

Another Higher High
Pivot Occurred / Or
Low > Pivot Hi - 2%

ACCEPT
Place Order

Bar Count > =30

Hi > Pivot1Hi

Low > Pivot1
Hi - 2% No High Pivot Point

STATE3
Store

Pivot2Hi
=Max(Pivot2

Hi,Hi)

FSM Diagram for Pivot Point
Algorithm

FIGURE 1.4 An FSM that models the pivot-point long-entry algorithm described in this chapter.

combination lock FSM there was only one connector connecting the different states
together and the machine never went backward. Once a state was attained, the
machine stayed there until the criteria were met to advance to the next state. This
pivot-point FSM can move forward and backward.

Stepping through this diagram will help make it less scary. Keep in mind that all
of these machines gobble up one bar at a time and then make a decision. Starting
at the START state the machine looks for a pivot high of strength one. Once the
machine finds this pivot point it then moves to STATE1 and starts looking for a low
price that is 2 percent or less than the pivot high found in the START state. There
are four paths out of STATE1: (1) a low is found that fits the criteria, (2) a low
price fitting the criteria is not found, stay in STATE1, (3) 30 bars have occurred
since the pivot high is found, and (4) a high exceeds the pivot high price. Only one
path leads to STATE2. All other paths either return to the START state or loop
back to the current state. Once the machine attains STATE2 it starts analyzing the
data by gobbling each bar and searches for a higher pivot high point. Unlike STATE1
there are only three paths coming out of this state: (1) a higher pivot high is found,
(2) a higher pivot high is not found, and (3) 30 bars have occurred since the pivot
high was found in the START state. There is only one path to STATE3 and that is a
higher pivot high. All other paths either loop or return the machine to the START
state. Assuming a higher pivot high is found the machine moves to STATE3. Once
in STATE3 the machine will only return to the START state if 30 bars have come
and gone before the machine can attain the ACCEPT state. If new highs are found,
the machine continues to stay in STATE3 and keeps track of the new highs, all the
while looking for that particular low that is 2 percent or lower than the most recent
pivot high. Eventually things fall into place and the machine attains the ACCEPT
state and a buy order is placed. You can now refer back to Figure 1.2 and see when
the machine attains the various states.

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

19

The diagram in Figure 1.4 looks clean and neat, but that’s not how it started out.
When I diagram a trading algorithm, I use pen/pencil and paper. A pencil is great
if you don’t want to waste a lot of paper. Also, you don’t have to have a complete
diagram to move onto the pseudocode step. Trust me when I say a diagram can
help immensely. Something that seems impossible to program can be conquered by
drawing a picture and providing as much detail on the picture as possible. Box 1.7
contains the pseudocode for the pivot point entry algorithm using the FSM diagram.

Box 1.7 Pivot Point Entry Algorithm for Figure 1.4

If initialize then

State = Start

HiPivotFound = High of yesterday > High of today and

High of yesterday > High of prior day

If State = Start and HiPivotFound then

State = 1

BarCount = 1

Pivot1Hi = High price of HiPivotFound

If State <> Start then BarCount = BarCount + 1

If State = 1 then

If Low of today < Pivot1Hi * 0.98 then

State = 2

If High of today > Pivot1Hi then

State = Start

If State = 2 then

If HiPivotFound then

Pivot2Hi = High Price of HiPivotFound

If Pivot2Hi > Pivot1Hi then

State = 3

If State = 3 then

If Low of today < Pivot2Hi * 0.98 then

State = Accept

If High of today > Pivot2Hi then

Pivot2Hi = High of today

If State = Accept then

Buy this market on close

State = Start {start over}

If BarCount = 30 then

State = Start

BarCount = 0

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

20

You might understand this code or you may not. If you have never programmed
or scripted, then you might have a problem with this. If you fully understand what is
going on here, just bear with us a fewmoments. Even if you understood the diagram,
this code may not be fully self-explanatory. The reason you may not understand
this is because you don’t know the syntax or the semantics of this particular language.
Syntax was discussed earlier in this chapter, and remember, it’s just the structure of
the language. I tried my best to utilize a very generic pseudocode language for all the
examples throughout the book and hopefully this will help with its understanding.
In the pseudocode example, the language uses ifs and thens to make yes-or-no
decisions. If something is true, then do something, or if something is false, then
do something. These decisions divert the flow of the computer’s execution. The
code that is indented below the if-then structure is controlled by the decision. This
structure is the syntax. Now the logic that is used to make the decision and then
what is carried out after the decision is the semantics. In our example, we will
eventually tell the computer that if State = 1, then do something. Syntax is the
grammatical structure of a language and semantics is the meaning of the vocabulary
of symbols arranged within that structure. You many notice the similarity in the
pseudocode and the FSM diagram. The logic that transitions the pivot point FSM
from one state to another is mirrored almost exactly in the code. This tells you the
time you spent planning out your program diagram is time well spent. So let’s start
with the pseudocode and make sure the FSM diagram is fully implemented.

The START state is simply looking for a pivot point high of strength 1. When
one occurs the machine then shifts gears and enters STATE1. Once we have entered
the STATE1 phase, the machine stays there until one of three criteria is met: (1) the
elusive low that is 2 percent or lower than the Pivot1Hi, (2) a high price that
exceeds the Pivot1Hi, or (3) 30 bars transpire prior to attaining the ACCEPT state.
If you look at the STATE1 block of code, you will only see the logic for the first
two criteria. You may ask where is the logic that kicks the machine back to the
START state once 30 bars have been completed prior to the ACCEPT state. If you
look further down in the code, you will see the block of code that keeps track of
the BarCount. If at any time the BarCount exceeds 30 and the machine is not in the
START state, the machine is automatically reset to the START state. If a low price
is observed that is lower than 2 percent of the Pivot1Hi price, then the machine
transitions to STATE2. However, if a high price is observed that exceeds Pivot1Hi,
then the machine reverses back to the START state and it once again starts looking
for a new PivotHi. Assuming the machine does make it to STATE2, it then starts
looking for another PivotHi price that is greater than Pivot1Hi. A transition from
STATE2 can only occur when one of two criteria are met: (1) BarCount exceeds
30, then it’s back to the START state, or (2) a higher HiPivot than Pivot1Hi is

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

21

observed. If the latter criterion is fulfilled, then it is onto STATE3. STATE3 looks
for a low price that is 2 percent less than the Pivot2Hi price so it can transition to
the ACCEPT state. At this point the BarCount is its only enemy. It doesn’t care if a
high price exceeds the Pivot2Hi. If it does, then it simply replaces the Pivot2Hi with
this price and continues searching for a price that is 2 percent lower than Pivot2Hi.
Eventually, the machine resets itself or it finally transitions to the ACCEPT state
and buys market on close (MOC).

As you can see, the description of the FSM diagram is all almost completely
repeated in the description of the pseudocode. If the two descriptions agree, then it
is on to the actual programming of the algorithm. Now that this more complicated
paradigm has been explained, I think it is time to give it a better name. How about the
FSM paradigm? Sounds better than the variable bar liberal sequence paradigm, doesn’t it?

The Consecutive Bar Sequence I saved the consecutive bar exact sequence paradigm for
the end because the FSMparadigm ismuchmore difficult to understand andmuch less
intuitive. Armedwith our new knowledge of diagrams, it is now time tomove to this
simpler paradigm because it will be used a lot more in your programming/testing
of trading algorithms. As I stated before, most trading algorithms will be fully
describable in a step-by-step fashion. Here the logic will not be needed to be
modeled by a machine; a recipe approach will do just fine. Guess what type of
diagram is used tomodel these recipe types of instructions. If you guessed a flowchart
(FC), then pat yourself on the back. A good computer programming 101 instructor
introduces her students to the flowchart concept/diagram way before they even sit
down in front of a keyboard. Figure 1.5 shows a very simple FC.

Can you see what is being modeled there? It’s quite simple; the FC diagram starts
at the top and makes one decision and, based on that decision, it carries out its
objective. It starts out with you waking up and observing the time and making a
decision to take the bus or the subway. This is a way oversimplified example, but
it covers everything an FC is designed to do: start, make decisions, carry out the
appropriate instructions based on the decisions, and then finish. Figure 1.6 shows an
ever so slightly more complicated FC that deals with what this book is all about, a
trading algorithm.

This diagram is a flowchart of the entry technique of a very popularmean reversion
trading system. This system trades in the direction of the long-term trend after a
price pullback. The trend is reflected by the relationship of the closing price and its
associated 200-day moving average. If the close is greater than the average, then the
trend is up. The pullback is reflected by the 14-period RSI indicator entering into
oversold territory—in this case, a reading of 20 or less. The diagram illustrates two
decisions or tests and, if both tests are passed, then the system enters a long position

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

22

Leave Home

Check Time

Before 7 am?

Take Bus Take Subway

Reach School

FIGURE 1.5 A very simple FC.

on an MOC order. The flow of the algorithm is linear, meaning it flows from top to
bottom. The flow is diverted based on simple decisions, but it always ends at the
bottom of the flowchart—either buying MOC or starting on a new bar of data. Here
is the pseudocode of this mean reverting system; look quickly or you will miss it:

'Simple FC type trading algorithm

'An example of a mean reversion system

If Close of today > 200 day average of Close then

If RSI(14) < 20 then

Buy MOC

That’s the entire entry technique, in a nutshell. Was it necessary to create a
flowchart diagram? In this case, no. But as you will find out in later chapters, most
trading algorithms are not this easily definable.

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

23

Start or New
Bar

Is C >
AVG(C,200)

Yes

Yes

Is RSI <20

Buy MOC
Go to Next

Bar

No

No

FIGURE 1.6 An FC of a trading algorithm.

■ Summary

In this chapter, the necessary tools for creating a trading algorithm were introduced.
Describing your ideas on paper (real or virtual) is the very first step in the algorithm
development process. A template was shown that can be used to help facilitate this.
Just getting a trading idea on paper is not sufficient to move onto the pseudocode
phase. All ideas must be translated into mathematical expressions and Boolean
logic. These expressions and logic must be in a form a computer can understand.
Ambiguous directions must be eliminated and replaced with pure logic. Once the
idea is written down and further reduced into an extremely logical list of directives
and calculations or formulae, the trader must then decide what type of paradigm to
use to get the logic into something that can be eventually programmed or scripted.
The FSM, as well as the FC methods, were both introduced and used to convert
trading schemes into complete pseudocodes. These two paradigms have always been
present, and many algorithmic traders have used themwithout realizing the different
programming methods. With knowledge of the two different methods, hopefully

IN
T
R
O
D
U
C
T
IO

N
T
O

T
R
A
D
IN

G

24

an algorithmic trader can make a choice on which is best to use and get from idea to
actual code in a lot less time and a lot less frustration.

Here again is a summary of the two methods:

■ Flowchart: The ‘‘flow’’ of a flowchart is a process. The flowchart shows the
steps and actions to achieve a certain goal. Use this method if you can define
your trading logic in a step-by-step or bar-by-bar basis. A large portion of trading
systems will fit into this programming paradigm.

■ Finite state machine: The ‘‘flow’’ in a state diagram is always from state to
state. Most FSMs have a START and ACCEPT state, similar to the beginning
and end of a flowchart. Machine diagrams describe a closed system composed of
multiple discrete states. The ‘‘state’’ in this case determines how a system behaves
to stimulus or events. Use this method if criteria have to be met in a sequential
manner, but the amount of time between the beginning and criteria completion
is variable. Pattern-based systems will usually fall into this paradigm.

Once a potential programming method is chosen, it is time to ‘‘draw’’ the
corresponding diagram. A diagram doesn’t have to be pretty, but it must try to
cover all the bases or what-if scenarios a trading system may encounter to carry out
its objectives. A thoroughly thought-out diagram providing as much information
as possible will definitely enable a trading algorithm to be quickly translated into
pseudocode and eventually programmed into a testing platform. Over time, as your
experience grows with programming trading systems, these diagrams will begin to
appear in your mind’s eye. However, this takes time and a lot of experience.

If you made it through this chapter, then, at least, you are now in possession
of a trading algorithm that is quite similar to one that actually sold for thousands of
dollars in the 1990s.

		2019-01-14T05:34:10-0500
	Certified PDF 2 Signature

