
 PART I

➤ CHAPTER 1 : .NET Application Architectures

➤ CHAPTER 2 : Core C#

➤ CHAPTER 3 : Objects and Types

➤ CHAPTER 4 : Inheritance

➤ CHAPTER 5 : Managed and Unmanaged Resources

➤ CHAPTER 6 : Generics

➤ CHAPTER 7 : Arrays and Tuples

➤ CHAPTER 8 : Operators and Casts

➤ CHAPTER 9 : Delegates, Lambdas, and Events

➤ CHAPTER 10 : Strings and Regular Expressions

➤ CHAPTER 11 : Collections

➤ CHAPTER 12 : Special Collections

➤ CHAPTER 13 : Language Integrated Query

➤ CHAPTER 14 : Errors and Exceptions

➤ CHAPTER 15 : Asynchronous Programming

➤ CHAPTER 16 : Refl ection, Metadata, and Dynamic Programming

CO
PYRIG

HTED
 M

ATERIA
L

 WHAT’S IN THIS CHAPTER?

➤ Reviewing the history of .NET
➤ Understanding differences between .NET Framework 4.6 and .NET Core 1.0
➤ Assemblies and NuGet Packages
➤ The Common Language Runtime
➤ Features of the Windows Runtime
➤ Programming Hello, World!
➤ Universal Windows Platform
➤ Technologies for creating Windows Apps
➤ Technologies for creating Web Apps

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code downloads for this chapter are found at www.wrox.com/go/professionalcsharp6
on the Download Code tab. The code for this chapter is divided into the following major examples:

➤ DotnetHelloWorld
➤ HelloWorldApp (.NET Core)

CHOOSING YOUR TECHNOLOGIES
 In recent years, .NET has become a huge ecosystem for creating any kind of applications on the
Windows platform. With .NET you can create Windows apps, web services, web applications,
and apps for the Microsoft Phone.

 The newest release of .NET is a big change from the last version—maybe the biggest change to
.NET since its invention. Much of the .NET code has become open-source code, and you can create
applications for other platforms as well. The new version of .NET (.NET Core) and NuGet packages
allow Microsoft to provide faster update cycles for delivering new features. It’s not easy to decide
what technology should be used for creating applications. This chapter helps you with that. It gives
you information about the different technologies available for creating Windows and web applications
and services, offers guidance on what to choose for database access, and highlights the differences
between .NET and .NET Core.

 1

4 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 REVIEWING .NET HISTORY
 To better understand what is available with .NET and C#, it is best to know something about its history.
The following table shows the version of .NET in relation to the Common Language Runtime (CLR), the
version of C#, and the Visual Studio edition that gives some idea about the year when the corresponding
versions have been released. Besides knowing what technology to use, it’s also good to know what
technology is not recommended because there’s a replacement.

.NET CLR C# VISUAL STUDIO

1.0 1.0 1.0 2002

1.1 1.1 1.2 2003

2.0 2.0 2.0 2005

3.0 2.0 2.0 2005 + Extensions

3.5 2.0 3.0 2008

4.0 4.0 4.0 2010

4.5 4.0 5.0 2012

4.5.1 4.0 5.0 2013

4.6 4.0 6 2015

.NET Core 1.0 CoreCLR 6 2015 + Extensions

 The following sections cover the details of this table and the progress of C# and .NET.

 C# 1.0—A New Language
 C# 1.0 was a completely new programming language designed for the .NET Framework. At the time it was
developed, the .NET Framework consisted of about 3,000 classes and the CLR.

 After Microsoft was not allowed by a court order (fi led by Sun, the company that created Java) to make
changes to the Java code, Anders Hejlsberg designed C#. Before working for Microsoft, Hejlsberg had
his roots at Borland where he designed the Delphi programming language (an Object Pascal dialect). At
Microsoft he was responsible for J++ (Microsoft’s version of the Java programming language). Given
Hejlsberg’s background, the C# programming language was mainly infl uenced by C++, Java, and Pascal.

 Because C# was created later than Java and C++, Microsoft analyzed typical programming errors that
happened with the other languages, and did some things differently to avoid these errors. Some differences
include the following:

➤ With if statements, Boolean expressions are required (C++ allows an integer value here as well).
➤ It’s permissible to create value and reference types using the struct and class keywords (Java only

allows creating custom reference types; with C++ the distinction between struct and class is only
the default for the access modifi er).

➤ Virtual and non-virtual methods are allowed (this is similar to C++; Java always creates virtual methods).

 Of course there are a lot more changes as you’ll see reading this book.

 At this time, C# was a pure object-oriented programming language with features for inheritance, encapsulation,
and polymorphism. C# also offered component-based programming enhancements such as delegates and events.

 Before the existence of .NET with the CLR, every programming language had its own runtime. With C++,
the C++ Runtime is linked with every C++ program. Visual Basic 6 had its own runtime with VBRun. The
runtime of Java is the Java Virtual Machine—which can be compared to the CLR. The CLR is a runtime
that is used by every .NET programming language. At the time the CLR appeared on the scene, Microsoft
offered JScript.NET, Visual Basic .NET, and Managed C++ in addition to C#. JScript.NET was Microsoft’s
JavaScript compiler that was to be used with the CLR and .NET classes. Visual Basic.NET was the name for

Reviewing .NET History ❘ 5

Visual Basic that offered .NET support. Nowadays it’s just called Visual Basic again. Managed C++ was the
name for a language that mixed native C++ code with Managed .NET Code. The newer C++ language used
today with .NET is C++/CLR.

 A compiler for a .NET programming language generates Intermediate Language (IL) code. The IL code
looks like object-oriented machine code and can be checked by using the tool ildasm.exe to open DLL or
EXE fi les that contain .NET code. The CLR contains a just-in-time (JIT) compiler that generates native code
out of the IL code when the program starts to run.

 NOTE IL code is also known as managed code .

 Other parts of the CLR are a garbage collector (GC), which is responsible for cleaning up managed memory
that is no longer referenced; a security mechanism that uses code access security to verify what code is
allowed to do; an extension for the debugger to allow a debug session between different programming
languages (for example, starting a debug session with Visual Basic and continuing to debug within a C#
library); and a threading facility that is responsible for creating threads on the underlying platform.

 The .NET Framework was already huge with version 1. The classes are organized within namespaces to
help facilitate navigating the 3,000 available classes. Namespaces are used to group classes and to solve
confl icts by allowing the same class name in different namespaces. Version 1 of the .NET Framework
allowed creating Windows desktop applications using Windows Forms (namespace System.Windows.
Forms), creating web applications with ASP.NET Web Forms (System.Web), communicating with
applications and web services using ASP.NET Web Services, communicating more quickly between .NET
applications using .NET Remoting, and creating COM+ components for running in an application server
using Enterprise Services.

 ASP.NET Web Forms was the technology for creating web applications with the goal for the developer to
not need to know something about HTML and JavaScript. Server-side controls that worked similarly to
Windows Forms itself created HTML and JavaScript.

 C# 1.2 and .NET 1.1 was mainly a bug fi x release with minor enhancements.

 NOTE Inheritance is discussed in Chapter 4 , “Inheritance”; delegates and events are
covered in Chapter 9 , “Delegates, Lambdas, and Events.”

 NOTE Every new release of .NET has been accompanied by a new version of the
book Professional C# . With .NET 1.0, the book was already in the second edition as
the fi rst edition had been published with Beta 2 of .NET 1.0. You’re holding the 10th
edition of this book in your hands.

C# 2 and .NET 2 with Generics
 C# 2 and .NET 2 was a huge update. With this version, a change to both the C# programming language and
the IL code had been made; that’s why a new CLR was needed to support the IL code additions. One big
change was generics . Generics make it possible to create types without needing to know what inner types
are used. The inner types used are defi ned at instantiation time, when an instance is created.

6 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 This advance in the C# programming language also resulted in many new types in the Framework—for
example, new generic collection classes found in the namespace System.Collections.Generic . With this,
the older collection classes defi ned with 1.0 are rarely used with newer applications. Of course, the older
classes still work nowadays, even with the new .NET Core version.

 NOTE Generics are used all through the book, but they’re explained in detail in
Chapter 6 , “Generics.” Chapter 11 , “Collections,” covers generic collection classes.

 .NET 3—Windows Presentation Foundation
 With the release of .NET 3.0 no new version of C# was needed. 3.0 was only a release offering new libraries,
but it was a huge release with many new types and namespaces. Windows Presentation Foundation (WPF)
was probably the biggest part of the new Framework for creating Windows desktop applications. Windows
Forms wrapped the native Windows controls and was based on pixels, whereas WPF was based on DirectX
to draw every control on its own. The vector graphics in WPF allow seamless resizing of every form. The
templates in WPF also allow for complete custom looks. For example, an application for the Zurich airport
can include a button that looks like a plane. As a result, applications can look very different from the tra-
ditional Windows applications that had been developed up to that time. Everything below the namespace
System.Windows belongs to WPF, with the exception of System.Windows.Forms . With WPF the user
interface can be designed using an XML syntax: XML for Applications Markup Language (XAML).

 Before .NET 3, ASP.NET Web Services and .NET Remoting were used for communicating between appli-
cations. Message Queuing was another option for communicating. The various technologies had different
advantages and disadvantages, and all had different APIs for programming. A typical enterprise application
had to use more than one communication API, and thus it was necessary to learn several of them. This was
solved with Windows Communication Foundation (WCF). WCF combined all the options of the other APIs
into the one API. However, to support all of the features WCF has to offer, you need to confi gure WCF.

 The third big part of the .NET 3.0 release was Windows Workfl ow Foundation (WF) with the namespace
System.Workflow . Instead of creating custom workfl ow engines for several different applications (and
Microsoft itself created several workfl ow engines for different products), a workfl ow engine was available as
part of .NET.

 With .NET 3.0, the class count of the Framework increased from 8,000 types in .NET 2.0 to about 12,000
types.

 NOTE In this book, WPF is covered in Chapters 29 , 30 , 31, 34, 35, and 36. You
can read information about WCF in Chapter 44 , “Windows Communication
Foundation.”

 C# 3 and .NET 3.5—LINQ
 .NET 3.5 came together with a new release of C# 3. The major enhancement was a query syntax defi ned
with C# that allows using the same syntax to fi lter and sort object lists, XML fi les, and the database.
The language enhancements didn’t require any change to the IL code as the C# features used here are
just syntax sugar. All of the enhancements could have been done with the older syntax as well, just a lot
more code would be necessary. The C# language makes it really easy to do these queries. With LINQ and
lambda expressions, it’s possible to use the same query syntax and access object collections, databases,
and XML fi les.

Reviewing .NET History ❘ 7

 For accessing the database and creating LINQ queries, LINQ to SQL was released as part of .NET 3.5.
With the fi rst update to .NET 3.5, the fi rst version of Entity Framework was released. Both LINQ to SQL
and Entity Framework offered mapping of hierarchies to the relations of a database and a LINQ provider.
Entity Framework was more powerful, but LINQ to SQL was simpler. Over time, features of LINQ to SQL
have been implemented in Entity Framework, and now this one is here to stay. (Nowadays it looks very
different from the fi rst version released.)

 Another technology introduced as part of .NET 3.5 was the System.AddIn namespace, which offers
an add-in model. This model offers powerful features that run add-ins even out of process, but it is also
complex to use.

 NOTE LINQ is covered in detail in Chapter 13 , “Language Integrated Query.” The
newest version of the Entity Framework is very different from the .NET 3.5 release;
it’s described in Chapter 38 , “Entity Framework Core.”

 C# 4 and .NET 4—Dynamic and TPL
 The theme of C# 4 was dynamic—integrating scripting languages and making it easier to use COM inte-
gration. C# syntax has been extended with the dynamic keyword, named and optional parameters, and
enhancements to co- and contra-variance with generics.

 Other enhancements have been made within the .NET Framework. With multi-core CPUs, parallel pro-
gramming had become more and more important. The Task Parallel Library (TPL), with abstractions of
threads using Task and Parallel classes, make it easier to create parallel running code.

 Because the workfl ow engine created with .NET 3.0 didn’t fulfi ll its promises, a completely new Windows
Workfl ow Foundation was part of .NET 4.0. To avoid confl icts with the older workfl ow engine, the newer
one is defi ned in the System.Activity namespace.

 The enhancements of C# 4 also required a new version of the runtime. The runtime skipped from version 2
to 4.

 With the release of Visual Studio 2010, a new technology shipped for creating web applications: ASP.NET
MVC 2.0. Unlike ASP.NET Web Forms, this technology required programming HTML and JavaScript, and
it used C# and .NET with server-side functionality. As this technology was very new as well as being out of
band (OOB) to Visual Studio and .NET, ASP.NET MVC was updated regularly.

 NOTE The dynamic keyword of C# 4 is covered in Chapter 16 , “Refl ection,
Metadata, and Dynamic Programming.” The Task Parallel Library is covered in
Chapter 21 , “Tasks and Parallel Programming.”

Version 5 of ASP.NET and Version 6 of ASP.NET MVC are covered in Chapter 40 ,
“ASP.NET Core,” and Chapter 41 , “ASP.NET MVC.”

 C# 5 and Asynchronous Programming
 C# 5 had only two new keywords: async and await . However, they made programming of asynchronous
methods a lot easier. As touch became more signifi cant with Windows 8, it also became a lot more impor-
tant to not block the UI thread. Using the mouse, users are accustomed to scrolling taking some time.
However, using fi ngers on a touch interface that is not responsive is really annoying.

8 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 Windows 8 also introduced a new programming interface for Windows Store apps (also known as Modern
apps, Metro apps, Universal Windows apps, and, more recently, Windows apps): the Windows Runtime.
This is a native runtime that looks like .NET by using language projections. Many of the WPF controls have
been redone for the new runtime, and a subset of the .NET Framework can be used with such apps.

 As the System.AddIn framework was much too complex and slow, a new composition framework was cre-
ated with .NET 4.5: Managed Extensibility Framework with the namespace System.Composition .

 A new version of platform-independent communication is offered by the ASP.NET Web API. Unlike WCF,
which offers stateful and stateless services as well as many different network protocols, the ASP.NET Web
API is a lot simpler and based on the Representational State Transfer (REST) software architecture style.

 NOTE The async and await keywords of C# 5 are discussed in detail in Chapter 15 ,
“Asynchronous Programming.” This chapter also shows the different asynchronous
patterns that have been used over time with .NET.

Managed Extensibility Framework (MEF) is covered in Chapter 26 , “Composition.”
Windows apps are covered in Chapters 29 to 33, and the ASP.NET Web API is
covered in Chapter 42 , “ASP.NET Web API.”

 C# 6 and .NET Core
 C# 6 doesn’t involve the huge improvements that were made by generics, LINQ, and async, but there are a
lot of small and practical enhancements in the language that can reduce the code length in several places.
The many improvements have been made possible by a new compiler engine code named Roslyn.

 NOTE Roslyn is covered in Chapter 18 , “.NET Compiler Platform.”

 The full .NET Framework is not the only .NET Framework that was in use in recent years. Some scenarios
required smaller frameworks. In 2007, the fi rst version of Microsoft Silverlight was released (code named
WPF/E, WPF Everywhere). Silverlight was a web browser plug-in that allowed dynamic content. The fi rst
version of Silverlight supported programming only via JavaScript. The second version included a subset of
the .NET Framework. Of course, server-side libraries were not needed because Silverlight was always run-
ning on the client, but the Framework shipped with Silverlight also removed classes and methods from the
core features to make it lightweight and portable to other platforms. The last version of Silverlight for the
desktop (version 5) was released in December 2011. Silverlight had also been used for programming for
the Windows Phone. Silverlight 8.1 made it into Windows Phone 8.1, but this version of Silverlight is also
different from the version on the desktop.

 On the Windows desktop, where there is such a huge framework with .NET and the need for faster and
faster development cadences, big changes were also required. In a world of DevOps where developers and
operations work together or are even the same people to bring applications and new features continuously
to the user, there’s a need to have new features available in a fast way. Creating new features or making bug
fi xes is a not-so-easy task with a huge framework and many dependencies.

 With several smaller .NET Frameworks available (e.g. Silverlight, Silverlight for the Windows Phone), it
became important to share code between the desktop version of .NET and a smaller version. A technology
to share code between different .NET versions is the portable library. Over time, with many different .NET
Frameworks and versions, the management of the portable library has become a nightmare.

Reviewing .NET History ❘ 9

 With all these issues, a new version of .NET is a necessity. (Yes, it’s really a requirement to solve these
issues.) The new version of the Framework is invented with the name .NET Core . .NET Core is smaller with
modular NuGet packages, has a runtime that’s distributed with every application, is open source, and is
available not only for the desktop version of Windows but also for many different Windows devices, as well
as for Linux and OS X.

 For creating web applications, ASP.NET Core 1.0 is a complete rewrite of ASP.NET. This release is not
completely backward compatible to older versions and requires some changes to existing ASP.NET MVC
code (with ASP.NET MVC 6). However, it also has a lot of advantages when compared with the older
versions, such as a lower overhead with every network request—which results in better performance—and
it can also run on Linux. ASP.NET Web Forms is not part of this release because ASP.NET Web Forms was
not designed for best performance; it was designed for developer friendliness based on patterns known by
Windows Forms application developers.

 Of course, not all applications can be changed easily to make use of .NET Core. That’s why the huge frame-
work received improvements as well—even if those improvements are not completed in as fast a pace as
.NET Core. The new version of the full .NET Framework is 4.6. Small updates for ASP.NET Web Forms are
available on the full .NET stack.

 NOTE Roslyn is covered in Chapter 18 . The changes to the C# language are covered in
all the language chapters in Part I—for example, read-only properties are in Chapter 3 ,
“Objects and Types”; the nameof operator and null propagation are in Chapter 8 ,
“Operators and Casts”; string interpolation is in Chapter 10 , “Strings and Regular
Expressions”; and exception fi lters are in Chapter 14 , “Errors and Exceptions.”

Where possible, .NET Core is used in this book. You can read more information
about .NET Core and NuGet packages later in this chapter.

 Choosing Technologies and Going Forward
 When you know the reason for competing technologies within the Framework, it’s easier to select a
technology to use for programming applications. For example, if you’re creating new Windows applications
it’s not a good idea to bet on Windows Forms. Instead, you should use an XAML-based technology, such as
Windows apps or Windows desktop applications using WPF.

 If you’re creating web applications, a safe bet is to use ASP.NET Core with ASP.NET MVC 6. Making
this choice rules out using ASP.NET Web Forms. If you’re accessing a database, you should use Entity
Framework rather than LINQ to SQL, and you should opt for the Managed Extensibility Framework
instead of System.AddIn .

 Legacy applications still use Windows Forms and ASP.NET Web Forms and some other older technologies.
It doesn’t make sense to change existing applications just to use new technologies. There must be a huge
advantage to making the change—for example, when maintenance of the code is already a nightmare and a
lot of refactoring is needed to change to faster release cycles that are being demanded by customers, or when
using a new technology allows for reducing the coding time for updates. Depending on the type of legacy
application, it might not be worthwhile to switch to a new technology. You can allow the application to still
be based on older technologies because Windows Forms and ASP.NET Web Forms will still be supported
for many years to come.

 The content of this book is based on the newer technologies to show what’s best for creating new applica-
tions. In case you still need to maintain legacy applications, you can refer to older editions of this book,
which cover ASP.NET Web Forms, Windows Forms, System.AddIn , and other legacy technologies that are
still part of and available with the .NET Framework.

10 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 .NET 2015
 .NET 2015 is an umbrella term for all the .NET technologies. Figure 1- 1 gives an overall picture of these
technologies. The left side represents the .NET Framework 4.6 technologies such as WPF and ASP.NET 4.
ASP.NET Core 1.0 can run on .NET Framework 4.6 as well, as you can see in this fi gure. The right side
represents the new .NET Core technologies. Both ASP.NET Core 1.0 and the Universal Windows Platform
(UWP) run on .NET Core. You can also create console applications that run on .NET Core.

 A part of .NET Core is a new runtime: the CoreCLR. This runtime is used from ASP.NET Core 1.0.
Instead of using the CoreCLR runtime, .NET can also be compiled to native code. The UWP automatically
makes use of this feature; these .NET applications are compiled to native code before being offered from
the Windows Store. You can also compile other .NET Core applications—and the applications running on
Linux—to native code.

 In the lower part of Figure 1- 1 , you can see there’s also some sharing going on between .NET Framework
4.6 and .NET Core. Runtime components, such as the code for the garbage collector and the RyuJIT (this
is a new JIT compiler to compile IL code to native code) are shared. The garbage collector is used by CLR,
CoreCLR, and .NET Native. The RyuJIT just-in-time compiler is used by CLR and CoreCLR. Libraries
can be shared between applications based on the .NET Framework 4.6 and .NET Core 1.0. The concept of
NuGet packages helps put these libraries in a common package that is available on all .NET platforms. And,
of course, the new .NET compiler platform is used by all these technologies.

 FIGURE 1-1

WPF

CLR

Runtime Components Libraries Compiliers

.NET Framework 4.6 .NET Core 1.0

Shared

CoreCLR .NET Native

ASP.NET 4.x and
ASP.NET Core 1.0 ASP.NET Core 1.0 Universal

Windows Apps

 .NET Framework 4.6
 NET Framework 4.6 is the .NET Framework that has been continuously enhanced in the past 10 years.
Many of the technologies that have been discussed in the history section are based on this framework. This
framework is used for creating Windows Forms and WPF applications. Also, although ASP.NET 5 can run
on .NET Core, it can also run on .NET Framework 4.6.

 If you want to continue working with ASP.NET Web Forms, ASP.NET 4.6 with .NET Framework 4.6 is the
way to go. ASP.NET 4.6 also has new features compared to version 4.5, such as support for HTTP2 (a new
version of the HTTP protocol that is discussed in Chapter 25 , “Networking”), compilation on the fl y with
the Roslyn compiler, and asynchronous model binding. However, you can’t switch to .NET Core with ASP.
NET Web Forms.

 You can fi nd the libraries of the framework as well as the CLR in the directory %windows%\Microsoft
.NET\Framework\v4.0.30319 .

 The classes available with the .NET Framework are organized in namespaces starting with the name
System . The following table describes a few of the namespaces to give you an idea about the hierarchy.

.NET 2015 ❘ 11

NAMESPACE DESCRIPTION

System.Collections This is the root namespace for collections. Collections are also found within
sub-namespaces such as System.Collections.Concurrent and System.
Collections.Generic .

System.Data This is the namespace for accessing databases. System.Data.SqlClient
contains classes to access the SQL Server,

System.Diagnostics This is the root namespace for diagnostics information, such as event logging and
tracing (in the namespace System.Diagnostics.Tracing).

System.
Globalization

This is the namespace that contains classes for globalization and localization of
applications.

System.IO This is the namespace for File IO, which are classes to access fi les and directories.
Readers, writers, and streams are here.

System.Net This is the namespace for core networking, such as accessing DNS servers and
creating sockets with System.Net.Sockets.

System.Threading This is the root namespace for threads and tasks. Tasks are defi ned within
System.Threading.Tasks.

System.Web This is the root namespace for ASP.NET. Below this namespace, many
sub-namespaces are defi ned, such as System.Web.UI, System.Web.
UI.WebControls, and System.Web.Hosting.

System.Windows This is the root namespace for Windows desktop applications with WPF. Example
subnamespaces are System.Windows.Shapes, System.Windows.Data, and
System.Windows.Documents.

 NOTE Some of the new .NET classes use namespaces that start with the name
Microsoft instead of System , like m Microsoft.Data.Entity for the Entity
Framework and Microsoft.Extensions.DependencyInjection for the new depen-
dency injection framework.

 .NET Core 1.0
 .NET Core 1.0 is the new .NET that is used by all new technologies and has a big focus in this book.
This framework is open source —you can fi nd it at http://www.github.com/dotnet . The runtime is the
CoreCLR repository; the framework containing collection classes, fi le system access, console, XML, and a
lot more is in the CoreFX repository. X

 Unlike the .NET Framework, where the specifi c version you needed for the application had to be installed
on the system, with .NET Core 1.0 the framework, including the runtime, is delivered with the application.
Previously there were times when you might have had problems deploying an ASP.NET web application to a
shared server because the provider had older versions of .NET installed; those times are gone. Now you can
deliver the runtime with the application and are not dependent on the version installed on the server.

 .NET Core 1.0 is designed in a modular approach. The framework splits up into a large list of NuGet
 packages. With the application you decide what packages you need. The .NET Framework was growing
larger and larger when new functionality was added. It was not possible to remove old functionality that’s no
longer needed, such as the old collection classes that are unnecessary because of the generic collection classes
that were added, .NET Remoting that has been replaced by the new communication technology, or LINQ to
SQL that has been updated to Entity Framework. Applications can break when something is removed. This
does not apply to .NET Core, as the application distributes the parts of the framework that it needs.

12 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 Assemblies
 Libraries and executables of .NET programs are known by the term assembly. An assembly is the logical
unit that contains compiled IL code targeted at the .NET Framework.

 An assembly is completely self-describing and is a logical rather than a physical unit, which means that it
can be stored across more than one fi le. (Indeed, dynamic assemblies are stored in memory, not on fi le.) If
an assembly is stored in more than one fi le, there will be one main fi le that contains the entry point and
describes the other fi les in the assembly.

 The same assembly structure is used for both executable code and library code. The only difference is that
an executable assembly contains a main program entry point, whereas a library assembly does not.

 An important characteristic of assemblies is that they contain metadata that describes the types and
methods defi ned in the corresponding code. An assembly, however, also contains assembly metadata that
describes the assembly. This assembly metadata, contained in an area known as the manifest, enables checkst
to be made on the version of the assembly and on its integrity.

 Because an assembly contains program metadata, applications or other assemblies that call up code in a
given assembly do not need to refer to the registry, or to any other data source, to fi nd out how to use that
assembly.

 With the .NET Framework 4.6, assemblies come in two types: private and shared assemblies. Shared assem-d
blies don’t apply to the Universal Windows Platform because all the code is compiled to one native image.

 Private Assemblies
 Private assemblies normally ship with software and are intended to be used only with that software. The
usual scenario in which you ship private assemblies is when you supply an application in the form of an
executable and a number of libraries, where the libraries contain code that should be used only with that
application.

 The system guarantees that private assemblies will not be used by other software because an application
may load only private assemblies located in the same folder that the main executable is loaded in, or in a
subfolder of it.

 Because you would normally expect that commercial software would always be installed in its own
directory, there is no risk of one software package overwriting, modifying, or accidentally loading pri-
vate assemblies intended for another package. And, because private assemblies can be used only by the
software package that they are intended for, you have much more control over what software uses them.
There is, therefore, less need to take security precautions because there is no risk, for example, of some

NOTE For developing apps using .NET Core, Microsoft created new command-line
utilities named .NET Core Command line (CLI). These tools are introduced later in this
chapter through a “Hello, World!” application in the section “Compiling with CLI.”

 The framework of .NET Core is currently as huge as .NET Framework 4.6 is. However, this can change,
and it can grow even bigger, but because of the modularity that growth potential is not an issue. .NET Core
is already so huge that we can’t cover every type in this book. Just have a look at http://www.github.com/
dotnet/corefx to see all the sources. For example, old nongeneric collection classes are already covered
with .NET Core to make it easier to bring legacy code to the new platform.

 .NET Core can be updated at a fast pace. Even updating the runtime doesn’t infl uence existing applications
because the runtime is installed with the applications. Now Microsoft can improve .NET Core, including
the runtime, with faster release cycles.

.NET 2015 ❘ 13

other commercial software overwriting one of your assemblies with some new version of it (apart from
software designed specifi cally to perform malicious damage). There are also no problems with name
collisions. If classes in your private assembly happen to have the same name as classes in someone else’s
private assembly, that does not matter because any given application can see only the one set of private
assemblies.

 Because a private assembly is entirely self-contained, the process to deploy it is simple. You simply place the
appropriate fi le(s) in the appropriate folder in the fi le system. (No registry entries need to be made.) This
process is known as zero impact (xcopy) installation .

 Shared Assemblies
 Shared assemblies are intended to be common libraries that any other application can use. Because any
other software can access a shared assembly, more precautions need to be taken against the following
risks:

➤ Name collisions, where another company’s shared assembly implements types that have the same
names as those in your shared assembly. Because client code can theoretically have access to both
assemblies simultaneously, this could be a serious problem.

➤ The risk of an assembly being overwritten by a different version of the same assembly; the new version
is incompatible with some existing client code.

 The solution to these problems is placing shared assemblies in a special directory subtree in the fi le system,
known as the global assembly cache (GAC). With private assemblies, this can be done by simply copying
the assembly into the appropriate folder, but with shared assemblies it must be specifi cally installed into
the cache. This process can be performed by a number of .NET utilities and requires certain checks on the
assembly, as well as setting up of a small folder hierarchy within the assembly cache used to ensure assembly
integrity.

 To prevent name collisions, shared assemblies are given a name based on private key cryptography.
(Private assemblies are simply given the same name as their main fi lename.) This name is known as a
strong name ; it is guaranteed to be unique and must be quoted by applications that reference a shared
assembly.

 Problems associated with the risk of overwriting an assembly are addressed by specifying version
information in the assembly manifest and by allowing side-by-side installations.

 NuGet Packages
 In the early days, assemblies were reusable units with applications. That use is still possible (and
necessary with some assemblies) when you’re adding a reference to an assembly for using the public
types and methods from your own code. However, using libraries can mean a lot more than just adding
a reference and using it. Using libraries can also mean some confi guration changes, or scripts that can be
used to take advantage of some features. This is one of the reasons to package assemblies within NuGet
packages.

 A NuGet package is a zip fi le that contains the assembly (or multiple assemblies) as well as confi guration
information and PowerShell scripts.

 Another reason for using NuGet packages is that they can be found easily; they’re available not only from
Microsoft but also from third parties. NuGet packages are easily accessible on the NuGet server at http://
www.nuget.org .

 From the references within a Visual Studio project, you can open the NuGet Package Manager (see
Figure 1- 2) . There you can search for packages and add them to the application. This tool enables you to
search for packages that are not yet released (include prerelease option) and defi ne the NuGet server where
the packages should be searched.

14 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 Because .NET Core is so modular, all applications—other than the simplest ones—need additional NuGet
packages. To make it easier for you to fi nd the package, with every sample application that’s built with .NET
Core this book shows a table that lists packages and namespaces that need to be added.

 FIGURE 1-2

 NOTE When you use third-party packages from the NuGet server, you’re always at
risk if a package is available at a later time. You also need to check about the support
availability of the package. Always check for project links with information about
the package before using it. With the package source, you can select Microsoft and
.NET to only get packages supported by Microsoft. Third-party packages are also
included in the Microsoft and .NET section, but they are third-party packages that are
supported by Microsoft.

You can also use your own NuGet server with your development team. You can defi ne
to only allow packages from your own server to be used by the development team.

 NOTE More information about the NuGet Package Manager is covered in Chapter
 17 , “Visual Studio 2015.”

 Common Language Runtime
The Universal Windows Platform makes use of Native .NET to compile IL to native code. With all other
scenarios, with both applications using the .NET Framework 4.6 and applications using .NET Core 1.0, a
Common Language Runtime (CLR) is needed. However, .NET Core uses the CoreCLR whereas the .NET
Framework uses the CLR. So, what’s done by a CLR?

.NET 2015 ❘ 15

 Before an application can be executed by the CLR, any source code that you develop (in C# or some other
language) needs to be compiled. Compilation occurs in two steps in .NET:

1. Compilation of source code to Microsoft Intermediate Language (IL)

2. Compilation of IL to platform-specifi c native code by the CLR

 The IL code is available within a .NET assembly. During runtime, a Just-In-Time (JIT) compiler compiles IL
code and creates the platform-specifi c native code.

 The new CLR and the CoreCLR include a new JIT compiler named RyuJIT . The new JIT compiler is not TT
only faster than the previous one; it also has better support for the Edit & Continue feature while debugging
with Visual Studio. The Edit & Continue feature enables you to edit the code while debugging, and you can
continue the debug session without the need to stop and restart the process.

 The runtime also includes a type system with a type loader that is responsible for loading types from
assemblies. Security infrastructure with the type system verifi es whether certain type system structures
are permitted—for example, with inheritance.

 After creating instances of types, the instances also need to be destroyed and memory needs to be recycled.
Another feature of the runtime is the garbage collector. The garbage collector cleans up memory from the
managed heap that isn’t referenced anymore. Chapter 5 , “Managed and Unmanaged Resources,” explains
how this is done and when it happens.

 The runtime is also responsible for threading. Creating a managed thread from C# is not necessarily a
thread from the underlying operating system. Threads are virtualized and managed by the runtime.

 NOTE How threads can be created and managed from C# is covered in Chapter 21 ,
“Tasks and Parallel Programming,” and in Chapter 22 , “Task Synchronization.”

 .NET Native
 A new feature of .NET 2015 is to compile a managed program to native code, .NET Native . With Windows
apps this generates optimized code that can have a startup time that’s up to 60 percent faster and uses 15 to
20 percent less memory.

 .NET Native started with compiling UWP apps to native code for apps deployed to the Windows Store.
.NET Native will also be available with other .NET Core applications. However, this feature did not make
it into version 1 of .NET Core and will be available with a future version. You can compile .NET Core
applications running on both Windows and Linux to native code. Of course, you need different native
images on each of these platforms. Behind the scenes, .NET Native shares the C++ optimizer for generating
the native code.

 Windows Runtime
 Starting with Windows 8, the Windows operating system offers another framework: the Windows Runtime.
This runtime is used by the Windows Universal Platform and was version 1 with Windows 8, version 2 with
Windows 8.1, and version 3 with Windows 10.

 Unlike the .NET Framework, this framework was created using native code. When it’s used with .NET
applications, the types and methods contained just look like .NET. With the help of language projection, the
Windows Runtime can be used with the JavaScript, C++, and .NET languages, and it looks like it’s native to
the programming environment. Methods are not only behaving differently in regard to case sensitivity; the
methods and types can also have different names depending on where they are used.

 The Windows Runtime offers an object hierarchy organized in namespaces that start with Windows.
Looking at these classes, there’s not a lot with duplicate functionality to the .NET Framework; instead,
extra functionality is offered that is available for apps running on the Universal Windows Platform.

16 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

NAMESPACE DESCRIPTION

Windows.
ApplicationModel

This namespace and its subnamespaces, such as Windows.ApplicationModel.
Contracts, defi ne classes to manage the app lifecycle and communication with
other apps.

Windows.Data Windows.Data defi nes subnamespaces to work with Text, JSON, PDF, and XML
data.

Windows.Devices Geolocation, smartcards, point of service devices, printers, scanners, and other
devices can be accessed with subnamespaces off Windows.Devices.

Windows.Foundation Windows.Foundation defi nes core functionality. Interfaces for collections are
defi ned with the namespace Windows.Foundation.Collections. You will not
fi nd concrete collection classes here. Instead, interfaces of .NET collection types
map to the Windows Runtime types.

Windows.Media Windows.Media is the root namespace for playing and capturing video and
audio, accessing playlists, and doing speech output.

Windows.Networking This is the root namespace for socket programming, background transfer of data,
and push notifi cations.

Windows.Security Classes from Windows.Security.Credentials offer a safe store for pass-
words; Windows.Security.Credentials.UI offers a picker to get credentials
from the user.

Windows.Services.
Maps

This namespace contains classes for location services and routing.

Windows.Storage With Windows.Storage and its subnamespaces, it is possible to access fi les and
directories as well as use streams and compression.

Windows.System The Windows.System namespace and its subnamespaces give information about
the system and the user, but they also offer a Launcher to launch other apps.

Windows.UI.Xaml In this namespace, you can fi nd a ton of types for the user interface.

 HELLO, WORLD
 Let’s get into coding and create a Hello, World application. Since the 1970s, when Brian Kernighan and d
Dennis Ritchie wrote the book The C Programming Language , it’s been a tradition to start learning pro-
gramming languages using a Hello, World application. Interestingly, the syntax for Hello, World changed
with C# 6; it’s the fi rst time this simple program has looked different since the invention of C#.

 The fi rst samples will be created without the help of Visual Studio so you can see what happens behind
the scenes by creating the application with command-line tools and a simple text editor (such as Notepad).
Later, you’ll switch to using Visual Studio because it makes programming life easier.

 Type the following source code into a text editor, and save it with a .cs extension (for example,
HelloWorld.cs). The Main method is the entry point for a .NET application. The CLR invokes a static
Main method on startup. The Main method needs to be put into a class. Here, the class is named Program ,
but you could call it by any name. WriteLine is a static method of the Console class. All the static mem-
bers of the Console class are opened with the using declaration in the fi rst line. using static System.
Console opens the static members of the Console class with the result that you don’t need to type the class
name calling the method WriteLine (code fi le Dotnet/HelloWorld.cs):

 using static System.Console;

 class Program
 {
 static void Main()
 {

Compiling with .NET 4.6 ❘ 17

 WriteLine("Hello, World!");
 }
 }

 As previously mentioned, the syntax of Hello, World changed slightly with C# 6. Previous to C# 6, using
static was not available, and only a namespace could be opened with the using declaration. Of course, the
following code still works with C# 6 (code fi le Dotnet/HelloWorld2.cs):

using System;

 class Program
 {
 static void Main()
 {

Console.WriteLine("Hello, World!");
 }
 }

 The using declaration is there to reduce the code with opening a namespace. Another way to write the
Hello, World program is to remove the using declaration and add the System namespace to the Console
class with the invocation of the WriteLine method (code fi le Dotnet/HelloWorld3.cs):

 class Program
 {
 static void Main()
 {
 System.Console.WriteLine("Hello, World!");
 }
 }

 After writing the source code, you need to compile the code to run it.

 COMPILING WITH .NET 4.6
 You can compile this program by simply running the C# command-line compiler (csc.exe) against the
source fi le, like this:

 csc HelloWorld.cs

 If you want to compile code from the command line using the csc command, you should be aware that the
.NET command-line tools, including csc , are available only if certain environment variables have been set
up. Depending on how you installed .NET (and Visual Studio), this may or may not be the case on your
machine.

 NOTE If you do not have the environment variables set up, you have three options:
The fi rst is to add the path to the call of the csc executable. It is located at %Program
Files%\MsBuild\14.0\Bin\csc.exe With the dotnet tools installed, you can also
fi nd the csc at %ProgramFiles%\dot.net\bin\csc.exet . The second option is to
run the batch fi le %Microsoft Visual Studio 2015%\Common7\Tools\vsvars32.
bat from the command prompt before running csc , where %Microsoft Visual
Studio 2015% is the folder to which Visual Studio 2015 has been installed. The
third, and easiest, way is to use the Visual Studio 2015 command prompt instead of
the Windows command prompt. To fi nd the Visual Studio 2015 command prompt
from the Start menu, select Programs ➪ Microsoft Visual Studio 2015 ➪ Visual
Studio Tools. The Visual Studio 2015 command prompt is simply a command prompt
window that automatically runs vsvars32.bat when it opens.

18 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

Compiling the code produces an executable fi le named HelloWorld.exe , which you can run from the com-
mand line. You can also run it from Windows Explorer as you would run any other executable. Give it a try:

 > csc HelloWorld.cs
 Microsoft (R) Visual C# Compiler version 1.1.0.51109
 Copyright (C) Microsoft Corporation. All rights reserved.
 > HelloWorld
 Hello World!

Compiling an executable this way produces an assembly that
contains Intermediate Language (IL) code. The assembly can
be read using the Intermediate Language Disassembler (IL
DASM) tool. If you run ildasm.exe and open HelloWorld.
exe , you see that the assembly contains a Program type and a
Main method as shown in Figure 1- 3 .

Double-click the MANIFEST node in the tree view to reveal
metadata information about the assembly (see Figure 1- 4).
This assembly makes use of the mscorlib assembly (because
the Console class is located there), and some confi guration
and version of the HelloWorld assembly. FIGURE 1-3

 FIGURE 1-4

FIGURE 1-5

Double-click the Main method to reveal the IL code of this method (see Figure 1- 5). No matter what version
of the Hello, World code you compiled, the result is the same. The string Hello, World! is loaded before
calling the method System.Console.WriteLine that is defi ned within the mscorlib assembly passing the
string. One feature of the CLR is the JIT compiler. The JIT compiler compiles IL code to native code when
running the application.

Compiling with .NET Core CLI ❘ 19

 COMPILING WITH .NET CORE CLI
 Using the new .NET Core Command line (CLI), some preparations need to be done to compile the application
without the help of Visual Studio. Let’s have a look at the new tools next to compile the Hello, World sample
application.

 Setting Up the Environment
 In case you have Visual Studio 2015 with the latest updates installed, you can immediately start with the
CLI tools. Otherwise, you need to install .NET Core and the CLI tools. You can fi nd instructions for the
download at http://dotnet.github.io for Windows, Linux, and OS X.

 With Windows, different versions of .NET Core runtimes as well as NuGet packages are installed in the
user profi le. As you work with .NET, this folder increases in size. Over time as you create multiple proj-
ects, NuGet packages are no longer stored in the project itself; they’re stored in this user-specifi c folder.
This has the advantage that you do not need to download NuGet packages for every different project.
After you have this NuGet package downloaded, it’s on your system. Just as different versions of the
NuGet packages as well as the runtime are available, all the different versions are stored in this folder.
From time to time it might be interesting to check this folder and delete old versions you no longer need.

 Installing .NET Core CLI tools, you have the dotnet tools as an entry point to start all these tools. Just start

 > dotnet

 to see all the different options of the dotnet tools available.

 The repl (read, eval, print, loop') command is good to learn and test simple features of C# without
the need to create a program. Start repl with the dotnet tool:

 > dotnet repl

 This starts an interactive repl session. You can enter the following statements for a Hello, World using a
variable:

 > using static System.Console;
 > var hello = "Hello, World!";
 > WriteLine(hello);

 The output you’ll see as you enter the last statement is the Hello, World! string.

The dotnet repl command is not available with Preview 2 of the tools, but it will be available at a later time
as an extension.

 Building the Application
 The dotnet tools offer an easy way to create a Hello, World application. You create a new directory
HelloWorldApp , and change to this directory with the command prompt. Then enter this command:

 > dotnet new

 This command creates a Program.cs fi le that includes the code for the Hello, World program, a NuGet.
config fi le that defi nes the NuGet server where NuGet packages should be loaded, and project.json ,
the new project confi guration fi le.

 NOTE With dotnet new you can also create the initial fi les needed for libraries and ASP
.NET web applications (the option ––template will be available with RTM). You can also
select other programming languages, such as F# and Visual Basic (with the option ––lang). gg

 The created project confi guration fi le is named project.json . This fi le is in JavaScript Object Notation
(JSON) format and defi nes the framework application information such as version, description, authors,

20 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

tags, dependencies to libraries, and the frameworks that are supported by the application. The generated
project confi guration fi le is shown in the following code snippet (code fi le HelloWorldApp/project.json):

 {
 "version": "1.0.0-*",
 "buildOptions": {
 "emitEntryPoint": true
 },

 "dependencies": {
 "NETStandard.Library": "1.0.0-*"
 },

 "frameworks" : {
 "netstandardapp1.5": {
 "imports": "dnxcore50"
 }
 },
 "runtimes" : {
 "ubuntu.14.04-x64": { },
 "win7-x64": { },
 "win10-x64": { },
 "osx.10.10-x64": { },
 "osx.10.11-x64": { }
 }
 }

 With the buildOptions settings, the emitEntryPoint is set. This is necessary if you create a Main method
as a program entry point. This Main method is invoked when you run the application. This setting is not
needed with libraries.

 With the dependencies section, you can add all dependencies of the program, such as additional NuGet
packages needed to compile the program. By default, NetStandard.Library is added as a dependency.
NetStandard.Library is a reference NuGet package—a package that references other NuGet packages.
With this you can avoid adding a lot of other packages, such as System.Console for the Console class,
System.Collections for generic collection classes, and many more. NetStandard.Library 1.0 is a
standard that defi nes a list of assemblies that all .NET platforms must support. At the website https://
github.com/dotnet/corefx/blob/master/Documentation/project-docs/standard-platform.md
you can fi nd a long list of assemblies and their version numbers that are part of 1.0 and the assemblies that
are added with 1.1, 1.2, 1.3, and 1.4 of the .NET standard.

 Having a dependency on NetStandard.Library 1.0, you can support the .NET Framework 4.5.2 and up (support y
for .NET 4, 4.5, 4.5.1 ended in January 2016), .NET Core 1.0, the UWP 10.0, and other .NET Frameworks such as
Windows Phone Silverlight 8.0, Mono, and Mono/Xamarin. Changing to version 1.3 restricts the support to .NET
4.6, .NET Core 1.0, UWP 10.0, and Mono/Xamarin platforms. Version 1.4 restricts support to .NET 4.6.1, .NET
Core 1.0, and Mono/Xamarin platforms, but you get newer versions and a larger list of assemblies available.

 The frameworks section in project.json lists the .NET Frameworks that are supported by
your application. By default, the application is only built for .NET Core 1.0 as specifi ed by the
netstandardapp1.5 moniker. netstandardapp1.5 is used with applications built for .NET Core.
With libraries, you can use the moniker netstandard1.0. This allows using the library both from
.NET Core applications and applications using the .NET Framework. The imports section within
netstandardapp1.5 references the older name dnxcore50, which maps the old moniker to the new one.
This allows packages that still use the old name to be used.

.NET Core is the new open source version of the framework that is available on Windows, Linux, and
OS X. The runtime that should be supported needs to be added to the runtimes section. The previous
code snippet shows support for the Ubuntu Linux distribution, Windows 7 (which also allows running
the app on Windows 8), Windows 10, and OS X.

Compiling with .NET Core CLI ❘ 21

 Adding the string net46 , the program is built for the .NET Framework, version 4.6, as well:

 "frameworks" : {
 "netstandardapp1.5" : { }
 "net46" : { }
 }

Adding net46 to the frameworks section also results in no more support for non-Windows runtimes, and
thus you need to remove these runtimes.

 You can also add additional metadata, such as a description, author information, tags, project, and license
URL:

 "version": "1.0.0-*",
 "description": "HelloWorld Sample App for Professional C#",
 "authors": ["Christian Nagel"],
 "tags": ["Sample", "Hello", "Wrox"],
 "projectUrl": "http://github.com/professionalCSharp/",
 "licenseUrl": "",

 As you add multiple frameworks to the project.json fi le, you can specify dependencies that are specifi c
to every framework in a dependencies section below the framework . The dependencies specifi ed in
the dependencies section that is at the same hierarchical level as the frameworks section specify the
dependencies common to all frameworks.

 After having the project structure in place, you can download all dependencies of the application using the
command

 > dotnet restore

 while your command prompt is positioned in the same directory where the project.json fi le resides.
This command downloads all dependencies needed for the application, as defi ned in the project.json
fi le. Specifying the version 1.0.0-* gets version 1.0.0 and the latest available version for the *. In the fi le
project.lock.json you can see what NuGet packages with which version were retrieved, including
dependencies of dependencies. Remember, the packages are stored in a user-specifi c folder.

To compile the application, start the command dotnet build and you can see output like this— compiling
for .NET Core 1.0 and .NET Framework 4.6:

 > dotnet build
 Compiling HelloWorldApp for .NETStandardApp, Version=1.5"
 Compilation succeeded.
 0 Warning(s)
 0 Error(s)
 Time elapsed 00:00:02.6911660

 Compiling HelloWorldApp for .NETFramework,Version=v4.6
 Compilation succeeded.
 0 Warning(s)
 0 Error(s)
 Time elapsed 00:00:03.3735370

As a result of the compilation process, you fi nd the assembly containing the IL code of the Program class
within the bin/debug/[netstandardapp1.5|net46] folder. If you compare the build of .NET Core with
.NET 4.6, you will fi nd a DLL containing the IL code with .NET Core, and an EXE containing the IL code
with .NET 4.6. The assembly generated for .NET Core has a dependency to the System.Console assembly,
whereas the .NET 4.6 assembly fi nds the Console class in the mscorlib assembly.

You can also compile the program to native code using this command line:

 > dotnet build ––native

22 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 NOTE As you’ve seen building and running the Hello, World app on Windows,
the dotnet tools work the same on Linux and OS X. You can use the same dotnet
commands on either platform. Before using the dotnet commands, you just need to
prepare the infrastructure using the sudo utility for Ubuntu Linux and install a PKG
package on OS X as described at http://dotnet.github.io . After installing the
.NET Core CLI, you can use the dotnet tools in the same way as you’ve seen in this
section—with the exception that the .NET Framework 4.6 is not available. Other
than that, you can restore NuGet packages and compile and run the application with
dotnet restore, dotnet build, and dotnet run.

The focus of this book is on Windows, as Visual Studio 2015 offers a more powerful
development platform than is available on the other platforms, but many code samples
from this book are based on .NET Core, and you will be able to run them on other plat-
forms as well. You can also use Visual Studio Code, a free development environment,
to develop applications directly on Linux and OS X. See the section “Developer Tools”
later in this chapter for more information about different editions of Visual Studio.

Compiling to native code results in a faster startup of the application as well as less memory consumption.
The native compilation process compiles the IL code of the application as well as all dependencies to a
single native image. Don’t expect that all functionality of .NET Core will be available to compile to native
code, but as time continues and development from Microsoft proceeds, more and more applications can be
compiled to native code.

To run the application, you can use the dotnet command

 > dotnet run

To start the application using a specifi c version of the framework, you can use the option –framework . This
framework must be confi gured with the project.json fi le:

 > dotnet run ––framework net46

You can also run the application starting the executable that you can fi nd in the bin/debug directory.

 Packaging and Publishing the Application
With the dotnet tool you can also create a NuGet package and publish the application for deployment.

The command dotnet pack creates a NuGet package that you can put on a NuGet server. Developers can
now reference the package using this command:

 > dotnet pack

Running this command with the HelloWorldApp creates the fi le HelloWorldApp.1.0.0.nupkg that con-
tains the assemblies for all supported frameworks. A NuGet package is a ZIP fi le. If you rename this fi le
with a .zip extension, you can easily look into it to see the content. With the sample app, two folders are
created named dnxcore500 and net46 that contain the respective assemblies. The fi le HelloWorldApp.
nuspec is an XML fi le that describes the NuGet package, lists the content for supported frameworks, and
lists assembly dependencies that are required before the NuGet package can be installed.

To publish the application, on the target system the runtime is needed as well. The fi les that are needed for
publishing can be created with the dotnet publish command:

 > dotnet publish

Using optional arguments, you can specify only a specifi c runtime to publish for (option -r) or a different
output directory (option -o). After running this command on a Windows system you can fi nd a win7-x64

Application Types and Technologies ❘ 23

folder with all the fi les needed on the target system. Be aware that with .NET Core the runtime is included;
thus it doesn’t matter what runtime version is installed.

APPLICATION TYPES AND TECHNOLOGIES
 You can use C# to create console applications; with most samples in the fi rst chapters of this book you’ll do
that exact thing. For real programs, console applications are not used that often. You can use C# to create
applications that use many of the technologies associated with .NET. This section gives you an overview of
the different types of applications that you can write in C#.

Data Access
 Before having a look at the application types themselves, let’s look at technologies that are used by all
application types: access to data.

 Files and directories can be accessed by using simple API calls; however, the simple API calls are not
 fl exible enough for some scenarios. With the stream API you have a lot of fl exibility, and the streams offer
many more features such as encryption or compression. Readers and writers make using streams easier.
All of the different options available here are covered in Chapter 23 , “Files and Streams.” It’s also pos-
sible to serialize complete objects in XML or JSON format. Chapter 27 , “XML and JSON,” discusses
these options.

 To read and write to databases, you can use ADO.NET directly (see Chapter 37 , “ADO.NET”), or you can
use an abstraction layer, the ADO.NET Entity Framework (Chapter 38 , “Entity Framework Core”). Entity
Framework offers a mapping of object hierarchies to the relations of a database.

 The ADO.NET Entity Framework made it through several iterations. The different versions of the Entity
Framework are worth discussing; this gives you good information about why NuGet packages are a good
idea. You’ll also learn what parts of the Entity Framework shouldn’t be used going forward.

 The following table describes the different versions of the Entity Framework and each version’s new features.

DESCRIPTION

1.0 Available with .NET 3.5 SP1. This version offered a mapping through an XML fi le to
map tables to objects.

4.0 With .NET 4, Entity Framework made a jump from version 1 to 4.

4.1 Code First Support.

4.2 Bug fi xes.

4.3 Migrations added.

5.0 Released together with .NET 4.5 and offering performance improvements, sup-
porting new SQL Server features.

6.0 Moved to a NuGet package.

7.0 A complete rewrite, also supporting NoSQL, running on Windows apps as well.

 Let’s get into some details. Entity Framework was originally released as part of the .NET Framework classes
that come preinstalled with the .NET Framework. Entity Framework 1 was part of the fi rst service pack of
.NET 3.5, which was a feature update: .NET 3.5 Update 1.

 The second version had so many new features that the decision was made to move to version 4 together with
.NET 4. After that, Entity Framework was released at a faster cadence than the .NET Framework. To get
a newer version of Entity Framework, a NuGet package had to be added to the application (versions 4.1,
4.2, 4.3). There was a problem with this approach. Classes that have already been delivered with the .NET

24 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

Framework had to be used as is. Just additional features, such as Code First, have been added with NuGet
packages.

With .NET 4.5, Entity Framework 5.0 was released. Again some of the classes come with the preinstalled
.NET Framework, and additional features are part of NuGet packages. The NuGet package also made
it possible to allow installing the NuGet package for Entity Framework 5.0 with .NET 4.0 applications.
However, in reality the package decided (via a script) in a case when Entity Framework 5.0 is added to a
.NET 4.0 project that the result would be Entity Framework 4.4 because some of the types required belong
to .NET 4.5 and are not part of .NET 4.

The next version of Entity Framework solved this problem by moving all the Entity Framework types to
a NuGet package; the types that come with the Framework itself are ignored. This allows using version
6.0 with older versions of the Framework; you aren’t restricted to 4.5. To not confl ict with classes of the
Framework, some types moved to a different namespace. Some features of ASP.NET Web Forms had an
issue with that because original classes of the Entity Framework have been used, and these do not map that
easily to the new classes.

During the different releases, Entity Framework gives different options for mapping the database tables to
classes. The fi rst two options were Database First and Model First. With both of these options, the mapping
was done via XML fi les. The XML fi le is presented via a graphical designer, and it’s possible to drag entities
from the toolbox to the designer for doing the mapping.

With version 4.1, mapping via code was added: Code First. Code First doesn’t mean that the database can’t
exist beforehand. Both are possible: A database can be created dynamically, but also the database can exist
before you write the code. Using Code First, you don’t do the mapping via XML fi les. Instead, attributes or
a fl uent API can defi ne the mapping programmatically.

Entity Framework Core 1.0 is a complete redesign of Entity Framework, as is refl ected with the new name.
Code needs to be changed to migrate applications from older versions of Entity Framework to the new ver-
sion. Older mapping variants, such as Database First and Model First, have been dropped, as Code First is
a better alternative. The complete redesign was also done to support not only relational databases but also
NoSQL. Azure Table Storage is one of the options where Entity Framework can now be used.

 Windows Desktop Applications
For creating Windows desktop applications, two technologies are available: Windows Forms and Windows
Presentation Foundation. Windows Forms consists of classes that wrap native Windows controls; it’s based
on pixel graphics. Windows Presentation Foundation (WPF) is the newer technology and is based on vector
graphics.

WPF makes use of XAML in building applications. XAML stands for eXtensible Application Markup
Language. This way to create applications within a Microsoft environment was introduced in 2006 and is
part of the .NET Framework 3.0. .NET 4.5 introduced new features to WPF, such as ribbon controls and
live shaping.

XAML is the XML declaration used to create a form that represents all the visual aspects and behaviors
of the WPF application. Though you can work with a WPF application programmatically, WPF is a step
in the direction of declarative programming, which the industry is moving to. Declarative programmingg
means that instead of creating objects through programming in a compiled language such as C#, Visual
Basic, or Java, you declare everything through XML-type programming. Chapter 29 , “Core XAML,”
introduces XAML (which is also used with XML Paper Specifi cation, Windows Workfl ow Foundation,
and Windows Communication Foundation). Chapter 30 covers XAML styles and resources. Chapter 34 ,
“Windows Desktop Applications with WPF,” gives details on controls, layout, and data binding. Printing
and creating documents is another important aspect of WPF that’s covered in Chapter 35 , “Creating
Documents with WPF.”

What’s the future of WPF? Isn’t the UWP the UI platform to use for new applications going forward? UWP
has advantages in supporting mobile devices as well. As long as some of your users have not upgraded to

Application Types and Technologies ❘ 25

Windows 10, you need to support older operating systems such as Windows 7. UWP apps don’t run on
Windows 7 or Windows 8. You can use WPF. In case you also would like to support mobile devices, it’s
best to do as much code sharing as possible. You can create apps with both WPF and UWP by using as
much common code as possible by supporting the MVVM pattern. This pattern is covered in Chapter 31 ,
“Patterns with XAML Apps.”

 Universal Windows Platform
 The Universal Windows Platform (UWP) is a strategic platform from Microsoft. When you use the UWP to
create Windows apps, you’re limited to Windows 10 and newer versions of Windows. But you’re not bound
to the desktop version of Windows. With Windows 10 you have a lot of different options, such as Phone,
Xbox, Surface Hub, HoloLens, and IoT. There’s one API that works on all these devices!

 One API for all these devices? Yes! Each device family can add its own Software Development Kit (SDK) to
add features that are not part of the API that’s available for all devices. Adding these SDKs does not break
the application, but you need to programmatically check whether an API from such an SDK is available on
the platform the app is running. Depending on how many API calls you need to differentiate, the code might
grow into a mess; dependency injection might be a better option.

 NOTE Dependency injection is discussed in Chapter 31 , along with other patterns
useful with XAML-based applications.

 You can decide what device families to support with your applications. Not all device families will be useful
for every app.

 Will there be newer versions of Windows after Windows 10? Windows 11 is not planned. With Windows
apps (which are also known as Metro apps, Windows Store apps, Modern apps, and Universal Windows
apps) you’ve targeted either Windows 8 or Windows 8.1. Windows 8 apps typically were also running on
Windows 8.1, but not the other way around. Now this is very different. When you create an app for the
Universal Windows Platform, you target a version such as 10.0.10130.0 and defi ne what minimum version
is available and what latest version was tested, and the assumption is that it runs on future versions as well.
Depending on the features you can use for your app and what version you’re expecting the user to have, you
can decide what minimum version to support. Personal users will typically automatically update to newer
versions; Enterprise users might stick to older versions.

 Windows Apps running on the Universal Windows Platform make use of the Windows Runtime and .NET
Core. The most important chapters for these app types are Chapter 32 , “Windows Apps: User Interfaces,”
and Chapter 33 , “Advanced Windows Apps.” These apps are also covered in many other chapters, such as
Chapter 23 and Chapters 29 through 31.

 SOAP Services with WCF
 Windows Communication Foundation (WCF) is a feature-rich technology that was meant to replace all
communication technologies that were available before WCF by offering SOAP-based communication with
all the features used by standards-based web services such as security, transactions, duplex and one-way
communication, routing, discovery, and so on. WCF provides you with the ability to build your service
one time and then expose this service in many ways (even under different protocols) by making changes
within a confi guration fi le. WCF is a powerful but complex way to connect disparate systems. Chapter 44 ,
“Windows Communication Foundation,” covers this in detail.

26 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 NOTE The ASP.NET Web API and more information on microservices are covered in
Chapter 42 .

 Web Services with the ASP.NET Web API
An option that is a lot easier for communication and fulfi lls more than 90 percent of requirements by dis-
tributed applications is the ASP.NET Web API. This technology is based on REST (Representational State
Transfer), which defi nes guidelines and best practices for stateless and scalable web services.

The client can receive JSON or XML data. JSON and XML can also be formatted in a way to make use of
the Open Data specifi cation (OData).

The features of this new API make it easy to consume from web clients using JavaScript and also by using
the Universal Windows Platform.

The ASP.NET Web API is a good approach for creating microservices. The approach to build microservices
defi nes smaller services that can run and be deployed independently, having their own control of a data
store.

With ASP.NET 5, the older version of ASP.NET Web API that was separated from ASP.NET MVC now
merged with ASP.NET MVC 6 and uses the same types and features.

 WebHooks and SignalR
For real-time web functionality and bidirectional communication between the client and the server,
WebHooks and SignalR are ASP.NET technology that can be used.

SignalR allows pushing information to connected clients as soon as information is available. SignalR makes
use of the WebSocket technology, and it has a fallback to a pull-based mechanism of communication in case
WebSockets are not available.

WebHooks allows you to integrate with public services, and these services can call into your public ASP.
NET Web API service. WebHooks is a technology to receive push notifi cation from services such as GitHub
or Dropbox and many other services.

The foundation of SignalR connection management, grouping of connections, and authorization and
integration of WebHooks are discussed in Chapter 43 , “WebHooks and SignalR.”

 Windows Services
A web service, whether it’s done with WCF or ASP.NET Web Services, needs a host to run. Internet
Information Server is usually a good option because of all the services it offers, but it can also be a custom
program. With the custom option, creating a background process that runs with the startup of Windows is a
Windows Service. This is a program designed to run in the background in Windows NT kernel–based oper-
ating systems. Services are useful when you want a program to run continuously and be ready to respond to
events without having been explicitly started by the user. A good example is the World Wide Web Service on
web servers, which listens for web requests from clients.

It is easy to write services in C#. .NET Framework base classes are available in the System.
ServiceProcess namespace that handles many of the boilerplate tasks associated with services. In addi-
tion, Visual Studio .NET enables you to create a C# Windows Service project, which uses C# source
code for a basic Windows Service. Chapter 39 , “Windows Services,” explores how to write C# Windows
Services.

Application Types and Technologies ❘ 27

 NOTE Chapter 41 , “ASP.NET MVC,” covers ASP.NET MVC 6.

 Web Applications
 The original introduction of ASP.NET 1 fundamentally changed the web programming model. ASP.NET 5
is the new major release, which allows the use of .NET Core for high performance and scalability. This new
release can also run on Linux systems, which was a high demand.

 With ASP.NET 5, ASP.NET Web Forms is no longer covered (this can still be used and is updated with
.NET 4.6), so this book has a focus on the modern technology ASP.NET MVC 6, which is part of
ASP.NET 5.

 ASP.NET MVC is based on the well-known Model View Controller (MVC) pattern for easier unit testing. It
also allows a clear separation for writing user interface code with HTML, CSS, and JavaScript, and it only
uses C# on the backend.

 Microsoft Azure
 Nowadays you can’t ignore the cloud when considering the development picture. Although there’s not a
dedicated chapter on cloud technologies, Microsoft Azure is referenced in several chapters in this book.

 Microsoft Azure offers Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a
Service (PaaS), and sometimes offerings are in between these categories. Let’s have a look at some Microsoft
Azure offerings.

 Software as a Service
 SaaS offers complete software; you don’t have to deal with management of servers, updates, and so on.
Offi ce 365 is one of the SaaS offerings for using e-mail and other services via a cloud offering. A SaaS offer-
ing that’s relevant for developers is Visual Studio Online , which is not Visual Studio running in the browser.
Visual Studio Online is the Team Foundation Server in the cloud that can be used as a private code reposi-
tory, for tracking bugs and work items, and for build and testing services.

 Infrastructure as a Service
 Another service offering is IaaS. Virtual machines are offered by this service offering. You are respon-
sible for managing the operating system and maintaining updates. When you create virtual machines, you
can decide between different hardware offerings starting with shared Cores up to 32 cores (at the time of
this writing, but things change quickly). 32 cores, 448 GB RAM, and 6,144 GB local SSD belong to the
“G-Series” of machines, which is named after Godzilla.

 With preinstalled operating systems you can decide between Windows, Windows Server, Linux, and operat-
ing systems that come preinstalled with SQL Server, BizTalk Server, SharePoint, and Oracle.

 I use virtual machines often for environments that I need only for several hours a week, as the virtual
machines are paid on an hourly basis. In case you want to try compiling and running .NET Core programs
on Linux but don’t have a Linux machine, installing such an environment on Microsoft Azure is an easy task.

 Platform as a Service
 For developers, the most relevant part of Microsoft Azure is PaaS. You can access services for storing and
reading data, use computing and networking capabilities of app services, and integrate developer services
within the application.

 For storing data in the cloud, you can use a relational data store SQL Database. SQL Database is nearly the
same as the on-premise version of SQL Server. There are also some NoSQL solutions such as DocumentDB

28 ❘ CHAPTER 1 .NET APPLICATION ARCHITECTURES

 NOTE Be aware that with an MSDN subscription you’re entitled to free use of
Microsoft Azure up to a specifi c monthly amount that is contingent on the type of the
MSDN subscription you have.

that stores JSON data, and Storage that stores blobs (for example, for images or videos) and tabular data
(which is really fast and offers huge amounts of data).

 Web apps can be used to host your ASP.NET MVC solution, and API Apps can be used to host your ASP.
NET Web API services.

 Visual Studio Online is part of the Developer Services offerings. Here you also can fi nd Visual Studio
Application Insights. With faster release cycles, it’s becoming more and more important to get informa-
tion about how the user uses the app. What menus are never used because the users probably don’t fi nd
them? What paths in the app is the user is taking to fulfi ll his or her tasks? With Visual Studio Application
Insights, you can get good anonymous user information to fi nd out the issues users have with the
application, and with DevOps in place you can do quick fi xes.

 NOTE In Chapter 20 , “Diagnostics and Application Insights,” you can read about
tracing features and also how to use the Visual Studio Application Insights offering of
Microsoft Azure. Chapter 45 , “Deployment of Websites and Services,” not only shows
deployment to the local Internet Information Server (IIS) but also describes deploy-
ment to Microsoft Azure Web Apps.

 DEVELOPER TOOLS
 This fi nal part of the chapter, before we switch to a lot of C# code in the next chapter, covers developer tools
and editions of Visual Studio 2015.

 Visual Studio Community
 This edition of Visual Studio is a free edition with features that the Professional edition previously had.
There’s a license restriction for when it can be used. It’s free for open-source projects and training, and also
free to academic and small professional teams. Unlike the Express editions of Visual Studio that previously
have been the free editions, this product allows using add-ins with Visual Studio.

 Visual Studio Professional with MSDN
 This edition includes more features than the Community edition, such as the CodeLens and Team
Foundation Server for source code management and team collaboration. With this edition, you also get an
MSDN subscription that includes several server products from Microsoft for development and testing.

 Visual Studio Enterprise with MSDN
 Visual Studio 2013 had Premium and Ultimate editions. Visual Studio 2015 instead has the Enterprise
 edition. This edition offers Ultimate features with a Premium price model. Like the Professional edition, this
edition contains a lot of tools for testing, such as Web Load & Performance Testing, Unit Test Isolation with
Microsoft Fakes, and Coded UI Testing. (Unit testing is part of all Visual Studio editions.) With Code Clone
you can fi nd code clones in your solution. Visual Studio Enterprise also contains architecture and modeling
tools to analyze and validate the solution architecture.

Summary ❘ 29

 Visual Studio Code
 Visual Studio Code is a completely different development tool compared to the other Visual Studio editions.
While Visual Studio 2015 offers project-based features with a rich set of templates and tools, Visual Studio
is a code editor with little project management support. However, Visual Studio Code runs not only on
Windows, but also on Linux and OS X.

 With many chapters of this book, you can use Visual Studio Code as your development editor. What you
can’t do is create WPF, UWP, or WCF applications, and you also don’t have access to the features covered in
Chapter 17 , “Visual Studio 2015.” You can use Visual Studio Code for .NET Core console applications, and
ASP.NET Core 1.0 web applications using .NET Core.

 You can download Visual Studio Code from http://code.visualstudio.com .

 SUMMARY
 This chapter covered a lot of ground to review important technologies and changes with technologies.
Knowing about the history of some technologies helps you decide which technology should be used with
new applications and what you should do with existing applications.

 You read about the differences between .NET Framework 4.6 and .NET Core 1.0, and you saw how to
create and run a Hello, World application with all these environments without using Visual Studio.

 You’ve seen the functions of the Common Language Runtime (CLR) and looked at technologies for access-
ing the database and creating Windows apps. You also reviewed the advantages of ASP.NET Core 1.0.

 Chapter 2 steps into using Visual Studio to create the Hello, World application and goes on to discuss the
syntax of C#.

 NOTE Chapter 17 , “Visual Studio 2015,” includes details on using several features of
Visual Studio 2015. Chapter 19 , “Testing,” gets into details of unit testing, web test-
ing, and creating Coded UI tests.

 NOTE For some of the features in the book—for example, the Coded UI Tests —you
need Visual Studio Enterprise. You can work through most parts of the book with the
Visual Studio Community edition.

		2017-07-12T14:32:39-0400
	Certified PDF 2 Signature

