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Bioimage analysis is the science of converting biomedical images into 
powerful data. As well as providing a visual representation of data in a 
study, images can be mined and used in themselves as an experimental 
resource. With careful sample preparation and precise control of the 
equipment used to capture images, it is possible to acquire reproducible 
data that can be used to quantitatively describe a biological system, for 
example through the analyses of relative protein or epitope expression 
(Figure 1.1). Using emerging methods this can be extrapolated out over 
hundreds and thousands of samples for high content image based screening 
or focused in, using emerging technologies, to data at the nanoscale. 
Fluorescence microscopy is used to specifically mark and discriminate 
individual molecular species such as proteins or different cellular, intra-
cellular or tissue specific components. Through acquiring individual 
images capturing each tagged molecular species in separate channels it 
is possible to determine relative changes in the abundance, structure 
and – in live imaging – the kinetics of biological processes. In the example 
below (Figure 1.1), labelling of F‐actin, a cytoskeletal protein, using a 
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2 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

fluorescent protein allows measurement of how fast it turns over in 
moving cells normally, and in a condition where a putative regulator of 
cell migration DSG3 is overexpressed. It shows that overexpressing 
DSG3 destabilises actin and causes it to turn over faster. Quantifying the 
expression and localisation of F‐actin in several cells over time it is 
possible to see how much F‐actin it turns over in the course of the exper-
iment, where this happens, and the difference in rate between the two 
(Figure 1.1, graph). This type of scientific insight into the spatial and 
temporal properties of proteins is only possible using bioimage analysis 
and illustrates its use in current biomedical research applications.

In this book we are primarily going to consider quantification of 
images acquired from fluorescence microscopy methods. In fluorescence 
microscopy, images are acquired by sensors such as scientific cameras or 
photomultiplier tubes. These generate data as two‐dimensional arrays 
comprising spatial information in the x and y domain (Figure 1.2); 
separate images are required for the z spatial domain – known as a z 
stack – which can then be overlaid to generate a 3D representative image 
of the data (Figure  1.2). Image analysis applications such as Imaris, 
Volocity, Bioimage XD and ImageJ can carry out visualisation, rendering 
and analysis tasks. The most sensitive detectors for fluorescence and 
bright‐field microscopy record the intensity of the signal emitted by 
the sample, but no spectral information about the dye (Figure 1.3). 
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Figure  1.1 Bioimage quantification to determine the dynamics of actin using 
photoconversion. Tsang, Wheeler and Wan Experimental Cell Research, vol. 318, 
no. 18, 01.11.2012, p. 2269–83.
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DIGITAL MICROSCOPY: NATURE TO NUMBERS 3

This means effectively that intensity information from only one labelled 
epitope is recorded. To collect information from a sample which is 
labelled with multiple fluorescent labels the contrast methods on the 
imaging platform itself – e.g. fluorescent emission filters, phase or DIC 
optics – are adjusted to generate images for each labelled epitope, all of 
which can then be merged (Figure  1.3). Some software will do this 
automatically for the end user. The final dimension that images can be 
composed of is time. Taken together, it is possible to see how a 3D 
multichannel dataset acquired over time can comprise tens of images. 
If these experiments are carried out over multiple spatial positions – e.g. 
through the analysis of multiwell plates or tilling of adjacent fields of 
view – the volume of data generated can considerably scale up, especially 
when experiments need to be done in replicates. Often the scientific 
question may well require perturbing several parameters, e.g. adjustment 
of different hypothesised parameters or structures involved in a known 
biological process. This means that similar image acquisition and anal-
ysis needs to be used to analyse the differences in the biological system. 
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Figure 1.2 Workflow for bioimage data capture in 2D and 3D.

Channel 1: Cell Junctions, E-Cadherin is the 
epitope labelled

Channel 2: Microtubules, Alpha-tubulin is the
epitope labelled

Merged imaged - Channel 1 and Channel 2
combined together

Figure 1.3 Combining channels in fluorescent bioimage analysis. Channel 1 has 
antibodies raised against E‐cadherin labelled with AlexaFluor 568 secondary anti-
bodies. Channel 2 is labelled with primary antibodies raised against Alpha tubulin 
and secondary antibodies labelled with AlexaFluor 488.
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4 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

In these cases although setting up an automated analysis workflow 
makes sense, to manually quantify each individual image would take a 
considerable time and would require a substantial level of consistency 
and concentration. The programming of analysis pipelines does require 
some work initially but it can be seen as letting the computer automate 
a large volume of tasks, making the research process more reliable, 
robust and efficient. Indeed some applications now allow data processing 
in batches on remote servers, computer clusters or cloud computing.

Biomedical image analysis follows a given workflow: data acquisition, 
initialisation, measurement and interpretation (Figure 1.4) – which will 
be discussed in brief in this introductory chapter, followed by a more 
in‐depth analysis in subsequent chapters.

1.1 ACQUISITION

1.1.1 First Principles: How Can Images Be Quantified?

Before data can be analysed, it needs to be acquired. Image acquisition 
methods have been extensively reviewed elsewhere [1, 3, 4]. For quan-
tification, the type and choice of detector which converts incident 
photons of light into a number matrix is important. Images can be 
quantified because they are digitised through a detector mounted onto 
the microscope or imaging device. These detectors can be CCD 
(charged coupled device), EMCCD (electron multiplying CCD) or 
sCMOS (scientific CMOS) cameras, or photomultiplier tubes (PMTs). 
Scientific cameras consist of a fixed array of pixels. Pixels are small 
silicon semiconductors which use the photoelectric effect to convert 

Acquisition

Initialisation

Measurement

Interpretation

Figure 1.4 The Bioimage analysis workflow.
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the photons of light given off from a sample into electrons (Figure 1.5). 
Camera pixels are precision engineered to yield a finite number of elec-
trons per photon of light. They have a known size and sensitivity, and 
the camera will have a fixed array of pixels. Photons of light pass from 
the object to become images through the optical system, until they 
collide with one part of the doped silicon semiconductor chip or pixel in 
the camera. This converts the photons of light into electrons which are 
then counted. The count of ‘photo electrons’ is then converted into an 
intensity score, which is communicated to the imaging system’s com-
puter and is displayed as an image (Figure 1.5). PMTs operate on simi-
lar principles to scientific cameras, but they have an increased sensitivity, 
allowing for the collection of weaker signals. For this reason they are 
preferentially mounted on confocal microscopes. Photomultipliers 
channel photons to a photocathode that releases electrons upon pho-
ton impact. These electrons are multiplied by electrodes called metal 
channel dynodes. At the end of the dynode chain is an anode (collec-
tion electrode) which reports the photoelectron flux generated by the 
photocathode. However, the PMT collects what is effectively only one 
pixel of data, therefore light from the sample needs to be scanned, 
using mirrors, onto the PMT to allow a sample area larger than one 
pixel to be acquired. PMTs have the advantage that they are highly 
sensitive and, within a certain range, pixel size can be controlled, as the 
electron flow from the anode can be spatially adjusted; this is useful as 
the pixel size can be matched to the exact magnification of the system, 
allowing optimal resolution. PMTs have the disadvantage that acquir-
ing the spatial (x, y and z) coordinates of the sample takes time as it 
needs to be scanned one pixel at a time. This is particularly disadvanta-
geous in imaging of live samples, since the biological process to be 
recorded may have occurred by the time the sample has been scanned. 
Therefore live imaging systems are generally fitted with scientific cam-
eras and systems requiring sensitivity for low light and precision for 
fixed samples often have PMTs. (https://micro.magnet.fsu.edu/primer/
digitalimaging/concepts/photomultipliers.html)
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Figure 1.5 How images are digitised.
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6 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

1.1.2  Representing Images as a Numerical Matrix Using 
a Scientific Camera

Although having a pixel array is useful for defining the shape of an 
object it doesn’t define the shading or texture of the object captured on 
the camera. Cameras use greyscales to determine this. Each pixel has a 
property defined as ‘full well capacity’. This defines how many electrons 
(originated by photons) an individual pixel can hold. An analogy of this 
would be having the camera as an array of buckets, which are filled by 
light. It is only possible to collect as much light as the pixel ‘well’ (bucket) 
can hold; this limit is known as saturation point. There can also be too 
little light for the pixel to respond to the signal, and this is defined as 
under‐exposure.

The camera can read off how ‘full’ the pixel is by a predetermined 
number. This is defined as the greyscale. The simplest greyscale would be 
1‐bit, i.e. 0 or 1. This means that there is either light hitting the pixel or 
not; however, this is too coarse a measure for bioimage analysis. Pixels 
record intensity using binary signals, but these are scaled up. Pixels in 
many devices are delineated into 256 levels, which corresponds to 28, 
which is referred to as 8‐bit. The cone of a human eye can only detect 
around 170–200 light intensities. So a camera, set at 8‐bit (detecting 256 
levels) produces more information than an eye can compute. Therefore, 
if images are being taken for visualisation, and not for quantification, 
then using a camera at 8‐bit level is more than adequate. For some basic 
measurements, 8‐bit images are also sufficient (Figure 1.6).
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Figure 1.6 Basic quantification of cellular features using 8‐bit fluorescent image of 
F‐actin.
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It is possible to increase the sensitivity of the pixel further, currently to 
12 (4096 or 212), 14 (16384 or 214) and 16 (65536 or 216) grey levels. For 
detecting subtle differences in shading in a complex sample, the more 
numerical information and depth of information that can be mined from 
an image the better the data that can be extracted can be. This also 
allows better segmentation between noise inherent in the system and 
signal from the structure of interest (Figure 1.6).

Although this chapter is concerned with bioimage analysis it is essential 
that the images are acquired at sufficient sensitivity for quantification. 
Scientific cameras currently can delineate up to 216 grey levels dependent 
on their specification. The image histogram, is a 1D representation of the 
pixel intensities detected by the camera. It can be used to determine the 
distribution of pixel intensities in an image, making it easy to perceive 
the saturation or under‐sampling of an image acquired (Figure 1.7). 
A saturated signal is when the light intensity is brighter than the pixel 
can detect and the signal is constantly at the maximum level. This means 
that differences in the sample can’t be detected as they are being recorded 
at an identical greyscale value, the maximum intensity possible (Figure 1.7). 
Under‐sampling, which means not making use of the full dynamic range 
of the detector or having information below the detection limit of the 
detector is not ideal. It means that the intensity information is ‘bunched 
together’, and so subtle structures may not be able to be detected 
(Figure 1.7). Under‐sampling is sometimes necessary in bioimaging, for 
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Figure 1.7 The effect of saturation and under‐sampling on bioimage analysis.
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8 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

instance if imaging a very fast process or when a very weak signal is 
being collected from a probe which can be photo‐damaged. Provided 
that sufficient signal can be collected for quantitative analysis this need 
not be a problem. However, best practice is to have the signal fill the 
whole dynamic range of the detector.

The first and perhaps most important step in bioimage analysis is that 
images be acquired and quantified in a reproducible manner. This means:

• using the same piece of equipment, or pieces of equipment that are 
technically identical

• ensuring equipment is clean
• ensuring samples are as similar as possible and prepared similarly
• using the same parameters to acquire data, e.g. same magnification, 

same fluorescent labels and very similar sample preparation and 
mounting.

1.1.3 Controlling Pixel Size in Cameras

Pixels in scientific cameras are a predefined size, while in PMTs the scan 
area can be adjusted so that pixel size can be varied (see Section 1.1 on 
acquisition). The ideal pixel size matches the Nyquist criteria – that is, 
half the size of the resolution that the objective permits, providing the 
pixel is sufficiently sensitive to detect the signal of interest. Camera pixel 
size can limit resolution as it is difficult to spatially separate two small 
structures falling in the same pixel unless subpixel localisation methods 
are used, as discussed in Chapter 8. It is very difficult to spatially sepa-
rate two small structures falling in the same pixel. If a larger pixel size 
is required it is possible to have the detector electronically merge pixels 
together. This is generally done when a 2 × 2 array of pixels or a 4 × 4 
array is combined into one super‐pixel. The advantage of this is that 
there is a 4 (2 × 2 bin) or 16 (4 × 4) fold increase in sensitivity since the 
‘merged pixels’ add together their signals. The trade‐off is a loss of 
spatial sampling as the pixels are merged in space. For studies of mor-
phology, the resolution of the camera is important; pixels (i.e. the units 
comprising the detection array on the scientific camera) are square, and 
for any curved phenomena the finer the array acquiring it, the better 
will be the representation curves of the sample. The loss of spatial detail 
can be problematic if the structures studied are fine (Figure 1.8). Using 
brighter dyes –  that is those with a higher quantum yield of emitted 
photons per excited photon – and antifade agents to prevent bleaching 
can help here.
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For studies of protein expression, sensitivity can be important, although 
the bit depth of the pixel plays a role. If the detector can only detect a 
fraction of the light being produced because it either meets its saturation 
point or is under‐exposed it causes issues. The epitope will be either not 
detected or under‐sampled because the detector is not capable of picking 
up sufficient signal for quantification (Figure 1.8).

In studies of fast transient reaction (e.g. calcium signalling), fast 
exposure and frame rate can be more important than spatial resolution 
(Figure 1.8). Here, binning can be extremely useful since the sensitivity 
to an individual pixel may not be sufficient to detect subtle changes in 
signal. Binning also allows the camera to record data and transfer this 
electronic information to the computer faster since there are fewer pixels 
(Figure 1.9).

Detectors have a finite capacity for signal and a certain output speed, 
and this can be analogised to an array of buckets that have a certain 
capacity for water and tip it out at a certain rate (Figure 1.10). Knowing 
the speed of the camera to write the detected information to the com-
puter’s disk is important. In live experiments, cameras can detect signals 
faster than the speed with which the computer can write information to 
the disk. This is known as a clocking problem and is troublesome because 
data is collected, but it isn’t recorded to the computer disk (Figure 1.9). 
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Figure 1.8 Binning of pixels to increase speed and sensitivity of Bioimage acquisition.
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Figure  1.9 Bucket brigade CCD analogy (Courtesy of Molecular Expressions, 
Florida state Univeristy, USA, https://micro.magnet.fsu.edu/primer/index.html).
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The most recent advance in camera technology, sCMOS cameras, can 
be beneficial because they combine a small pixel size with high sensi-
tivity and fast read time (clocking). They have applications in a wide 
variety of biological questions where the phenomena to be imaged are 
small and either transient or entail rapid kinetics. These devices can 
also be implemented for scanning of large areas in techniques such as 
light‐sheet microscopy due to their large field of view and high‐speed 
acquisition.

Camera manufacturers producing instruments that are suitable for 
quantitative imaging:

1. Andor Technologies http://www.andor.com/
2. Hammamatsu http://www.hamamatsu.com/
3. Leica Microsystems http://www.leica‐microsystems.com/home/
4. Lumenara https://www.lumenera.com/
5. Nikon Instruments https://www.nikoninstruments.com/
6. Olympus http://www.olympus‐lifescience.com/en/
7. PCO Instruments https://www.pco‐tech.com/
8. Photometrics http://www.photometrics.com/
9. QImaging http://www.qimaging.com/

10. Motic Instruments http://www.motic.com/As_Microsope_cameras/
11. Zeiss Microscopy http://www.zeiss.com/microscopy/en_de/software‐

cameras.html

1.2 INITIALISATION

Initialisation is the step where bioimages are prepared for quantification. 
In most cases, the image generated by the system will not be immediately 
suitable for automatic quantification, and most analysis requires the 
computer to have a set of very similar artefact‐free images for the analysis 
algorithms to function correctly. It is thus critical to minimise image 
features that may corrupt or hamper the analysis framework to be used. 
The dominant aberrations in the detection system are caused at three 
levels: (a) the sample itself, (b) the microscope or scanner’s optical prop-
erties through which the image is formed and (c) the detector. These 
aberrations need to either be minimised or removed entirely so that the 
signal to be processed in the image is clearly distinguished from the noise 
which is otherwise present in the sample. Techniques used to do this such 
as filtering, deconvolution and background subtraction, and registration 
in x, y, z and colour channels needs to be carried out.
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12 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

1.2.1 The Sample

The sample to be imaged may contain artefacts or structures that are 
challenging to image, which makes it difficult to acquire good images for 
analysis. The key to good analysis is excellent sample preparation. Dyes and 
antibodies need to be optimised so that they are bright enough to be within 
the linear range of the detector. Ideally the background from non‐specific 
binding or antibodies or other probes would be reduced. The fixation and 
processing of samples would be optimised. Even with these strategies in 
place, a digital camera can only acquire a 2D image of a biological structure 
which is itself 3D. This means that out of focus light from around the focal 
plane is present in the image, which may obscure the signal from in‐focus 
light. Confocal systems minimise out‐of‐focus light in acquired images by 
physical methods involving the use of pinholes. However, since most light in 
a sample is out of focus, only a small fraction of light is allowed through 
the pinhole increases the need for bright labelling [1]. Further inappropriate 
fixation or storage can damage samples, and sample mounting is also 
challenging because 3D samples can be squashed or shrunk. For studies in 
thick tissue, where the sample will be cut into a sequence of individual thin 
slices that will be imaged, there can be issues with collating these images 
back into a virtual 3D representation of the tissue [2].

1.2.2 Pre‐Processing

Not all parts of images may need to be processed, and the regions to be 
measured may need to be turned into separate images. The imaging system 
may acquire data in a format that is not compatible with the analysis 
algorithm. Some imaging applications store images in individual folders 
(Leica LAS, Micromanager) and data may need to be moved to an analysis 
server. Due to the nature of image acquisition rescaling, techniques such as 
histogram equalisation may be necessary. All of these steps contribute to 
the pre‐processing. Most applications enable this and would have some 
kind of image duplication function or a means of saving the pre‐processed 
data separately from the raw data. The raw image data must be retained 
to comply with scientific quality assurance procedures which are discussed 
in Chapter 10, which deals with presentation and documentation.

1.2.3 Denoising

Denoising is removal or reduction of noise inherent in the sample and 
imaging system which masks the signal of interest. Cameras and PMTs 
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are not perfect, and are subject to several sources of noise. Noise is 
defined as electrons that are read by the camera that have not been 
generated by photons from a sample, for example,

• Shot noise: This is caised by random electrons generated by vibration 
inside the camera or PMT.

• Dark current: PMTs and cameras have a baseline number of electrons 
that it reads even when there is no light. Manufacturers will usually 
set this to be a non‐zero value, and PMTs in particular have a base 
current from photocathode to anode even in the absence of light. 
Measuring the dark current on a system is useful, because if this value 
falls below the normal value, it helps the end user determine that there 
is a problem with the camera. A low dark current can be achieved by 
cooling the detector; often CCD and EMCCD cameras are cooled for 
this reason.

• Read noise: The photoelectric silicon semiconductor has a range of 
accuracy, e.g. although it will usually generate two electrons per 
photon sometimes it may generate one and sometimes three. The 
accuracy of the read noise depends on the quality of the pixel chip. 
The number of electrons yielded per photon can be described as the 
quantum yield.

• Spectral effects: Neither PMTs nor cameras produce a linear number 
of photoelectrons per incident photon across the visible spectrum. 
At 500 nm, a camera may produce four electrons per photon and at 
600 nm it may produce three and at 700 nm, just one. If correlations 
are being made between two different dyes or fluorophores, it is 
important to take into consideration what the ‘spectral performance’ 
of the detector is.

• Fixed pattern noise: Some cameras have random noise caused by 
spurious changes in charge across the pixel array. Other types, sCMOS 
in particular, suffer from fixed patter noise, which means that, due to 
manufacturing or properties of the camera itself, certain parts of the 
camera have a higher noise level than others. This is often in a fixed 
pattern, although it can consist of individual ‘hot’ (i.e very noisy) pixels. 
This noise pattern can be subtracted from an image.

All scientific cameras and PMTs from reputable manufacturers will 
include a table and datasheet describing the performance of their instru-
ments. This can be useful to study at the outset of an experimental series 
where Bioimage analysis is to be done.
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14 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

1.2.4 Filtering Images

Noise is inherent in all bioimages; this may be introduced because of 
shortcomings with the detector as described above. This type of noise is 
described as non‐structural background, and is low‐frequency, and 
constant in all images. Another source of noise is introduced because the 
detector can only acquire images in 2D while biological samples are 3D, 
so out‐of‐focus light, or issues with labelling the sample may cause the 
desired signal to be masked. This type of noise is high frequency and can 
have structural elements. One of the most frequently used methods for 
initialising images for bioimage analysis is filtering. By using a series of 
filters it becomes possible to remove most of the noise and background, 
improving the signal‐to‐noise ratio. This is generally achieved by math-
ematical operations called deconvolutions.

In a nutshell, this involves deconvolving the numerical matrix that 
makes up the bioimage with another number array; they can contain 
different numbers depending on the desired effect on these images. The 
technical term for these arrays is kernels, and denoising involves filtering 
images using kernels.

Detector noise and non‐homogenous background from the sample can 
be removed by a process called flat fielding. This is acquiring an image 
with a blank slide at the settings used to acquire the bioimages, and sub-
tracting this background noise image from the data. Some image analysis 
programs can generate a pseudo flat field image if one has not been 
acquired. This method can be very effective with low signal data if the 
noise is caused by the detector. ‘Salt and pepper’ noise can be evened out 
by using a median filter. A median filter runs through each pixel’s signal, 
replacing the original pixel signal value entry with the median of its neigh-
bours. The pattern of neighbours is called the “window” (Figure 1.10).

The effect is nonlinear smoothing of the signal, but edges of the images 
suffer as the median value of the edge will involve a null value, which 
means that a few edge pixels are sacrificed when using this method. 
Often images generated from PMTs suffer from this type of noise because 
of shot noise and read noise on the detectors. Other types of filters that 
can reduce noise in samples are as shown in Figure 1.11a:

• Smooth filter: A pixel is replaced with the average of itself and its 
neighbours within the specified radius. This is also known as a mean 
or blurring filter.

• Sigma filter: The filter smooths an image by taking an average over the 
neighbouring pixels, within a range defined by the standard deviation 
of the pixel values within the neighbourhood of the kernel.

0003158457.INDD   14 9/19/2017   11:46:32 AM



DIGITAL MICROSCOPY: NATURE TO NUMBERS 15

(a)

(b)

(c)

Original Sigma filter Gaussian blur Median filter

After correctionBefore correction

After correctionBefore correction
ROI in orange

Figure 1.11 Initialisation using filtering (a) Illustrative example of image filtering 
taken from the Image J webpage https://www.fiji.sc, (b) Example of rolling ball 
background subtraction: left‐hand side is before correction, and right‐hand side 
after, (c) Using ROI subtraction.

0003158457.INDD   15 9/19/2017   11:46:37 AM



16 STANDARD AND SUPER‐RESOLUTION BIOIMAGING DATA ANALYSIS

• Gaussian filter: This is similar to the smoothing filter but it replaces 
the pixel value with a value proportional to a normal distribution of 
its neighbours. This is a commonly used mathematical representation 
of the effect of the microscope on a point of light.

In epifluorescence images there is often a vignette of intensity across 
the image. This is a result of the illumination in these systems where a 
mercury halide or LED illuminator is focused into the centre of the field 
of view to be imaged, provided it is correctly aligned. The bulb will not 
give an even intensity of illumination; rather the illumination follows a 
Gaussian distribution. In well‐aligned microscopes this means that the 
image is brightest in the centre and dimmer at the edges. If there is a 
problem with the alignment of the illuminator, there can be an intensity 
cast across the image where potentially one of the corners or part of the 
image is brighter than another. To remove this issue, in ImageJ a ‘rolling 
ball’ background correction algorithm designed by Castle and Keller 
(Mental Health Research Institute, University of Michigan) is imple-
mented (Figure 1.11b). Here a local background value is determined 
for every pixel by averaging over a very large kernel around the pixel. 
This value is hereafter subtracted from the original image, hopefully 
removing large spatial variations of the background intensities. The 
radius should be set to at least the size of the largest object that is not 
part of the background [3].

In better‐aligned systems or systems which inherently have more even 
illumination such as confocals, noisy background can be caused by other 
effects. For instance, uneven illumination caused by “scan lines” in con-
focal transmitted light images can be removed using the native FFT 
bandpass function present in ImageJ and other software packages. When 
detector noise or bleaching is an issue, this can be accounted for by 
measuring the mean intensity of the region in an image where there is 
known background and then subtracting the mean value of this region. 
Although this reduces the net intensity value in an image, it can emphasise 
relevant data (Figure 1.11c). Removing the high frequency noise caused 
by labelling, light interference in the sample can be more challenging. 
Different types of filters can assist with this, and this subject is discussed 
at greater length in Chapter 3.

1.2.5 Deconvolution

Deconvolution is a method which is used to remove out‐of‐focus light 
completely from an image. It is based on the premise that an image is a 
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convolution of the imaged sample with the system used to image it – in 
the case of light microscopy, the sample and the microscope. No system 
is optically perfect and objective lenses are a primary cause of aberra-
tions in an image. They suffer from multiple aberrations, predominantly 
spherical and chromatic, and have artefacts in flatness of field. High‐
quality objectives such as Plan‐Apochromat are corrected for all of these 
across the visible spectrum but are more expensive than most other 
objectives. In particular, aberrations in the axial dimension can be 
particularly problematic for light microscopes. Any lens may do a fairly 
reasonable job of focusing light in 2D, but 3D focus is more challenging, 
and lenses tend on average to perform half as accurately in the third 
(axial) dimension as in x and y. Abbe’s law summarises the resolution of 
a light microscopy image.

 
d

n2 sin  

where d is the resolution of the system, λ is the wavelength of emitted 
light, n sinθ is the numeric aperture of the objective (the numeric aper-
ture is the half angle that light can propagate through the objective). 
Only the most simplistic of imaging system consists of just an objective. 
Fluorescent systems will also have dichroic mirrors and filters as well as 
other moving parts. All of these will slightly distort or absorb photons 
on their path to the detector. Each distortion, though incremental, adds 
up. Experts in optics tend to combine this source of error in the optical 
system in one metric: the point spread function (PSF). This describes 
how an optical system images an infinitely small and perfectly spherical 
point of light (Figure  1.12). Inevitably, the refraction of light due to 
imperfection in the optical system will mean that the point of light is 
distorted.

Since all images consist of many points of light, knowing about how a 
given imaging system distorts one point of light means that it’s possible 
to extrapolate this onto an image and ‘deconvolve’ out the real signal 
from the distortions introduced by the imaging system [4]. Most bio-
image processing applications provide some type of deconvolution, 
although specialist packages such as Autoquant or Huygens specialise 
in this. Many depend on an artificial point spread function which will 
be generated based on the wavelength of emitted light and the mag-
nification and numerical aperture of the objective used. Naturally, 
contributions from dirty lenses or misaligned optics are not taken into 
account when generating an artificial PSF. For heavily used instruments 
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it may be advisable to generate an imaged PSF, for example through the 
observation of small‐scale fluorescent beads (e.g. 100 nm Tetraspeck 
beads – Thermo Scientific). Several algorithms are provided for decon-
volution, the most commonly used being:

• Nearest neighbour approaches: These are fundamentally two‐dimensional, 
they are classified for the purposes of this discussion as deblurring 
algorithms. As a class, these algorithms apply an operation plane by 
plane to each two‐dimensional plane of a three‐dimensional image 
stack. For example, the nearest‐neighbour algorithm operates on the 
plane z by blurring the neighbouring planes (z + 1 and z − 1, using a 
digital blurring filter), then subtracting the blurred planes from the 
z plane. This has the disadvantage that it can reduce the signal‐to‐noise 
ratio, and it can add in sharpened points caused by overlapping signal 
in the z domain in places where it doesn’t belong. The advantage of 
this approach is that it’s computationally light, at the expense of 
degrading the signal and introduction of artefacts.

• Iterative deconvolution: This is an image restoration approach where 
out‐of‐focus light is either discarded or brought into focus. The 
algorithm works by iterating through a set of parameters that best 
represent the ‘in focus’ image. To start with, an estimate of the object 
is performed; generally this is the raw image. This estimate is convolved 

Figure 1.12 Experimental point spread functions: By Howard Vindin (own work) 
[CC BY‐SA 4.0 (http://creativecommons.org/licenses/by‐sa/4.0)], via Wikimedia 
Commons.
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with the PSF, and the resulting ‘blurred estimate’ is compared to the 
original input image. A metric (figure of merit) of restoration indicates 
the improvement in the images compared to the original. This metric 
is then used to adjust the estimated parameters to reduce the error 
criterion in the subsequent iteration. This process is repeated until the 
error criterion is minimised or reaches a specified threshold. The final 
image is the object estimate at the last iteration. Richardson–Lucy 
deconvolution is a popular implementation of this method [5, 6]. 
These iterative algorithms often use the likelihood error criteria 
defined in probability theory. Maximum likelihood estimation (MLE) 
is a method of estimating the parameters of a statistical model given 
certain observations, e.g. the blurred object image, by finding param-
eters that maximise the likelihood of making the observations given 
the parameters. Several commercial applications use these approaches: 
Huygens, Imaris, Nikon Elements, Carl Zeiss and ImageProPremier [7].

Iterative statistical algorithms are more computationally intensive 
when compared to non‐iterative methods and can take significantly 
longer to reach a solution. However, they may restore images to a slightly 
higher degree of resolution than filtering. These algorithms also have the 
advantage that they impose constraints on the expected noise statistic 
(in effect, a Poisson or a Gaussian distribution). As a result, statistical 
algorithms have a more subtle noise policy than simply regularisation, 
and they may produce better results on noisy images. However, the 
choice of an appropriate noise statistic may depend on the imaging 
condition, and some commercial software packages are more flexible than 
others in this regard. Processing on a server for deconvolution can be a 
major advantage for a large batch of deconvolution datasets, as they will 
often take up a significant amount of processing capability of a desktop 
machine. Further information about deconvolution can be found here:

https://micro.magnet.fsu.edu/primer/digitalimaging/deconvolution/
deconvolutionhome.html

1.2.6 Registration and Calibration

Spatial calibration of images: Pixels all have a defined size so the amount 
of physical space of images on a detector will depend on the optical 
elements (e.g. the microscope lens) that are projecting light onto it. If a 
small ruler, called a graticule, is imaged it is possible to determine, for a 
given optical system (e.g. a tissue culture microscope with 10× lens), 
what the actual size detected by each pixel is, that is, if 100 µm on the 
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graticule is visualised across 50 pixels then one pixel will measure across 
2 µm. Many commercial systems will come pre‐calibrated, and this infor-
mation will be included in the image header file, but home‐built systems 
may not be pre‐calibrated, and systems where the detector or objective 
lens has been changed for experimental purposes may also not be cor-
rectly spatially calibrated. If you have a high‐precision stage, it becomes 
possible to calculate the pixel size calibration by moving an object for a 
well‐defined distance in the stage. The observed distance travelled in 
images can then be correlated to the distance set on the stage to get the 
pixel calibration. For measurement of spatial parameters such as size 
and shape of imaged objects it is essential to include these measures.

Image registration is technically described process of ‘overlaying two 
or more images of the same scene taken at different times, from different 
viewpoints, and/or by different instrument settings (e.g. different fluo-
rescent channels)’ [8]. Registration geometrically aligns two or more 
images, which can comprise different channels or different x and y or 
z planes. Registration algorithms may need to be applied in the following 
cases:

• Datasets where more than one fluorescent channel is used. Chromatic 
aberrations will mean that the colours may focus to slightly different 
places on a camera or detector.

• Datasets collected over time, where the structure may move or the 
system may drift.

• Datasets collected by multiview analysis, e.g. tiling or mosaicing of an 
image.

Each of these cases is very different, and the algorithms programmed 
to address these differ; however, they do work on similar workflows 
whereby features are detected and matched, the geometric functions 
required to map or transform the image are created, and the geometric 
transform is applied. Registration of many biological images can be 
challenging due to the structures involved and the need to align spatial 
positions and different channels; image processing experts have gener-
ated several tools for this [9]. Libraries, plugins and other tools for 
image registration and stitching are supplied in software packages such 
as Amira, Arivis and Vaa3D for this. In some cases the software may 
ask for features or fiducial markers which can be used to remap the 
images  [10]. In other cases autocorrelation routines or propagation 
methods can be used, particularly to address system drift. Several open‐
source plugins for registration are available and can be installed into 
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ImageJ/Fiji (http://imagej.net/Category:Registration). Often these will have 
been developed with specific use cases in mind: e.g. subpixel registration 
of super‐resolution microscopy images; stitching and multiview recon-
struction of large tissue or cell areas; registration of light sheet micros-
copy data. Some examples of registration algorithms are: TrakEM2 
[11], SURF + affine transformation [12] UnwarpJ, [13] and V3D, [14] 
and BrainAligner [15].

1.3 MEASUREMENT

Once the noise has been removed from the image, generating useful 
numerical data for measuring samples can be started. The pixel array 
from an imaging device, CCD, EMCCD or sCMOS camera or PMT 
generates a numerical matrix. Hence bioimage measurement is, simply 
put, sampling this matrix and performing mathematical operations 
yielding numeric descriptors of the data. Once the image is corrected 
for any inherent aberrations and is pre‐processed so that it is as close 
a representation of the original object imaged as possible, it is time to 
move forwards and gather numerical data.

For these features to be measured they must be segmented (i.e. identi-
fied as interesting areas to analyse, e.g. nuclei are segmented for imaging 
when nuclei counting occurs) and then quantified. This topic is very com-
plex, which is why Chapters 2 and 3 of this book are dedicated to the 
subject, but it lies at the heart of bioimage analysis. Typical features in a 
light microscopy image to be measured would be: Size and shape of bio-
logical structures, as a non‐exhaustive list: nuclei, endosomes, cytoskele-
tal components in cells. In tissues it might be neurons, blood vessels or 
populations of stem cells. Location where certain epitopes are, in respect 
to reference organelles, is often asked. One of the simpler use cases is 
whether a given protein is localised in the nucleus or in the cytoplasm, 
although this can be extrapolated to many cases, in particular in develop-
ing organisms. Motion or kinetics of structures could be cells crawling, 
delivery of cargo on a microtubule or looking at cells developing their 
fate. Concentration, the amount of a given epitope in a specific location 
in a cell or tissue, is a frequently asked research question. This can be used 
for examples applied to fluorescence recovery, after photobleaching 
(FRAP), which would look at how much protein turns over in a given 
place. Concentration studies are also useful when investigating the role of 
individual components of a biological complex to its function, e.g. if 
 protein x is removed does the complex still form or only partially form?
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These parameters in image analysis would generate the following 
types of numerical output:

Measuring shape or location would generate Cartesian coordinates 
(x,y,z) and metrics describing area, length width or the perimeter of 
a structure, e.g. a nucleus (Figure 1.13). This is done by selecting a 
tool which puts a contour over the image and the number of pixels 
it intersects with  –  or for area are inside a closed contour  –  are 
counted. With area the number of pixels intersected by the line and 
the number of pixels inside this area are also counted.

Figure 1.13 Using ImageJ to select parameters of shape and intensity in an image 
of nuclei (blue). Here nuclei have been manually segmented using a contour – yellow 
line. Measurements have been set in ImageJ, and the numerical results output. The 
area of each nucleus, mean, standard deviation, maximal and minimal intensity are 
computed. The circularity (Circ) of the nuclei are also computed.
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Measuring intensity: Here instead of the number of pixels being 
counted, the intensity value of each of the pixels is counted. The 
mean, maximum, minimum and standard deviation of these values 
can easily be determined. It is also possible to sum the values up to 
give an integrated sum for this (Figure 1.13).
Measuring kinetics: This is a convolution of measurement of either 
shape or intensity with the time domain.

There is a very wide variety of both commercial and open‐source 
software which can perform measurements on bioimages. A list which 
covers most of the frequently used applications is given in Table 1.1.

Once the measurement parameters have been developed they can be 
stored and applied to large data samples. Specific software has been 
written to better support these high content or big data applications; 
these are discussed in the Chapter 9.

1.4 INTERPRETATION

Once the most interesting and relevant metrics for a given question have 
been identified statistical analysis can be applied to this. This can be 
done through packages such as SPSS, R, Graphpad, Prism, MATLAB, 
Minitab or by using bespoke analyses. There will be different statistical 
methods for analysing the spatial distribution of clusters or determining 
whether one or more features in an image correlates or co‐locates with 
another, and the relevant tests will depend on the question being asked. 
These types of analysis are described in Chapter 6 and 8. Bioimage quan-
tification analysis has historically relied overmuch on the t‐tests, and 
while they are useful in comparing two populations that vary with one 
another, they are often not the best method of statistically interpreting 
bioimage data. Differences in shape or signal intensity between multiple 
samples can be analysed using analysis of variance (ANOVA) tests which 
show if there is a significance change in the population sampled. 
To determine which individual sample in the group analysed by ANOVA 
is different, post hoc testing of one or more metrics, e.g. the area of a 
nucleus or the elongation of an axon, can be carried out using Bonferroni 
or Dunnett’s test. Bonferroni cross‐correlates each group with the other 
groups to see which ones are significantly different from the others 
(many to many analysis). Dunnett’s test allows a selected group to be 
compared with all of the others (one to many analysis). The Tukey HSD 
test is also useful for identifying arithmetic means of a group which are 
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significantly different from one another because the means of several 
different samples can be tested. If the variance between multiple param-
eters is of interest, particularly in high content screens, principal compo-
nent analysis can be particularly helpful. When comparing between 
populations it is important to bear in mind that many statistical tests 
assume that the data is normally distributed; this is true of t‐tests, 
ANOVA and any post hoc tests associated with ANOVA. This type of 
test is called a parametric test. However, many bioimaging experiments, 
e.g. using CrispR knock‐in or siRNA knock‐out of genes will cause the 
distribution of phenotypes to become skewed or not normally distrib-
uted. This means that parametric statistical tests can no longer be used 
and non‐parametric analysis based on the median or rank of data is 
more appropriate. Non‐parametric tests which are commonly used in 
bioimage analysis are Mann–Whitney, which is the non‐parametric ana-
logue of the t‐test or Kruskal–Wallis which is a non‐parametric analogue 
of ANOVA. An in‐depth description of statistics is beyond the scope of 
this book, but some the following sources of information are useful.

• Nature Statistics for Biologists collection. http://www.nature.com/
collections/qghhqm

• http://www.wormbook.org/chapters/www_statisticalanalysis/ 
statisticalanalysis.html

• Statistical and Data Handling Skills in Biology, Roland Ennos, Pearson 
Education Ltd ISBN: 9780273729495

• Statistics for Terrified Biologists, Helmut van Emden, Wiley ISBN: 
978‐1‐4051‐4956‐3

Statistical analysis tools for data mining and informatics analysis that 
can be applied to large multivariate datasets, such as high content screen-
ing include: ‘Analytics’ applications such as the open‐source Cellprofiler 
Analyst, Bisque and KNIME (https://www.knime.org/) or commercially 
available SpotFIRE (http://spotfire.tibco.com/), AcuityXpress from 
molecular devices and others that have toolboxes to enable multipara-
metric analysis, data visualisation and pipelines into comparative analysis 
with genomic, transcriptomic and proteomic analysis datasets. It is more 
routine, for smaller datasets to prepare the data for presentation at this 
point in the experimental process. Strategies for this are discussed in 
Chapter 10.

Ann Wheeler would like to thank Dr Ricardo Henriques and the 
IGMM advanced imaging facility users for constructive comment on 
this chapter.
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