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Introduction

A (discrete-time) time series is a set of observations xt , which are recorded at
times t stemming from a discrete and linearly ordered set 0. An example of
such a time series is plotted in Figure 1.1. This is the annual number of lynx
fur returns for the MacKenzie River district in north-west Canada. The source
is the Hudson’s Bay Company, 1821–1934; see Elton & Nicholson (1942).
These lynx data are discussed in many textbooks about time series analysis,
to illustrate that real time series may exhibit quite complex seasonal patterns.
Another famous example from the time series literature is the passenger
data of Box & Jenkins (1970), which gives the monthly totals of international
airline passengers (in thousands) for the period 1949–1960. These data
(see Figure 1.2 for a plot) are often used to demonstrate the possible need for
variance-stabilizing transformations.

Looking at the date of origin of the lynx data, it becomes clear that people
have long been interested in data collected sequentially in time; see also the
historical examples of time series in the books by Klein (1997) and Aigner
et al. (2011). But even basic methods of analyzing such time series, as taught
in any time series course these days, are rather new, mainly stemming from
the last century. As shown by Klein (1997), the classical decomposition of
time series into a trend component, a seasonal component and an “irregular
component” was mostly developed in the first quarter of the 20th century. The
periodogram, nowadays a standard tool to uncover seasonality, dates back to
the work of A. Schuster in 1906. The (probably) first correlogram – a plot of
the sample autocorrelation function against increasing time lag – can be found
in a paper by G. U. Yule from 1926.

The understanding of the time series (xt)0
as stemming from an underlying

stochastic process (Xt) , and the irregular component from a stationary one,
evolved around that time too (Klein, 1997), enabling an inductive analysis of
time series. Here, (Xt) is a sequence of random variables Xt , where  is a
discrete and linearly ordered set with 0 ⊆  , while the observations (xt)0

are
part of the realization of the process (Xt) . Major early steps towards the mod-
eling of such stochastic processes are A. N. Kolmogorov’s extension theorem
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2 An Introduction to Discrete-Valued Time Series
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Figure 1.1 Annual number of lynx fur returns (1821–1934); see Elton & Nicholson (1942).
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Figure 1.2 Monthly totals (in thousands) of international airline passengers (1949–1960);
see Box & Jenkins (1970).

from 1933, the definitions of stationarity by A. Y. Khinchin and H. Wold in
the 1930s, the development of the autoregressive (AR) model by G. U. Yule
and G. T. Walker in the 1920s and 1930s, as well as of the moving-average
(MA) model by G. U. Yule and E. E. Slutsky in the 1920s, their embedding into
the class of linear processes by H. Wold in 1938, their combination to the full
ARMA model by A. M. Walker in 1950, and, not to forget, the development
of the concept of a Markov chain by A. Markov in 1906. All these approaches
(see Appendix B for background information) are standard ingredients of
modern courses on time series analysis, a fact which is largely due to G. E. P.
Box and G. M. Jenkins and their pioneering textbook from 1970, in which they
popularized the ARIMA models together with an iterative approach for fitting
time series models, nowadays called the Box–Jenkins method. Further details
on the history of time series analysis are provided in the books by Klein (1997)
and Mills (2011), the history of ARMA models is sketched by Nie & Wu (2013),
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Introduction 3

and more recent developments are covered by Tsay (2000) and Pevehouse &
Brozek (2008).

From now on, let (xt)0
denote a time series stemming from the

stochastic process (Xt) ; to simplify notations, we shall later often use
 = ℤ ∶= {… ,−1, 0, 1,…} (full set of integers) or  = ℕ0 ∶= {0, 1,…} (set
of non-negative integers). In the literature, we find several recent textbooks
on time series analysis, for example the ones by Box et al. (2015), Brockwell
& Davis (2016), Cryer & Chan (2008), Falk et al. (2012), Shumway & Stoffer
(2011) amd Wei (2006). Typically, these textbooks assume that the random
variables Xt are continuously distributed, with the possible outcomes of the
process being real numbers (the Xt are assumed to have the range ℝ, where ℝ
is the set of real numbers). The models and methods presented there are
designed to deal with such real-valued processes.

In many applications, however, it is clear from the real context that the
assumption of a continuous-valued range is not appropriate. A typical example
is the one where the Xt express a number of individuals or events at time t,
such that the outcome is necessarily integer-valued and hence discrete. If the
realization of a random variable Xt arises from counting, then we refer to it
as a count random variable: a quantitative random variable having a range
contained in the discrete set ℕ0 of non-negative integers. Accordingly, we
refer to such a discrete-valued process (Xt) as a count process, and to (xt)0

as a count time series. These are discussed in Part I of this book. Note that
also the two initial data examples in Figures 1.1 and 1.2 are discrete-valued,
consisting of counts observed in time. Since the range covered by these time
series is quite large, they are usually treated (to a good approximation) as being
real-valued. But if this range were small, as in the case of “low counts”, it would
be misleading if ignoring the discreteness of the range.

An example of a low counts time series is shown in Figure 1.3, which gives
the weekly number of active offshore drilling rigs in Alaska for the period
1990–1997; see Example 2.6.2 for further details. The time series consists
of only a few different count values (between 0 and 6). It does not show an
obvious trend or seasonal component, so the underlying process appears
to be stationary. But it exhibits rather long runs of values that seem to be
due to a strong degree of serial dependence. This is in contrast to the time
series plotted in Figure 1.4, which concerns the weekly numbers of new infec-
tions with Legionnaires’ disease in Germany for the period 2002–2008 (see
Example 5.1.6). This has clear seasonal variations: a yearly pattern. Another
example of a low counts time series with non-stationary behavior is provided
by Figure 1.5, where the monthly number of “EA17” countries with stable
prices (January 2000 to December 2006 in black, January 2007 to August 2012
in gray) is shown. As discussed in Example 3.3.4, there seems to be a structural
change during 2007. If modeling such low counts time series, we need models
that not only account for the discreteness of the range, but which are also able
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Figure 1.3 Weekly counts of active offshore drilling rigs in Alaska (1990–1997),
see Example 2.6.2.
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Figure 1.4 Weekly counts of new infections with Legionnaires’ disease in Germany
(2002–2008); see Example 5.1.6.
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Figure 1.5 Monthly counts of “EA17” countries with stable prices from January 2000 to
August 2012; see Example 3.3.4.
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to deal with features of this kind. We shall address this topic in Part I of the
present book.

All the data examples given above are count time series, which are the
most common type of discrete-valued time series. But there is also another
important subclass, namely categorical time series, as discussed in Part II of
this book. For these, the outcomes stem from a qualitative range consisting
of a finite number of categories. The particular case of only two categories is
referred to as a binary time series. For the qualitative sleep status data shown
in Figure 1.6, the six categories ‘qt’, …, ‘aw’ exhibit at least a natural ordering,
so we are concerned with an ordinal time series. In other applications, not
even such an inherent ordering exists (nominal time series). Then a time
series plot such as the one in Figure 1.6 is no longer possible, and giving
a visualization becomes much more demanding. In fact, the analysis and
modeling of categorical time series cannot be done with the common textbook
approaches, but requires tailor-made solutions; see Part II.

For real-valued processes, autoregressive moving-average (ARMA) models
are of central importance. With the (unobservable) innovations1 (𝜖t)ℤ being
independent and identically distributed (i.i.d.) random variables (white noise;
see Example B.1.2 in Appendix B), the observation at time t of such an ARMA
process is defined as a weighted mean of past observations and innovations,

Xt = 𝛼1 ⋅ Xt−1 +…+ 𝛼p ⋅ Xt−p + 𝜖t − 𝛽1 ⋅ 𝜖t−1 −…− 𝛽q ⋅ 𝜖t−q. (1.1)

In other words, it is explained by a part of its own past as well as by an
interaction of selected noise variables. Further details about ARMA models
are summarized in Appendix B.3. Although these models themselves can be
applied only to particular types of processes (stationary, short memory, and
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Figure 1.6 Successive EEG sleep states measured every minute; see Example 6.1.1.

1 For continuous-valued ARMA models, the innovations (𝜖t)ℤ are commonly referred to as the
error or noise process.
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so on), they are at the core of several other models, such as those designed
for non-stationary processes or processes with a long memory. In particular,
the related generalized autoregressive conditional heteroskedasticity (GARCH)
model, with its potential for application to financial time series, has become
very popular in recent decades; see Appendix B.4.1 for further details. A com-
prehensive survey of models within the “ARMA alphabet soup” is provided by
Holan et al. (2010). A brief summary and references to introductory textbooks
in this field can be found in Appendix B.

In view of their important role in the modeling of real-valued time series, it
is quite natural to adapt such ARMA approaches to the case of discrete-valued
time series. This has been done both for the case of count data and for the
categorical case, and such ARMA-like models serve as the starting point of our
discussion in both Parts I and II. In fact, Part I starts with an integer-valued
counterpart to the specific case of an AR(1) model, the so-called INAR(1)
model, because this simple yet useful model allows us to introduce some
general principles for fitting models to a count time series and for checking the
model adequacy. Together with the discussion of forecasting count processes,
also provided in Chapter 2, we are thus able to transfer the Box–Jenkins
method to the count data case. In the context of introducing the INAR(1)
model, the typical features of count data are also discussed, and it will become
clear why integer-valued counterparts to the ARMA model are required; in
other words, why we cannot just use the conventional ARMA recursion (1.1)
for the modeling of time series of counts.

ARMA-like models using so-called “thinning operations”, commonly
referred to as INARMA models, are presented in Chapter 3. The INAR(1)
model also belongs to this class, while Chapter 4 deals with a modification of
the ARMA approach related to regression models; the latter are often termed
INGARCH models, although this is a somewhat misleading name. More gen-
eral regression models for count time series, and also hidden-Markov models,
are discussed in Chapter 5. As this book is intended to be an introductory
textbook on discrete-valued time series, its main focus is on simple models,
which nonetheless are quite powerful in real applications. However, references
to more elaborate models are also included for further reading.

In Part II of this book, we follow a similar path and first lay the foundations
for analyzing categorical time series by introducing appropriate tools, for
example for their visualization or the assessment of serial dependence; see
Chapter 6. Then we consider diverse models for categorical time series
in Chapter 7, namely types of Markov models, a kind of discrete ARMA
model, and again regression and hidden-Markov models, but now tailored to
categorical outcomes.

So for both count and categorical time series, a variety of models are pre-
pared here to be used in practice. Once a model has been found to be adequate
for the given time series data, it can be applied to forecasting future values.
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The issue of forecasting is considered in several places throughout the book,
as it constitutes the most obvious field of application of time series modeling.
But in line with the seminal time series book by Box & Jenkins (1970), another
application area is also covered here, namely the statistical monitoring of a pro-
cess; see Part III. Chapter 8 addresses the monitoring of count processes, with
the help of so-called control charts, while Chapter 9 presents diverse control
charts for categorical processes. The aim of process monitoring (and particu-
larly of control charts) is to detect changes in an (ongoing) process compared to
a hypothetical “in-control” model. Initially used in the field of industrial statis-
tics, approaches for process monitoring are nowadays used in areas as diverse
as epidemiology and finance.

The book is completed with Appendix A, which is about some common
count distributions, Appendix B, which summarizes some basics about
stochastic processes and real-valued time series, and with Appendix C, which
is on computational aspects (software implementation, datasets) related to
this book.
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