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1
Estimating Population Parameters

I don’t know how long I stand there. I don’t believe I’ve ever stood there mourning faithfully in
a downpour, but statistically speaking it must have been spitting now and then, there must have
been a bit of a drizzle once or twice.

(from The Misfortunates, Dimitri Verhulst, pp. 125–126)

A major goal in statistics is to make statements about populations or processes. Often, the
interest is in specific parameters of the distributions or densities of the populations or processes
under study. For instance, researchers in political science want to make statements about the
proportion of a population that votes for a certain political party. Industrial engineers want to
make statements about the proportion of defective smartphones produced by a production pro-
cess. Bioscience engineers are interested in comparing the mean amounts of growth resulting
from applying two or more different fertilizers. Economists are interested in income inequality
and may want to compare the variance in income across different groups.

To be able to make such statements, the proportions, means, and variances under study
need to be quantified. In statistical jargon, we say that these parameters need to be estimated.
It is also important to quantify how reliable each of the estimates is, in order to judge the
confidence we can have in any statement we make. This chapter discusses the properties of
the most important sample statistics that are used to make statements about population and
process means, proportions, and variances.

1.1 Introduction: Estimators Versus Estimates

In practice, population parameters such as 𝜇, 𝜎2, 𝜋, and 𝜆 (see our book Statistics with JMP:
Graphs, Descriptive Statistics and Probability) are rarely known. For example, if we study
the arrival times of the customers of a bank, we know that the number of arrivals per unit of
time often follows a Poisson1 distribution. However, we do not know the exact value of the

1 The Poisson distribution is commonly used for random variables representing a certain number of events per unit
of time, per unit of length, per unit of volume, and so on. The Poisson distribution has one parameter 𝜆, which is the
average number of events per unit of time, per unit of length, per unit of volume, and so on. For more details, see
Statistics with JMP: Graphs, Descriptive Statistics and Probability.

Statistics with JMP: Hypothesis Tests, ANOVA and Regression, First Edition. Peter Goos and David Meintrup.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/goosandmeintrup/JMP
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distribution’s parameter 𝜆. One way or another, we therefore need to estimate this parameter.
This estimate will be based on a number of measurements or observations, x1, x2,… , xn, that
we perform in the bank; in other words, on the sample data we collect.

The estimate for the unknown 𝜆 will be a function of the sample values x1, x2,… , xn; for
example, the sample mean x. Every researcher who faces the same problem, studying the arrival
pattern of customers, will obtain different sample values, and thus a different sample mean
and another estimate. The reason for this is that the number of arrivals in the bank in a given
time interval is a random variable. We can express this explicitly by using uppercase letters X1,
X2,… , Xn for the sample observations. The fact that each researcher obtains another estimate
for 𝜆 can also be made more explicit by using a capital letter to denote the sample mean: X.
The sample mean is interpreted as a random variable, and then it is called an estimator instead
of an estimate. In short, an estimate is always a real number, while an estimator is a random
variable the value of which is not yet known.

The sample mean is, of course, only one of many possible functions of the sample observa-
tions X1, X2,… , Xn, and thus only one of many possible estimators. Obviously, a researcher is
not interested in an arbitrary function of the sample observations, but he wants to get a good
idea of the unknown parameter. In other words, the researcher wishes to obtain an estimate
that, on average, is equal to the unknown parameter, and that, ideally, is guaranteed to be close
to the unknown parameter. Statisticians translate these requirements into “the estimator should
be unbiased” and “the estimator should have a small variance”. These requirements will be
clarified in the next section.

1.2 Estimating a Mean Value

The requirements for a good estimator can best be illustrated by means of two simulation
studies. The first study simulates data from a normally distributed population, while the
second one simulates data from an exponentially distributed population.

1.2.1 The Mean of a Normally Distributed Population

We first assume that a normally distributed population with mean 𝜇 = 3000 and standard
deviation 𝜎 = 100 is studied by 1000 (fictitious) students. The students are unaware of the 𝜇

value and wish to estimate it. To this end, each of these students performs five measurements.
A first option to estimate the unknown value 𝜇 is to calculate the sample mean. In this way,
we obtain 1000 sample means, shown in the histogram in Figure 1.1, at the top left. The mean
of these 1000 sample means is 2998.33, while the standard deviation is 43.38.

Another possibility to estimate the unknown 𝜇 is to calculate the median. For a normally
distributed population, both the median and the expected value are equal to the parameter 𝜇, so
that this makes sense. Based on the samples that the students have gathered, the 1000 medians
can also be calculated and displayed in a histogram. The resulting histogram is shown in Figure
1.1, at the top right2. The attentive reader will notice immediately that the second histogram is

2 Outputs as in Figures 1.1 and 1.2 can be created in JMP with the “Distribution” option in the “Analyze”
menu.
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Figure 1.1 Histograms and descriptive statistics for 1000 sample means and medians calculated based
on samples of five observations from a normally distributed population with mean 3000 and standard
deviation 100.
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just a bit wider than the first. Among other things, this is reflected by the fact that the standard
deviation of the 1000 medians is 53.43. The mean of the 1000 medians is equal to 2999.08. In
Figure 1.1, it can also be seen that the minimum (2841.78) and the first quartile (2962.22) of
the sample medians are smaller than the minimum (2867.56) and the first quartile (2969.25)
of the sample means. Also, the maximum (3161.64) and the third quartile (3033.51) of the
sample medians are greater than the maximum (3140.35) and the third quartile (3027.80) of
the sample means. This suggests that the sample medians are, in general, further away from
the population mean 𝜇 = 3000 than the sample means.

It is striking that both the mean of the 1000 sample means (2998.33) and that of the 1000
medians (2999.08) are very close to 3000. If the number of samples is raised significantly
(theoretically, an infinite number of samples could be taken), the mean of the sample means
and that of the sample medians will converge to the unknown 𝜇 = 3000. Therefore, both the
sample mean and the sample median are called unbiased estimators of the mean of a normally
distributed population.

The fact that the range, the interquartile range, the standard deviation, and the variance of the
1000 sample means are smaller than those of the 1000 sample medians means that the sample
mean is a more reliable estimator of the unknown population mean than the sample median.
The larger variance of the medians indicates that the medians are generally further away from
𝜇 = 3000 than the sample means. In short, a researcher should have more confidence in the
sample mean because it is usually closer to the unknown 𝜇. In such a case, we say that one
estimator (here, the sample mean) is more efficient or precise than the other (here, the median).

1.2.2 The Mean of an Exponentially Distributed Population

We now investigate an exponentially distributed population with parameter 𝜆 = 1∕100. The
“unknown” population mean is therefore 𝜇 = 1∕𝜆 = 100 (see Statistics with JMP: Graphs,
Descriptive Statistics and Probability). Each of the 1000 fictitious students performs five
measurements. A first option to estimate the unknown value 𝜇 is again to calculate the sample
mean. A histogram of the 1000 sample means is shown in Figure 1.2, at the top left. The mean
of these 1000 sample means is 99.2417, while the standard deviation is 44.10.

Based on the samples that the students have gathered, the 1000 medians can also be
calculated and displayed in a histogram. This histogram is shown in Figure 1.2, at the top
right. The mean of the 1000 medians is only 77.0114.

These calculations indicate that the population mean 𝜇 = 1∕𝜆 = 100 can be approximated
fairly well by using the sample means, with a mean of 99.2417. This is not the case for the
medians, the mean value of which is far away from 𝜇. This remains the case if the number of
samples is increased. In this example, for an exponentially distributed population, the median
is not an unbiased but a biased estimator of the population mean.

In addition, Figure 1.2 also shows that the standard deviation of the sample medians (46.13)
is greater than that of the sample means (44.10).

1.3 Criteria for Estimators

Key properties of estimators are their expected values and their variances. These statistics are
related to the concepts of bias and efficiency, respectively.
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Figure 1.2 Histograms and descriptive statistics for 1000 sample means and sample medians calculated
based on samples of five observations from an exponentially distributed population with parameter
𝜆 = 1∕100.
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1.3.1 Unbiased Estimators

An ideal estimator that always produces the exact value of an unknown population parameter
does not exist. As illustrated in the above example, some estimators, namely unbiased estima-
tors, are on average equal to the unknown population parameter, while others systematically
under- or overestimate the parameter. The latter is an undesirable result for a researcher. For-
mally, the definition of an unbiased estimator �̂� for an unknown population parameter 𝜃 is as
follows:

Definition 1.3.1 An estimator �̂� of a population parameter 𝜃 is unbiased if

E(�̂�) = 𝜃.

The bias of an estimator is the absolute difference V(�̂�) = |E(�̂�) − 𝜃|. An unbiased estimator
has a bias of zero. For an unbiased estimator, the expected value is exactly equal to the
population parameter. The histograms for the sample means on the left-hand sides of Figures
1.1 and 1.2 show that, once sample data is being used, the estimate will be close to the unknown
population parameter, but not exactly equal to it. So, for any particular sample, even unbiased
estimators result in estimates that differ from the population parameter that is being estimated.

Note that here the symbol �̂� is used to denote an estimator of the unknown population
parameter 𝜃. As usual in statistics, we use Greek letters to denote unknown population param-
eters such as population means, population proportions, or population variances. If we want
to estimate an unknown population parameter, we use an estimator, which is a synonym for an
estimation method. In general in statistics, we indicate this using the symbol �̂� (pronounced
“theta hat”). We will mainly focus on three specific estimators, namely the sample mean, the
sample proportion, and the sample variance. For historical reasons, the symbols X, P̂, and S2

are used for these three estimators instead of �̂�, �̂�, and �̂�2.
The sample mean X is always an unbiased estimator of the population mean (this is proven

in Theorem 1.5.1). Actually, this applies to all linear functions Y =
∑n

i=1 𝛼iXi of sample
observations for which

∑n
i=1 𝛼i = 1, and the sample mean is a special case of such a linear

combination, where each 𝛼i = 1∕n:

X = 1
n

n∑
i=1

Xi =
1
n

(X1 + X2 +⋯ + Xn) = 1
n

X1 +
1
n

X2 +⋯ + 1
n

Xn.

It can be shown that, of all linear functions of X1, X2,… , Xn, for which
∑n

i=1 𝛼i = 1 the sample
mean has the smallest variance3. In other words, the sample mean will usually provide an
estimate that is closer to the population mean than any other linear function Y of X1, X2,… , Xn.

In Theorem 1.7.1, we prove that the sample variance

S2 = 1
n − 1

n∑
i=1

(Xi − X)2

3 Therefore, the sample mean is called the “best linear unbiased estimator”, abbreviated as “BLUE”.
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is an unbiased estimator of a population variance 𝜎2. This theorem also explains why we
divide by n − 1 when computing the sample variance, and not by n. It is important to note that
the sample standard deviation S is a biased estimator of the population standard deviation 𝜎.

Finally, in Section 1.6, we will see that a sample proportion P̂ is a special case of a sample
mean. Its expected value is equal to the population proportion 𝜋, so that P̂ is an unbiased
estimator of 𝜋.

1.3.2 The Efficiency of an Estimator

It is desirable that an estimator is as reliable as possible and yields estimates that are close to
the unknown population parameter under investigation. In short, the estimator should have a
small variance or standard deviation. An estimator with a small variance is called an efficient
estimator.

If �̂�1 and �̂�2 are two unbiased estimators of the same unknown population parameter 𝜃, the
relative efficiency of �̂�2 compared to �̂�1 is computed as var(�̂�1)∕var(�̂�2).

Sometimes, we have the choice between an estimator that is unbiased but has a large variance,
and an estimator that is biased but has a small variance. In this case, it is not immediately
clear which estimator should be used. To make a decision in such situations, one can pick the
estimator that has the smaller mean squared error, MSE(�̂�):

Definition 1.3.2 The mean squared error of an estimator �̂� is the sum of its variance and
the square of its bias:

MSE(�̂�) = var(�̂�) + [V(�̂�)]2.

Finally, it is also desirable that the precision of an estimator increases with the number of
observations. More observations provide more information, so that better estimates can be
expected. For example, Theorem 1.5.2 shows that the variance of the sample mean is equal
to 𝜎2∕n. The variance decreases as the sample size n increases. The precision of the sample
mean is thus improved when more data is used.

1.4 Methods for the Calculation of Estimators

Finding estimators with good properties is not always easy. In the statistical literature4, three
methods are frequently used:

(1) the method of moments;
(2) the method of least squares; and
(3) the maximum likelihood method.

These general methods are beyond the scope of this book. This book primarily focuses
on the following estimators: sample means, sample proportions, and sample variances. In the
remainder of this chapter, each of these estimators is shown to be unbiased, and the probability
density of each estimator is discussed.

4 See Statistics with JMP: Linear and Generalized Linear Models.
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1.5 The Sample Mean

1.5.1 The Expected Value and the Variance

If the sample mean is considered as an estimator and thus as a random variable, we can
determine the expected value, the variance, and even the probability density. The sample mean
is then written using a capital letter,

X = 1
n

n∑
i=1

Xi,

to indicate this explicitly. We consider the sample mean as an estimator or a random variable
as long as we have no data; that is, the individual observations X1, X2,… , Xn are not known.
Once the data has been collected, we use lowercase letters for the individual observations:
x1, x2,… , xn. For the sample mean that we compute based on the observed values x1, x2,… , xn,
we also use a lowercase letter:

x = 1
n

n∑
i=1

xi.

Theorem 1.5.1 For a random sample from a population with expected value 𝜇, we have

E(X) = 𝜇.

Proof.

E(X) = E
(1

n

n∑
i=1

Xi

)
,

= 1
n

n∑
i=1

E(Xi),

= 1
n

(𝜇 + 𝜇 +⋯ + 𝜇),

= n𝜇
n

,

= 𝜇.

This theorem states that before sample data is obtained, the expected value of the sample
mean is equal to the population mean. In other words, the theorem states that the sample mean
is an unbiased estimator of the population mean.

Once we have sample observations x1, x2,… , xn, the sample mean is x. Of course, this sample
mean will not be exactly equal to 𝜇. This was already illustrated in Section 1.2, where each
student obtained a different sample mean. To get an idea of the size of the possible deviation
between the sample mean X and the population mean 𝜇, one should study the variance and
standard deviation of X. Figure 1.1 showed that the standard deviation of the sample means of
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1000 (fictitious) students was equal to 43.38, while the original population of the individual
values had a standard deviation of 100. In general, the standard deviation of a sample mean is
lower than the standard deviation of the population studied. The same is true for the variance.
The next theorem tells us how much smaller the variance of a sample mean is.

Theorem 1.5.2 For a random sample of n observations from a population with variance 𝜎2,
we have

𝜎2
X
= var(X) = 𝜎2

n

and

𝜎X = 𝜎√
n
.

Proof.

𝜎2
X
= var(X) = var

(1
n

n∑
i=1

Xi

)
,

= 1
n2

n∑
i=1

var(Xi),

= 1
n2

(𝜎2 + 𝜎2 +⋯ + 𝜎2),

= n𝜎2

n2
,

= 𝜎2

n
.

In the second step of this proof, it is assumed that the covariance between two different
sample observations, Xi and Xj, is equal to zero. In that case, the variance of a linear com-
bination of random variables is equal to a linear combination of the variances, with squared
coefficients5.

5 In Statistics with JMP: Graphs, Descriptive Statistics and Probability, we show that

var(aX + bY) = a2var(X) + b2var(Y) + 2abcov(X, Y),

which can be simplified to
var(aX + bY) = a2var(X) + b2var(Y)

if the random variables X and Y are independent or uncorrelated (and thus cov(X, Y) = 0). This result can be generalized
to scenarios involving more than two random variables.
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The proof shows that the variance of the sample mean decreases linearly when the sample
size n increases. This means that as the sample size increases, the probability that the sample
mean x is close to (the unknown) 𝜇 increases as well.

The square root of the variance, namely 𝜎X , is called the standard error. The estimated

version of this statistic, namely s∕
√

n, can be found in the reports of statistical packages.
Figures 1.1 and 1.2 illustrate that the standard error6 is also reported in JMP, namely as “Std
Err Mean”. It is not difficult to verify that the standard error in these figures is a factor of√

n =
√

1000 = 31.62 smaller than the corresponding standard deviation (abbreviated as “Std
Dev”).

1.5.2 The Probability Density of the Sample Mean for a Normally
Distributed Population

If the sample is drawn from a normally distributed population, we can use the following
theorem.

Theorem 1.5.3 Let X1, X2,… , Xk be independent normally distributed random vari-
ables with expected values E(X1) = 𝜇1, E(X2) = 𝜇2,… , E(Xk) = 𝜇k and variances var(X1) =
𝜎2

1 , var(X2) = 𝜎2
2 ,… , var(Xk) = 𝜎2

k . Then, the linear function Y = 𝛼0 +
∑k

i=1 𝛼iXi is also

normally distributed, with expected value E(Y) = 𝛼0 +
∑k

i=1 𝛼i𝜇i and variance var(Y) =∑k
i=1 𝛼

2
i 𝜎

2
i .

It follows from this theorem that the mean of a number of normally distributed random
variables with the same mean 𝜇 and the same variance 𝜎2 is also normally distributed. Indeed,
the mean of the variables X1, X2,… , Xn is a linear function with 𝛼0 = 0 and 𝛼i = 1∕n for i ≥ 1.
In this case, the sample mean X is normally distributed with mean 𝜇 and variance 𝜎2∕n. We
denote this by

X ∼ N

(
𝜇,

𝜎2

n

)
.

This result is valid for any sample size – also for a small one – and is illustrated in Section
1.5.4.

1.5.3 The Probability Density of the Sample Mean for a Nonnormally
Distributed Population

If the population under investigation has an unknown probability density or probability distri-
bution, the probability distribution of the sample mean typically cannot be determined exactly.

6 The standard error can be calculated in JMP using the menu “Analyze” and the option “Distribution”.
An alternative way to obtain the standard error for a particular variable in a data table is to use the “Summary”
option in the “Tables” menu, and to choose “Std Err” in the “Statistics” drop-down menu that then
becomes available.
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In this case, however, a large sample size may help, because the central limit theorem can be
used for large samples. One version of this theorem, namely Theorem 1.5.6, indeed indicates
that the sample mean is approximately normally distributed for large n, with mean 𝜇 and
variance 𝜎2∕n.

The central limit theorem is one of the main theorems of statistics. This theorem also
explains to a large extent why the normal probability density is so crucial in statistics. There
are different versions of this theorem.

Theorem 1.5.4 Let X1, X2,… , Xn be independent random variables with expected values
E(Xi) = 𝜇i and variances var(Xi) = 𝜎2

i . Then, under very general conditions and for a suffi-
ciently large value of n:

(1) the random variable Y =
∑n

i=1 Xi is approximately normally distributed with mean 𝜇Y =∑n
i=1 𝜇i and variance 𝜎2

Y = var(Y) =
∑n

i=1 𝜎
2
i ;

(2) and, consequently, the random variable

Y −
n∑

i=1

𝜇i√√√√ n∑
i=1

𝜎2
i

approximately follows a standard normal distribution.

The general conditions mentioned in the theorem refer to the fact that none of the individual
variances 𝜎2

i makes a dominant contribution to the total variance of Y . In many practical
applications of the central limit theorem, all random variables X1, X2,… , Xn have the same
distribution or density, and therefore the same variance. In that case, this condition is auto-
matically met. If all random variables X1, X2,… , Xn have the same distribution or density, the
central limit theorem can be rewritten as follows:

Theorem 1.5.5 Let X1, X2,… , Xn be independent random variables with expected value
E(Xi) = 𝜇 and variance var(Xi) = 𝜎2. Then, for a sufficiently large value of n:

(1) the random variable Y =
∑n

i=1 Xi is approximately normally distributed with mean 𝜇Y =
n𝜇 and variance 𝜎2

Y = var(Y) = n𝜎2;
(2) and, consequently, the random variable

Y − n𝜇

𝜎
√

n

approximately follows a standard normal distribution.

The central limit theorem can also be formulated in terms of the sample mean X = Y∕n:
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Theorem 1.5.6 Let X1, X2,… , Xn be independent random variables with expected value
E(Xi) = 𝜇 and variance var(Xi) = 𝜎2. Then, for a sufficiently large value of n:

(1) the random variable X = Y
n
=

∑n
i=1 Xi

n
is approximately normally distributed with mean 𝜇

and variance 𝜎2

n
;

(2) and, consequently, the random variable

X − 𝜇
𝜎√

n

approximately follows a standard normal distribution.

An important practical question is how large the sample size n must be before one can apply
the central limit theorem. There is no general answer to this question. The required size of n
depends on the distribution or density of the individual random variables Xi:

� If the probability density of Xi is similar to the normal density, n = 5 is sufficient.
� If the probability density of Xi does not show any pronounced peaks – such as, for example,

the uniform density – then n = 12 should be sufficient.
� If the probability distribution or density of Xi shows pronounced peaks, it is difficult to

specify a value of n. A value of n = 100 will usually suffice. An example of a distribution
with a peak is P(X = 1) = 0.06 and P(X = 10) = 1 − P(X = 1) = 0.94.

� For continuous variables that appear in practice, typically n = 25 or n = 30 is sufficient.

In the next section, the third version of the central limit theorem (Theorem 1.5.6) is illustrated
in detail, using simulations.

1.5.4 An Illustration of the Central Limit Theorem

Suppose that some students are interested in the value of the Euro Stoxx 50 index, which
summarizes the performance of the 50 most important stocks inside the eurozone. Student 1
will take a sample of n observations of the Euro Stoxx 50 index and calculate the mean, namely
X1. Student 2 will also take a sample of n observations. Since the Euro Stoxx 50 index changes
from minute to minute, Student 2 will obviously observe different values of the Euro Stoxx 50
index (unless, by coincidence, the two students make their observations at exactly the same
times). Student 2 also calculates the mean of his sample: X2. In the same way, all students
collect n observations and calculate their sample means. If there are 200 students, we finally
obtain 200 sample means: X1, X2,… , X200.

The third version of the central limit theorem now states that these 200 means have a
distribution that is very similar to that of the normal density. With a histogram of these 200
means, this is easy to verify.

This is exactly what we will do in this section. We will not use real students, but we
will simulate the scenario sketched above in JMP. To this end, we will create 200 samples
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of n observations (one for each hypothetical student), calculate the mean for each sample,
and create a histogram of the 200 sample means. This simulation requires that we specify a
probability distribution or probability density in JMP for the generation of the observations.

We start with a normal distribution. Hence, we first assume that the Euro Stoxx 50 index
behaves like a normally distributed random variable. We use 𝜇 = 3000 as the mean of this
normal distribution (more or less the value of the index when work on this book was started
in March 2014), and we choose 𝜎 = 100 as the standard deviation. We assume that all of the
students’ observations are independent of each other.

Normally Distributed X

First, suppose that each student collects a sample of five observations; in other words, that
n = 5. In this scenario, we need to simulate 200 sets of five observations using JMP. To this end,
we create a JMP data table with 200 rows and five columns, filled with pseudo-random numbers
from a normal probability density with parameters 𝜇 = 3000 and 𝜎 = 100. The formula we
use for each of the five columns is “Random Normal(3000, 100)”. We calculate the mean
of the five observations in each row, and then display all means in a histogram. If we create
a second data table in the same way, this corresponds to a second group of 200 hypothetical
students who also collect samples of five observations. Two possible histograms obtained in
this way are shown in Figure 1.3. The resulting histograms are quite bell-shaped, indicating
that the sample means are normally distributed, as predicted by Theorem 1.5.6 (and also
Theorem 1.5.3, because, here, we assume that the observations are normally distributed).

The fastest way to generate 200 new samples is to ask JMP to recalculate the formula
“Random Normal(3000, 100)”. This is done using the command “Rerun Formulas”,
which appears when you click on the hotspot (red triangle) menu next to the name of the data
table. This is illustrated in Figure 1.4.

If each student takes samples of 20 instead of five observations, the histograms have a
different shape: they are still bell-shaped but they are significantly narrower. Two histograms
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Mean

2950290028502800

(a) (b)

Figure 1.3 Two histograms of 200 sample means for normally distributed data and samples of five
observations.
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Figure 1.4 Generating new pseudo-random observations in JMP with the option “Rerun Formu-
las”.

for 200 sample means of samples with 20 observations are shown in Figure 1.5. The bell shape
tells us that the sample means are still normally distributed. The fact that the histograms are
narrower should not come as a surprise, since the central limit theorem and Theorem 1.5.3
imply that the variance of the sample mean is equal to 𝜎2∕n. As a consequence, sample means
of 20 observations have a variance that is four times smaller than the variance of sample means
of five observations.

Uniformly Distributed X

Suppose that the value of the Euro Stoxx 50 index is not normally distributed, but is uniformly
distributed between 2800 and 3200. First, suppose again that each student takes a sample of

32003150310030503000
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Mean

2950290028502800

(a) (b)

Figure 1.5 Two histograms of 200 sample means for normally distributed data and samples of 20
observations.
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(a) (b)

Figure 1.6 Two histograms of 200 sample means for uniformly distributed data and samples of five
observations.

five observations. For this new scenario involving the uniform density, we again simulate 200
samples of five observations using JMP. To this end, we need to enter the formula “Random
Uniform(2800, 3200)” in five columns of a data table with 200 rows. For each sample of
five observations, we calculate the mean, and then we display all means in a histogram. Two
possible histograms obtained in this way are shown in Figure 1.6. It is striking that, again,
the histograms are quite bell-shaped, indicating that the sample means are still approximately
normally distributed, even though the original data is uniformly distributed.

When the students take samples of 20 instead of five observations, the corresponding bell-
shaped histograms are significantly narrower. Two histograms for 200 means of samples of 20
observations are shown in Figure 1.7.

32003150310030503000
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Mean

2950290028502800

(a) (b)

Figure 1.7 Two histograms of 200 sample means for uniformly distributed data and samples of 20
observations.
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Figure 1.8 Two histograms of 200 sample means for Bernoulli distributed data and samples of five
observations.

Bernoulli Distributed X

Now, suppose that the value of the Euro Stoxx 50 index is Bernoulli distributed, with a 50%
chance that its value is 2800 and a 50% chance that its value is 3200. First, suppose again that
each student takes a sample of five observations. We again need to simulate 200 samples of five
observations using JMP. This time, we need to enter the formula “2800 + 400 ∗ Random
Binomial(1, 0.5)” in five columns of a data table with 200 rows. For each sample of five
observations, we calculate the mean, and display the resulting 200 means in a histogram. Two
possible histograms obtained in this way are shown in Figure 1.8. This time, the histograms are
not bell-shaped. It is clearly visible that the original data comes from a discrete distribution,
namely the Bernoulli distribution. The central limit theorem does not seem to work for the
Bernoulli distribution and a sample of five observations.

When, however, the students take samples of 20 instead of five observations, the histograms
look totally different. Although the histograms still do not exhibit a perfect bell shape, it is
no longer obvious that the original data had a discrete probability distribution. Two possible
histograms for 200 sample means of samples with 20 observations are shown in Figure 1.9. In
order to obtain an even better bell shape, a slightly larger sample size is required.

This last example demonstrates that the central limit theorem is very powerful. Even prob-
ability distributions or probability densities that are quite different from the normal density
still lead to distributions of sample means that are approximately normal, provided that the
number of observations is sufficiently large.

1.6 The Sample Proportion

A sample proportion is a special case of the sample mean. Oftentimes, a variable under study
can only take the values 0 or 1. Examples of such variables are gender (male/female) or
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Figure 1.9 Two histograms of 200 sample means for Bernoulli distributed data and samples of 20
observations.

quality (defective/not defective). In general, the terms “success” and “failure” are used. The
unknown population proportion is denoted by the letter 𝜋. This unknown population proportion
indicates the proportion of successes in the entire population and is estimated using the sample
proportion, which is simply the relative frequency of successes in a sample:

Definition 1.6.1 The sample proportion is the number of successes in a sample divided by
the number of observations.

We can consider the sample proportion as a random variable or as a computed real number.
We consider the sample proportion as a random variable as long as no sample data has been
obtained. In that case, we use the symbol P̂ to denote the sample proportion. If data is available
and the sample proportion has been calculated, we use the symbol p̂. For the sample proportion
as random variable, we also use the symbol P̂ to avoid confusion with a probability, which is
typically denoted by the letter P.

If we adopt the convention of assigning the value “1” to the random variable Xi when the
ith observation is a success, and the value “0” in the event of a failure, then we have

P̂ = 1
n

n∑
i=1

Xi = X,

which shows that a sample proportion is actually a sample mean. Hence, the central limit
theorem can be used: for large samples, the sample proportion is approximately normally
distributed. The expected value and variance of the sample proportion are easily determined.
Indeed, the sample proportion is a sum (and thus a linear combination) of n independent
Bernoulli distributed random variables Xi with parameter 𝜋. As the expected value of a linear
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combination of random variables is equal to the linear combination of the expected values,
we obtain

E(P̂) = E

(
1
n

n∑
i=1

Xi

)
,

= 1
n

E(X1 + X2 +⋯ + Xn),

= 1
n

(
E(X1) + E(X2) +⋯ + E(Xn)

)
,

= 1
n

(𝜋 + 𝜋 +⋯ + 𝜋),

= 1
n

n𝜋,

= 𝜋.

Since the variance of a linear combination of independent random variables is the linear
combination of the variances with squared coefficients, we have

var(P̂) = var

(
1
n

n∑
i=1

Xi

)
,

= 1
n2

var(X1 + X2 +⋯ + Xn),

= 1
n2

(
var(X1) + var(X2) +⋯ + var(Xn)

)
,

= 1
n2

(𝜋(1 − 𝜋) + 𝜋(1 − 𝜋) +⋯ + 𝜋(1 − 𝜋)),

= 1
n2

n𝜋(1 − 𝜋),

= 𝜋(1 − 𝜋)
n

.

The expected value of the sample proportion thus proves to be equal to the population propor-
tion 𝜋, so that the sample proportion is an unbiased estimator of the population proportion. The
variance of the sample proportion is equal to 𝜋(1 − 𝜋)∕n. This variance decreases linearly with
the number of observations, n. In other words, if you collect more data, the sample proportion
will give you a more precise estimate of the population proportion. All this is summarized in
the following theorem:

Theorem 1.6.2 Let X1, X2,… , Xn be independent random variables with only two possible
outcomes, 0 (failure) or 1 (success), and with a probability of success equal to 𝜋. Then, for a
sufficiently large value of n:

(1) the sample proportion P̂ =
∑n

i=1 Xi

n
is approximately normally distributed, with expected

value 𝜋 and variance 𝜋(1 − 𝜋)∕n;
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(2) and, consequently, the random variable

P̂ − 𝜋√
𝜋(1 − 𝜋)

n

approximately follows a standard normal distribution.

As a rule of thumb for using the normal density as an approximation, the conditions n𝜋 > 5
and n(1 − 𝜋) > 5 must be met. If one of these conditions is not valid, the normal distribution
cannot be used for the sample proportion. In that case, the binomial distribution needs to be
used instead of the normal probability density. Indeed, the number of successes in a sample
can be described by a binomially distributed random variable with parameters n and 𝜋, if the
probability of success for each individual observation is equal to 𝜋.

Figures 1.10 and 1.11 illustrate why the normal density can be used if n𝜋 > 5 and
n(1 − 𝜋) > 5. Figure 1.10 shows three binomial distributions for n = 25. Figure 1.10a shows
the binomial distribution for 𝜋 = 0.5. This distribution is nicely symmetrical and almost per-
fectly bell-shaped. In this case, the binomial distribution seems similar to a normal density.
Figure 1.10b shows the binomial distribution for 𝜋 = 0.25. While this distribution is not per-
fectly symmetrical, it still looks bell-shaped and resembles a normal probability density. The
same applies to the binomial distribution with 𝜋 = 0.75 in Figure 1.10c. In all these cases,
n𝜋 > 5 and n(1 − 𝜋) > 5.

Figure 1.11 shows two other binomial distributions, again with n = 25. Figure 1.11a shows
the binomial distribution for 𝜋 = 0.05. This distribution is far from symmetrical. In this
case, the binomial probability distribution does not look like a normal probability density.
Figure 1.11b shows the binomial distribution for 𝜋 = 0.95. Again, the binomial distribution
is neither symmetrical nor bell-shaped. In other words, the binomial probability distribution
does not look like a normal probability density. For 𝜋 = 0.05, the value of n𝜋 is smaller than
5. For 𝜋 = 0.95, the value of n(1 − 𝜋) is smaller than 5.

1.7 The Sample Variance

The sample variance can be viewed as an estimator for the population variance. Thus, just like
the sample mean and the sample proportion, it can also be treated as a random variable. In this
case, we use capital letters to define the sample variance:

S2 = 1
n − 1

n∑
i=1

(Xi − X)2. (1.1)

If we consider the sample variance as an estimate and therefore as a real number, we denote
it by

s2 = 1
n − 1

n∑
i=1

(xi − x)2.
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Figure 1.10 Binomial distributions with n = 25, with both n𝜋 > 5 and n(1 − 𝜋) > 5.

This second notation is used in descriptive statistics (see Statistics with JMP: Graphs, Descrip-
tive Statistics and Probability). Once again, we use capital letters as long as there is no data,
and lowercase letters when sample data has been used.

Like any other random variable, the random variable S2 has an expected value, a variance,
and a probability density.

1.7.1 The Expected Value

Theorem 1.7.1 For a random sample from a population with variance 𝜎2, we have

E(S2) = 𝜎2.
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(b) π = 0.95
Number of successes

(a) π = 0.05
Number of successes

25201510502520151050

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

P
ro

ba
bi

lit
y

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

P
ro

ba
bi

lit
y

Figure 1.11 Binomial distributions with n = 25, with either n𝜋 or n(1 − 𝜋) less than 5.

Proof.

E(S2) = E

{
1

n − 1

n∑
i=1

(Xi − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − 𝜇 + 𝜇 − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − 𝜇)2 + 2
n∑

i=1

(Xi − 𝜇)(𝜇 − X) +
n∑

i=1

(𝜇 − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − 𝜇)2 + 2(𝜇 − X)
n∑

i=1

(Xi − 𝜇) + n(𝜇 − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − 𝜇)2 + 2(𝜇 − X)(nX − n𝜇) + n(𝜇 − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − 𝜇)2 − 2n(𝜇 − X)2 + n(𝜇 − X)2

}
,

= 1
n − 1

E

{
n∑

i=1

(Xi − 𝜇)2 − n(𝜇 − X)2

}
,
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= 1
n − 1

[
n∑

i=1

E{(Xi − 𝜇)2} − nE{(𝜇 − X)2}

]
,

= 1
n − 1

[
n∑

i=1

E{(Xi − 𝜇)2} − nE{(X − 𝜇)2}

]
,

= 1
n − 1

{
n∑

i=1

var(Xi) − n var(X)

}
,

= 1
n − 1

(
n∑

i=1

𝜎2 − n
𝜎2

n

)
,

= 1
n − 1

(n𝜎2 − 𝜎2),

= 𝜎2.

The theorem proves that the sample variance S2 is an unbiased estimator of the population
variance 𝜎2, regardless of the probability distribution or probability density of the population.
In addition, the theorem explains why it is important that we divide by n − 1 instead of n in the
computation of the sample variance. It is important to note that the unbiasedness is a property
of the sample variance, but not of the sample standard deviation S. In general,

E(S) ≠ 𝜎.

This implies that the sample standard deviation S is a biased estimator of the population
standard deviation. We briefly discuss the sample standard deviation in Section 1.8. Before
we discuss the distribution of the sample variance S2, we introduce a new probability density,
namely the 𝜒2-distribution (pronounced “chi-square”).

1.7.2 The 𝜒2-Distribution

Apart from the normal distribution, the 𝜒2-distribution7, which is derived from normal distri-
butions, is a very important family of probability densities. This family has one parameter k,
which is called the degrees of freedom. The probability density of this distribution is

fX(x; k) = x
k
2
−1e−x∕2

Γ
(

k
2

)
2

k
2

, for x > 0.

7 The name of the 𝜒2-distribution derives from the fact that the square of a standard normally distributed random
variable has a 𝜒2-distribution: a random variable is typically denoted by an X and its square by X2, and X is the capital
form of the Greek letter 𝜒 .
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In this expression, Γ() is the so-called gamma function8. The 𝜒2-distribution is a special
case of a gamma distribution (see Statistics with JMP: Graphs, Descriptive Statistics and
Probability). The expected value and variance of a 𝜒2-distributed random variable X with k
degrees of freedom are

𝜇X = E(X) = k

and

𝜎2
X = var(X) = 2k,

respectively. The median is approximately equal to

k
(

1 − 2
9k

)3
.

To indicate that a random variable has a 𝜒2-distribution with k degrees of freedom – that is,
with parameter k – we use the notation

X ∼ 𝜒2
k .

𝜒2-distributions with two, four, eight, and 12 degrees of freedom are shown in Figure 1.12.
Probabilities based on the 𝜒2-distribution can, of course, be computed using JMP. The

probability

P(𝜒2
k ≤ x),

where 𝜒2
k is a 𝜒2-distributed random variable with k degrees of freedom, can be calculated

using the formula “ChiSquare Distribution(x, k)”. If you want to find a quantile
or percentile of a 𝜒2-distributed random variable with k degrees of freedom, the function
“ChiSquare Quantile(p, k)” is available. Some specific quantiles can also be found in
the table in Appendix C.

1.7.3 The Relation Between the Standard Normal and the 𝜒2-Distribution

A sum of k squared independent standard normally distributed random variables X1, X2,… , Xk
is 𝜒2-distributed with k degrees of freedom. In other words, the random variable

Y =
k∑

i=1

X2
i ,

8 The gamma function is an extension of the factorial function for integers n: Γ(n + 1) = n! = n × (n − 1) ×⋯ × 2 × 1.
If z is a positive real number, thenΓ(z) = (z − 1)Γ(z − 1) = ∫ +∞

0 e−t tz−1dt. A special case isΓ(1∕2) =
√
𝜋. In addition,

Γ(2) = Γ(1) = 1! = 0! = 1, and Γ(n) = (n − 1)! for all integers n.
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Figure 1.12 𝜒2-distributions with two, four, eight, and 12 degrees of freedom.

where the Xi are standard normally distributed, is 𝜒2-distributed. The number of degrees
of freedom of the resulting 𝜒2-distribution is equal to the number of independent variables
involved in the sum of squares.

This assertion can easily be verified using JMP. To do so, generate 10 000 sets of eight
pseudo-random numbers from the standard normal density. Next, square all numbers in each
set of eight and sum the squares. Finally, create a histogram of the 10 000 sums of squares. You
can then compare the shape of the histogram with that of the 𝜒2-distribution with eight degrees
of freedom in Figure 1.12. Alternatively, you can compute the mean and the variance of the
10 000 sums of squares that you obtained. The mean should lie close to 8, while the variance
should be close to 16. A histogram that was obtained in this way is shown in Figure 1.13.
As the JMP output in Figure 1.14 shows, the mean of the 10 000 values is 7.9755, while
the variance is 15.8786. Obviously, if you repeat this exercise in JMP by yourself, you will
obtain other pseudo-random numbers and therefore a (slightly) different mean and a (slightly)
different variance.

As the number of degrees of freedom of the 𝜒2-distribution increases, the distribution looks
more and more like a normal probability density. This is a consequence of the central limit
theorem: a 𝜒2-distributed random variable with a large number of degrees of freedom is a
sum of a large number of independent random variables (the square of a standard normally
distributed random variable is, of course, also a random variable), and the central limit theorem
tells us that such a sum is approximately normally distributed. Figure 1.15 compares the
𝜒2-distributions with 25 and 30 degrees of freedom with the normal probability density with
𝜇 = 25 and 𝜎2 = 50 and the normal probability density with 𝜇 = 30 and 𝜎2 = 60, respectively.
The figure clearly shows that, for a large number of degrees of freedom, there is a strong
resemblance between the 𝜒2-distribution and the normal distribution. Figure 1.12 shows that
this resemblance is absent if the number of degrees of freedom is small.
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Figure 1.13 The histogram obtained by generating 10 000 sets of eight (pseudo-random) draws from
a standard normal density, squaring them, and summing the squares.

Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 95% Mean
N
Variance

7.9754589
3.984791

0.0398479
8.0535688
7.897349

10000
15.878559

Summary Statistics

Figure 1.14 The descriptive statistics of the 10 000 (pseudo-random) numbers shown in Figure 1.13.
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Figure 1.15 A comparison of a𝜒2-distribution with k degrees of freedom and the corresponding normal
probability density with 𝜇 = k and 𝜎2 = 2k.
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1.7.4 The Probability Density of the Sample Variance

Starting with the definition of a sample variance in Equation (1.1), it is not difficult to see that
there is a connection between the sample variance and the 𝜒2-distribution. Dividing both sides
of Equation (1.1) by 𝜎2 and multiplying by (n − 1) yields

(n − 1)S2

𝜎2
=

∑n
i=1(Xi − X)2

𝜎2
,

=
n∑

i=1

(
Xi − X

𝜎

)2

.

(1.2)

Replacing the sample mean X in the right-hand side of this expression by the population mean
𝜇, we obtain

n∑
i=1

(
Xi − 𝜇

𝜎

)2

.

If X1, X2,… , Xn are independent normally distributed random variables with expected value
𝜇 and variance 𝜎2, then this expression is a sum of squared independent standard normally
distributed random variables. Accordingly, this expression has a 𝜒2-distribution with n degrees
of freedom.

In Equation (1.2), however, the population mean 𝜇 is estimated by the sample mean X. As
a consequence, the n terms in the sum

n∑
i=1

(Xi − X)2

𝜎2

are not independent. This is due to the fact that

X = 1
n

n∑
i=1

Xi, (1.3)

which implies that the Xi are subject to the following constraint:

n∑
i=1

(Xi − X) = 0.

As a result of this one constraint, the sum in Equation (1.3) contains only n − 1 independent
terms. Therefore, the 𝜒2-distribution of (n − 1)S2∕𝜎2 has only n − 1 degrees of freedom.
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Figure 1.16 The histogram of 10 000 (pseudo-random) values of the random variable (n − 1)S2∕𝜎2.

Theorem 1.7.2 Let X1, X2,… , Xn be independent normally distributed random variables
with variance 𝜎2, and n ≥ 2. Then, the random variable

(n − 1)S2

𝜎2

has a 𝜒2-distribution with n − 1 degrees of freedom.

These theoretical results can also be verified using JMP. To do so, we can generate 10 000
sets of eight numbers from a normal density. We determine the sample variance for each of
these 10 000 sets, multiply it by n − 1 = 7, and divide the result by 𝜎2. A histogram of 10 000
values obtained in this way is shown in Figure 1.16. The mean of all these numbers is 7.0280
(see Figure 1.17), which indicates that the underlying 𝜒2-distribution has only seven degrees of
freedom instead of eight. The histogram in Figure 1.16 looks a lot like the one in Figure 1.13
(generated from a 𝜒2-distribution with eight degrees of freedom). However, the difference
between the two histograms is that the maximum is reached slightly earlier in Figure 1.16 than
in the histogram in Figure 1.13, as a result of the smaller number of degrees of freedom of the
distribution in Figure 1.16.

Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 95% Mean
N
Variance

7.0280156
3.7366969
0.037367

7.1012624
6.9547688

10000
13.962903

Summary Statistics

Figure 1.17 The descriptive statistics of the 10 000 (pseudo-random) values of the random variable
(n − 1)S2∕𝜎2 shown in Figure 1.16.
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Now that the probability density of the sample variance is known, we can determine the
variance of the sample variance. We know that the variance of a 𝜒2-distributed random variable
with k degrees of freedom is equal to 2k. Thus a 𝜒2-distributed random variable with n − 1
degrees of freedom has a variance of 2(n − 1). Therefore,

var

{
(n − 1)S2

𝜎2

}
= 2(n − 1).

Hence,

(n − 1
𝜎2

)2
var(S2) = 2(n − 1),

and

var(S2) = 2(n − 1)

(
𝜎2

n − 1

)2

= 2𝜎4

n − 1
.

The variance of the sample variance S2 thus decreases with the number of observations in the
sample, n. In other words, the sample variance is a more precise and efficient estimator when a
larger amount of data is used. The same applies to the sample mean and the sample proportion.

Finally, it should be emphasized that the use of the 𝜒2-distribution in the context of sample
variances is only valid for normally distributed variables X1, X2,… , Xk. In other words, if
you study a nonnormally distributed population, you should not assume that (n − 1)S2∕𝜎2 has
a 𝜒2-distribution. Therefore, the above expression for the variance of the sample variance,
var(S2), is also invalid for nonnormally distributed populations.

1.8 The Sample Standard Deviation

The sample standard deviation S is the square root of the sample variance S2:

S =

√√√√ 1
n − 1

n∑
i=1

(Xi − X)2.

In Section 1.7.1, we showed that the sample variance is an unbiased estimator of the population
variance. However, the sample standard deviation turns out to be a biased estimator of the
population standard deviation. It can be shown that

E(S) < 𝜎,

so that the sample standard deviation S generally underestimates the population standard
deviation 𝜎.
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If the population under investigation is normally distributed, a bias correction can be applied
to eliminate the systematic underestimation. This correction is based on the fact that

E(S) = 𝜎

√
2

n − 1
⋅

Γ
(

n
2

)
Γ
(

n−1
2

) , (1.4)

where Γ() again represents the gamma function. The bias correction factor√
2

n − 1
⋅

Γ
(

n
2

)
Γ
(

n−1
2

)
is referred to as c4 in the statistical literature.

It follows from the expression for the expected value of S in Equation (1.4) that the corrected
sample standard deviation

S∗ = S
c4

= S

√
n − 1

2
⋅
Γ
(

n−1
2

)
Γ
(

n
2

)
Table 1.1 Values of the factor c4 and the extent to which the population standard deviation is
underestimated by the sample standard deviation for a normally distributed population.

c4

n Exact Approximation Underestimation (%)

2
√

2

𝜋
0.7979 20.21

3
√
𝜋

2
0.8862 11.38

4 2
√

2

3𝜋
0.9213 7.87

5 3

4

√
𝜋

2
0.9400 6.00

6 8

3

√
2

5𝜋
0.9515 4.85

7 5
√

3𝜋

16
0.9594 4.06

8 16

5

√
2

7𝜋
0.9650 3.50

9
35
√
𝜋

64
0.9693 3.07

10 128

105

√
2

𝜋
0.9727 2.73

100 6511077190

1570338389

√
2

11𝜋
0.9975 0.25
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Figure 1.18 Histograms, box plots, and descriptive statistics for the sample standard deviations and
variances of 10 000 samples of eight (pseudo-random) values drawn from a standard normally distributed
population.
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is an unbiased estimator of the population standard deviation 𝜎. The extent to which 𝜎 is
underestimated is larger for a small number of observations. The factor c4 is approximately
0.80 or 80% if n = 2. This means that the sample standard deviation yields estimates that are
generally 20% smaller than the population standard deviation. If n is equal to 10, the factor
c4 is approximately 0.97. In that case, the sample standard deviation provides estimates that
are, on average, 3% too low. If the number of observations increases up to 100, then c4 is
nearly equal to 1, and the sample standard deviation is almost an unbiased estimator. Table 1.1
contains a list of values of the factor c4 and the degree of underestimation of the population
standard deviation by the sample standard deviation. Note that in this table, 𝜋 is not a success
probability, but the circle constant 3.1415… .

To illustrate all this, we have used JMP to generate 10 000 samples consisting of eight
pseudo-random numbers drawn from the standard normal probability distribution. As a result,
both the population variance and the population standard deviation are equal to 1 because
the data is generated from the standard normal probability density. For each sample, the
sample standard deviation and the sample variance are computed. Histograms, box plots,
and descriptive statistics for the 10 000 sample standard deviations and sample variances are
shown in Figure 1.18. The mean sample standard deviation is 0.9652, so that the population
standard deviation is underestimated by about 3.5%. This corresponds to the value of c4 and
the underestimation displayed in Table 1.1. The mean sample variance is 1.0002, which is very
close to the population variance of 1. This illustrates that the sample variance is an unbiased
estimator of the population variance. The variance of the 10 000 sample variances is 0.2863,
which is close to the theoretical value of 2𝜎4∕(n − 1) = 2 × 14∕(8 − 1) = 2∕7 = 0.2857.

1.9 Applications

The derived probability densities for the sample mean, the sample proportion, and the sample
variance are the cornerstones for the remaining chapters of the book. The normal (and there-
fore also the standard normal) distribution, and the 𝜒2-distribution will be used to establish
so-called confidence intervals for the population mean, the population proportion, and the pop-
ulation variance. In addition, two new probability densities, namely the t-distribution and the
F-distribution, will be derived. These new distributions will be needed for other confidence
intervals and hypothesis tests.
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