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1.1 INTRODUCTION

Microbes are everywhere in large numbers. They were on Earth ca. 4 billion years
ago, and they will be on Earth long after multicellular eukaryotes go extinct. In some
environments they are the only living beings around because they can thrive in hot
and cold environments; they develop inside rocks and can tolerate toxins and ultra-
violet (UV) radiation. Covering 3.6 x 10''km? (71% of the Earth surface) and reaching
a depth of 3.7km on average, the marine habitat is likely the largest ecosystem on
Earth. It is where all life started. Today, the ocean habitat is teeming with morphologically,
genetically, and functionally diverse microbes. Half of the primary production in the
planet occurs in the ocean (Field et al. 1998), 90% of which is done by microorgan-
isms (Duarte and Cebridn 1996). They are also responsible for most of the ocean

Microbial Ecology of the Oceans, Third Edition. Edited by Josep M. Gasol and David L. Kirchman.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



2 MICROBIAL ECOLOGY OF THE OCEANS

respiration and are crucial in most, if not all, key transformations in the cycles of
nitrogen, phosphorus, sulfur, iron, and other metals.

All these topics and more are part of “microbial ecology of the ocean.” The field
has maintained momentum since publication of the first edition of this book in 2000
(Kirchman 2000), and arguably its importance has even increased. There is a journal,
Aquatic Microbial Ecology, specifically devoted to the field (also including other
aquatic environtments), and leading general journals such as Nature and Science have
devoted mini-reviews and special issues to it (Rees 2005; DeLong 2007; Ash et al.
2008; Lupp 2009; Bork et al. 2015), as have more specialized journals in oceanogra-
phy and microbiology (Nature Reviews Microbiology, 2007, volume 5; Oceanography
2007, volume 20, issue 2). In addition, funding initiatives supported by public (e.g.,
the US Joint Genome Institute) and private sources (such as the Gordon & Betty
Moore Foundation with its Marine Microbiology Initiative, the Agouron Institute, and
the Simons Foundation) have sponsored research in marine microbial ecology. A spe-
cific Gordon Research Conference on marine microbes has been running since 2004,
again reflecting the current dynamism of the field. It has even been the subject of a
cultural anthropology book, which analyzes knowledge and practitioners of microbial
oceanography (nearly synonymous with marine microbial ecology) in the context of
global culture. It claims that microbes in “alien oceans” have come to be an excellent
viewpoint for thinking about humans (Helmrich 2009).

One could also claim that marine microbial ecology is a large fraction of
general microbial ecology. For example, about 30% of the habitat-specific papers
published in the ISME Journal during 2015 were partially or totally marine, here
including sediments, estuaries, and high-salinity systems. Also microbial research
is a large part of marine sciences; about one-third of the papers in Annual Review
of Marine Sciences between 2009 and 2015 are about microbes.

Marine microbial ecology is one of the most dynamic scientific fields because
it is at the crossroads of many disciplines such as oceanography, biogeochemistry,
microbiology (including protistology and virology), physiology, evolution, and
genomics. Being at a crossroad implies that a current practitioner of the field
should have working and conceptual knowledge in all these fields, in addition to
practical skills in bioinformatics and statistics (and microscopy). All these fields
have advanced greatly in the last few years as have the temporal and spatial scales
the researchers study. Microbial ecologists now consider spatial scales ranging
from the global ocean, the ocean basins, or a particular ecosystem to the interac-
tions at the microscale or even inside a cell, as is apparent in the different chapters
of this book. The temporal scales are also diverse, from the hourly or the diel
changes in activity, to the seasonal or interannual scale, including the effects of
long-term global change on the dynamics, activity, and diversity of microbes, or
even the short- or long-term evolution of marine microbes. The focus of interest
also varies. Although the organisms tend to occupy the central point, some studies
are more centered on the communities (so-called “microbiomes”), whereas others
focus on the environment (how the communities are structured in or within envi-
ronments, rooted in “hard” ecology). Still other studies tend to skip the cellular
level (or the species level) and focus on the gene level. This variety of approaches,
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Fig. 1.1 The subject of marine microbial ecology. Organisms and communities are studied in the
framework set by oceanography, while genes and organisms determine the biogeochemical effect
of microbial communities. Genes and organisms also determine the physiological response to
the environment. In addition, genes and organisms evolve with time, and communities and their
biogeochemical effects are subject to ecosystem dynamics, most notably those forced by global
change. Modified after DeLong (2009). (See insert for color representation of the figure.)

this diversity of focuses, is what constitutes the field of marine microbial ecology.
For this reason the field has been christened with the motto “from genomes to
biomes” (Karl 2007; DeLong 2009) to reflect the wide range of scales and meth-
odological approaches currently used (Fig. 1.1).

This introduction tries to put this book in the context of what has happened in the
field in recent years. We evaluate the current state of the field and highlight some
approaches or questions that are at its center and end with some predictions of what
issues or approaches will dominate in the coming years.

1.2 A BRIEF HISTORY OF MARINE MICROBIAL ECOLOGY

The following historical account highlights some major developments in marine
microbial ecology and discusses changes in our ideas about the role of microbes in
the biology and ecology of the oceans. The account also discusses the ways in which
microbial ecologists have practiced their science over the years (Table 1.1). What
follows is focused on carbon (C), nitrogen (N), and phosphorus (P) biogeochemistry
and is strongly planktocentric.
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TABLE 1.1 History of marine microbial ecology, focusing on the water column

Year Concept Key References Cits.
1959 Early direct count method reveals much Jannasch and Jones (1959) 262
larger numbers of bacteria than
indicated by traditional plate counts,
later termed the ““Great Plate Anomaly.”
1966-1970 Incorporation of organic matter in the Williams (1970) 166
oceans occurs mostly in the bacterial-
size fractions
1974-1977 More bacteria in the ocean than Hobbie et al. (1977) 3856
previously thought
1978 More active bacteria than suggested Meyer-Reil (1978) 169
by the difference between total plate
counts
1979 Large numbers of cyanobacteria Waterbury et al. (1979) 600
(Synechococcus) in the ocean Johnson and Sieburth (1979) 430
1980 Bacterial growth and biomass production ~ Hagstrom et al. (1979) 345
is substantial Fuhrman and Azam (1980) 769
1981 Large fraction of respiration in the Williams (1981) 117
oceans is by bacteria
1982 Bacteria are actively predated particu- Johnson and Sieburth (1982) 216
larly by heterotrophic nanoflagellates Fenchel (1982) 491
1982 Dilution approach for estimating Landry and Hassett (1982) 753
phytoplankton growth and grazing
1983 Most primary production in oligotrophic Lietal. (1983) 429
oceans is done by picoplankton
microbes
1983 Term microbial loop is introduced, Azam et al. (1983), 2939
incorporating bacteria and their but first outlined by
grazers into the rest of the food web Pomeroy (1974) 747
1986-1988  Flagellates and ciliates can be mixotrophs  Estep et al. (1986) 78
1988 Prochlorococcus discovered Chisholm et al. (1988) 760
1989-1990 High viral abundances in the oceans Bergh et al. (1989) 835
Proctor and Fuhrman (1990) 591
1989-1992  Higher bacterial than phytoplankton Fuhrman et al. (1989) 287
biomass in the oligotrophic oceans Cho and Azam (1990) 313
1990 First marine clone libraries uncover Giovannoni et al. (1990) 1056
SAR11 and other bacterial groups
1992 Archaea are found in marine plankton DeLong (1992) 1712
Fuhrman et al. (1992) 571
1997 Respiration by marine bacteria can del Giorgio et al. (1997) 465
be similar as primary production in
oligotrophic oceans
1998 Amplicon sequencing of nifH genes Zehr et al. (1998) 228
discovers many unknown N, fixers,
including heterotrophic bacteria
2000 Photoheterotrophic prokaryotes are Kolber et al. (2000) 194
abundant in the oceans Béja et al. (2000a) 802
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TABLE 1.1 Continued

Year Concept Key References Cits.
2000 First marine viral genome sequenced Rohwer et al. (2000) 106
2000 First edition of Microbial Ecology of the Ocean
2000 Kill the winner hypothesis Thingstad et al. (2000) 301
2001 New unicellular cyanobacteria that fix Zehr et al. (2001) 447
nitrogen
2001 Large unknown diversity among small ~ Moon van der Staay et al. 523
eukaryotes (2001) Lépez-Garcia 495
et al. (2001) 390
Diez et al. (2001)
2002 SARI11 is the most abundant oceanic Morris et al. (2002) 537
bacteria
2002 One strain of SAR11 isolated in pure Rappé et al. (2002) 483
culture
2003 Prochlorococcus and Synechococcus Rocap et al. (2003) 670
genomes sequenced Dufresne et al. (2003) 287
Palenik et al. (2003) 413
2003-2004  Viruses of Prochlorococcus and Sullivan et al. (2003) 251
diatoms isolated Nagasaki et al. (2004) 74
2003-2004  Photosynthesis genes found in viruses Mann et al. (2003) 205
Lindell et al. (2004) 261
2004 The metagenome of the Sargasso Sea Venter et al. (2004) 2282
2004 Lithoheterotrophy in a typical coastal Moran et al. (2004) 274
marine bacterium (Silicibacter
pomeroyi)
2004-2008 Genome of relevant marine eukaryotes ~ Armbrust et al. (2004) 984
(picoeukaryotes, diatoms) Derelle et al. (2006) 422
2005 Marine archaea are chemoautotrophs Herndl et al. (2005) 324
Konneke et al. (2005) 1249
2005 Streamline genome of SARI1 Giovannoni et al. (2005) 522
2005-2008  First marine metatranscriptomes Poretsky et al. (2005) 117
Frias-Lopez et al. (2008) 417
2006 Pyrosequencing and rare biosphere Sogin et al. (2006) 1731
2007 SAGs of marine bacteria Stepanauskas and 166
Sieracki (2007)
2007 Global Ocean Survey Rusch et al. (2007) 1095
2007 Proteorhodopsine helps growth in Goémez-Consarnau 178
the light et al. (2007)
2007-2008  High bacterivory by small Unrein et al. (2007) 90
phytoplankton Zubkov & Tarran (2008) 139
2008 Second edition of Microbial Ecology of the Oceans
2008 N,-fixing cyanobacteria without Zehr et al. (2008) 171

photosystem II (carbon fixation
metabolism)

(Continued)
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TABLE 1.1 Continued

Year Concept Key References Cits.

2008 The important role of parasites in Chambouvet et al. (2008) 110
controlling planktonic populations

2009-2011 ICoMM metaanalyses Galand et al. (2009) 194

Zinger et al. (2011) 157

2011-2012  Single cell genomics reveals multiple Yoon et al. (2011) 121
interactions at the protist cell level

2012 UCYN symbiosis with an Thompson et al. (2012) 142
eukaryotic alga

2013 Prevalence of genome streamlining Swan et al. (2013) 100
in open ocean bacteria

2013 Discovery of SAR11 viruses—most Zhao et al. (2013) 96
abundant type in the oceans?

2015 Large scale deep sequencing of Sunagawa et al. (2015) 93
the ocean microbial genome
(TaraOceans)

Cits: citations according to Thompson Reuters Web of Science, accessed March 13, 2017.

1.2.1 Biological Oceanography and “Black Box” Microbial Ecology

Although there were relevant pioneering efforts as early as the 1800s (Box 1.1),
marine microbial ecology can be considered to have started as a discipline in the
1970s, when thanks to improved enumeration methods it was shown that there were
many more bacteria in the oceans than previously thought, and that most of respira-
tion and organic matter uptake in the oceans occurs in the bacterial-size fractions
(Williams 1970; Azam and Hodson 1977). Before the 1970s, microbes were not even
acknowledged in the ecology of the oceans, except as degraders of dead organisms
(Steele 1974), usually considered as a “black box™ (Box 1.2) with little insight of the
structure and function within the box. The seminal papers of Pomeroy (1974),
Williams (1981), and Azam et al. (1983) helped also to convince the scientific com-
munity that microbes are very relevant in marine primary production, as was high-
lighted when cells <1 pm were shown to be responsible for up to 60% of primary
production in the tropical Pacific (Li et al. 1983).

After the early work by Williams (1981) and others on microbial respiration, the
issue of how it compares to primary production has resurfaced several times since then.
As an example, del Giorgio et al. (1997) spurred a great deal of discussion between
oceanographers and microbial ecologists by arguing that bacterial respiration is higher
than primary production in oligotrophic regions of the ocean. Duarte and Agusti (1998)
extended the observation to total plankton respiration being higher than primary pro-
duction. In contrast, geochemical evidence indicated that they are in rough balance.
Although short-term incubation experiments seem to confirm heterotrophy of the oli-
gotrophic ocean, other estimates based on geochemical approaches, which average
over extensive regions and long times, indicate that the net metabolic state is finely
balanced between similar fluxes with large uncertainties (Ducklow and Doney 2013).
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Box 1.1 The Pioneers

The German biologist, philosopher, artist, and physician, Ernst Haeckel (1834-1919),
was a pioneer in the study of the distribution, abundance, and taxonomy of forami-
nifera, radiolarians, and diatoms and also attempted an avant-la-lettre description
of the “Monera.” At about the same time, still in the 19th century, Bernard Fischer
published his Die Bakterien des Meeres (1894), which was probably the birth of
microbial oceanography in Central Europe. Russian oceanographers, such as B.
L. Issatchenko (or Isachenko) with his monograph in 1914, were among the first
to study marine microbes, including protists and bacteriophages. Another book
on marine bacteria was published in German by Wilhem Benecke in 1933. In the
United States, Haldane Gee was appointed assistant professor of bacteriology in
1928 at Scripps, where other scientists were studying protozoa, diatoms, and dino-
flagellates. Around the same time in 1931, Selman A. Waksman (1888-1973), a
soil microbiologist, was hired to begin a new program in marine microbiology at
Woods Hole. In 1932 Gee was replaced by Claude E. ZoBell (1904-1989), who
can be considered the father of marine microbiology. He worked on a wide variety
of topics in the field and published a seminal book, Marine Microbiology, in 1946.
The deep sea work of ZoBell was continued by Holger Jannasch (1927-1998),
who bridged the European and American microbial ecology communities; he was
a disciple of C. B. van Niel (a Dutch microbial ecologist who worked at Stanford
University’s Hopkins Marine Station) and also collaborated with ZoBell. Another
Russian oceanographer, A. E. Kriss, published a book titled Marine Microbiology
(Deep Sea) in 1959 in Russian, which was updated and translated into English in
1963. A second book was published in English in 1967 (Kriss et al. 1967). Early
efforts at showing the beauty of marine microbes are remarkable. E. J. Ferguson
Wood published a marine microbiology book in 1965 that is probably the first
aimed at the general public. Later, John McN. Sieburth produced a couple of
beautiful books—one an illustrated textbook, Microbial Seascapes in 1975, and
the second one more of coffee-table book, Sea Microbes in 1979, which contains
gorgeous images of microbes.

Box 1.2 The Black Box Approach

In science, a Black Box is a physical or conceptual object that has known inputs
and outputs, but its internal composition is unknown. Hence “black,” to empha-
size that the box is opaque to the observer. It is a common concept in computing
and engineering, as well as modeling in ecology and oceanography. A relevant
example is a box named “Bacteria.” The box contains many types of bacteria
doing many different things and having different sizes or different growth rates,
but the only measured variables are the size of the box (in this case, bacterial
abundance or biomass) and the inputs and outputs, such as organic matter uptake
and respiration.
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Initial measurements showed that the growth rates of the heterotrophic prokary-
otes were about as fast as those of the algae (Hagstrom et al. 1979; van Es and Meyer-
Reil 1982), which was confirmed with the development of simpler, more sensitive
radiotracer techniques to estimate bacterial production (Fuhrman and Azam 1982;
Kirchman et al. 1985). A meta-analysis of studies using *H-thymidine showed that
total heterotrophic bacterial production was a large fraction of primary production
(Cole et al. 1988), confirming previous estimates (Derenbach & Williams 1974;
Fuhrman and Azam 1980). Bacterial abundance and production were observed to
largely track chlorophyll concentrations and primary production (Bird and Kalff
1984; Cole et al. 1988). Other studies indicated that, often, bacterial biomass was
larger than that of phytoplankton in some parts of the ocean (Fuhrman et al. 1989;
Simon et al. 1992; Li et al. 1992; Buck et al. 1996). Arguable, these have been the
most important discoveries in biological oceanography in the 20th century: the iden-
tification of the major role that prokaryotes have in carbon and nutrient cycling,
including biomass production, in the ocean.

Obviously, if large numbers of bacteria were present with relatively fast (0.5-5
days) growth rates, there is the need for a mechanism to remove prokaryotes at a rate
similar to that of growth to maintain abundance at constant levels (Pace 1988). Ciliates
and zooplankton were shown not to be the main grazers in most (marine) environ-
ments. Pomeroy (1974) had already proposed that nanoplanktonic cells should be
responsible for the removal of bacteria, and by the early 1980s heterotrophic nano-
flagellates had been identified as the main bacterial predators (Sorokin 1979; Fenchel
1982; Fuhrman and McManus 1984). Development of methodologies for measure-
ment of grazing rates on bacteria (e.g., Sherr et al. 1989) demonstrated that they could
indeed balance bacterial growth in some cases—but not in others (Pace 1988; McManus
and Furhman 1988)—and potentially become a link by which dissolved organic matter
(DOM) is converted to particulate carbon by prokaryotes. This particulate carbon
could then reach other trophic levels if these bacterial grazers were in turn eaten
by microzooplankton. This pathway for carbon (DOM —bacteria—grazers—higher
trophic levels) was called the “microbial loop” (Azam et al. 1983). One question that
then became obvious was whether the microbial loop is mainly a “sink™ or a “link™;
that is, whether most carbon taken up by bacteria is respired and lost from the system
or can be channaled through bacteria and protist predators to higher trophic levels.
Experimental studies showed that the microbial loop is in fact a sink (Ducklow et al.
1986), although some carbon and nutrients are still transferred up to higher trophic
levels as efficiently as other food chains with the same number of trophic steps.

Another parameter relevant to the sink-link debate is the balance between carbon
used by bacteria to obtain energy through respiration versus the carbon used for
growth (i.e., the bacterial growth efficiency; del Giorgio and Cole 1998, 2000).
Initially this efficiency was thought to be high (50% or larger), indicating the microbial
loop could be a link, but subsequent work has shown it be low (<20%), consistent
with the loop being a sink. The growth efficiency is still one of the least constrained
parameters quantifying the role of bacteria in the carbon cycle, mostly because of the
uncertainties of the methods for measuring it and because of how it varies over
different time scales (del Giorgio et al. 2011).
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The cases in which grazing was lower than bacterial growth suggested the existence
of another mechanism for bacterial mortality. Viruses were known as early as the
mid-1950s to occur in the ocean (Spencer 1955), and an initial study estimated their
abundance to be at least 10* viruses per mL of seawater (Torrella and Morita 1979),
but they were not seriously studied until even higher estimates were published in the
late 1980s (Bergh et al. 1989). Subsequent studies demonstrated viruses to be agents
of bacterial and cyanobacterial mortality (Proctor and Fuhrman 1990), even poten-
tially affecting primary production (Suttle et al. 1990). They were soon incorporated
into models of carbon flux (Bratbak et al. 1992), and their activity was observed to
decrease the apparent growth efficiency of the prokaryotes.

Soon after heterotrophic flagellates were identified as the main predators of bac-
teria, it became evident that some very small protists could ingest bacteria yet had at
the same time working chloroplasts (Estep et al. 1986). This type of metabolism is an
example of “mixotrophy” (see Chapter 3). We have now come to learn much more
about various degrees of mixotrophic behavior in dinoflagellates, ciliates, and small
flagellates (Caron 2000; Stoecker et al. 2017). It soon became obvious that the trans-
fer of carbon between bacteria and zooplankton mediated by flagellates assumed in
the initial microbial loop model was way too simplistic (Sherr and Sherr 2000) and
that viruses and mixotrophic algae among other groups of organisms had to be incor-
porated into the global picture (Fig. 1.2).

By 1979 it had become apparent that large numbers of unicellular cyanobacteria
were present in the ocean (Waterbury et al. 1979; Johnson and Sieburth 1979), and
most primary production in oligotrophic regions passes through a 1-pm filter (Li
et al. 1983; Platt et al. 1983). The discovery in the early 1980s of Prochlorococcus,
the most abundant primary producer in the ocean, was a landandmark in the field.
These small cells had been observed by transmission electron microscopy (Johnson
and Sieburth 1982), but their high abundance and importance were not appreciated
until data from flow cytometry became available (Chisholm et al. 1988). The first
isolate of Prochlorococcus was obtained several years later (Chisholm et al. 1992).
That the most abundant organism in the tropical ocean was not identified until the
late 1980s demonstrates the delayed development of microbial oceanography as
compared to terrestrial ecology. Wouldn’t it be a surprise if we learned today that we
do not know the most abundant tree in tropical forests?

1.2.2 Opening the Black Box for Variability in Activity
and Growth Rates

When prokaryotes were found to be abundant but many were unable to grow on
agar plates, some authors considered that a large fraction of oceanic microbes
were likely not active, dormant, or simply dead. Some studies used microautora-
diography to detect which prokaryotes were active in using organic substrates
(Hoppe 1976; Meyer-Reil 1978). These studies found that a relatively large pro-
portion of the community was active, way more than the bacterial fraction grow-
ing on plates (ca. 1% of the total). In mid-1990s a series of studies using other
methods spurred renewed attention about the proportions of bacteria actively
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Fig. 1.2 A simplified view of the microbial food web. Mostly heterotrophic organisms on the
right side, and mostly autotrophic organisms on the left. Some members of both pico- and nano-
phytoplankton can be at least partially heterotrophic. Similarly, some “heterotrophic” bacteria
and the ciliates can use light in some way or another. Flows of carbon are depicted as large solid
arrows. Use of solar light is in thin arrows. Flows of carbon through viruses as dashed large
arrows. Production of dissolved and particulate organic carbon as dashed arrows. Flows of
inorganic nutrients in thin dashed arrows. (See insert for color representation of the figure.)

growing in the ocean (Zweifel and Hagstrom 1995; Gasol etal. 1995; Heissenberger
et al. 1996). The new methods sometimes gave conflicting results because each
one measures a different degree of activity or vitality (del Giorgio and Gasol
2008). Still, they showed that the number of actively growing bacteria is much
larger than what grows on plates, and that in fact a large percentage of the cells
present in nature are actively growing. It was also shown that the numbers of
active cells are below those detected by fluorescent in-situ hybridization (FISH),
a method dependent on the levels of ribosomal RNA (rRNA) in cells and, in prin-
ciple, cellular activity (DeLong et al. 1989).
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The FISH method is key to one approach to link up the “black box™ approaches
examining activity with the work on the diversity of microbial communities dis-
cussed later. Microautoradiographic detection of the single-cell use of organic sub-
strates was used, in combination with FISH, by Cottrell and Kirchman (2000b) to
describe whether different bacterial groups were equally responsible for the uptake
of low- and high-molecular weight substrates. They found Alphaproteobacteria to
dominate uptake of low-molecular weight substrates and Gammaproteobacteria
to dominate uptake of high-molecular weight substrates, hinting to clear niche parti-
tioning between the different components of the bacterial community. Using varia-
tions of this technique, Ouverney and Fuhrman (2000) showed that archaea could
take up amino acids, and deep ocean archaea were later seen to also use inorganic
carbon dioxide (CO,) in addition to organic substrates (Herndl et al. 2005).

Another approach to examine the activity state, if not growth itself, of specific
bacterial taxa is to measure the relative content of rRNA as scaled to that of the ribo-
somal genes (rDNA; e.g., Campbell et al. 2011). The approach is based on classic
studies showing that rRNA content increases with growth rate (Lankiewicz et al.
2016) but has some limitations as discussed in Blazewicz et al. (2013). Growth rates
can also be estimated in seawater cultures by following the abundance of bacterial
groups detected by FISH over time. These approaches have shown that some bacte-
rial groups (e.g., Alteromonadaceae) have high rates of growth while others (e.g.,
SARI1) have relatively low rates of growth (Kirchman 2016). It still remains to be
tested how growth rates varies within these groups.

Along with the studies on active prokaryotes, others concentrated on those bacte-
ria apparently not growing actively. Methods detecting these cells are controversial
(del Giorgio and Gasol 2008; Blazewicz et al. 2013), but recent work has suggested
that dormancy, as a strategy to overcome unfavorable conditions, contributes to the
maintenance of microbial diversity (Jones and Lennon 2010) because it generates a
“seed bank”—permitting populations to recolonize the environment if conditions
allow (Lennon and Jones 2011).

1.2.3 The Molecular Description of Microbial Diversity:
rRNA-Based Approaches

Even though it was suspected, evidence that the dominant types of bacteria inhabit-
ing the oceans were very diverse did not come until the 1990s. Using PCR-amplifica-
tion and sequencing, an approach developed in Norman Pace’s lab within the
phylogenetic framework postulated by Woese and Fox (1977), Giovannoni et al.
(1990) analyzed 16S rRNA gene clone libraries from Sargasso Sea bacterioplankton
and discovered that most of the dominant organisms belong to groups really different
from isolates maintained in the laboratory. The new dominant groups included the
SAR11 bacteria. Giovannoni et al. (1990) showed the magnitude of the ignorance we
had about which bacteria were actually most abundant in the oceans. Soon after that
study, Fuhrman et al. (1992) and DeL.ong (1992) showed that archaea are also present
in the oceans. This was also a surprise because archaea had been assumed to be
present only in anoxic, hot or highly saline environments (“extremophiles”) or to be
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symbionts of protists. Later FISH-based studies demonstrated that archaea are very
abundant in the deep ocean (Karner et al. 2001), whereas SAR11 is likely to be the
most abundant bacterium in the surface ocean (Morris et al. 2002).

These findings opened the door to a new view of ocean microbes. Analyses of the
identity of the dominant oceanic microbes, their relative abundance, their overall
diversity, and the way microbial communities were structured dominated the field
(Fig. 1.3). Soon after Giovannoni et al. (1990), a variety of 16S rRNA gene approaches
became popular, including clone library studies, more FISH studies, and DNA fin-
gerprinting analyses (Giovanonni and Rappé 2000; Fuhrman and Hagstrom 2008).
Each of these approaches has limitations, and direct comparisons were not particu-
larly rewarding (Cottrell and Kirchman 2000a; Alonso-Séez et al. 2007), yet com-
bined they identified the large diversity of the microbial communities in the oceans.
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Fig. 1.3 The number of citations to papers describing classical microbial ecology methods
(the DAPI method, the thymidine, and leucine methods), 16S rRNA clone sequencing and fin-
gerprinting, metagenomics, and high-throughput sequencing of the 16S rRNA gene. We used
the same searches used by Kirchman and Pedrés-Alié (2007). The figure gives the citations to
the following papers and methods: for the abundance and production methods, Fuhrman and
Azam (1980) (1145 citations), Porter and Feig (1980) (3839 citations), Kirchman et al. (1985)
(697 citations), and Simon and Azam (1989) (1297 citations) for a total of 7007 unique cita-
tions; for the initial molecular methods, Amann et al. (1990) (5470 citations), Giovannoni et al.
(1990), (1047 citations), and Muyzer et al. (1993) (6846 citations) for a total of 13362 unique
citations; for metagenomics, Béja et al. (2000b), (792 citations), Venter et al. (2004) 2250 cita-
tions, and Rusch et al. (2007), 1074 citations, a total of 4116 citations; and for high-throughput
tag sequencing, Sogin et al. (2006). The analysis was done on November 29, 2016, using the ISI
Web of science. There was no effort to discriminate the papers about the oceans from those
about other environments. (See insert for color representation of the figure.)
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They also found that community composition was affected by biotic (e.g., viruses
and protists) and abiotic (e.g., temperature and salinity) factors that varied spatially
and temporally over many scales (e.g., Schauer et al. 2000; Ghiglione et al. 2005;
Fuhrman and Hagstrom 2008).

If bacteria and archaea are very diverse and respond to ecological changes by
changing community composition, it could be expected that small microbial eukary-
otes should do the same. Exploring the diversity of microbial eukaryotes, however, is
complicated by the large variability in cell size and in rDNA operon content (Zhu
et al. 2005), yet by 2001 several studies had shown the large diversity of microbial
eukaryotes in the ocean (Moon-van der Staay et al. 2001; Lépez-Garcia et al. 2001;
Diez et al. 2001). Many novel, previously unknown lineages were detected, and these
were common members of most microbial eukaryotic communities (Massana and
Pedrés-Alid, 2008). Recent work confirms the magnitude of protist diversity that
might well be larger than prokaryotic diversity (de Vargas et al. 2015), even if prokar-
yotes have many more lineages (Hug et al. 2016). In part the large diversity of micro-
bial eukaryotes can be traced to the variety of trophic roles that these organisms play
(Worden and Not 2008; Worden et al. 2015). Although large eukaryotes were better
described than bacteria in the past because they could be distinguished microscopi-
cally (e.g., Bachy et al. 2013), molecular surveys still identify new very diverse
groups (Flegontova et al. 2016). As an example, the often underappreciated, large
Rhizaria seem to be abundant and diverse in the world’s oceans (Biard et al. 2016).
We know much less about the smallest protists. We know that they are very important
contributors to primary production (Li 1994; Zubkov 2014) and to grazing on bacte-
ria (Unrein et al. 2007; Zubkov and Tarran 2008; see Chapter 3), but we know little
of their diversity and biology, particularly of the heterotrophic flagellates for which
there are few cultured representatives (Massana 2011).

Understanding the diversity of both prokaryotes and eukaryotes has been heavily
reliant on advances in DNA sequencing technology. The initial approach used for
decades was Sanger sequencing, which is slow and expensive. It was replaced by
so-called next-generation sequencing methodologies (or high-throughput sequenc-
ing [HTS]) that allowed massively parallel analyses, with large throughput at a
reduced cost. This dramatically affected microbial oceanography as exemplified by
Sogin et al. (2006), the first published study in the field that used HTS of 16S rRNA
gene amplicons. Suddenly, instead of obtaining at most 1000 sequences from one
sample (e.g., Acinas et al. 2004), microbial ecologists were able to generate several
tens of thousands of sequences from several samples at a time. The latests methods
yield even more sequences, several million per study (e.g., Salazar et al. 2016). These
methods, which are continuously evolving, avoid the need for the cloning required in
the Sanger protocols, and the newer methods do not require amplification that might
introduce biases. Sequencing a gigabase (Gb or 10° bases) of DNA was reduced from
many years to hours at a fraction of the cost (Glenn 2011). Although the first HTS
approaches yielded many more sequences than the Sanger method, the length of the
sequences was much shorter (ca. 100bp with the initial 454 technologies vs. ca.
1000bp with Sanger), which led to reduced taxonomic resolution, discrepancies in
the analyses, and arguments about the best region of the rRNA gene that should be
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sequenced (see Chapter 2). There is a continuous evolution of technologies, and it
is now possible to sequence the entire 16S rRNA gene at high throughput (Singer
et al. 2016).

The decrease in sequencing costs, the ease of sequencing (let sequencing centers
do the work), and the publication of simple tools to process HTS amplicon data all
led to the democratization of diversity studies. Virtually any research group can
afford and is capable of obtaining rRNA gene data to explore microbial diversity.
Consequently, papers on the topic have inundated the literature since the develop-
ment of HTS technologies. At the start, most studies used the same strategy under the
framework of the International Census of Marine Microbes (ICoMM). Several papers
were published comparing environments (e.g., Galand et al. 2009; Ghiglione et al.
2012; Zinger et al. 2011), including studies of beta-diversity (i.e., how diversity is
structured spatially). One of the most important observations made possible by HTS
data was the existence of a “rare biosphere” formed by many different species that
had very low abundance (Sogin et al. 2006; Pedrés-Alié 2012; see Chapter 2).

1.2.4 The Molecular Description of Microbial Diversity:
Whole Organisms and Genomes

Recognition of the presence, and even dominance, of uncultured and previously
unknown microorganisms in the sea prompted efforts to know more about them, to
isolate ecologically relevant representatives, and to describe their phylogenetic vari-
ability and ecophysiology. As discussed in Chapter 5, isolation allows physiological
studies, genome sequencing, and linking the physiological and ecological informa-
tion to the genome. Remarkable successes in that direction were the isolation of the
first Prochlorococcus (Chisholm et al. 1992) and of a SAR11 clade member (Rappé
et al. 2002). These isolates with their small genomes are representatives of the domi-
nant microbes in the oligotrophic open oceans. Other relevant isolates were a com-
mon member of the Roseobacter clade (Moran et al. 2004), the firstammonia-oxidizing
chemoautotrophic marine thaumarcheon (Kdnneke et al. 2005), the gammaproteo-
bacterium NORS5/OM60 (Fuchs et al. 2007), and a proteorhodopsin-containing
Bacteroidetes (Gémez-Consarnau et al. 2007).

It is curious how long it took before viruses and predators attacking Pelagibacter
(i.e., SAR11) and Prochlorococcus were uncovered. The first Prochlorococcus virus
was described more than 10 years after the cyanobacterium was initially isolated
(Sullivan et al. 2003). Predation on Prochlorococcus by flagellates had already been
observed in 1999 (Christaki et al. 1999, 2002), and Guillou et al. (2001) identified a
tiny (diameter ca. 1.5pum) chrysophyte that can feed on cultured Prochlorococcus.
Yet actual identification of the predators was not done until 10 years later when sta-
ble isotope DNA probing revealed stramenopiles, haptophytes, and alveolata as graz-
ers (Frias-Lopez et al. 2009; see Chapter 3). Some of these protists appear to be
photosynthetic. SAR11 viruses were not isolated until 2013, again more than 10
years after the isolation of Pelagibacter (Zhao et al. 2013). Until these viruses were
found, the low rates of growth of this organism and its small cell size had supported
the hypothesis that they could be immune to viral predation. Instead, the success of
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this highly abundant microbial clade seems to be the result of very successful
adaptation to compete in a low-resource environment (Giovannoni 2017). Specific
predators of SAR11 have not yet been clearly identified, and their measured loss
rates are among the lowest of all bacterial groups, commensurate with their relatively
low in-situ growth rates (Teira et al. 2009; Ferrera et al. 2011).

Availability of the genomes of the cultured relevant microorganisms facilitated
many discoveries with ecological relevance. As an example, the comparative
genomics of various cyanobacteria isolated from different oceanic environments
(Palenik et al. 2003; Rocap et al. 2003; Dufresne et al. 2003) showed large differ-
ences in gene content, particularly between the high-light and the low-light adapted
Prochlorococcus ecotypes and the presence of genes with obvious roles at increas-
ing fitness in response to the environmental characteristics of the environment
from where they were isolated. The Pelagibacter ubique HTCC1062 genome was
found to be reduced (streamlined) with just 1.3 Mbp thanks to reduced intergenic
spacers that made it, at the time, the smallest genome of a free-living organism
(Giovannoni et al. 2005). This SAR11 representative has complete biosynthetic
pathways for all amino acids, has a proteorhodopsin gene (see below), and other
interesting biochemical characteristics related with adaptation to phosphorus star-
vation and sulfur cycling (Giovannoni 2017).

Model eukaryotes have also been isolated in culture, and their genomes have been
sequenced. Some relevant organisms are the diatoms Thalassiosira pseudonana and
Phaeodactylum tricornutum (Armbrust et al. 2004; Bowler et al. 2008); Ostreococcus
tauri and Micromonas, the smallest free-living eukaryotic phototrophs (Derelle et al.
2006; Worden et al. 2009); and the ecologically relevant coccolithophorid Emiliania
huxleyi (Read et al. 2013). In contrast, there are few isolates and genomes of relevant
marine heterotrophic protists, with the exception of the choanoflagellate Monosiga
(King et al. 2008).

The first genome of an isolated marine virus was published in 2000 (Rohwer et al.
2000), but now several other, apparently relevant, viruses exist in culture. In addition
to some being RNA, single- or double-stranded, viruses do not have a single gene
that can be used to organize and monitor the diversity of the group, analogous to
rRNA genes. Consequently, genomic sequencing is necessary. Because most hosts
are not in culture, their viruses aren’t either, and metagenomic approaches (see
below) are needed to advance the understanding of the relevant marine viruses (see
Chapter 9).

Similar genomic sequencing methods can be used with the DNA of natural micro-
bial communities. In the first attempts to examine uncultured microbes, cloning and
sequencing of large genomic fragments from mixed microbial communities was used
to describe rRNA gene sequences, but the authors noted that other genes could be
studied as well (Schmidt et al. 1991). This approach of simultaneously examining
many genes from many organisms was later called “metagenomics” (Rondon et al.
2000). Subsequent attempts at sequencing genome fragments from a natural com-
munity used methods such as the cloning of large (30—100kb) DNA fragments into
bacterial artificial chromosomes (BACs) or fosmids (Stein et al. 1996; Béja et al.
2000a). The basic strategy was to screen the fragments for phylogenetic information
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(i.e., 16S rRNA genes) and to sequence the interesting fragments. This approach
allowed assignment of functions to specific microbes defined by 16S rRNA genes or
other phylogenetic markers. This large insert approach was later replaced by small-
insert (around 1000kb) shotgun approaches (Venter et al. 2004), and then by short-
read HTS, which do not require cloning.

One example illustrating the power of the large insert approach is the discovery of
proteorhodopsin. Béja et al. (2000b) identified a DNA fragment possessing a 16S
rRNA gene from the yet-to-be-cultured SAR86 and also a gene for proteorhodopsin
(PR), a light-dependent proton pump. This discovery heralded a new type of photo-
trophy for the ocean. Work by Oded Béja and others soon showed that this type
of pigment existed in many types of bacteria and apparently many surface ocean
bacteria had this form of photoheterotrophy, including various Gamma- and
Betaproteobacteria, Bacteroidetes, Archaea, and the abundant SARI11 (Pinhassi
et al. 2016). The known types of PRs in the ocean increased by about 10-fold when
Venter et al. (2004) published the first ocean study using whole genome shotgun
metagenomics. A total 1 billion (10°) bp were assembled, corresponding to ca. 1800
genomic species, including ca. 1.2 million unknown genes, along with 782 new rho-
dopsin-like photoreceptors. The number of known PRs was increased even more
when Venter and colleagues launched the Global Ocean Sampling (GOS) Expedition.
This project found 2674 proteorhodopsins among 6.3 billion bp from 41 samples.
Among the rhodopsin sequences, green-tuned rhodopsins were relatively more abun-
dant in temperate coastal waters, whereas blue-tuned rhodopsins dominated in
warmer open ocean water (Rusch et al. 2007) in accordance with the light character-
istics of these habitats (Box 1.3).

Although photoheterotrophy is arguable the most important discovery of marine
metagenomics, many other new findings about bacterial diversity, phosphorus, sul-
fur, and nitrogen cycling and eukaryotic diversity arose from GOS and subsequent
studies (e.g., DeLong et al. 2006). In 2015 the Tara Oceans consortium published a

Box 1.3 Photoheterotrophy in the Ocean

Proteorhodopsins (PRs) were not the only pigments found at the turn of the century
to be used by photoheterotrophic bacteria in the ocean (Karl 2000). Bacteriochlo-
rophyll a containing bacteria that could carry out aerobic anoxygenic phototropy
(AAP) had been isolated from some coastal sites (Harashima et al. 1978) and
were found in a deep hydrothermal vent (Yurkov and Beatty 1998) but remained
an exotic group of organisms. With direct measurements of bacteriochlorophyll
a, infrared fluorometry and infrared fluorescence microscopy, Kolber et al. (2000,
2001) first suggested that AAP bacteria were significant components of the sur-
face ocean bacterioplankton. After some initial discussion about the real abun-
dance of these organisms (KobliZzek 2015), AAP bacteria were shown to be less
abundant than PR-containing organisms, distributed in fewer types of microbes
(mainly in Alpha- and Gammaproteobacteria), and to have a form of photoheterot-
rophy energetically more costly than PR (Kirchman and Hanson 2013).
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metagenomic overview of the ocean. They sequenced 273 samples from 68 stations
and increased the number of nonredundant genes to more than 40 million (the Ocean
Microbial Gene Catalog; Sunagawa et al. 2015); only 5-7% of these genes had been
captured by GOS or other metagenomic studies. With the newest sequencing tech-
nologies, the burden of work now is with the bioinformatics analysis of the huge
amount of sequence data that each metagenomic project generates: hundreds of thou-
sands of relatively short sequences that have to be screened for quality and combined
into longer fragments to extract useful information.

The logical next step after metagenomics is to target actual functions, through
metatranscriptomics (all RNA transcripts from all members of a community), prot-
eomics (all proteins), and metabolomics (all low-molecular weight metabolites).
Chapter 4 reviews some of these approaches. The first marine metatranscriptomes
were performed by Poretsky et al. (2005) who analyzed clones of cDNA from
mRNA, and Gilbert et al. (2008) and Frias-Lopez et al. (2008) who used HTS of
cDNA. A challenge facing metatranscriptomic studies is the low and dynamic mRNA
reservoir of marine bacteria compared to the rRNA pool. A typical marine bacterium
has only about 200 mRNA molecules, which last only a few minutes before they are
degraded (Moran et al. 2013). Typical oligotrophic and copiotrophic (Box 1.4)
marine bacteria have radically different number of genes being regulated by

Box 1.4 Oligotrophs versus Copiotrophs

Some marine prokaryotes grow better when inorganic nutrients and carbon are
plentiful, whereas others do so only in nutrient-depleted areas of the ocean. The
former organisms are often called copiotrophs (from the Latin “copia” for rich-
ness, and the Greek “trophos,” meaning food). The cell size of these microbes is
large, and they have large genomes (>4 Mb) and diverse metabolisms, including
sometimes the capacity for phototrophy with pigments such as bacteriochloro-
phyll a (Lauro et al. 2009; Yooseph et al. 2010). They respond to changes in
environmental conditions by controlling the transcription of many genes (Cottrell
and Kirchman 2016). In contrast, “oligotrophic” (from the Latin “oligo” for few)
bacteria tend to have small (<2 Mb) streamlined genomes, have low transcrip-
tional control, and often lack genes for acquiring essential elements. Some can
still use light, but they do it using the simpler and less expensive proteorhodop-
sin. Typical marine oligotrophic bacteria include Pelagibacter, the gammapro-
teobacterial SAR92, and Acidimicrobiales. Typical copiotrophic bacteria are in
the orders Rhodobacterales and Alteromonadales. Most oceanic microbes seem
to be oligotrophs (Yooseph et al. 2010; Swan et al. 2013). Copiotrophic bacteria
are thought to have an r-strategy (they grow fast and they are subject to higher
predation rates), and the oligotrophic bacteria have a k-strategy (they grow more
slowly and cannot respond quickly to environmental changes), although these
concepts borrowed from general ecology might not fully apply to bacteria. Koch
(2001) neatly discusses why oligotrophs have a hard time in rich environments
and copiotrophs in nutrient-poor environments.
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transcription (Cottrell and Kirchman 2016). The total mRNA pool is also an order of
magnitude less abundant than the genes and almost four orders of magnitude less abun-
dant than the proteins, posing many technical challenges. Despite that, and using vari-
ous strategies to standardize the obtained data, Ottesen et al. (2013, 2014) found diel
rhythms of gene transcription, metabolic activity, and behavior in naturally occurring
auto- and heterotrophic coastal and open ocean bacteria and archaea. Not only photo-
autotrophs exhibited pronounced diel periodicity but also so did many gene transcripts
from several different heterotrophic bacterioplankton groups. These data suggest
population-specific timing of maximal transcription in a variety of metabolic path-
ways, more conspicuously in the open ocean (Ottesen et al. 2014) than in the coastal
region (Ottesen et al. 2013). These studies also showed that it was technically possible
to obtain “omic” data using a robotic autonomous system (Preston et al. 2011).

In addition, the coupling of genomics with flow cytometric sorting has enabled
enrichment of communities to explore the functional potential of many microbial
groups (Palenik et al. 2009). High-throughput techniques have been optimized for
isolation of single cells by flow cytometry and genome sequencing of an isolated
single cell. The DNA of single sorted cells is first amplified by a process, multiple
displacement amplification (MDA), that generates SAGs (single-cell genomes),
which are then screened by sequencing PCR amplicons from 16S rRNA genes or
from functional genes of interest. Afterward, the entire genomes of interesting SAGs
are sequenced. Stepanauskas and Sieracki (2007) demonstrated that the SAG
approach could be used to access the genomic information of marine microbes that
are abundant but that resist cultivation. Using this technique, Swan et al. (2011) pro-
vided evidence that several uncultured Proteobacteria lineages that are ubiquitous in
the dark oxic ocean possess sulfur oxidation genes and ribulose bisphosphate
carboxylase, evidence of potential chemolithoautotrophy. In a subsequent study
Swan et al. (2013) found that, compared with bacteria isolated by traditional cultur-
ing methods, natural bacterioplankton had smaller genomes and fewer gene duplica-
tions, providing strong evidence that genome streamlining and an oligotrophic mode
of life are prevalent features among diverse, free-living bacterioplankton.

The single-cell approach has also been applied to protists (Heywood et al. 2011),
and several studies revealed multiple interactions among protists, bacteria, and
viruses, revealing cell-to-cell predatory, symbiotic or virus-host interactions in
uncultivated microbes (Yoon et al. 2011; Martinez-Garcia et al. 2012; Labonté et al.
2015). The method is a powerful addition to metagenomics by providing reference
genomes to which the metagenomic reads can be anchored facilitating organism-
level interpretation of ecosystem function. It has also been used to provide phyloge-
netic information for the so-called “microbial dark matter,” the yet unexplored
fraction of microbial diversity (Rinke et al. 2013).

1.2.5 N, Fixation Studies as a Model for Marine Microbial Ecology

Microbes play important, often complex roles in the cycling of inorganic nutrients
in the ocean, including those that limit microbial growth and primary production
such as N, P, silica, or iron. Several remarkable studies illustrate the complex roles
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of prokaryotes in the P cycle (see Chapter 10), which may become even more
important to understand because P limitation in the oceans seems to be increasing
(Karl et al. 2001). In many oceanic regions with extremely low P concentrations,
microbes, most notably cyanobacteria and SAR11 bacteria, reduce their require-
ments for P by replacing membrane phospholipids with alternative nonphosphorus
lipids (van Mooy et al. 2009; Carini et al. 2015; Sebastian et al. 2016). One of the
best-studied nutrient cycles, however, is that of N, evident by the many chapters in
the two previous editions of this book (Paerl and Zehr 2000; Ward 2000; Capone
2000; Zehr and Paerl 2008).

A review of one step in the N cycle, N, fixation, highlights how marine microbial
ecology has developed over the years and how it can now operate (Fig. 1.4). Using
PCR primers for the nifH (nitrogenase) gene, Zehr et al. (1998) discovered sequences
similar to heterotrophic N, fixers and thus widened the known nitrogen fixers beyond
the cyanobacterium 7Trichodesmium (Capone et al. 1997) and the cyanobacterial
symbionts of diatoms (Foster and Zehr 2006). The work contributed to solving the
apparent imbalance between sources and sinks of N in the global N budget. The 1998
study also described two groups of unicellular cyanobacterial nifH sequences. A uni-
cellular, presumably aerobic N, fixer was surprising at the time because it was not
expected that the fixation process could be done by an oxygenic free-living
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Fig. 1.4 The different approaches used to understand nitrogen fixation in the ocean, as an
example of the various methodologies used by microbial oceanographers. Similar processes are
used for understanding the P and C cycle. (See insert for color representation of the figure.)
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organism. One of these two groups corresponded to 3- to 5-pm cyanobacteria
(Crocosphaera), but the other group, later called UCYN-A, could not be visualized
(Zehr et al. 2001). Using a combination of flow cytometry cell sorting and down-
stream genomics, it was shown that these abundant UCYN-A organisms lack genes
for photosystem II and carbon fixation, so they either were photoheterotrophic,
had to be symbionts of other organisms, or both things together (Zehr et al. 2008;
Tripp et al. 2010). A specific symbiosis with a haptophyte alga was soon proposed
in which the haptophyte and the symbiont exchange fixed carbon and nitrogen
(Thompson et al. 2012).

We now know that there are several different symbioses between different closely
related haptophyte hosts and different UCYN-A symbionts (Cornejo-Castillo et al.
2016; Zehr et al. 2016). Nitrogen fixation by these symbiotic haptophyte-UCYN-A
pairs can be as high as by Trichodesmium, as shown by size fraction experiments and
nanometer-scale secondary ion mass spectrometry (nanoSIMS) analyses (Montoya
et al. 2004; Martinez-Pérez et al. 2016).

These studies nicely illustrate the different disciplines involved in aquatic micro-
bial ecology and microbial oceanography: size fraction rate (N, fixation) measure-
ments and nutrient budgets, genetic determination of the diversity of organisms
performing a particular process, FISH with probes designed from environmentally
relevant sequences, microscopy, flow cytometry cell sorting, metagenomics, genome
and proteome analysis, and single-cell activity to track nutrient and carbon flow
between symbionts and hosts (Fig. 1.4).

1.3 AN ASSESSMENT OF CURRENT MARINE
MICROBIAL ECOLOGY

The field of microbial ecology of the ocean has grown exponentially in the last sev-
eral years, and it encompasses a large range of disciplines as exemplified in Fig. 1.1.
Next we assess the current status of the field and speculate about future directions.

As in many, if not all, fields of science, progress in marine microbial ecology has
been made possible by leaps in methodology and technology. The influence of meth-
ods development is easily spotted in Fig. 1.3 and Table 1.1. It shows the impact of
new technologies in attracting the interest of other researchers, evident in the number
of citations to the papers reporting new approaches. The field is probably still
method-limited, and paradigms will change in the future only after the introduction
of a new technology or method.

Very often, the introduced technologies were developed in other scientific fields,
in particular the biomedical field. One example is flow cytometry, which was
originally developed to enumerate human cells. The instrument was imported into
oceanography by Yentsch et al. (1983) and Olson et al. (1983) whose work eventually
made the discovery of Prochlorococcus possible. Another example is sequencing
technology. Advances in sequencing approaches are being driven by the great inter-
est and need for sequence data in many other scientific fields, most noteworthy in
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biomedical applications. Flow cytometry and advanced sequencing technologies
come together in single-cell analyses, which are also used in the biomedical field
(Gawad et al. 2016). Creative inspection of the literature and practices in other fields
will help gain knowledge in aquatic microbial ecology.

The introduction of new approaches, however, can create problems in establishing
standardized methods for coordinated research, which we believe should be pro-
moted. The history of early “black box” methods offers an example. After several
years when different methods were used to measure biomass and production, the
Joint Global Ocean Flux Study (JGOFS; Ducklow 1999) program arose as an inter-
national initiative to study the ocean carbon cycle using standardized methods. In
part because of that standarization, JGOFS studies were successful in advancing our
understanding of microbial carbon cycling in the open ocean. We are at a different,
earlier stage of development with understanding microbial diversity. There are now a
variety of ways to determine the distribution of specific bacterial taxa using 16S
rRNA gene tag sequencing (e.g., sequencing technology and depth, primers, and
treatment of singletons; see Chapter 2). Comparisons between studies now seem
particularly difficult and only possible within consistent sets of data treated in the
same way (e.g., data sets from ICoMM, Tara Oceans, or the Ocean Sampling
Day [OSD]). The field would advance more effectively and faster if standard, open
protocols were used.

The selection of study sites needs more careful consideration because certainly
only a small part of the ocean has been explored to date. Most often, the scientist’s
backyard is the main focus of study, not because it is particularly interesting but for
logistic reasons. In the past, when few data were available and the methods were
comparable, these backyard studies provided the raw data needed for meta-analyses
and data comparisons, some of which helped settle the field (e.g., Cole et al. 1988).
Today, unless a specific, novel hypothesis is proposed, unless particularly surprising
results are obtained, or unless they come from an informatively designed experiment
(or cruise), just another study from another coastal site would contribute little insight
into how the microbial ocean works. Hypotheses should not be displaced by accumu-
lation of data (Peters 1991), although data can also stimulate the formulation of new,
insightful hypotheses.

Once a new methodology is introduced, a new variable is described, or a new pro-
cess identified, the studies follow a sequence: (1) Proof of concept and the first meas-
urements. As an example, Giovannoni et al. (1990) examined only 12 clones and nine
different sequences, and yet it was an extremely important contribution that opened a
new era in microbial ecology of the ocean. (2) Descriptive papers, which contain usu-
ally a few samples, sites, experiments per paper. After the initial reports, the descrip-
tive studies make important points and test hypotheses that are derived from the initial
study. As an example, Mullins et al. (1995) compared ca. 150 clones from the Atlantic
and Pacific Oceans to test for similarities between widely separated oceans. At this
point several papers compare the new methodology to older ones, and other papers
appear pointing out the biases or problems inherent in the new methodology and strat-
egies to solve them. For example, after Sogin et al. (2006) came Huse et al. (2007,
2008, 2010). (3) A third step corresponds to global analyses using many samples.
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For example, Pommier et al. (2007) undertook a global analysis using clone libraries,
and Zinger et al. (2011) did the same with pyrosequencing data. Some studies plan
specific tests of hypotheses, whereas others are post-hoc data analyses. (4) Well-
designed experiments to use the (relatively) new technology to test nontrivial hypoth-
eses. For example, Baltar et al. (2015, 2016) tested the effect of anthropogenic
disturbances on the abundant versus rare bacteria and the effects of predator manipu-
lation on bacterial community structure.

The metagenomics literature is full of descriptive studies. However, experimental
studies are the future. For example, Mou et al. (2008) coupled immunocapture with
sequencing to examine the microbes actively responding to the presence of dissolved
organic carbon model substrates. Well-designed experimentation with well-founded
hypotheses to test with proper replication is where the field should head. In fact, the
lack of replication and proper experimental designs in metagenomics has been iden-
tified as a deterrent of progress (Knight et al. 2012). Marine microbial ecology would
be stronger if it used more experimental approaches with replication, systematically
include internal controls (particularly in metatranscriptomics), and organized data in
standardized formats.

The previous discussion raises the question about matching the methodological
approach with the hypothesis or with the general objectives of a descriptive study.
Within the limits of resources (time, hands, or money), there is a tendency to use the
most updated method that generates the most data, simply because the method is
new, or because authors fear reviewers will not appreciate results from “old” meth-
ods, even if the hypothesis or goals of the study could be reached with an older
approach (e.g., Fig. 1.5). As an example, carbon flux studies likely do not require an
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analysis at the ecotype level. Similarly, metagenomic 16S rRNA inventories are still
more expensive than PCR-based 16S rRNA tag sequencing and provide less informa-
tion about less abundant organisms. Each approach has its biases (see Chapter 2).
The level of the analysis should be chosen to match the question addressed.

An example of the challenges we face at matching the approach with the question
is the response of microorganisms and their activities to global change, particularly
to rising temperatures. There is no single experiment that can realistically reproduce
what will occur to microbes with rising temperatures. With the 1-2° C expected
increase in temperature of the ocean by the end of the century (e.g., Bopp et al.
2013), we should be running 80-year experiments to allow for microbes to meaning-
fully adapt to the rising temperatures. As long-term experiments show, microbes are
known to evolve new capacities and adaptations even in a homogenous lab setup
(Tenaillon et al. 2016) and a 2° C change in 100 years is likely equivalent to what will
occur in ca. 300,000 bacterial generations. However, because our experiments last
only a few generations, one can wonder whether such experiments produce meaning-
ful results (Sarmento et al. 2010). Instead, space-for-time substitutions (i.e., cross-
comparisons between natural systems under different temperature regimes) should
be considered. They can inform us of how microbes currently respond to changes in
temperatures (e.g., Lgnborg et al. 2016). Long-term observatories are also needed to
resolve the actual changes (e.g., Li et al. 2009; Sarmento et al. 2010; Morén et al.
2010, 2015). Another possibility is to use the metabolic theory of ecology (MTE;
Brown et al. 2004), which can provide predictions about the effects of warming on
the structure and dynamics of marine ecosystems. As an example, MTE predicts that
warming should increase grazing on bacteria more than bacterial production
(Sarmento et al. 2010) and stimulate more bacterial carbon consumption than pri-
mary production (Hoppe et al. 2002), while primary producers may escape grazing
by protists at low temperatures, thus allowing phytoplankton blooms to occur
(Lopez-Urrutia 2008). Rigorous analyses, however, must incorporate other factors
affecting the relationship between temperature and the microbial processes, such as
nutrient and light limitation (Lopez-Urrutia & Moran 2007; Kirchman et al. 2009).

A final challenge is to establish the relationship of omic methods, which are
becoming more and more popular (Fig. 1.3), to efforts to understand microbial func-
tion occurring in the oceans. One example is whether the presence of a particular
phylogenetic group can be taken as indication of a particular ecosystem function (e.g.,
presence of Cycloclasticus indicates hydrocarbon inputs and degradation by microbes).
Given the relative simplicity of 16S rRNA studies, there is the temptation to extract
functional information from the list of OTUs present in a sample. Methodologies exist
that associate each OTU with a genome-sequenced relative and predict functions
based on a hypothetical conservation of function (e.g., Picrust, Tax4Fun, Paprica,
Faprotax; Langille et al. 2013; ABhauer et al. 2015; Bowman and Ducklow 2015;
Louca et al. 2016), but one can argue that this may lead to erroneous conclusions for
environments where most organisms have no sequenced relatives. Empirical work at
identifying truly indicator organisms (like Cycloclasticus cited previously, e.g., Teira
et al. 2007) and more genomic work with relevant marine organisms are needed to
obtain really useful tools. In addition, knowing the degree of phylogenetic conservation
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(or lack of) of the different functional genes or ecological traits (e.g., Martiny et al.
2013, 2015; Salazar et al. 2015) will facilitate extracting functional information from
the species inventories. A different problem faces the metatranscriptomics studies. It
is generally assumed that the abundance of specific mRNAs from functional genes is
a reliable proxy for those functions in natural environments. Yet, they are not, and
neither is the abundance of proteins (Moran et al. 2013; Rocca et al. 2015). However,
inventories of genes in the mRNA pool are informative about the relevant ecological
processes that are occurring in the environment, and perhaps more importantly, fluc-
tuations in these pools can be used as a sensitive bioassay to detect the response of the
microbes to a changing environment.

Finally, the field has been said to lack theoretical grounding (Prosser et al. 2007).
Theories should be the bases for the experiments, yet this is hardly ever the case in
our field. Established ecological theory should be tested in microbial systems, and
theory should guide observations and experimental design. But, equally, data from
microbial systems should be used to adapt or modify existing theory, to construct
new theory or to understand better the implications of the existing theories. As an
example, prokaryotes seem to follow a “superlinear” relationship between cell size
and metabolism (slope >1), whereas protists and metazoans have slopes <1 (DeLong
et al. 2010; Garcia et al. 2016). One explanation is the covariation between cell size
and genome content (and thus metabolic potential) in the prokaryotes that then
dissipates with larger organism size.

There has been clear progress in the last few years, and now microbial papers are
more common in journals such as Ecology Letters, in part because the availability of
HTS data has been used to test classic ecological theories, such as taxa-area relation-
ships (Horner-Devine et al. 2004), latitudinal patterns in diversity (Fuhrman et al.
2008), and whether bacterial communities are assembled by ecological (“habitat fil-
tering”, or niche) versus dispersal or stochastic mechanisms (Hughes Martiny et al.
2006). Further use of theory to determine sampling strategies and experiments would
certainly help develop our field.

1.4 THE FUTURE OF MARINE MICROBIAL ECOLOGY

The previous sections have already pointed to some future trends in the subjects that
will dominate microbial ecology of the ocean in the following years. With the risk of
being wrong (but maybe not as much as in Kirchman and Pedrés-Alié 2007), here are
some more thoughts about the future of our field:

1.4.1 Toward Single-Cell Microbial Oceanography

Combining functional and genetic probes has opened the door to simultaneously
interrogate single cells for their identity (with, e.g., FISH), physiological status
(e.g., membrane probes, del Giorgio and Gasol 2008) or uptake activity (e.g.,
microautoradiography). Newer methodologies are now expanding the bounda-
ries of this topic. Nanometer-scale secondary ion mass spectrometry (NanoSIMS)
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allows the coupling of phylogenetic identity and metabolic function of single
cells in the environment, by imaging of isotopic composition of individual cells
at the nanoscale. Particularly interesting is the capability to track use of nitro-
gen forms; practical radioactive tracers are not available for N compounds.
NanoSIMS allows various compounds to be tracked simultaneously, and thus,
for example, "N-ammonia or 15N2 can be combined with *C-bicarbonate to
detect cells incorporating both inorganic nitrogen and CO, (e.g., Musat et al.
2012). Initial studies could identify some individual cells because of their size
(e.g., Trichodesmium, Finzi-Hart et al. 2009; or Anabaena, Popa et al. 2007),
but now they can be identified by phylogenetic probing which can be combined
with functional probing. Some new phylogenetic probing methods include dou-
ble imaging FISH (Orphan et al. 2001) and probes labeled with bromine, iodine,
or fluorine (HISH-SIMS, for halogen in-situ hybridization), molecules that are
not very abundant in microorganisms and that are easily detected by ion mass
spectrometry. With this approach Martinez-Pérez et al. (2016) quantified the
contribution of Trichodesmium and UCYN-A to nitrogen fixation in the Atlantic
Ocean and observed that these fixation rates were roughly proportional to car-
bon fixation except for some Trichodesmium cells that were only active in one
of the processes. Raman spectroscopy can also be combined with FISH to detect
cell-specific incorporation of *C compounds (Huang et al. 2007) and has been
used to probe CO, fixation by individual organisms in mixed communities (Li
et al. 2012).

We predict that single-cell genomics, already proven to be a powerful approach in
marine microbial ecology, will become even more common in the coming years. The
approach will continue to evolve as techniques for minimizing DNA contamination
improve, the current limitations of DNA amplification by MDA are circumvented, and
sequencing technology advances. As sequencing costs continue to decrease, screen-
ing of isolated cells by PCR and other approaches may become superfluous, and it
will be feasible to address new questions by single-cell genomic approaches.
A remarkable example of this is the work with Prochlorococcus in which the knowl-
edge gained from various lab isolates has been expanded with ocean uncultured
clades (Malmstrom et al. 2013). Large-scale application of the SAG procedures to
natural populations of co-occurring Prochlorococcus has shown that the community
is composed of hundreds of subpopulations with different sets of core gene variants,
and a small set of flexible genes (Kashtan et al. 2014) that provides the plasticity
needed for fine-tune adaptations to the variety of conditions that occur in the stratified
ocean. These data generate questions about how these subpopulations coexist, vary,
or are selected while enabling this organism to maintain huge global populations in
relatively stable environments. These comparisons will become more and more fre-
quent in the coming years.

In the case of eukaryotes, current single-cell DNA amplification methods gener-
ate only a small part of the genome to be sequenced (Roy et al. 2014), a problem that
can be overcome by combining the genome fragment information of multiple single-
cells (Mangot et al. 2017). Improvements on the amplification side will facilitate
further SAG studies with other marine protists. Overall, newer technologies that
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allow single-cell visualization, chemical characterization, activity and DNA, RNA,
and protein content will allow further progress and will be more common and rele-
vant in the future.

1.4.2 Toward Understanding Cell-Cell Interactions

HTS of metagenomes or 16S rRNA and single-cell interrogation techniques have
also facilitated inspection of cell-cell interactions in microbial communities and have
recently allowed realization that these cell-cell interactions have implications for
whole ecosystem functioning.

The availability of high temporal density data on the abundances of specific
prokaryotes, protists, and viruses allows using co-occurrence networks to unveil
positive or negative associations between them (Faust and Raes 2012; Fuhrman et al.
2015). The network analyses provide testable hypotheses about, for example, the
relationships between a specific prokaryote and a eukaryote, hypotheses that require
experimental validation (Lima-Mendez et al. 2015). But determination of network
structure can generate hypotheses about long-term system stability depending on the
amount of connections and feedbacks present and also test whether external changes
may affect these connections and overall system stability.

Associations among organisms detected in these analyses can be used to promote
co-culture of otherwise difficult to grow organisms, as is the case for Prochlorococcus
(Morris et al. 2008) where the “helper” bacteria protect the phototroph from oxida-
tive damage. In other cases, bacterial or algal mediation of essential vitamin synthe-
sis might be the key to interactions (Safiudo-Wilhemy et al. 2014), as can be the
production of siderophores that help acquire iron (Amin et al. 2009) or hormone-like
molecules that some bacteria can produce to stimulate diatom cell division (Amin
et al. 2015).

Many of the unveiled associations in the ocean seem to be parasitic (Lima-Mendez
et al. 2015), and likely much of the eukaryotic diversity consists of parasites (de
Vargas et al. 2015); some have been observed to terminate dinoflagellate blooms
(Chambouvet et al. 2008). Beyond the most common forms of symbiosis, like those
involving nitrogen fixers and diatoms and small haptophytes, and those between cili-
ates and algae, new ones are being described in the plankton, in some cases involving
an algal host that is both abundant in the free plankton, as well as in the symbiosis
(Decelle et al. 2012). Knowledge about these positive and other negative interactions
beyond grazing within the microbial food web will grow in the future and likely will
be incorporated into models of the microbial food web such as that of Fig. 1.2.

Finally, communication between microbes is probably important in determin-
ing their interactions. Although mediated by chemical quorum sensing processes,
communication is visible with specialized microscopes (Malfatti et al. 2010), is
known to be the bases of biofilm formation (Flemming et al. 2016), and likely
present in bacteria growing on particles (Ganesh et al. 2014). In addition, cell-cell
communication (probably including gene transfer) might be (one of) the reason-
d’etre of the membrane vesicles described in Prochlorococcus and in other marine
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bacteria (i.e., Biller et al. 2014). More work will likely be done in this area of
cell-cell interactions, cell signaling, and infochemicals as drivers of microbial
interactions in the future.

1.4.3 Toward Comprehensive Exploration of All Marine Habitats

Some marine habitats have been studied for many years, and we have a relatively
good understanding of how the upper ocean works both in oceanic environments and
in coastal sites. This is mostly through use of long-term sampling observatories, such
as the Hawaii Ocean Time-series (HOT) or Bermuda Atlantic Time-series Study
(BATS), and coastal observatories such as Helgoland, Plymouth L4, San Pedro
Basin, Blanes Bay, or the Delaware estuary, to name just a few. The differences
between surface coastal and oceanic systems are clear, in the organisms, in the func-
tion of the microbial communities, but also in the variations over the year. Other sites
that have been studied for long periods of time, such as the Cariaco Basin (Taylor
etal. 2012), correspond to another type of marine habitat, the highly stratified, anoxic
basins, including the oxygen minimum zones (OMZs). The microbial ecology of this
type of environments is relatively well known (see Chapter 7), but of other oceanic
habitat types, much less is known.

The deep ocean, probably the largest ecosystem on Earth, has been much less
studied than the surface layer (Aristegui et al. 2009). The bathypelagic ocean is par-
ticularly interesting because of the presence of many chemoautotrophic archaea and
bacteria (Swan et al. 2011; Herndl et al. 2005), because of the large role of particle-
attached prokaryotes (Baltar et al. 2010), and because of the paradoxical lack of cor-
respondence between the measured carbon inputs and carbon use by bacteria (Herndl
and Reinthaler 2013). It is clear that deep ocean microbial communities work in a
fundamentally different way than surface water communities do. More work is
needed to solve this apparent imbalance and to understand how carbon is used in the
deep ocean. In addition, the difference of pressure between the depth and the surface
poses an additional experimental challenge.

Somewhat surprisingly, the fine structure of likely the most remarkable open
ocean structuring feature, the deep chlorophyll maxima layer, has also been poorly
described. In this layer, opposite gradients of temperature, light, and nutrients define
a relatively stable habitat with algae adapted to low light levels. We now know that it
structures phototroph communities (Cabello et al. 2016) and is home to particular
groups of oceanic bacteria, such as the small Actinobacteria (Ghai et al. 2013). The
maximum of primary productivity occurs above the chlorophyll maxima, and some
authors have observed high bacterial activity right below the chlorophyll maxima
(Pedrés-Alié et al. 1999). Still, we know little of whether this open ocean structure,
which clearly has different functioning, also has distinct microbial communities.
Similarly, the mesopelagic probably holds areas of great microbial interest (Robinson
et al. 2010), particularly now that it has been shown that the number of small fish in
the mesopelagic “deep-scattering layer” is much larger than previously thought
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(Irigoien et al. 2014). These organisms, which feed in other ocean layers, metabolize
carbon in the mesopelagic and have a currently unknown effect on microbial diversity
and function.

Other environments within the ocean will receive renewed attention, or they
should. These include sediments, hydrothermal vents, and hypersaline anoxic basins,
but also the microbiomes of pelagic and benthic animals (Thomas et al. 2016).
In addition, the linkages between the atmosphere and the sea surface will likely
receive renewed interest, either through quantification of the use of volatile or non-
volatile atmospheric organic carbon such as acetone and methanol by surface ocean
microbes (Dixon et al. 2011; Arrieta et al. 2016), or the bidirectional air-sea flux of
microorganisms through the atmosphere (Mayol et al. 2014), which might play a role
in microbial dispersal. Comprehensive knowledge of marine microbial ecology will
require more research effort on these marine habitats.

1.4.4 Toward Changing Our View of the Fluxes
of C and the Role of the Various Microbes

Given the many different trophic roles that have been identified in prokaryotes
(chemoheterotrophs, photoautotrophs, photoheterotrophs, chemoautotrophs, etc.),
protists (parasites, phagotrophs, mixotrophs, strict phototrophs, symbionts), and
even viruses (transferring functional genes, “manipulating” microbial functions; e.g.,
Worden et al. 2015; Hurwitz et al. 2013; Roux et al. 2016), our thinking about the
structure of the microbial food web outlined in Fig. 1.2 will likely change in the
future. Mixotrophy seems to be prevalent in the smallest protists and in most prokar-
yotes, and likely common in all environments (see Chapter 3; Selosse et al. 2017).
Another potentially paradigm-shifting topic is the relationships between the
structure of the oceanic organic matter and of the prokaryotic communities inter-
acting with that organic matter (Moran et al. 2016). These relationships and
interactions have been elusive until now because of lack of methods to examine
both in sufficient detail. This is particularly relevant as the oceanic carbon pool
is one of the largest on Earth. Understanding how it is created and maintained is
key in the efforts for managing the increasing carbon humans are introducing
into the atmosphere. Jiao et al. (2010) proposed that reworking of DOM by bac-
teria in upper oceanic layers produces recalcitrant DOM (Ogawa et al. 2001) that
would not be used by microbes throughout the water column. Recent studies sug-
gest that only a fraction of the DOC that microbes produce is probably recalci-
trant (Osterholz et al. 2015), but bacterial use of this carbon is limited because
the concentration of each compound in this highly diverse pool of molecules is
very low (Arrieta et al. 2015). In any case, given the relevance of oceanic carbon
storage, advances toward better understanding of the mechanisms of production
and consumption of various molecules, or fractions, of DOC in the ocean, will
likely be one of the future highlights of oceanic biogeochemistry and marine
microbial ecology. We have methods for characterizing microbial communities
in exquisite detail, and analogous approaches for organic material are becoming
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widely spread (see Chapter 6). In the future, we will see more studies that com-
bine the two fields of marine science for elucidating direct links between specific
molecules and specific microbes.

1.4.5 Toward Describing the Unknown Component of Microbial
Diversity in the Oceans

The discovery of new diversity in the ocean will continue to be a major driver of
the field. A recent estimate of the number of microbial species on Earth (Locey
and Lennon 2016) suggests that we are far from having reached a good knowledge
of the various microbial species in the ocean, which are believed to be on the order
of a few hundred thousand. Our understanding of genetic diversity is similarly
limited; the Tara Oceans metagenomic survey encountered ca. 40% of the ortholo-
gous groups of genes of unknown function (Sunagawa et al. 2015). The lack of
knowledge of small protists is even greater, and new groups are continuously
being discovered (e.g., Kim et al. 2011; Jones et al. 2011). Fungi are increasingly
seen to be important in the deep ocean (Pernice et al. 2016; Bochdanski et al.
2017) and in the surface layer, including sea ice (Hassett and Gradinger 2015). In
the viruses realm, giant (0.4 pm) viruses infecting eukaryotes (Fischer et al. 2010)
seem to be quite prevalent (Hingamp et al. 2013). This type of large viruses was
shown to be infected by other phages, something that alters our concept of life.
We will continue to see new discoveries, driven by further use of smarter cultiva-
tion strategies (see Chapter 5), inspection of undersampled environments, use of
single-cell genomics, or more efficient molecular tools, such as metagenomic-
assembled genomes (Hugerth et al. 2015).

In the future we will continue to learn from environmentally relevant isolates
(see Chapter 5), and more environmentally relevant prokaryotes will be cultured.
We especially need new isolates of protists and viruses, because we have no mod-
els for most of the groups observed only in environmental sequences, particularly
for viruses and protists (del Campo et al. 2014). The power of having isolates is
arguably most evident for two abundant clades in the oceans: information from
isolates and single-cell genomics demonstrated that Prochlorococcus comprises
several subgroups with extensive genomic and phenotypic diversity (Biller et al.
2015). Similarly, although all isolates of SAR11 have conserved low GC content
and small genomes, they differed in their genes for phosphorus metabolism, gly-
colysis, and C1 metabolism, suggesting adaptation of the various ecotypes to
diverse habitats (Grote et al. 2012). More isolates from other environmentally
important microbial groups will be equally illuminating about their biology, ecol-
ogy, and biogeochemical roles in the oceans.

Another area of great interest where we will likely observe progress is that of the
linkages (or lack of) between diversity and ecosystem function. Most marine micro-
bial ecologists would say that their goal is to describe (1) which microbes are present
(diversity); (2) how many and where they develop (ecology, biogeography); (3) what
do they do (function); and (4) how they interact. Although we have a relatively good
understanding of points (1) and (2), we have much less clear answers on points (3)
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and (4) There are still many microbial genes with unknown function. Even if we
knew the function, and as argued previously, lists of organisms, genes, or even the
full genomes of model organisms do not answer fully the question. In addition,
some analyses conclude that the large genomic variability in the ocean does not trans-
late into similarly large taxonomic variability (Louca et al. 2016). That observation
seems consistent with the low variability in genes among ocean microbial communi-
ties (Sunagawa et al. 2015), possibly because the core set of microbial functions
evolved in response to past ocean conditions and spread across many microbial
clades by lateral gene transfer or convergent evolution, producing enormous micro-
bial diversity that has large functional redundancy. Targeted research to understand
the functional meaning of the genomic variability will be needed in the future.
This genomic variability represents a large amount of potentially useful medical and
biotechnological resources (Arrieta et al. 2010). Consequently, marine microbial
ecology has the potential to lay the basic scientific support for a shift toward a
“blue economy” that could create economic value and do it in a sustainable way that
preserves and protects the sea’s resources and ecosystems.

The chapters assembled in this third edition of Microbial Ecology of the Ocean
will answer some of the questions posed in this introduction in greater detail.
We hope the book overall will stimulate students and practitioners to tackle these
issues and to continue progress in our field.

1.5 SUMMARY

1. The field covered by the three editions of Microbial Ecology of the Ocean has
grown steadily in the last 30 years to become a central part of microbial ecol-
ogy and of biological oceanography. Special issues in high relevance journals,
funding from public and private organizations, and a large share of the papers
published in marine science and microbial ecology support this claim.

2. The field started with a “black box”” approach, considering all organisms within
a “box” to have the same ecology. However, new techniques have allowed the
opening of the black boxes to describe the variability in activity, growth rates,
and composition of each component.

3. A further leap occurred when it became possible to characterize the
genome and potential metabolism of both the community as a whole and
of the dominant players. These approaches were applied to natural com-
munities and model organisms cultivated in the lab. Driven by the new
powerful molecular techniques, which are now accessible to most labora-
tories, we are learning much about the physiology, genetics, and ecology
of marine microbes.

4. We argue that the subject is still descriptive and that it will benefit from more
experimental approaches. It will definitively be stronger with method controls
and standardization. We also suggest that the field would benefit from more
theoretical grounding.
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5. We foresee that future relevant developments in the field will concentrate in the
study of cell-cell interactions, single-cell genomics, description of undersam-
pled and understudied marine habitats, and undescribed diversity. Exploring
these topics and others will lead to changes in our view of the fluxes of carbon
and nutrients and the role the various microbes play in them.
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