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BASIC ELECTROMAGNETIC THEORY

This chapter presents basic electromagnetic theory, which includes a brief review of
vector analysis that is essential for the mathematical treatment of electromagnetic fields,
Maxwell’s equations in both integral and differential forms that govern all electromagnetic
phenomena, the Lorentz force law that relates electric and magnetic fields to measurable
forces, constitutive relations that characterize the electromagnetic properties of a medium,
boundary conditions at interfaces between different media and at perfectly conducting
surfaces, the concepts of electromagnetic energy and power, the energy conservation
law as expressed by Poynting’s theorem, the concept of phasors for time-harmonic
fields, and finally Maxwell’s equations and Poynting’s theorem in the complex form for
time-harmonic fields. The presentation assumes that the reader has basic knowledge of
vector calculus and electromagnetics at the undergraduate level [1–7].

1.1 REVIEW OF VECTOR ANALYSIS

We all know that both electric and magnetic fields are vectors since they have both a
magnitude and a direction. Hence, the study of electromagnetic fields requires basic knowl-
edge of vector analysis. The most useful concepts in vector analysis are those of divergence,
curl, and gradient. In this section, we present definitions and related integral theorems for
these quantities. This is followed by the introduction of a new method that can easily deal
with various vector identities and the description of the Helmholtz decomposition theorem,
which will be very useful for the study of Maxwell’s equations.
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4 BASIC ELECTROMAGNETIC THEORY

1.1.1 Vector Operations and Integral Theorems

Assume that 𝐟 is a vector function,1 a quantity whose magnitude and direction vary as
functions of its position in space. The divergence of the vector function 𝐟 is defined by the
limit

∇ ⋅ 𝐟 = lim
Δ𝑣→0

1
Δ𝑣

[
∫
�
�
�
�∫s
𝐟 ⋅ d𝐬

]
(1.1.1)

where Δ𝑣 denotes an infinitesimal volume and s denotes the closed surface of this volume.
The differential surface d𝐬 is normal to s and points outward. By applying Equation (1.1.1)
to the differential volume constructed in rectangular, cylindrical, and spherical coordinates,
we obtain the expressions of the divergence as

∇ ⋅ 𝐟 =
𝜕fx
𝜕x

+
𝜕fy
𝜕y

+
𝜕fz
𝜕z

(1.1.2)

∇ ⋅ 𝐟 = 1
𝜌

𝜕(𝜌f𝜌)
𝜕𝜌

+
𝜕f𝜙
𝜌𝜕𝜙

+
𝜕fz
𝜕z

(1.1.3)

∇ ⋅ 𝐟 = 1
r2

𝜕

𝜕r
(r2fr) +

1
r sin 𝜃

𝜕

𝜕𝜃
(f𝜃 sin 𝜃) +

1
r sin 𝜃

𝜕f𝜙
𝜕𝜙

(1.1.4)

in these three most important coordinate systems. It is important to remember that ∇ ⋅ 𝐟 , a
notation proposed by J. Willard Gibbs [8], is simply a mathematical notation for the diver-
gence of 𝐟 . It should not be interpreted as the dot product between the operator ∇ and the
vector 𝐟 ; otherwise, mistakes can easily be made in the derivation of the expressions in
cylindrical and spherical coordinates. Now, consider a finite volume denoted as V , which is
enclosed by surface S. By dividing this volume into an infinite number of infinitesimal
volumes, applying Equation (1.1.1) to each infinitesimal volume, and summing up the
results, we obtain

∫∫∫V
∇ ⋅ 𝐟 dV = ∫

�
�
�
�∫S
𝐟 ⋅ d𝐒 (1.1.5)

if the vector 𝐟 and its first derivative are continuous in volume V as well as on its surface
S. Equation (1.1.5) is known as the divergence theorem or Gauss’ theorem, which is very
useful in electromagnetics.

In addition to the divergence, another operation that quantifies the variation of a vector
function is called the curl. The curl of the vector function 𝐟 is defined by the limit

∇ × 𝐟 = lim
Δ𝑣→0

1
Δ𝑣

[
∫
�
�
�
�∫s
d𝐬 × 𝐟

]
(1.1.6)

where Δ𝑣 again denotes an infinitesimal volume enclosed by surface s. Again, we should
remember that ∇ × 𝐟 is simply a mathematical notation for the curl of 𝐟 , and it should not

1All vectors are represented by boldfaced letters in this book. In contrast, a scalar quantity is represented by a
nonboldfaced italic letter.



REVIEW OF VECTOR ANALYSIS 5

be interpreted as the cross-product between the operator ∇ and the vector 𝐟 . By apply-
ing Equation (1.1.6) to the differential volume constructed in rectangular, cylindrical, and
spherical coordinates, we obtain the expressions of the curl as

∇ × 𝐟 = x̂

(
𝜕fz
𝜕y

−
𝜕fy
𝜕z

)
+ ŷ

(
𝜕fx
𝜕z

−
𝜕fz
𝜕x

)
+ ẑ

(
𝜕fy
𝜕x

−
𝜕fx
𝜕y

)
(1.1.7)

∇ × 𝐟 = �̂�

(
𝜕fz
𝜌𝜕𝜙

−
𝜕f𝜙
𝜕z

)
+ �̂�

(
𝜕f𝜌
𝜕z

−
𝜕fz
𝜕𝜌

)
+ ẑ

1
𝜌

[
𝜕(𝜌f𝜙)
𝜕𝜌

−
𝜕f𝜌
𝜕𝜙

]
(1.1.8)

∇ × 𝐟 = r̂
1

r sin 𝜃

[
𝜕

𝜕𝜃
(f𝜙 sin 𝜃) −

𝜕f𝜃
𝜕𝜙

]
+ �̂�

1
r

[
1

sin 𝜃

𝜕fr
𝜕𝜙

− 𝜕

𝜕r
(rf𝜙)

]

+ �̂�
1
r

[
𝜕

𝜕r
(rf𝜃) −

𝜕fr
𝜕𝜃

]
. (1.1.9)

Apparently, the curl itself is a vector that has a different magnitude and a different direction.
Given a direction â, the magnitude of the curl in this direction is given by

â ⋅ (∇ × 𝐟 ) = lim
Δs→0

1
Δs

[
∮c

𝐟 ⋅ d𝐥
]

(1.1.10)

where Δs is an infinitesimal surface normal to â and c is a closed contour bounding Δs.
The differential length d𝐥 is tangential to the contour c, and its direction is related to that
of â by the right-hand rule. Equation (1.1.10) can be derived by applying Equation (1.1.6)
to an infinitesimal disk perpendicular to â with a vanishing thickness. Now, consider an
open surface S bounded by a closed contour C. We can divide S into an infinite number
of infinitesimal surfaces, then apply Equation (1.1.10) to each of the infinitesimal surfaces,
and finally sum up the results to find

∫∫S
(∇ × 𝐟 ) ⋅ d𝐒 = ∮C

𝐟 ⋅ d𝐥 (1.1.11)

if the vector 𝐟 and its first derivative are continuous on surface S as well as along C.
Equation (1.1.11) is known as Stokes’ theorem, which is also very useful in the study of
electromagnetics.

As we will see later, the divergence and curl are sufficient to characterize the variation
of a vector function. The third useful operation in vector analysis is the gradient, which
quantifies the variation of a scalar function. Let f be a scalar function of space. The gradient
of this function is defined as

∇f = lim
Δ𝑣→0

1
Δ𝑣

[
∫
�
�
�
�∫s
f d𝐬

]
(1.1.12)

which is a vector. Its magnitude along a given direction â is given by

â ⋅ ∇f =
𝜕f

𝜕a
(1.1.13)

which can be derived by applying Equation (1.1.12) to an infinitesimal circular disk
perpendicular to â with a vanishing radius and thickness. By applying Equation (1.1.12) to
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the differential volume constructed in rectangular, cylindrical, and spherical coordinates,
we obtain the expressions of the gradient as

∇f = x̂
𝜕f

𝜕x
+ ŷ

𝜕f

𝜕y
+ ẑ

𝜕f

𝜕z
(1.1.14)

∇f = �̂�
𝜕f

𝜕𝜌
+ �̂�

𝜕f

𝜌𝜕𝜙
+ ẑ

𝜕f

𝜕z
(1.1.15)

∇f = r̂
𝜕f

𝜕r
+ �̂�

𝜕f

r𝜕𝜃
+ �̂�

1
r sin 𝜃

𝜕f

𝜕𝜙
. (1.1.16)

In vector analysis, another important operation is to take the divergence on the gradient
of a function such as ∇ ⋅ (∇f ). This operation is often referred to as the Laplacian, which
is denoted as

∇2f = ∇ ⋅ (∇f ). (1.1.17)

Its expressions in the three commonly used coordinates are given by

∇2f =
𝜕2f

𝜕x2
+

𝜕2f

𝜕y2
+

𝜕2f

𝜕z2
(1.1.18)

∇2f = 1
𝜌

𝜕

𝜕𝜌

(
𝜌
𝜕f

𝜕𝜌

)
+ 1

𝜌2

𝜕2f

𝜕𝜙2
+

𝜕2f

𝜕z2
(1.1.19)

∇2f = 1
r2

𝜕

𝜕r

(
r2
𝜕f

𝜕r

)
+ 1

r2 sin 𝜃
𝜕

𝜕𝜃

(
sin 𝜃

𝜕f

𝜕𝜃

)
+ 1

r2sin2𝜃

𝜕2f

𝜕𝜙2
. (1.1.20)

1.1.2 Symbolic Vector Method

In vector analysis, we often have to manipulate vector expressions into different and yet
equivalent forms. A difficulty in such a manipulation is that the operator∇ cannot be treated
rigorously as a vector. This difficulty can be alleviated by the introduction of the symbolic
vector method [8]. This symbolic vector, denoted as ∇̃, is defined as

T(∇̃) = lim
Δ𝑣→0

1
Δ𝑣

[
∫
�
�
�
�∫s
T(n̂) ds

]
(1.1.21)

where Δ𝑣 denotes an infinitesimal volume, s denotes the closed surface of this volume, and
n̂ denotes the unit vector normal to the surface s and pointing outward, which is related to
d𝐬 by d𝐬 = n̂ds. The left-hand side of Equation (1.1.21), T(∇̃), represents an expression that
contains the symbolic vector ∇̃, such as a∇̃, 𝐚 ⋅ ∇̃, 𝐚 × ∇̃, and ∇̃ ⋅ (𝐚 × 𝐛). The integrand on
the right-hand side, T(n̂), represents the same expression with ∇̃ being replaced by n̂, so the
corresponding expressions for the four aforementioned examples are an̂, 𝐚 ⋅ n̂, 𝐚 × n̂, and
n̂ ⋅ (𝐚 × 𝐛).

Based on the definition given in Equation (1.1.21), we can show easily that

∇̃ ⋅ 𝐟 = lim
Δ𝑣→0

1
Δ𝑣

[
∫
�
�
�
�∫s
n̂ ⋅ 𝐟 ds

]
= lim

Δ𝑣→0

1
Δ𝑣

[
∫
�
�
�
�∫s
𝐟 ⋅ n̂ ds

]
= 𝐟 ⋅ ∇̃ (1.1.22)
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and similarly, ∇̃f = f ∇̃ and ∇̃ × 𝐟 = −𝐟 × ∇̃. This indicates clearly that ∇̃ can be treated as
a regular vector; hence, all valid vector manipulations and all algebraic identities are appli-
cable to ∇̃. However, by comparing Equation (1.1.21) to the definitions of the divergence,
curl, and gradient, we also see that

∇ ⋅ 𝐟 = ∇̃ ⋅ 𝐟 = 𝐟 ⋅ ∇̃ (1.1.23)

∇ × 𝐟 = ∇̃ × 𝐟 = −𝐟 × ∇̃ (1.1.24)

∇f = ∇̃f = f ∇̃. (1.1.25)

These equations establish a relation between the symbolic vector ∇̃ and the divergence,
curl, and gradient operations. Given an expression that contains any of these operations,
we can first convert it into an algebraic expression using Equations (1.1.23)–(1.1.25), then
manipulate the algebraic expression using any of the valid algebraic identities, and finally
convert the symbolic vector back to the divergence, curl, or gradient. For example, consider
∇̃ × (∇̃ × 𝐟 ). Since 𝐚 × (𝐛 × 𝐜) = (𝐚 ⋅ 𝐜)𝐛 − (𝐚 ⋅ 𝐛)𝐜, we have

∇̃ × (∇̃ × 𝐟 ) = (∇̃ ⋅ 𝐟 )∇̃ − (∇̃ ⋅ ∇̃)𝐟 = ∇̃(∇̃ ⋅ 𝐟 ) − ∇̃ ⋅ (∇̃𝐟 ). (1.1.26)

Applying Equations (1.1.23)–(1.1.25) and then Equation (1.1.17), we obtain a very useful
identity

∇ × (∇ × 𝐟 ) = ∇(∇ ⋅ 𝐟 ) − ∇2𝐟 . (1.1.27)

When a vector expression contains the symbolic vector ∇̃ and two arbitrary functions,
since ∇̃works on both functions, we can use the following chain rule to facilitate its manip-
ulation:

T(∇̃, a, b) = T(∇̃a, a, b) + T(∇̃b, a, b) (1.1.28)

where a and b represent two functions that can either be scalar or vector, ∇̃a is the symbolic
vector applying only to function a, and ∇̃b applies only to function b. Equation (1.1.28)
should not come as a surprise to anyone who is familiar with the following well-known
differentiation formula:

𝜕(ab)
𝜕x

= b
𝜕a
𝜕x

+ a
𝜕b
𝜕x

. (1.1.29)

To illustrate the application of Equation (1.1.28), we consider three examples. We first
consider the expression ∇ ⋅ (a𝐛). Using Equation (1.1.28), we find

∇̃ ⋅ (a𝐛) = ∇̃a ⋅ (a𝐛) + ∇̃b ⋅ (a𝐛) = (∇̃aa) ⋅ 𝐛 + a∇̃b ⋅ 𝐛. (1.1.30)

Since ∇̃ ⋅ (a𝐛) = ∇ ⋅ (a𝐛), ∇̃aa = ∇a, and ∇̃b ⋅ 𝐛 = ∇ ⋅ 𝐛, we obtain the vector identity

∇ ⋅ (a𝐛) = 𝐛 ⋅ (∇a) + a∇ ⋅ 𝐛. (1.1.31)

As the second example, we consider ∇ × (a𝐛). Using Equation (1.1.28), we find

∇̃ × (a𝐛) = ∇̃a × (a𝐛) + ∇̃b × (a𝐛) = (∇̃aa) × 𝐛 + a∇̃b × 𝐛 (1.1.32)
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which yields the vector identity

∇ × (a𝐛) = −𝐛 × ∇a + a∇ × 𝐛. (1.1.33)

As the last example, we consider ∇ × (𝐚 × 𝐛). Using Equation (1.1.28) and the algebraic
identity

𝐜 × (𝐚 × 𝐛) = (𝐜 ⋅ 𝐛)𝐚 − (𝐜 ⋅ 𝐚)𝐛 (1.1.34)

we find

∇̃ × (𝐚 × 𝐛) = ∇̃a × (𝐚 × 𝐛) + ∇̃b × (𝐚 × 𝐛)

= (∇̃a ⋅ 𝐛)𝐚 − (∇̃a ⋅ 𝐚)𝐛 + (∇̃b ⋅ 𝐛)𝐚 − (∇̃b ⋅ 𝐚)𝐛 (1.1.35)

which yields the vector identity

∇ × (𝐚 × 𝐛) = (𝐛 ⋅ ∇)𝐚 − 𝐛∇ ⋅ 𝐚 + 𝐚∇ ⋅ 𝐛 − (𝐚 ⋅ ∇)𝐛. (1.1.36)

These examples demonstrate the power of the symbolic vector in deriving various vector
identities, which would otherwise be a rather tedious task.

Now, let us consider a finite volume V , which is enclosed by surface S. By dividing this
volume into an infinite number of infinitesimal volumes, applying Equation (1.1.21) to each
infinitesimal volume and summing up the results, we obtain

∫∫∫V
T(∇̃) dV = ∫

�
�
�
�∫S
T(n̂) dS (1.1.37)

if the function involved in T(∇̃) is continuous within volume V . Equation (1.1.37) is
referred to as the generalized Gauss’ theorem, from which we can easily derive many
integral theorems. For example, if we let T(∇̃) = ∇̃ ⋅ 𝐟 = ∇ ⋅ 𝐟 , we obtain the standard
Gauss’ theorem in Equation (1.1.5). If we let T(∇̃) = ∇̃ × 𝐟 = ∇ × 𝐟 , we obtain the
so-called curl theorem

∫∫∫V
∇ × 𝐟 dV = ∫

�
�
�
�∫S
d𝐒 × 𝐟 (1.1.38)

from which we can also derive Stokes’ theorem given in Equation (1.1.11) by applying it
to a surface with a vanishing thickness.

◾ EXAMPLE 1.1
Using the generalized Gauss’ theorem, derive a new integral theorem

∫∫∫V
(𝐛∇ ⋅ 𝐚 + 𝐚 ⋅ ∇𝐛) dV = ∫

�
�
�
�∫S
(n̂ ⋅ 𝐚)𝐛 dS.

Solution Based on the expression of the right-hand side, we let T(n̂) = (n̂ ⋅ 𝐚)𝐛.
The corresponding symbolic expression is T(∇̃) = (∇̃ ⋅ 𝐚)𝐛, which can further be
written as

T(∇̃) = (∇̃a ⋅ 𝐚)𝐛 + (∇̃b ⋅ 𝐚)𝐛 = (∇̃a ⋅ 𝐚)𝐛 + (𝐚 ⋅ ∇̃b)𝐛 = 𝐛∇ ⋅ 𝐚 + 𝐚 ⋅ ∇𝐛
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where we have applied the chain rule in Equation (1.1.28) and the relationship between
∇̃ and the divergence and gradient operations. The new integral theorem is then obtained
by substituting the expressions of T(∇̃) and T(n̂) into the generalized Gauss’ theorem in
Equation (1.1.37).

1.1.3 Helmholtz Decomposition Theorem

In vector analysis, there are two special vectors. One is called the irrotational vector, whose
curl vanishes. Denoting this vector as 𝐅i, we have

∇ × 𝐅i = 0, ∇ ⋅ 𝐅i ≠ 0. (1.1.39)

Another special vector is called the solenoidal vector, whose divergence is zero. Denoting
this vector as 𝐅s, we have

∇ ⋅ 𝐅s = 0, ∇ × 𝐅s ≠ 0. (1.1.40)

Using the symbolic vector method, we can easily prove the following two very important
vector identities:

∇ × (∇𝜑) = 0 (1.1.41)

∇ ⋅ (∇ × 𝐀) = 0. (1.1.42)

These identities are valid for any continuous and differentiable scalar function 𝜑 and vector
function 𝐀. Clearly, ∇𝜑 is an irrotational vector and ∇ × 𝐀 is a solenoidal vector.

Although a vector function can have a complicated variation, it can be shown that any
smooth vector function 𝐅 that vanishes at infinity can be decomposed into an irrotational
and a solenoidal vector,

𝐅 = 𝐅i + 𝐅s. (1.1.43)

By taking the divergence and curl of Equation (1.1.43), respectively, we obtain

∇ ⋅ 𝐅 = ∇ ⋅ 𝐅i, ∇ × 𝐅 = ∇ × 𝐅s (1.1.44)

which clearly indicates that the solenoidal component is related to the curl of the function
and the irrotational part is related to the divergence of the function. Therefore, once both
the divergence and curl of a vector function are specified, the function is fully determined.
This fact is known as the Helmholtz decomposition theorem.

1.1.4 Green’s Theorems

FromGauss’ theorem in Equation (1.1.5), we can derive some very useful integral theorems.
If we substitute 𝐟 = a∇b into Equation (1.1.5), where a and b are scalar functions, and apply
a vector identity based on Equation (1.1.31), we obtain

∫∫∫V
(a∇2b + ∇a ⋅ ∇b) dV = ∫

�
�
�
�∫S
a
𝜕b
𝜕n

dS (1.1.45)
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which is called the first scalar Green’s theorem. By exchanging the positions of a and b
and subtracting the resulting equation from Equation (1.1.45), we obtain

∫∫∫V
(a∇2b − b∇2a) dV = ∫

�
�
�
�∫S

(
a
𝜕b
𝜕n

− b
𝜕a
𝜕n

)
dS (1.1.46)

which is known as the second scalar Green’s theorem.
If we substitute 𝐟 = 𝐚 × ∇ × 𝐛 into Equation (1.1.5), where both 𝐚 and 𝐛 are vector

functions, and apply a vector identity, we obtain

∫∫∫V
[(∇ × 𝐚) ⋅ (∇ × 𝐛) − 𝐚 ⋅ (∇ × ∇ × 𝐛)] dV = ∫

�
�
�
�∫S
(𝐚 × ∇ × 𝐛) ⋅ d𝐒 (1.1.47)

which is called the first vector Green’s theorem. By switching the positions of 𝐚 and 𝐛 and
subtracting the resulting equation from Equation (1.1.47), we obtain

∫∫∫V
[𝐛 ⋅ (∇ × ∇ × 𝐚) − 𝐚 ⋅ (∇ × ∇ × 𝐛)] dV = ∫

�
�
�
�∫S
(𝐚 × ∇ × 𝐛 − 𝐛 × ∇ × 𝐚) ⋅ d𝐒

(1.1.48)

which is known as the second vector Green’s theorem. Now, if we let 𝐛 = b̂b, where b̂ is an
arbitrary constant unit vector and b is a scalar function, and then substitute it into Equation
(1.1.48), we can obtain after some vector manipulations

∫∫∫V

[
b(∇ × ∇ × 𝐚) + 𝐚∇2b + (∇ ⋅ 𝐚)∇b

]
dV

= ∫
�
�
�
�∫S
[(n̂ ⋅ 𝐚)∇b + (n̂ × 𝐚) × ∇b + (n̂ × ∇ × 𝐚)b] dS (1.1.49)

which can be called the scalar–vector Green’s theorem.

◾ EXAMPLE 1.2
Derive the scalar–vector Green’s theorem in Equation (1.1.49) from the second vector
Green’s theorem in Equation (1.1.48).

Solution By letting 𝐛 = b̂b with b as an arbitrary continuous scalar function and b̂ as a
constant unit vector pointing in an arbitrary direction, we have

𝐚 ⋅ (∇ × ∇ × 𝐛) = 𝐚 ⋅ [∇ × ∇ × (b̂b)] = 𝐚 ⋅ [∇∇ ⋅ (b̂b) − ∇2(b̂b)]

= 𝐚 ⋅ [∇(b̂ ⋅ ∇b) − b̂∇2b] = 𝐚 ⋅ ∇(b̂ ⋅ ∇b) − b̂ ⋅ 𝐚∇2b

= ∇ ⋅ [𝐚(b̂ ⋅ ∇b)] − b̂ ⋅ (∇ ⋅ 𝐚)∇b − b̂ ⋅ 𝐚∇2b

wherewe have applied the vector identities in Equations (1.1.27) and (1.1.31). Therefore,
the integrand in the left-hand side of Equation (1.1.48) becomes

𝐛 ⋅ (∇ × ∇ × 𝐚) − 𝐚 ⋅ (∇ × ∇ × 𝐛)

= b̂ ⋅ [b(∇ × ∇ × 𝐚) + (∇ ⋅ 𝐚)∇b + 𝐚∇2b] − ∇ ⋅ [𝐚(b̂ ⋅ ∇b)].

On the other hand, the integrand in the right-hand side of Equation (1.1.48) can be
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written as

(𝐚 × ∇ × 𝐛 − 𝐛 × ∇ × 𝐚) ⋅ n̂ = [𝐚 × ∇ × (b̂b) − bb̂ × ∇ × 𝐚] ⋅ n̂

= [𝐚 × (∇b × b̂)] ⋅ n̂ − bb̂ ⋅ [(∇ × 𝐚) × n̂]

= b̂ ⋅ [(n̂ × 𝐚) × ∇b + (n̂ × ∇ × 𝐚)b]

where we have applied the vector identity in Equation (1.1.33) and the algebraic identity
𝐚 ⋅ (𝐛 × 𝐜) = 𝐛 ⋅ (𝐜 × 𝐚) = 𝐜 ⋅ (𝐚 × 𝐛) repeatedly. Substituting the new expressions for the
integrands into Equation (1.1.48) and applying Gauss’ divergence theorem, we obtain

b̂ ⋅ ∫∫∫V

[
b(∇ × ∇ × 𝐚) + 𝐚∇2b + (∇ ⋅ 𝐚)∇b

]
dV

= b̂ ⋅ ∫
�
�
�
�∫S
[(n̂ ⋅ 𝐚)∇b + (n̂ × 𝐚) × ∇b + (n̂ × ∇ × 𝐚)b] dS

which becomes the scalar–vector Green’s theorem in Equation (1.1.49) since b̂ is an
arbitrary constant unit vector.

1.2 MAXWELL’S EQUATIONS IN TERMS OF TOTAL CHARGES AND
CURRENTS

Maxwell’s equations are a set of four mathematical equations that relate precisely the
electric and magnetic fields to their sources, which are electric charges and currents. They
were established by James Clerk Maxwell (1831–1879) [9, 10] based on the experimental
discoveries of André Marie Ampère (1775–1836) and Michael Faraday (1791–1867) and
a law for electricity by Carl Friedrich Gauss (1777–1855) and were reformulated into
the vector form by Heinrich Hertz (1857–1894) [11] and Oliver Heaviside (1850–1925)
[12]. Maxwell’s equations can be expressed in both integral and differential forms. This
section first presents Maxwell’s equations in integral form as the fundamental postulates of
electromagnetic theory and then derives Maxwell’s equations in differential form for fields
in a continuous medium, which are subsequently used to derive the current continuity
condition. This is followed by a brief description of the Lorentz force law that relates the
electric and magnetic fields to measurable forces.

André Marie Ampère (1775–1836) Carl Friedrich Gauss (1777–1855)
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Michael Faraday (1791–1867)  James Clerk Maxwell (1831–1879)

Heinrich Hertz (1857–1894) Oliver Heaviside (1850–1925) 

Picture credits
André Marie Ampère: Engraved by Ambroise Tardieu, 1825, courtesy AIP Emilio Segre

Visual Archives
Carl Friedrich Gauss: AIP Emilio Segre Visual Archives, Brittle Books Collection
Michael Faraday: Photo by John Watkins, courtesy AIP Emilio Segre Visual Archives
James Clerk Maxwell: AIP Emilio Segre Visual Archives
Heinrich Hertz: Deutsches Museum
Oliver Heaviside: AIP Emilio Segre Visual Archives, Brittle Books Collection

1.2.1 Maxwell’s Equations in Integral Form

Consider an open surface S bounded by a closed contour C. The first two Maxwell’s
equations are given by

∮C
EEE (𝐫, t) ⋅ d𝐥 = − d

dt ∫∫S
BBB (𝐫, t) ⋅ d𝐒 (1.2.1)
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∮C
BBB (𝐫, t) ⋅ d𝐥 = 𝜖0𝜇0

d
dt ∫∫S

EEE (𝐫, t) ⋅ d𝐒 + 𝜇0 ∫∫S
JJJtotal(𝐫, t) ⋅ d𝐒 (1.2.2)

where

EEE = electric field intensity (volts∕meter)

BBB = magnetic flux density (webers∕meter2)

JJJtotal = electric current density (amperes∕meter2)

𝜖0 = permittivity of free space (farads∕meter)

𝜇0 = permeability of free space (henrys∕meter).

The position vector 𝐫 and time variable t are included explicitly to indicate that the associ-
ated quantities can be functions of position and time.2 The subscript “total” inJJJtotal is used
to denote that this is the current density of total electric currents. In the MKS unit system,
the numerical values for the free-space permittivity and permeability are

𝜖0 = 8.854 × 10−12 F∕m ≈ 1
36𝜋

× 10−9 F∕m (1.2.3)

𝜇0 = 4𝜋 × 10−7 H∕m. (1.2.4)

Equation (1.2.1) is called Faraday’s induction law, and Equation (1.2.2) is often called
Ampère’s law or the Maxwell–Ampère law because Maxwell augmented the original
Ampère’s law with the addition of the displacement current, the first term on the right-hand
side. As we will see later, this term is very important because it predicts that electro-
magnetic fields can propagate as waves, which was experimentally verified by Hertz in
1887. Equations (1.2.1) and (1.2.2) indicate that a time-varying magnetic flux can generate
an electric field, and an electric current and a time-varying electric field can generate a
magnetic field.

In a folk song about Faraday’s law as expressed in Equation (1.2.1), the author, Dr.Walter
Fox Smith of Haverford College, elaborated eloquently its physical meaning and practical
importance in a humorous manner. He wrote

Faraday’s law of induction
The law of all sea and all land—
No lies, no deceit, no corruption
In this law so complete and so grand!

Our children will sing it in chorus—
“Circulation of vector cap E,”
Yes they’ll sing as they march on before us,
“Equals negative d by dt
Of —
Magnetic flux through a surface,”
They’ll conclude as we strike up the band.

2All instantaneous quantities are represented by cursive letters to distinguish them from time-invariant quantities.
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We’ll mark all our coins with our purpose—
“On Maxwell’s equations we stand!”

It’s Faraday’s law of induction
That allows us to generate pow’r.
It gives voltage increase or reduction—
We could sing on and on for an hour!

By denoting the total current and total electric flux passing through the surface S as

I (t) = ∫∫S
JJJtotal(𝐫, t) ⋅ d𝐒 (1.2.5)

𝜙E(t) = ∫∫S
EEE (𝐫, t) ⋅ d𝐒 (1.2.6)

the Maxwell–Ampère law in Equation (1.2.2) can also be written as

∮C
BBB ⋅ d𝐥 = 𝜇0I + 𝜇0𝜖0

d
dt
𝜙E. (1.2.7)

In a folk song titled “Two great guys—one great law!” Smith described the development
history of this law and the contributions by Ampère and Maxwell:

Mr. Ampère’s magical, mystical, wonderful law!
Of Maxwell’s equations, it is the longest and strangest of all!

On the left side, he wrote circulation
Of magnetic field, ‘cause it was neat.
On the right-hand side of his equation—
Mu-naught I—he thought it was complete.

Decades later, Maxwell saw disaster,
Although he thought of Ampère as a saint—
In between the plates of a capacitor
The right side’s zero, but the left side ain’t!

To fix this problem, he added to the right side
Displacement current, a brand new quantity!
It started mu-naught eps’lon-naught and ended by
The time derivative of phi-sub-E.

And so to Maxwell the myst’ry was revealed—
He saw how light could move through empty space.
The changing B-field made the changing E-field,
And vice-a-versa, all at the perfect pace.

Next, consider a volume V enclosed by a surface S. The other two Maxwell’s equations
are given by

∫
�
�
�
�∫S
EEE (𝐫, t) ⋅ d𝐒 = 1

𝜖0 ∫∫∫V
𝜚e,total(𝐫, t) dV (1.2.8)
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∫
�
�
�
�∫S
BBB (𝐫, t) ⋅ d𝐒 = 0 (1.2.9)

where 𝜚e,total denotes the electric charge density (coulombs∕meter3) in volume V . Again,
the subscript “total” is used to denote that 𝜚e,total represents the density of total charges.
Equation (1.2.8) is called Gauss’ law and Equation (1.2.9) is called Gauss’ law for the
magnetic case. Clearly, Equation (1.2.9) indicates that the magnetic flux lines cannot be
originated or terminated anywhere; they have to form closed loops. In contrast, the electric
field lines, as indicated in Equation (1.2.8), can be originated from positive charges and
terminated at negative charges.

By denoting the differential surface vector d𝐒 = n̂ dA and the total charge enclosed inside
V as

Q(t) = ∫∫∫V
𝜚e,total(𝐫, t) dV (1.2.10)

Gauss’ law in Equation (1.2.8) can be rewritten as

∫
�
�
�
�∫S
EEE ⋅ n̂ dA = Q

𝜖0
. (1.2.11)

This equation is the subject of another folk song by Smith, which says

Inside, outside, count the lines to tell—
If the charge is inside, there will be net flux as well.
If the charge is outside, be careful and you’ll see
The goings in and goings out are equal perfectly.
If you wish to know the field precise,
And the charge is symmetric,

you will find this law is nice—
Q upon a constant – eps’lon naught they say—
Equals closed surface integral of E dot n dA.

Equations (1.2.1), (1.2.2), (1.2.8), and (1.2.9) are usually referred to as Maxwell’s
equations in integral form. They are obtained directly from experiments and are valid
everywhere for any case. They have been regarded as the fundamental postulates of
electromagnetic theory ever since Maxwell formulated them over 140 years ago. The
entire electromagnetic theory, valid from the static to the optical regimes and from
subatomic to intergalactic length scales, is based on these four equations, as we will see
repeatedly in this book.

◾ EXAMPLE 1.3
Apply Equation (1.2.1) to a closed loop in a circuit that contains a resistor, a capacitor,
an inductor, and a voltage source (Fig. 1.1) and derive Kirchhoff’s voltage law.

Solution Assuming that all the components in the closed loop are connected with a
perfectly conducting wire, along which the electric field vanishes, and the inductor is
made of a solenoid of a conducting wire, the electric field along the loop is zero except
across the resistor, the capacitor, and the voltage source. Therefore, the left-hand side of



16 BASIC ELECTROMAGNETIC THEORY
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L 

Figure 1.1 An RLC circuit with a voltage source.

Equation (1.2.1) becomes

∮C
EEE (𝐫, t) ⋅ d𝐥 = lrEr + lcEc − lsEs

where lr , lc, and ls denote the lengths of the resistor, the capacitor, and the voltage source,
and Er , Ec, and Es denote the electric fields along these components. The last term has
a negative sign because the electric field in the source is opposite to the direction of the
integration contour. Since lrEr represents the voltage drop across the resistor, which is
denoted as Vr , we have

∮C
EEE (𝐫, t) ⋅ d𝐥 = Vr + Vc − Vs

where Vc and Vs represent the voltages across the capacitor and the source, respectively.
If the solenoid has a length of 𝓁 and a cross-sectional area of s and is made of n turns,
when it carries an electric current I , the magnetic flux density inside the solenoid is
B = 𝜇0nI∕𝓁. Hence, the right-hand side of Equation (1.2.1) becomes

− d
dt ∫∫S

BBB (𝐫, t) ⋅ d𝐒 = −𝜇0
n
𝓁
dI
dt

ns = −𝜇0
n2s
𝓁

dI
dt

.

Since the inductance of the solenoid is given by L = 𝜇0n
2s∕𝓁, we have

− d
dt ∫∫S

BBB (𝐫, t) ⋅ d𝐒 = −LdI
dt

= −Vi

where Vi denotes the voltage drop across the inductor. Rigorously speaking, we should
also add the magnetic flux through the loop into this term, which would modify the value
of L, but the expression would remain the same. Substituting the left- and right-hand
terms derived earlier into Equation (1.2.1), we obtain

Vr + Vc + Vi − Vs = 0

which is Kirchhoff’s voltage law. If the closed loop contains N components, Kirchhoff’s
voltage law can be expressed as

N∑

i=1
Vi = 0

which states that the sum of voltage drops along any closed loop in a circuit is always
zero.
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1.2.2 Maxwell’s Equations in Differential Form

The integral-form Maxwell’s equations are valid everywhere. Now, consider a point in a
continuous medium. The fields at such a point should be continuous; therefore, we can
use Stokes’ and Gauss’ theorems to convert Maxwell’s equations in integral form into
their counterparts in differential form. To be more specific, by applying Stokes’ theorem
to Equations (1.2.1) and (1.2.2) and using the fact that these equations are valid for any
surface S, we obtain

∇ × EEE = −𝜕BBB
𝜕t

(Faraday’s law) (1.2.12)

∇ ×BBB = 𝜖0𝜇0
𝜕EEE
𝜕t

+ 𝜇0JJJtotal (Maxwell–Ampère law) (1.2.13)

respectively. Here, we omit the position vector and time variable for the sake of brevity.
By applying Gauss’ theorem to Equations (1.2.8) and (1.2.9) and using the fact that these
are valid for any volume V , we obtain

∇ ⋅ EEE =
𝜚e,total

𝜖0
(Gauss’ law) (1.2.14)

∇ ⋅BBB = 0 (Gauss’ law—magnetic) (1.2.15)

respectively. Equations (1.2.12) and (1.2.13) can also be obtained by shrinking the closed
contour in Equations (1.2.1) and (1.2.2) to a point and then invoking the alternative
definition of the curl given in Equation (1.1.10). Similarly, Equations (1.2.14) and (1.2.15)
can also be obtained by shrinking the closed surface in Equations (1.2.8) and (1.2.9) to a
point and then invoking the definition of the divergence in Equation (1.1.1). Therefore,
Maxwell’s equations in differential form describe the field behavior at a point in a
continuous medium.

1.2.3 Current Continuity Equation

By taking the divergence of Equation (1.2.13) and applying the vector identity in Equation
(1.1.42) and Gauss’ law in Equation (1.2.14), we obtain

∇ ⋅JJJtotal = −
𝜕𝜚e,total

𝜕t
. (1.2.16)

To understand the implication of this equation, we can simply integrate it over a finite
volume and apply Gauss’ theorem in Equation (1.1.5) to find

∫
�
�
�
�∫S
JJJtotal ⋅ d𝐒 = − d

dt ∫∫∫V
𝜚e,total dV . (1.2.17)

It is evident that the left-hand side represents the net current leaving the volume and
the right-hand side represents the reduction rate of the total charge in the volume. As
a result, this equation represents the continuity of currents or conservation of charges.
Because of this continuity equation, the four Maxwell’s equations are not indepen-
dent for time-varying fields. This can be verified easily by taking the divergence of
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Equations (1.2.12) and (1.2.13) and then applying Equations (1.2.16) and (1.1.42),
respectively, which would yield Equations (1.2.14) and (1.2.15). This, however, does not
hold for the static fields because for such a case the currents and charges are no longer
related and the electric and magnetic fields are completely decoupled; hence, all four
equations have to be considered.

◾ EXAMPLE 1.4
Apply Equation (1.2.17) to a surface that encloses a node in a circuit and derive Kirch-
hoff’s current law.

SolutionAssuming that there are N branches of electric current connected to a node and
there is no accumulation of electric charge at the node, we can apply Equation (1.2.17)
to a mathematical surface that encloses the node to obtain

∫
�
�
�
�∫S
JJJtotal ⋅ d𝐒 =

N∑

i=1
Ii = 0

where Ii denotes a signed electric current flowing away from the node. This is known
as Kirchhoff’s current law, which simply states that the total amount of current entering
the node equals the total amount of current leaving the node.

1.2.4 The Lorentz Force Law

When a particle carrying electric charge q is placed in an electric field, it experiences a
force given by qEEE . When this charge is moving in a magnetic field, it experiences another
force given by q𝓋𝓋𝓋 ×BBB , where 𝓋𝓋𝓋 represents the velocity vector of the charge. Combining
the two forces, we obtain the total force exerted on a charged particle as

FFF = q(EEE +𝓋𝓋𝓋 ×BBB ) (1.2.18)

which is known as the Lorentz force law. This law is useful for understanding the interaction
between electromagnetic fields and matter, as we will discuss next. It is also the principle
used in the design of many electrical devices such as electric motors, magnetrons, and
particle accelerators.

1.3 CONSTITUTIVE RELATIONS

Maxwell’s equations, as presented in the previous section, are valid in any kind of media.
Since a medium has a significant effect on electromagnetic fields, we have to consider
this effect in the study of electromagnetic fields. A medium affects electromagnetic fields
through three phenomena—electric polarization, magnetic polarization or simply magne-
tization, and electric conduction. This section discusses these three phenomena and for-
mulates a set of equations, known as constitutive relations, to account for the effect of a
medium on electromagnetic fields. These constitutive relations are then used to classify
media into various categories.
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1.3.1 Electric Polarization

We first consider the effect of electric charges in a medium on electromagnetic fields. It is
well known that a matter that makes up a medium is made of molecules, which consist of
atoms. In an atom, there is a nucleus consisting of neutrons and protons. The neutrons are
not charged, but the protons are positively charged. Surrounding a nucleus are negatively
charged electrons, whose number equals the number of protons. These electrons are bound
to the nucleus by the electric force, so they normally cannot break free; instead, they orbit
around the nucleus at high speed. The center of the orbit coincides with the center of the
protons so that an entire atom is electrically neutral. A molecule is made up of one or
more atoms. For some molecules, the atoms are arranged such that the center of positive
charges coincides with that of negative charges. This type of molecule is called a nonpolar
molecule, and in such a case, the molecules and hence the matter that is made of nonpolar
molecules appear electrically neutral. For some other molecules, the interaction between
atoms creates a small displacement between the effective centers of positive and negative
charges, thus creating a tiny electric dipole and generating a weak electric field. This type
of molecule is called a polar molecule. However, since all polar molecules are randomly
oriented, the effects of tiny electric dipoles cancel each other and the matter that is made of
polar molecules is also electrically neutral.

The scenario described earlier changes drastically when an electric field is applied to
the medium. According to the Lorentz force law, the applied electric field exerts a force on
positive charges in the direction of the field, whereas it exerts a force on negative charges
in the opposite direction. As a result, in both atoms and nonpolar molecules, the effective
center of positive charges will be displaced from the effective center of negative charges,
creating a tiny electric dipole in the direction of the electric field. (Here, we assume that
the applied field is not strong enough to break the bound electrons loose from the nuclei. In
such a case, the matter is often called a dielectric.) In the case of polar molecules, because of
the Lorentz force, all the randomly oriented dipoles tend to line up with the applied electric
field. When a large number of electric dipoles line in the same direction, the electric fields
created by the dipoles add up and these electric fields are in the opposite direction to the
applied field, resulting in a weaker total electric field in the medium. To quantify the effect
of tiny dipoles, a vector quantity called the dipole moment is defined as

𝓅𝓅𝓅 = q𝓁𝓁𝓁 (1.3.1)

where q denotes the charge and 𝓁𝓁𝓁 denotes the vector pointing from the effective center
of the negative charge to that of the positive charge. The sum of dipole moments per unit
volume is then

PPP = lim
Δ𝑣→0

1
Δ𝑣

np∑

i=1
𝓅𝓅𝓅i (1.3.2)

where np denotes the number of dipoles contained in Δ𝑣. The dipole moment densityPPP is
also called the polarization intensity or polarization vector.

When the dipole moment density is uniform, the positive charge of a dipole is completely
canceled by the negative charge of the next dipole; hence, there is no net charge in the
medium. However, when the dipole moment density is not uniform, the positive charge of
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a dipole cannot be completely canceled by the negative charge of the next dipole, resulting
in a net charge at the point and hence a volume charge density. Based on the definition of
divergence, this volume charge density is given by

𝜚e,b = −∇ ⋅PPP (1.3.3)

where the subscript “b” is used to denote that this is the density of the bound charges. If
the medium also contains free charges, the total charge density in the medium can then be
expressed as

𝜚e,total = 𝜚e,f + 𝜚e,b = 𝜚e,f − ∇ ⋅PPP (1.3.4)

where 𝜚e,f denotes the density of free electric charges. Substituting this expression into
Equation (1.2.14), we obtain

∇ ⋅ (𝜖0EEE +PPP ) = 𝜚e,f . (1.3.5)

By defining a new quantity, called the electric flux density, as

DDD = 𝜖0EEE +PPP (1.3.6)

which has a unit of coulombs∕meter2, Equation (1.3.5) can be written as

∇ ⋅DDD = 𝜚e,f . (1.3.7)

This expression can be regarded as Gauss’ law expressed in terms of free electric charges.
In addition to the volume charge density, the electric polarization also produces an electric
current when it changes in time. In view of the current continuity equation in Equation
(1.2.16), the electric current density contributed by the electric polarization is

JJJp =
𝜕PPP
𝜕t

. (1.3.8)

When this current is separated from the total current, Equation (1.2.13) can also be
expressed in terms ofDDD defined in Equation (1.3.6).

In most dielectric materials, the polarization intensity is usually proportional to the elec-
tric field:

PPP = 𝜖0𝜒eEEE (1.3.9)

where 𝜒e is called the electric susceptibility. Consequently, the electric flux density DDD is
related to the electric field intensity EEE by

DDD = 𝜖0(1 + 𝜒e)EEE = 𝜖EEE (1.3.10)

where 𝜖 = 𝜖0(1 + 𝜒e) is called the permittivity of the dielectric. In engineering practice, we
often use the relative permittivity, defined as 𝜖r = 𝜖

/
𝜖0 =1 + 𝜒e, to help us memorize the

value. Since 𝜒e is usually a positive number, 𝜖r is usually greater than 1. Equation (1.3.10)
is called the constitutive relation for the electric field. In free space such as vacuum and air,
the polarization intensityPPP either vanishes or is negligible; hence, the constitutive relation
in Equation (1.3.10) becomes

DDD = 𝜖0EEE . (1.3.11)
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1.3.2 Magnetization

Next, we consider what happens when a magnetic field is applied to a medium. As
mentioned earlier, electrons orbit the nucleus continuously in an atom. Such orbiting
creates a tiny current loop, which generates a very weak magnetic field. Such a current
loop can be quantified by a vector called the magnetic dipole moment, which is defined as

𝓂𝓂𝓂 = I𝓈𝓈𝓈 (1.3.12)

where I denotes the current and 𝓈𝓈𝓈 has a magnitude equal to the area of the current loop and
a direction determined by the direction of the current flow via the right-hand rule. Quantum
physics reveals that all electrons and protons rotate at high speed about their own axes, a
motion called spin. Since electrons and protons are charged, such a rotation also creates
current loops, which generate very weak magnetic fields and can be quantified by mag-
netic dipole moments as well. In the absence of any applied fields, the directions of all the
magnetic dipoles are randomly oriented (except for those in a permanent magnet). As a
result, the magnetic dipole moments cancel out macroscopically and the medium appears
magnetically neutral. When a magnetic field is applied to the medium, the randomly ori-
ented magnetic dipoles tend to align themselves either in the direction of the applied field
or in the opposite direction. This produces an observable quantity called magnetization
intensity or magnetization vector MMM , which is defined as the sum of the magnetic dipole
moments per unit volume,

MMM = lim
Δ𝑣→0

1
Δ𝑣

nm∑

i=1
𝓂𝓂𝓂i (1.3.13)

where nm denotes the number of magnetic dipoles contained in Δ𝑣. This magnetization
vector will either strengthen or weaken the total magnetic field.

When the magnetic dipole density is uniform, the electric current of a current loop is
completely canceled by the current of the next current loop; hence, there is no net electric
current in the medium. However, when the magnetic dipole density is not uniform, the
electric current of a current loop cannot be canceled completely by the current of the next
current loop, which then results in a net current at the point. Based on the definition of curl,
the volume current density of this current is given by

JJJm = ∇ ×MMM . (1.3.14)

Adding this current to the current due to the electric polarization and the free current, we
have the total current in the medium

JJJtotal = JJJp +JJJm +JJJf =
𝜕PPP
𝜕t

+ ∇ ×MMM +JJJf (1.3.15)

where JJJf denotes the density of the free electric current. Substituting this into Equation
(1.2.13), we obtain

∇ ×
(

BBB
𝜇0

−MMM

)
= 𝜕DDD

𝜕t
+JJJf (1.3.16)

where we have also used Equation (1.3.6). By defining a new magnetic quantity, called the
magnetic field intensity, as

HHH = BBB
𝜇0

−MMM (1.3.17)
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which has a unit of amperes∕meter, Equation (1.3.16) can be written as

∇ ×HHH = 𝜕DDD
𝜕t

+JJJf . (1.3.18)

This equation can be regarded as theMaxwell–Ampère law in terms of free electric currents.
Note that there is no electric charge associated withJJJm since ∇ ⋅JJJm = ∇ ⋅ (∇ ×MMM ) ≡ 0.

Equation (1.3.17) can also be written as

BBB = 𝜇0(HHH +MMM ). (1.3.19)

In most materials, the magnetization intensity is proportional to the magnetic field
intensity:

MMM = 𝜒mHHH (1.3.20)

where 𝜒m is called the magnetic susceptibility. In such a case, Equation (1.3.19) becomes

BBB = 𝜇0(1 + 𝜒m)HHH = 𝜇HHH (1.3.21)

where 𝜇 = 𝜇0(1 + 𝜒m) is called the permeability of the material. In engineering practice,
we often use the relative permeability, defined as 𝜇r = 𝜇

/
𝜇0 =1 + 𝜒m, to help us memo-

rize the value. For most materials in reality, the magnetization is so small that 𝜇r ≈ 1 and
such materials are called nonmagnetic. Equation (1.3.21) is called the constitutive relation
for the magnetic field. In free space such as vacuum and air, the magnetization intensity
MMM either vanishes or is negligible; hence, the constitutive relation in Equation (1.3.21) is
reduced to

BBB = 𝜇0HHH . (1.3.22)

1.3.3 Electric Conduction

In addition to the polarization and magnetization, a third phenomenon is called conduc-
tion,which happens in a medium containing free charges such as free electrons and ions. In
the absence of any fields, these charges move in random directions so that they do not form
electric currents macroscopically. However, when an electric field is applied to the medium,
the free charges tend to flow either in the direction of the applied field or in the opposite
direction depending on whether they are positively or negatively charged. As a result, they
form electric currents, which are called conduction currents. In most materials, the cur-
rent density of the conduction current is proportional to the electric field, which can be
expressed as

JJJc = 𝜎EEE (1.3.23)

where 𝜎 is called the conductivity having a unit of siemens∕meter. When the free charges
such as electrons move in a medium, they collide with atomic lattices and their energy is
dissipated and converted into heat. Hence, 𝜎 is also related to the dissipation of the energy.
The conduction current can be regarded as a part of the free electric current.
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1.3.4 Classification of Media

The preceding discussion indicates clearly that the electromagnetic properties of a medium
are reflected in the following three constitutive relations:

DDD = 𝜖EEE , BBB = 𝜇HHH , JJJc = 𝜎EEE . (1.3.24)

Therefore, the three parameters 𝜖, 𝜇, and 𝜎 fully characterize the electromagnetic properties
of a medium. Consequently, we can classify media based on the forms and values of these
parameters.

Classification Based on the Spatial Dependence If any of 𝜖, 𝜇, or 𝜎 is a function of
position in space, the medium is called inhomogeneous or heterogeneous. Otherwise, it
is called a homogeneous medium, where ∇𝜖 = ∇𝜇 = ∇𝜎 ≡ 0. A homogeneous medium
affects electromagnetic fields through the polarization current JJJp and the bound charges
and currents on the surface of the medium.

Classification Based on the Time Dependence If any of 𝜖, 𝜇, or 𝜎 is a function of time,
the medium is called nonstationary; otherwise, it is called stationary. Note that even if a
medium is physically stationary, it can still be electrically nonstationary if its electromag-
netic properties change with time.

Classification Based on the Directions of DDD and BBB If the direction of DDD is parallel to
that of EEE and the direction of BBB is parallel to that of HHH , the medium is called isotropic.
Otherwise, it is called an anisotropic medium. For an anisotropic medium, the constitutive
relations cannot be expressed in a simple form as in Equation (1.3.24). Instead, they have
to be expressed as

⎡⎢⎢⎣
Dx
Dy
Dz

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝜖xx 𝜖xy 𝜖xz
𝜖yx 𝜖yy 𝜖yz
𝜖zx 𝜖zy 𝜖zz

⎤⎥⎥⎦
⎡⎢⎢⎣
Ex
Ey
Ez

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
Bx
By
Bz

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝜇xx 𝜇xy 𝜇xz
𝜇yx 𝜇yy 𝜇yz
𝜇zx 𝜇zy 𝜇zz

⎤⎥⎥⎦
⎡⎢⎢⎣
H x
H y
H z

⎤⎥⎥⎦ (1.3.25)

which can be written compactly as

DDD = 𝝐 ⋅ EEE , BBB = 𝝁 ⋅HHH (1.3.26)

where 𝝐 and 𝝁 are called permittivity and permeability tensors.3 When we discuss the
reciprocity theorem, we will see that if these two tensors are symmetric, the medium is
reciprocal; otherwise, it is nonreciprocal. A special case of general anisotropic media is
crystals, which have a diagonal permittivity tensor,

𝝐 =
⎡⎢⎢⎣
𝜖xx 0 0
0 𝜖yy 0
0 0 𝜖zz

⎤⎥⎥⎦ . (1.3.27)

In this case, if all three diagonal elements are different, the medium is called biaxial. If any
two of the three are the same, the medium is called uniaxial.Of course, if all three elements

3A boldfaced letter with an overline denotes a tensor quantity.
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are the same, the medium is isotropic. A further generalization of the anisotropic medium
is the so-called bianisotropic medium, whose constitutive relations are given by

DDD = 𝝐 ⋅ EEE + 𝝃 ⋅HHH , BBB = 𝝁 ⋅HHH + 𝝇 ⋅ EEE . (1.3.28)

When 𝝐, 𝝁, 𝝃, and 𝝇 reduce to scalars, the medium is called bi-isotropic. These kinds of
materials are rare in nature, but they can be manufactured in laboratories.

Classification Based on the Field Dependence If any value of 𝜖, 𝜇, or 𝜎 depends on the
field intensities EEE and HHH , then the flux densities DDD and BBB and the conduction current
densityJJJc are no longer linear functions of EEE andHHH . Such a medium is called nonlinear;
otherwise, it is called linear. Nonlinear constitutive relations significantly complicate the
study of the electromagnetic fields in the medium; nevertheless, nonlinear media do exist
in nature even though their applications are not widespread.

Classification Based on the Frequency Dependence If any value of 𝜖 or 𝜇 depends on the
frequency of the field such that 𝜖 = 𝜖( f ) or 𝜇 = 𝜇( f ), where f denotes the frequency, the
medium is called dispersive; otherwise, it is called nondispersive. If a signal that contains
multiple frequencies propagates in a dispersive medium, the shape of the signal will be
distorted because different frequency components propagate at different speeds. Rigorously
speaking, for a dispersive medium, the constitutive relations can no longer be written in the
form of Equation (1.3.24). Because of the frequency dependence, they have to be written
in terms of convolution:

DDD = 𝜖0EEE + 𝜖0𝜒e ∗ EEE = 𝜖0EEE + 𝜖0 ∫
t

−∞
𝜒e(t − 𝜏)EEE (𝜏)d𝜏 (1.3.29)

BBB = 𝜇0HHH + 𝜇0𝜒m ∗ HHH = 𝜇0HHH + 𝜇0 ∫
t

−∞
𝜒m(t − 𝜏)HHH (𝜏)d𝜏 (1.3.30)

where ∗ denotes the temporal convolution. The convolution is due to the fact that the
medium cannot polarize and magnetize instantaneously in response to the applied field and,
therefore, the polarization and magnetization vectors are related to the fields at previous
times.

Classification Based on the Value of Conductivity In the static case, if 𝜎 = 0, the medium
is called a perfect dielectric or insulator. On the other hand, if 𝜎 → ∞, the medium is called
a perfect electric conductor. In reality, there are no such things as perfect dielectrics or
perfect conductors. But, in engineering practice, these are very useful concepts because
the approximation of a very good conductor as a perfect conductor and the approxima-
tion of a good dielectric as a perfect dielectric can significantly simplify the analysis of
electromagnetic problems. When 𝜎 has a nonnegligible finite value, the medium is called
lossy. In the electrodynamic case, the conduction characterized by 𝜎 represents only one of
the loss mechanisms. When a medium is exposed to a time-varying electromagnetic field,
the polarization and magnetization can also cause losses, especially when the frequency
of the field is very high. This is because the directions of time-varying electric and mag-
netic fields change rapidly, and, consequently, the electric and magnetic dipoles that follow
the field directions change their directions as well. When these dipoles flip back and forth,
the friction between the bound charges and dipoles causes energy dissipation (radiation
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of photons). This phenomenon can be described mathematically in the time domain as a
damping term in the motion equation for the dipoles [13]; however, (and very fortunately)
its description in the frequency domain is very simple. The Fourier transforms of the per-
mittivity and permeability simply become two complex quantities with the imaginary parts
representing the polarization and magnetization losses. Therefore, in addition to 𝜎 = 0, the
imaginary parts of the permittivity and permeability must vanish for a medium to be a
perfect dielectric.

Classification Based on the Value of Permeability As discussed earlier, when a mag-
netic field is applied to a medium, the randomly oriented magnetic dipoles tend to align
themselves either in the direction of the applied field or in the opposite direction, produc-
ing a net magnetization intensity MMM . When this net magnetization intensity is very small
and its direction is opposite to the direction of the applied field, the magnetic suscepti-
bility 𝜒m is a very small negative number and the relative permeability 𝜇r is slightly less
than 1. This type of medium is called diamagnetic. When the net magnetization intensity
is again very small but its direction is in the direction of the applied field, the magnetic
susceptibility 𝜒m is a very small positive number and the relative permeability 𝜇r is slightly
greater than 1. The medium is called paramagnetic. For both diamagnetic and paramag-
netic media, the value of 𝜇r differs from 1 by any amount on the order of 10−4. In most
engineering applications, this difference can be neglected and 𝜇r can be practically approx-
imated as 𝜇r ≈ 1.0; hence, the medium can be considered as nonmagnetic. However, there
is a type of medium in which the net magnetization intensity has a very large value and its
direction is the same as that of the applied field, resulting in a large relative permeability
𝜇r . This type of medium is called ferromagnetic. Ferromagnetic materials usually have a
high conductivity, and, hence, cannot sustain an appreciable electromagnetic field. There
is yet another class of materials, called ferrites, which have a relatively large permeability
and a very small conductivity at microwave frequencies. Because of this, ferrites find many
applications in the design of microwave devices.

1.4 MAXWELL’S EQUATIONS IN TERMS OF FREE CHARGES AND
CURRENTS

With the constitutive relations in Equation (1.3.24), Maxwell’s equations in integral form
can be written for EEE ,HHH ,DDD , andBBB in terms of free charges and currents as

∮C
EEE ⋅ d𝐥 = − d

dt ∫∫S
BBB ⋅ d𝐒 (Faraday’s law) (1.4.1)

∮C
HHH ⋅ d𝐥 = d

dt ∫∫S
DDD ⋅ d𝐒 + ∫∫S

JJJf ⋅ d𝐒 (Maxwell–Ampère law) (1.4.2)

∫
�
�
�
�∫S
DDD ⋅ d𝐒 = ∫∫∫V

𝜚e,f dV (Gauss’ law) (1.4.3)

∫
�
�
�
�∫S
BBB ⋅ d𝐒 = 0 (Gauss’ law—magnetic). (1.4.4)

The free currentJJJf includes the conduction currentJJJc = 𝜎EEE and the current supplied by
impressed sources.
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Equations (1.4.1)–(1.4.4) are asymmetric because of the lack of magnetic currents and
charges. Although magnetic currents and charges do not exist or have not been found so
far in reality, the concepts of such currents and charges are useful because sometimes we
can introduce equivalent magnetic currents and charges to simplify the analysis of some
electromagnetic problems. By incorporating magnetic currents and charges, Equations
(1.4.1) and (1.4.4) become

∮C
EEE ⋅ d𝐥 = − d

dt ∫∫S
BBB ⋅ d𝐒 − ∫∫S

MMMf ⋅ d𝐒 (Faraday’s law) (1.4.5)

∫
�
�
�
�∫S
BBB ⋅ d𝐒 = ∫∫∫V

𝜚m,f dV (Gauss’ law—magnetic) (1.4.6)

where MMMf denotes the free magnetic current density (volts∕meter2) and 𝜚m,f denotes the
freemagnetic charge density (webers∕meter3).With thismodification,Maxwell’s equations
become more symmetric. The reader is cautioned not to confuse the magnetic current
densityMMMf with the magnetization intensityMMM used previously.

The corresponding Maxwell’s equations in differential form for fields at a point in a
continuous medium can be obtained by invoking Stokes’ and Gauss’ theorems. They can
be written as

∇ × EEE = −𝜕BBB
𝜕t

−MMMf (Faraday’s law) (1.4.7)

∇ ×HHH = 𝜕DDD
𝜕t

+JJJf (Maxwell–Ampère law) (1.4.8)

∇ ⋅DDD = 𝜚e,f (Gauss’ law) (1.4.9)

∇ ⋅BBB = 𝜚m,f (Gauss’ law—magnetic). (1.4.10)

The free charges and currents also satisfy the current continuity equations, which can
be derived from Equations (1.4.7)–(1.4.10) by taking the divergence of Equations (1.4.7)
and (1.4.8) and then applying the vector identity in Equation (1.1.42) and Gauss’ laws in
Equations (1.4.9) and (1.4.10). Their differential forms are given by

∇ ⋅JJJf = −
𝜕𝜚e,f

𝜕t
(1.4.11)

∇ ⋅MMMf = −
𝜕𝜚m,f

𝜕t
. (1.4.12)

The corresponding integral forms can be obtained by integrating these two equations over
a finite volume and then applying Gauss’ theorem in Equation (1.1.5), yielding

∫
�
�
�
�∫S
JJJf ⋅ d𝐒 = − d

dt ∫∫∫V
𝜚e,f dV (1.4.13)

∫
�
�
�
�∫S
MMMf ⋅ d𝐒 = − d

dt ∫∫∫V
𝜚m,f dV . (1.4.14)

Because of these continuity conditions, the four Maxwell’s equations in Equations
(1.4.7)–(1.4.10) are not independent for time-varying fields since Equations (1.4.9) and
(1.4.10) can be derived from Equations (1.4.8) and (1.4.7), respectively.
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Although Maxwell’s equations for free charges and currents appear quite different from
those for total charges and currents, both can be written uniformly in the form presented in
this section with the charge and current densities defined based on the constitutive relations
used. This is the subject of Problem 1.17. In engineering, we often prefer Maxwell’s
equations in terms of free charges and currents over the ones for total charges and currents
because the total charges and currents are usually unknown before Maxwell’s equations
are solved, whereas the constitutive parameters 𝜖, 𝜇, and 𝜎 can usually be measured
experimentally.

1.5 BOUNDARY CONDITIONS

The differential-form Maxwell’s equations are valid at points in a continuous medium.
They cannot be applied to discontinuous fields that may occur at interfaces between
different media. Fortunately, we can employ Maxwell’s equations in integral form to find
the relations between the fields on the two sides of an interface. Such relations are called
boundary conditions. The relationship between the integral-form Maxwell’s equations and
the differential-form Maxwell’s equations and the boundary conditions is illustrated in
Figure 1.2. In this section, we derive these boundary conditions using Maxwell’s equations
for free charges and currents. Hence, all the charge and current quantities used in this
section are pertinent to free charges and currents.

Before deriving the boundary conditions, let us first introduce the concept of surface
currents. So far, the current densityJJJf is actually a volume current density, which is often
simply called current density. It represents the amount of current passing through a unit area
normal to the direction of the current flow. Now, imagine a current flow confined in a thin
layer. If the total current is kept constant while the thickness of the layer is reduced to zero,
the volume current density approaches infinity, which can no longer describe the current
sheet. In this case, the current distribution can be described by the surface current density,
which is a vector denoted asJJJs. Its value represents the amount of current passing through
a unit width normal to the direction of the current flow and has a unit of amperes∕meter.
The surface magnetic current density MMMs is defined similarly, which has a unit of
volts∕meter.

Now, let us consider an interface between two different media, and, for the sake of
generality, a free surface current with a density ofJJJs is assumed flowing on the interface.
The normal unit vector n̂ on the interface is defined to point from medium 1 to medium 2.
To apply Equation (1.4.2), we construct a small rectangular frame with one of its sides in

Maxwell’s equations in
integral form

Maxwell’s equations
in differential form

Boundary
conditions

In a continuous
medium

At a discontinuous
interface

Fundamental postulates

Figure 1.2 Relationship betweenMaxwell’s equations in integral and differential forms and bound-
ary conditions.
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Medium 2

Medium 1

n̂

t̂ Δl

Figure 1.3 A rectangular frame across a discontinuous interface.

medium 1 and the other in medium 2, as illustrated in Figure 1.3. The length of the frame
is Δl and the width Δt is vanishingly small. Applying Equation (1.4.2) to this frame and
letting Δt → 0, we have

HHH1 ⋅ t̂Δl −HHH2 ⋅ t̂Δl = JJJs ⋅ (t̂ × n̂)Δl (1.5.1)

where t̂ is a tangential unit vector as shown in Figure 1.3. Since the direction of t̂ is not
uniquely determined, it is desirable to remove it from Equation (1.5.1). For this, we rewrite
t̂ as t̂ = n̂ × (t̂ × n̂) and employ the vector identity

𝐚 ⋅ (𝐛 × 𝐜) = 𝐛 ⋅ (𝐜 × 𝐚) = 𝐜 ⋅ (𝐚 × 𝐛) (1.5.2)

to find
(n̂ ×HHH2) ⋅ (t̂ × n̂) − (n̂ ×HHH1) ⋅ (t̂ × n̂) = JJJs ⋅ (t̂ × n̂). (1.5.3)

Since the orientation of t̂ and, thus, t̂ × n̂, is arbitrary along the surface, we have

n̂ × (HHH2 −HHH1) = JJJs (1.5.4)

which indicates that the tangential component of the magnetic field intensity is discon-
tinuous across an interface carrying a free surface electric current. By applying the same
approach to Equation (1.4.5), we obtain another boundary condition

n̂ × (EEE2 − EEE1) = −MMMs (1.5.5)

showing a discontinuity in the tangential component of the electric field intensity across
an interface carrying a free surface magnetic current. Since the magnetic current does not
exist in reality, the tangential component of the electric field intensity is always continuous
across any interfaces.

Next, we consider an interface between two different media and we assume a free
surface charge distribution over the interface. The surface charge density is defined as the
amount of charge over a unit area on the surface. To apply Equation (1.4.3), we construct
a small pillbox with one of its faces in medium 1 and the other in medium 2, as illustrated
in Figure 1.4. Each face of the pillbox has an area Δs and its thickness Δt is vanishingly
small. Applying Equation (1.4.3) to this pillbox and letting Δt → 0, we obtain

D2nΔs − D1nΔs = 𝜚e,sΔs (1.5.6)

or
n̂ ⋅ (DDD2 −DDD1) = 𝜚e,s (1.5.7)
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n̂
Δs

Δt
Medium 2 

Medium 1 

Figure 1.4 A pillbox across a discontinuous interface.

where 𝜚e,s denotes the surface electric charge density having a unit of coulombs∕meter2.
This reveals that the normal component of the electric flux density is discontinuous across
an interface carrying a free surface electric charge. By applying the same procedure to
Equation (1.4.6), we obtain

n̂ ⋅ (BBB2 −BBB1) = 𝜚m,s (1.5.8)

which shows that the normal component of the magnetic flux density is discontinuous
across an interface carrying a free surface magnetic charge. Here, 𝜚m,s denotes the surface
magnetic charge density and has a unit of webers∕meter2. However, since in reality the
magnetic charges do not exist, the normal component of the magnetic flux density is always
continuous across any interfaces.

Similar to the case for Maxwell’s equations, the four boundary conditions in Equations
(1.5.4), (1.5.5), (1.5.7), and (1.5.8) are not independent. When the first two are satisfied, the
latter two are usually satisfied as well. Also note that unless one of the media is a perfect
conductor, the electromagnetic fields usually cannot induce free surface charges or currents
at the interface. Hence, the tangential component of the magnetic field intensity and the
normal component of the electric flux density are continuous across an interface between
two different media. However, when one of the media is a perfect conductor, the situation
is different. A perfect conductor is a medium full of free charges. When an electromagnetic
field is applied to this medium, the free charges, being pushed by the applied field, move
themselves such that they produce an opposing field that completely cancels the applied
field. This causes the formation of the surface currents and charges on the surface of a
perfect conductor. If it is a perfect electric conductor (PEC), its surface can support a surface
electric current and charge. If it is a perfect magnetic conductor (PMC), the surface can
support a surface magnetic current and charge. Now, assuming that medium 1 is a PEC, the
boundary conditions at the surface become

n̂ × EEE = 0 (1.5.9)

n̂ ×HHH = JJJs (1.5.10)

n̂ ⋅DDD = 𝜚e,s (1.5.11)

n̂ ⋅BBB = 0 (1.5.12)

where the unit normal n̂ points away from the conductor. As mentioned earlier, it is unnec-
essary to enforce all these conditions when solving an electromagnetic problem. It is usu-
ally sufficient to enforce either Equation (1.5.9) or (1.5.12) since the other two condi-
tions involve the induced surface current and charge densities, which are usually unknown.
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However, if the fields are known, Equations (1.5.10) and (1.5.11) provide a means to cal-
culate the induced surface current and charge densities. The boundary conditions at the
surface of a PMC can be deduced in a similar manner.

We wish to point out that the boundary conditions are as important as Maxwell’s
equations because they describe the field behavior across a discontinuous interface,
whereas the differential-form Maxwell’s equations describe the field behavior in a
continuous medium, as illustrated clearly in Figure 1.2. Without boundary conditions,
an electromagnetic problem is usually not completely defined and cannot be solved.
Furthermore, understanding these boundary conditions can allow us to have a general idea
about the field distribution in a given electromagnetic problem and help us to deal with the
problem more effectively.

◾ EXAMPLE 1.5
Derive corresponding boundary conditions from Maxwell’s equations in terms of total
currents and charges given in Equations (1.2.2) and (1.2.8) and compare to the boundary
conditions in Equations (1.5.4) and (1.5.7), which are formulated for free currents and
charges. Find the contributions of the electric polarization and magnetization vectors to
the surface charges and surface currents.

Solution By applying Equation (1.2.2) to the contour shown in Figure 1.3 and
following the same procedure as described there, we obtain the boundary condition

n̂ × (BBB2 −BBB1) = 𝜇0JJJs,total.

By substituting Equation (1.3.19) into this equation, we obtain

n̂ × (HHH2 −HHH1) = JJJs,total − n̂ × (MMM2 −MMM1).

Comparing this with the boundary condition in Equation (1.5.4), we find that

JJJs,total = JJJs,f + n̂ ×MMM2 − n̂ ×MMM1

where JJJs in Equation (1.5.4) is denoted here as JJJs,f to emphasize that it represents a
free surface current. This equation shows clearly that the magnetization in a medium
produces a surface electric currentJJJm,s = −n̂ ×MMM .

Similarly, by applying Equation (1.2.8) to the pillbox shown in Figure 1.4 and
following the same procedure as described there, we obtain the boundary condition

n̂ ⋅ (EEE2 − EEE1) =
𝜚e,s,total

𝜖0
.

On the other hand, substituting Equation (1.3.6) into the boundary condition in Equation
(1.5.7) yields

n̂ ⋅ (EEE2 − EEE1) =
𝜚e,s,f

𝜖0
−

n̂ ⋅PPP2

𝜖0
+

n̂ ⋅PPP1

𝜖0

where 𝜚e,s in Equation (1.5.7) is denoted here as 𝜚e,s,f to emphasize that it represents a
free surface charge. Comparing these two equations, we find that

𝜚e,s,total = 𝜚e,s,f − n̂ ⋅PPP2 + n̂ ⋅PPP1
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which clearly indicates that the electric polarization in a medium produces a bound
surface electric charge with a density given by n̂ ⋅PPP .

1.6 ENERGY, POWER, AND POYNTING’S THEOREM

Energy and power are two of the most fundamental quantities in physics. They play very
important roles in electromagnetics as well. In this section, we start from Maxwell’s
equations and establish relations between electromagnetic fields and energy and power.

To start, we consider a medium characterized by permittivity 𝜖, permeability 𝜇, and
conductivity 𝜎. Maxwell’s equations in Equations (1.4.7) and (1.4.8) in such a medium can
be written as

∇ × EEE = −𝜕BBB
𝜕t

−MMMi (1.6.1)

∇ ×HHH = 𝜕DDD
𝜕t

+ 𝜎EEE +JJJi (1.6.2)

where JJJi and MMMi represent the actual source of the field and are often referred to as the
impressed currents. In Equation (1.6.2), the total current is separated into the conduction
current and the impressed current. By taking the dot product of Equation (1.6.1) with HHH
and the dot product of Equation (1.6.2) with EEE and subtracting the latter from the former,
we obtain

HHH ⋅ (∇ × EEE ) − EEE ⋅ (∇ ×HHH ) = −EEE ⋅
𝜕DDD
𝜕t

−HHH ⋅
𝜕BBB
𝜕t

− 𝜎EEE ⋅ EEE − EEE ⋅JJJi −HHH ⋅MMMi
(1.6.3)

which can also be written as

∇ ⋅ (EEE ×HHH ) + EEE ⋅
𝜕DDD
𝜕t

+HHH ⋅
𝜕BBB
𝜕t

+ 𝜎EEE ⋅ EEE + EEE ⋅JJJi +HHH ⋅MMMi = 0 (1.6.4)

using the vector identity ∇ ⋅ (EEE ×HHH ) = HHH ⋅ (∇ × EEE ) − EEE ⋅ (∇ ×HHH ). To understand the
physical meaning of this equation, we first integrate it over a finite volume, and by using
Gauss’ theorem, we obtain

∫
�
�
�
�∫S
(EEE ×HHH ) ⋅ n̂ dS

+∫∫∫V

(
EEE ⋅

𝜕DDD
𝜕t

+HHH ⋅
𝜕BBB
𝜕t

+ 𝜎EEE ⋅ EEE + EEE ⋅JJJi +HHH ⋅MMMi

)
dV = 0 (1.6.5)

where S is the surface enclosing V and n̂ is the normal unit vector pointing outward. Next,
we check the unit of each term. First, EEE ×HHH has a unit volts∕meter⋅amperes∕meter =
watts∕meter2, which is the unit of power flux density. A dot product with n̂ and then inte-
gration over a closed surface S would yield total power passing through the surface, either
entering or exiting. We denote this term as Pe:

Pe = ∫
�
�
�
�∫S
(EEE ×HHH ) ⋅ n̂ dS. (1.6.6)
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Second, we rewrite

EEE ⋅
𝜕DDD
𝜕t

= 1
2
𝜖
𝜕E 2

𝜕t
= 𝜕

𝜕t

(1
2
𝜖E 2

)
=

𝜕𝓌e
𝜕t

(1.6.7)

where 𝓌e =
1
2
𝜖E 2. This quantity has a unit of farads∕meter⋅(volts∕meter)2 = joules∕

meter3, which represents energy density. Its integral over a volume would represent the
total energy in the volume:

W e = ∫∫∫V
𝓌e dV = 1

2 ∫∫∫V
𝜖E 2 dV . (1.6.8)

Since this energy is associated with the electric field, it can be termed as the electric energy.
Similarly, we find that

HHH ⋅
𝜕BBB
𝜕t

= 1
2
𝜇
𝜕H 2

𝜕t
= 𝜕

𝜕t

(1
2
𝜇H 2

)
=

𝜕𝓌m
𝜕t

(1.6.9)

where𝓌m = 1
2
𝜇H 2 represents the magnetic energy density. Its integration over a volume

represents the total magnetic energy in the volume:

Wm = ∫∫∫V
𝓌m dV = 1

2 ∫∫∫V
𝜇H 2 dV . (1.6.10)

With these observations, we can now consider a special case, where the volume is lossless
and does not contain any source. In such a case, Equation (1.6.5) can be written as

Pe = −
d(W e + Wm)

dt
. (1.6.11)

The right-hand side represents the rate of decrease in the total energy in volume V . Based
on energy conservation, the left-hand side must represent the power exiting through the
surface of the volume.

With the aforementioned interpretations, we can readily find that

Pd = ∫∫∫V
𝜎EEE ⋅ EEE dV = ∫∫∫V

𝜎E 2 dV (1.6.12)

represents the power dissipated in the volume and

Ps = −∫∫∫V
(EEE ⋅JJJi +HHH ⋅MMMi) dV (1.6.13)

represents the power supplied by the source. By using these notations, Equation (1.6.5) can
be written as

Ps = Pe + Pd +
d
dt
(W e + Wm) (1.6.14)
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which states that in a volume the supplied power must be equal to the sum of the exiting
power, the dissipated power, and the rate of increase in the total energy in the volume. Obvi-
ously, Equation (1.6.14) is the statement of the conservation of energy for electromagnetic
fields, which is also known as Poynting’s theorem. Denote

𝓅e = ∇ ⋅ (EEE ×HHH ), 𝓅d = 𝜎EEE ⋅ EEE , 𝓅s = −(EEE ⋅JJJi +HHH ⋅MMMi). (1.6.15)

Equation (1.6.4) can be written as

𝓅s = 𝓅e +𝓅d +
𝜕

𝜕t
(𝓌e +𝓌m) (1.6.16)

which is the statement of the conservation of energy in differential form. Equation (1.6.14)
or (1.6.16) establishes a relation between five quantities. Knowing any four quantities, the
remaining quantity can be calculated easily. This can be useful in a variety of applications
where the desired quantity cannot be measured directly, but can be evaluated indirectly.

As illustrated earlier, EEE ×HHH represents the power flux density in the direction deter-
mined by the cross-product. This quantity is named the Poynting vector, defined as

SSS = EEE ×HHH (1.6.17)

which indicates that once both the electric and magnetic fields are known at any point in
space, the power flow density is determined and the power flow is perpendicular to the
directions of the electric and magnetic fields. The directions of EEE , HHH , and SSS obey the
right-hand rule.

1.7 TIME-HARMONIC FIELDS

Maxwell’s equations in differential form represent a set of partial differential equations in
four dimensions: three spatial dimensions and one in time. Such a mathematical problem is
very difficult to deal with simply because of its high dimensionality. The complexity of the
problem can be greatly reduced if the number of dimensions is lowered. Very fortunately,
many problems in electrical engineering deal with time-harmonic fields—fields that oscil-
late at a single frequency. For such a time-harmonic field, the differentiation with time can
be evaluated and the time variable can be eliminated, reducing Maxwell’s equations to ones
containing only three spatial variables. Since a non-time-harmonic field can be decomposed
intomany time-harmonic fieldswith different frequencies, the study of time-harmonic fields
also enables the solution of general time-varying problems with the aid of the Fourier trans-
form. This section introduces the concept of time-harmonic fields, derives its Maxwell’s
equations, and discusses the related energy and power.

1.7.1 Time-Harmonic Fields

When the currents, charges, and fields oscillate at a single frequency, each quantity can be
expressed as a sinusoidal function with an amplitude and a phase. For example, the electric
field can be written as

EEE (𝐫, t) = 𝐄0(𝐫) cos[𝜔t + 𝛼(𝐫)] (1.7.1)
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where 𝐄0 denotes the amplitude, 𝛼 denotes the phase, and𝜔 is the angular frequency. Using
Euler’s formula, this can be written as

EEE (𝐫, t) = 𝐄0(𝐫)Re
[
e j𝜔t+j𝛼(𝐫)

]
= Re

[
𝐄0(𝐫) e j𝛼(𝐫) e j𝜔t

]
(1.7.2)

where j =
√
−1 and Re stands for the real part. Now, define a complex quantity

𝐄(𝐫) = 𝐄0(𝐫) e j𝛼(𝐫) (1.7.3)

which contains both the amplitude and phase of the field and is only a spatial function.
Equation (1.7.2) can be written as

EEE (𝐫, t) = Re
[
𝐄(𝐫) e j𝜔t

]
. (1.7.4)

The complex quantity defined in Equation (1.7.3) is called a phasor. By expressing each
of the source and field quantities in the form of Equation (1.7.4) and substituting them into
Equation (1.4.7), we obtain

Re
[
∇ × 𝐄 e j𝜔t

]
= −Re

[
j𝜔𝐁 e j𝜔t

]
− Re

[
𝐌f e j𝜔t

]
. (1.7.5)

Since this is valid for any time variable t, we have

∇ × 𝐄 = −j𝜔𝐁 −𝐌f (Faraday’s law) (1.7.6)

which no longer contains the time variable. It represents a partial differential equation in
a three-dimensional space, whereas Equation (1.4.7) is an equation in a four-dimensional
space. Applying the same procedure to other Maxwell’s equations, we obtain

∇ ×𝐇 = j𝜔𝐃 + 𝐉f (Maxwell–Ampère law) (1.7.7)

∇ ⋅ 𝐃 = 𝜚e,f (Gauss’ law) (1.7.8)

∇ ⋅ 𝐁 = 𝜚m,f (Gauss’ law—magnetic). (1.7.9)

Similarly, the continuity equations become

∇ ⋅ 𝐉f = −j𝜔𝜚e,f (1.7.10)

∇ ⋅𝐌f = −j𝜔𝜚m,f . (1.7.11)

Clearly, in this conversion, all one has to do is to replace the time derivative 𝜕∕𝜕t with
j𝜔. We can do the same to Maxwell’s equations in integral form and boundary conditions
to obtain the corresponding equations for phasors. In particular, the boundary conditions
remain in the same form because they do not contain any time derivatives. Therefore, for
time-harmonic fields, we only have to deal with Maxwell’s equations in three dimensions.
Once phasors are solved for, we can use expressions such as Equation (1.7.4) to obtain the
corresponding instantaneous quantities.

Dealing with an electromagnetic problem in terms of frequency not only simplifies the
problem itself but also makes the solution more interpretable. Many physical quantities of
interest in electromagnetics are expressed as functions of frequency, instead of time. These
quantities can be calculated directly from phasors; hence, solution to phasors is usually
sufficient in many applications.
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1.7.2 Fourier Transforms

The preceding introduction of the concept of phasors gives the impression that the solution
to Maxwell’s equations for phasors is restricted to time-harmonic fields. This is actually
false. It is well known that an arbitrary function of time can be expressed as a Fourier
integral,

𝒻 (t) = 1
2𝜋 ∫

∞

−∞
f (𝜔) e j𝜔t d𝜔 (1.7.12)

where f (𝜔) is called the Fourier transform of 𝒻 (t) and is given by

f (𝜔) = ∫
∞

−∞
𝒻 (t) e−j𝜔t dt. (1.7.13)

Accordingly, Equation (1.7.12) is called the inverse Fourier transform. This Fourier trans-
form can be applied to all the source and field quantities. For example, the electric field can
be written as

EEE (𝐫, t) = 1
2𝜋 ∫

∞

−∞
𝐄(𝐫, 𝜔)e j𝜔t d𝜔 (1.7.14)

where

𝐄(𝐫, 𝜔) = ∫
∞

−∞
EEE (𝐫, t)e−j𝜔t dt. (1.7.15)

Substituting the Fourier transform for each of the source and field quantities into Equation
(1.4.7), we obtain

∫
∞

−∞
∇ × 𝐄(𝐫, 𝜔) e j𝜔t d𝜔 = −∫

∞

−∞
[ j𝜔𝐁(𝐫, 𝜔) +𝐌f (𝐫, 𝜔)] e j𝜔t d𝜔. (1.7.16)

Since this is valid for any time variable t, we obtain

∇ × 𝐄 = −j𝜔𝐁 −𝐌f (1.7.17)

which is identical to Equation (1.7.6). Applying this procedure to otherMaxwell’s equations
and the continuity equations, we obtain the same equations as Equations (1.7.7)–(1.7.11).
In other words, the Fourier transform of a quantity is equivalent to its phasor. Since the
Fourier-transformed Maxwell’s equations contain the angular frequency 𝜔, we say that
these equations are in the spectral domain or the frequency domain, whereas the origi-
nal ones are in the time domain. Obviously, given an arbitrary time-varying source such
as the electric current JJJf (𝐫, t), we can first find its Fourier transform 𝐉f (𝐫, 𝜔), then solve
Maxwell’s equations in Equations (1.7.6)–(1.7.9) for the transforms of the field quantities
for all frequencies, and finally use the inverse Fourier transform such as Equation (1.7.14)
to find their true values in the time domain.

The Fourier transform is a very important technique for research in all scientific and
technical fields, especially in electrical engineering. On the surface, the Fourier transforms
do not seem to satisfy causality because, for example, if we want to calculate the value of
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𝒻 (t) at the instant t0 using Equation (1.7.12), we have to know f (𝜔), whose calculation,
according to Equation (1.7.13), requires the value of 𝒻 (t) for all the time, including the
future time with respect to t0. A more careful examination, however, reveals that this is not
true. To show this, we can first split the Fourier transform into two parts:

f (𝜔) = ∫
t0

−∞
𝒻 (t) e−j𝜔t dt + ∫

∞

t0+0
𝒻 (t) e−j𝜔t dt (1.7.18)

where t0 + 0 = t0 + 𝜀 with 𝜀 → 0. Obviously, the second integral contains the future value,
𝒻 (t) with t > t0. Now, substituting this into the inverse Fourier transform for calculating
𝒻 (t0), we have

𝒻 (t0) =
1
2𝜋 ∫

∞

−∞ ∫
t0

−∞
𝒻 (t) e−j𝜔t dt e j𝜔t0 d𝜔 + 1

2𝜋 ∫
∞

−∞ ∫
∞

t0+0
𝒻 (t) e−j𝜔t dt e j𝜔t0 d𝜔.

(1.7.19)
By exchanging the order of integration and using the Fourier transform of the delta function
[14], we find that the second term of Equation (1.7.19) becomes

1
2𝜋 ∫

∞

t0+0
𝒻 (t)∫

∞

−∞
e j𝜔(t0−t) d𝜔 dt = ∫

∞

t0+0
𝛿(t0 − t)𝒻 (t) dt = 0 (1.7.20)

because t0 is not included in the range of time integration. Hence, the future value, 𝒻 (t)
with t > t0, makes no contribution to the calculation of 𝒻 (t0) and the Fourier transforms do
not violate causality.

◾ EXAMPLE 1.6
Consider a simple model of a dielectric mediummade of molecules separated far enough
so that their interactions can be ignored. Assume that the number of electrons in a unit
volume isNe and the frictional coefficient of electrons is 𝛿. Find the electric susceptibility
and permittivity of the dielectric.

SolutionWe can consider a system with an electron bound to a nucleus by the Coulomb
force. The electron moves around the nucleus and forms an electron cloud, which can
be modeled as a sphere of radius awith a charge of qe (qe = −1.602 × 10−19 coulombs).
When a time-harmonic electric field is applied to the dielectric, the center of the electron
cloud is displaced from the nucleus with a distance𝓁𝓁𝓁 because of the Lorentz forceFFFL =
qeEEE . Here we ignore the force from the accompanying magnetic field because it is much
smaller than the electric force and we assume that the nucleus is stationary because it
is much heavier than the electron. When the electron cloud center is displaced from
the nucleus, the two are attracted by the Coulomb force, which can be found easily as
FFFc = −q2e𝓁𝓁𝓁 ∕(4𝜋𝜖0a3). The third force is the frictional force given byFFFf = −𝛿med𝓁𝓁𝓁 ∕dt,
where me denotes the mass of the electron (me = 9.109 × 10−31 kg). With these three
forces, the equation of motion for the electron becomes

me
d2𝓁𝓁𝓁
dt2

= qeEEE − 𝜅𝓁𝓁𝓁 − 𝛿me
d𝓁𝓁𝓁
dt

where 𝜅 = q2e∕(4𝜋𝜖0a3). The phasor form of this equation is

(j𝜔)2me𝐥 = qe𝐄 − 𝜅𝐥 − j𝜔𝛿me𝐥
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which can be solved to give

𝐥 =
qe𝐄

me(𝜔2
0 − 𝜔2 + j𝜔𝛿)

where 𝜔0 =
√
𝜅∕me and is called the characteristic frequency of the electron. The

electric polarization vector is then given by

𝐏 = Neqe𝐥 =
Neq

2
e𝐄

me(𝜔2
0 − 𝜔2 + j𝜔𝛿)

.

Hence, the electric susceptibility is given by

𝜒e(𝜔) =
Neq

2
e

𝜖0me(𝜔2
0 − 𝜔2 + j𝜔𝛿)

and the relative permittivity is

𝜖r (𝜔) = 1 +
Neq

2
e

𝜖0me(𝜔2
0 − 𝜔2 + j𝜔𝛿)

.

This is known as the Lorentz model of a dielectric medium.

1.7.3 Complex Power

Although for time-harmonic fields the instantaneous value of a field quantity is related to
its phasor according to Equation (1.7.4), the same is not true for other quantities such as
power and energy that involve the product of two field quantities. To see this, let us consider
the product between two instantaneous quantitiesAAA (t) andBBB (t). We can easily find that

AAA (t) ⚬ BBB (t) = Re
[
𝐀 e j𝜔t

]
⚬ Re

[
𝐁 e j𝜔t

]
= 1

2
Re

[
𝐀 ⚬ 𝐁∗] + 1

2
Re

[
𝐀 ⚬ 𝐁 e j2𝜔t

]
(1.7.21)

where the circle denotes that the product can be either a dot or a cross-product and the star
denotes the complex conjugate. If we take the time average over one cycle, we have

AAA (t) ⚬ BBB (t) = 1
T ∫

T

0
AAA (t) ⚬ BBB (t) dt = 1

2
Re

[
𝐀 ⚬ 𝐁∗] (1.7.22)

where T = 2𝜋∕𝜔. Using this result, we can easily relate the complex field quantities to
the time-average power and energy for time-harmonic fields. For example, taking the time
average of the Poynting vector, we have

SSS (t) = EEE (t) ×HHH (t) = 1
2
Re

[
𝐄 ×𝐇∗] . (1.7.23)
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By defining the complex Poynting vector as

𝐒 = 1
2
𝐄 ×𝐇∗ (1.7.24)

Equation (1.7.23) becomes SSS = Re(𝐒). For another example, the time-average electric
energy density becomes

𝓌e(t) =
1
2
𝜖EEE (t) ⋅ EEE (t) = 1

4
𝜖Re

[
𝐄 ⋅ 𝐄∗] = 1

4
𝜖|𝐄|2. (1.7.25)

Now, let us consider the energy conservation law for time-harmonic fields. We take the
time-average of Equation (1.6.16) to obtain

𝓅s = 𝓅e +𝓅d +
𝜕𝓌e
𝜕t

+
𝜕𝓌m
𝜕t

. (1.7.26)

Since from Equation (1.7.21), we can see that

𝓌e =
1
2
𝜖EEE (t) ⋅ EEE (t) = 1

4
𝜖Re

[
𝐄 ⋅ 𝐄∗] + 1

4
𝜖Re

[
𝐄 ⋅ 𝐄 e j2𝜔t

]
(1.7.27)

and its time derivative is

𝜕𝓌e
𝜕t

= −𝜔

2
𝜖Im

[
𝐄 ⋅ 𝐄 e j2𝜔t

]
(1.7.28)

we have 𝜕𝓌e∕𝜕t = 0 and, similarly, 𝜕𝓌m∕𝜕t = 0. This indicates that for time-harmonic
fields, although the instantaneous energy density changes, the time average of the change
vanishes. Hence, Equation (1.7.26) becomes

𝓅s = 𝓅e +𝓅d. (1.7.29)

It also follows that

Ps = Pe + Pd (1.7.30)

which is applicable to a finite volume. Equations (1.7.29) and (1.7.30) represent the energy
conservation law in the time-average sense for time-harmonic fields.

The energy conservation law for time-harmonic fields can also be derived by following
a procedure similar to the one described in Section 1.6. We start with the following two
Maxwell’s equations:

∇ × 𝐄 = −j𝜔𝜇𝐇 −𝐌i (1.7.31)

∇ ×𝐇 = j𝜔𝜖𝐄 + 𝜎𝐄 + 𝐉i. (1.7.32)

By taking the dot product of Equation (1.7.31) with𝐇∗ and the dot product of the complex
conjugate of Equation (1.7.32) with𝐄, then subtracting the latter from the former, we obtain

∇ ⋅ (𝐄 ×𝐇∗) = −j𝜔𝜇|𝐇|2 + j𝜔𝜖|𝐄|2 − 𝜎|𝐄|2 −𝐇∗ ⋅𝐌i − 𝐄 ⋅ 𝐉∗i . (1.7.33)
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Denoting

pe =
1
2
∇ ⋅ (𝐄 ×𝐇∗) (1.7.34)

pd =
1
2
𝜎|𝐄|2 (1.7.35)

ps = −1
2
(𝐇∗ ⋅𝐌i + 𝐄 ⋅ 𝐉∗i ) (1.7.36)

𝑤e =
1
4
𝜖|𝐄|2 (1.7.37)

𝑤m = 1
4
𝜇|𝐇|2 (1.7.38)

we can write Equation (1.7.33) as

ps = pe + pd + j2𝜔(𝑤m −𝑤e). (1.7.39)

Integrating this over a finite volume and invoking Gauss’ theorem yields its integral form

Ps = Pe + Pd + j2𝜔(Wm −We) (1.7.40)

where

Pe = ∫∫∫V
pe dV = 1

2 ∫
�
�
�
�∫S
(𝐄 ×𝐇∗) ⋅ d𝐒 (1.7.41)

Pd = ∫∫∫V
pd dV = 1

2 ∫∫∫V
𝜎|𝐄|2 dV (1.7.42)

Ps = ∫∫∫V
ps dV = −1

2 ∫∫∫V
(𝐇∗ ⋅𝐌i + 𝐄 ⋅ 𝐉∗i ) dV (1.7.43)

We = ∫∫∫V
𝑤e dV = 1

4 ∫∫∫V
𝜖|𝐄|2 dV (1.7.44)

Wm = ∫∫∫V
𝑤m dV = 1

4 ∫∫∫V
𝜇|𝐇|2 dV . (1.7.45)

Here, Pe is called the complex exiting power, Pd the time-average dissipated power, Ps the
complex supplied power, andWe andWm the time-average electric and magnetic energies,
respectively.

Equations (1.7.39) and (1.7.40) are known as Poynting’s theorem for complex phasors.
Both are complex equations whose real parts yield

Re( ps) = Re( pe) + pd (1.7.46)

Re(Ps) = Re(Pe) + Pd (1.7.47)

which are identical to Equations (1.7.29) and (1.7.30). However, if we take their imaginary
parts, we obtain two more equations:

Im( ps) = Im( pe) + 2𝜔(𝑤m −𝑤e) (1.7.48)

Im(Ps) = Im(Pe) + 2𝜔(Wm −We). (1.7.49)
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While the meaning of Equations (1.7.46) and (1.7.47) is very clear, the meaning of
Equations (1.7.48) and (1.7.49) requires some explanation, which is attempted as follows.

From Maxwell’s equations, it can be seen that the electric and magnetic fields can have
a phase difference for a general time-harmonic field. The electric energy reaches its maxi-
mum value at some moments and the magnetic energy reaches its maximum at some other
moments. To be more specific, within each cycle at one moment some of the magnetic
energy converts into electric energy, and at another moment some of the electric energy
converts into magnetic energy. This is analogous to what happens in an LC-circuit, where
the energy stored in the inductor converts into the energy stored in the capacitor at one
moment, and at another moment, the reverse happens. Now, if the maximum electric energy
is not equal to, say greater than, the maximum magnetic energy in a volume, extra power is
needed at the moment when the electric energy reaches its maximum value, and the same
amount of power has to disappear at the other moment when the electric energy decreases
and the magnetic energy reaches its maximum value. This extra power is called reactive
power and, because of the power conservation, it can only come either from the source or
from the power outside the volume. The source contribution is reflected by Im(Ps) and the
external contribution is given by Im(Pe). Hence, Im(Ps) is related to the power generated
by the source at one moment and then taken back at the other moment within a cycle. Simi-
larly, Im(Pe) represents the power leaving the volume at one moment and then reentering at
the other moment within a cycle. This reactive power does not show up in the time-average
supplied power or exiting power because it takes two round trips within each cycle, but
it is clearly reflected in the difference between the time-average electric and magnetic
energies.

To understand the concept of reactive power better, let us consider the supplied power
density for a time-harmonic source whose electric field and impressed current at a specific
point are assumed to be

𝐄 = 𝐄0 e j∠𝐄, 𝐉i = 𝐉i0 e j∠𝐉i (1.7.50)

where 𝐄0 and 𝐉i0 denote the amplitudes and ∠𝐄 and ∠𝐉i denote the phases of 𝐄 and 𝐉i,
respectively. The complex supplied power density at the point is then

ps = −1
2
𝐄 ⋅ 𝐉∗i = −1

2
𝐄0 ⋅ 𝐉i0 e j(∠𝐄−∠𝐉i) (1.7.51)

whose real and imaginary parts are

Re( ps) = −1
2
𝐄0 ⋅ 𝐉i0 cos(∠𝐄 − ∠𝐉i) (1.7.52)

Im( ps) = −1
2
𝐄0 ⋅ 𝐉i0 sin(∠𝐄 − ∠𝐉i). (1.7.53)

As discussed before, the real part represents the time-average supplied power density.
To understand the imaginary part, let us examine the instantaneous power density

𝓅s(t) = −EEE (t) ⋅JJJi(t) = −𝐄0 cos(𝜔t + ∠𝐄) ⋅ 𝐉i0 cos(𝜔t + ∠𝐉i). (1.7.54)
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This expression can be rewritten as

𝓅s(t) = −1
2
𝐄0 ⋅ 𝐉i0 cos(∠𝐄 − ∠𝐉i)

[
1 + cos(2𝜔t + 2∠𝐉i)

]
+1
2
𝐄0 ⋅ 𝐉i0 sin(∠𝐄 − ∠𝐉i) sin(2𝜔t + 2∠𝐉i). (1.7.55)

The first term contains 1 + cos(2𝜔t + 2∠𝐉i), which oscillates around one and is always
positive. Its time average is the same as that in Equation (1.7.52). However, the second term
contains sin(2𝜔t + 2∠𝐉i), which oscillates around zero with either a positive or a negative
value. It represents power generated at one moment and taken back at another moment and
the time average is zero. This power is the reactive power mentioned earlier. Its peak value
is the same as that in Equation (1.7.53). Hence, Im( ps) represents the peak value of the
reactive power density. The same interpretation can be made for the exiting power involved
in Equations (1.7.48) and (1.7.49).

◾ EXAMPLE 1.7
A metallic box having a dimension of a × b × c is partially filled with a lossy material
(Fig. 1.5). On its top surface, there is a slot having a dimension of 𝑤 × l. An elec-
tromagnetic wave of angular frequency 𝜔 is incident from the top and some of the
electromagnetic energy enters the box. The electric and magnetic fields over the slot
are measured to be

𝐄 = ŷE0 sin
𝜋x
l
, 𝐇 = x̂(

√
3 + j)

E0

2𝜂
sin

𝜋x
l

0 ≤ x ≤ l, 0 ≤ y ≤ 𝑤

where 𝜂 = 377 Ω and E0 has a real value. Find the time-average power dissipated in the
metallic box and the difference between the electric and magnetic energies in the box.
Furthermore, find the instantaneous power entering the box.

x

y

z

Figure 1.5 A conducting box with a slot.
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Solution Given the electric and magnetic fields over the slot, we can calculate the
complex power leaving the metallic box through the slot as

Pe =
1
2 ∫

𝑤

0 ∫
l

0
(𝐄 ×𝐇∗) ⋅ ẑ dx dy = −(

√
3 − j)

𝑤lE2
0

8𝜂
.

The real part gives the time-average power leaving the box. Since its value is nega-
tive, it indicates that there is a time-average power entering the box, which is eventually
dissipated. Hence, the time-average power dissipated in the box is

Pd = −Re(Pe) =

√
3𝑤lE2

0

8𝜂
.

According to Equation (1.7.49), the difference between the electric and magnetic ener-
gies in the box is

We −Wm = 1
2𝜔

Im(Pe) =
𝑤lE2

0

16𝜔𝜂
.

Now we consider the instantaneous power entering the box. The instantaneous fields
over the slot are

EEE = ŷE0 sin
𝜋x
l
cos𝜔t, HHH = x̂

E0

𝜂
sin

𝜋x
l
cos(𝜔t + 𝜋∕6).

Hence, the instantaneous power entering the box is

Penter (t) = ∫
𝑤

0 ∫
l

0
(EEE ×HHH ) ⋅ (−ẑ) dx dy =

𝑤lE2
0

2𝜂
cos𝜔t cos(𝜔t + 𝜋∕6).

Evidently, because of a phase difference between the electric and magnetic fields, the
instantaneous power does not always enter the box. In fact, within each period, there are
two time intervals when the instantaneous power actually leaves the box.

1.7.4 Complex Permittivity and Permeability

As mentioned earlier, a medium can be lossy for a time-varying electromagnetic field
because of the energy dissipation caused by the friction between bound charges and dipoles.
The mathematical description of this loss is rather complicated in the time domain, but for
time-harmonic fields, this loss translates into the imaginary part of a complex permittivity
and/or a complex permeability. In this case, the relative permittivity and permeability can
be written as

𝜖r = 𝜖′r − j𝜖′′r , 𝜇r = 𝜇′
r − j𝜇′′

r (1.7.56)

where 𝜖′′r quantifies the dielectric loss and 𝜇′′
r quantifies the magnetic loss. These two

parameters are related to the electric loss tangent 𝛿e and the magnetic loss tangent 𝛿m by

tan 𝛿e =
𝜖′′r

𝜖′r
, tan 𝛿m =

𝜇′′
r

𝜇′
r

(1.7.57)
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which are commonly used in engineering practice. Since for a linear dispersive medium,
𝜖(𝜔) is the Fourier transform of 𝜖 = 𝜖0 + 𝜖0𝜒e(t), its real and imaginary parts are related by
Kramers–Krönig’s relations [15, 16] given by

𝜖′(𝜔) = 𝜖∞ + 2
𝜋
—∫

∞

0

z𝜖′′(z)
z2 − 𝜔2

dz, 𝜖′′(𝜔) = −2𝜔
𝜋

—∫
∞

0

𝜖′(z) − 𝜖∞

z2 − 𝜔2
dz (1.7.58)

where 𝜖∞ denotes the permittivity at an infinitely high frequency, which accounts for the
contribution of the polarization that adapts instantaneously to the changes of the electric
field in addition to 𝜖0. The integrals in Equation (1.7.58) are evaluated in the complex plane
with the singular point z = 𝜔 excluded. Equation (1.7.58) is also called the causality condi-
tion since it is a direct result of 𝜒e(t) being a causal function. It indicates that the dielectric
dispersion is always accompanied by dielectric loss and if one knows 𝜖′(𝜔) for the entire
frequency spectrum, 𝜖′′(𝜔) can be calculated and vice versa. A similar relation can be found
between the magnetic dispersion and magnetic loss.

An additional benefit for dealing with time-harmonic fields in the frequency domain
is that the conduction loss and the dielectric loss can often be combined in the analysis.
This can be seen clearly by rewriting Equation (1.7.32) as

∇ ×𝐇 = j𝜔𝜖𝐄 + 𝜎𝐄 + 𝐉i = j𝜔𝜖0
[
𝜖′r − j

(
𝜖′′r + 𝜎

𝜔𝜖0

)]
𝐄 + 𝐉i. (1.7.59)

In this case, the electric loss tangent can be redefined as

tan 𝛿e =
(
𝜖′′r + 𝜎

𝜔𝜖0

)/
𝜖′r =

𝜖′′r

𝜖′r
+ 𝜎

𝜔𝜖′r𝜖0
(1.7.60)

to include both the dielectric and conduction losses. Consequently, an effective 𝜖′′r can be
defined to include the effect of 𝜎, and conversely, an effective 𝜎 can be used to include the
effect of 𝜖′′r .

◾ EXAMPLE 1.8
Plasma is an ionized gas consisting of negatively charged electrons and positively
charged ions found naturally in the ionosphere. Both electrons and ions can move freely
in the gas. Assume that the number of electrons in a unit volume is Ne and the collision
frequency of electrons is 𝜈. Find the effective permittivity of the plasma.

Solution Because ions are much heavier than electrons, we ignore the motion of
ions and consider only the motion of electrons. When a time-harmonic electric field
is applied to the plasma, it exerts a Lorentz force on an electron, which is given by
FFF = qe(EEE +𝓋𝓋𝓋 ×BBB ), where qe is the charge carried by an electron and BBB is the
magnetic field accompanying the electric field EEE . However, the value of𝓋𝓋𝓋 ×BBB is much
smaller than that of EEE so it can be neglected. Therefore, if we ignore the effect of the
fields from ions and other electrons on the electron to be considered, which is a good
assumption because the densities of both ions and electrons are quite low, the equation
of motion for the electron is

me
d𝓋𝓋𝓋
dt

= qeEEE − me𝜈𝓋𝓋𝓋
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where me denotes the mass of an electron and the second term on the right-hand side
represents the frictional force on the electron. In terms of phasors, this equation can be
written as

j𝜔me𝐯 = qe𝐄 − me𝜈𝐯

which yields

𝐯 =
qe

me(𝜈 + j𝜔)
𝐄.

The electric current formed by the motion of the electrons is

𝐉c = Neqe𝐯 =
Neq

2
e

me(𝜈 + j𝜔)
𝐄

and when this is substituted into∇ ×𝐇 = j𝜔𝜖0𝐄 + 𝐉c = j𝜔𝜖eff𝐄, we obtain the effective
permittivity as

𝜖eff = 𝜖0 +
Neq

2
e

j𝜔me(𝜈 + j𝜔)
= 𝜖0 +

𝜖0𝜔
2
p

j𝜔(𝜈 + j𝜔)

where 𝜔p =
√

Neq
2
e∕𝜖0me and is called the plasma frequency. The permittivity of this

form is known as the Drude model.

◾ EXAMPLE 1.9
For a dispersive dielectric medium, show that its complex permittivity satisfies
Kramers–Krönig’s relations given in Equation (1.7.58).

Solution Consider the susceptibility function 𝜒(t), which can be either an electric
susceptibility function 𝜒e(t) or a magnetic susceptibility function 𝜒m(t). Since it is a
causal function, that is, 𝜒(t) = 0 for t < 0, its Fourier transform can be written as

𝜒(𝜔) = ∫
∞

0
𝜒(t) e−j𝜔t dt

which is an analytic function of 𝜔. Because 𝜒(t) is a real function, the real part of 𝜒(𝜔),
denoted as 𝜒 ′(𝜔), is an even function, and the imaginary part of 𝜒(𝜔), denoted as 𝜒 ′′(𝜔),
is an odd function; that is,

𝜒 ′(−𝜔) = 𝜒 ′(𝜔), 𝜒 ′′(−𝜔) = −𝜒 ′′(𝜔).

Now let us consider a closed contour integral in the complex plane (z = z′ + jz′′):

∮C

𝜒(z) − 𝜒∞
z − 𝜔

dz

where C consists of the entire real axis except at z = 𝜔, where the contour is deviated to
exclude the singular point and a lower half-circle with a radius approaching infinity to
close the contour (Fig. 1.6), and 𝜒∞ = 𝜒(𝜔 → ∞). Because the integrand is nonsingular
inside C, according to the Cauchy integration theorem, this contour integral vanishes.
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z′′

z′z = ω

Figure 1.6 Closed contour of integration in the complex plane.

Furthermore, since 𝜒(z) → 0 when z′′ → −∞, the line integral over the lower half-circle
vanishes. Therefore,[

∫
𝜔−𝜀

−∞

𝜒(z) − 𝜒∞
z − 𝜔

dz + ∫
∞

𝜔+𝜀

𝜒(z) − 𝜒∞
z − 𝜔

dz
]
+ ∫c

𝜒(z) − 𝜒∞
z − 𝜔

dz = 0

where c denotes a small half-circle with a radius of 𝜀 to exclude the singular point z = 𝜔.
When 𝜀 → 0, the integrals in the square brackets forms a principal-value integral and the
integral over the small half-circle with a vanishing radius can be evaluated (by letting
z = 𝜔 − 𝜀 e j𝜙 and then integrating for 𝜙 from 0 to 𝜋), which yields

—∫
∞

−∞

𝜒(z) − 𝜒∞
z − 𝜔

dz = − lim
𝜀→0∫c

𝜒(z) − 𝜒∞
z − 𝜔

dz = −j𝜋[𝜒(𝜔) − 𝜒∞].

Taking the real and imaginary parts of this equation, we obtain

𝜒 ′(𝜔) = 𝜒∞ + 1
𝜋
—∫

∞

−∞

𝜒 ′′(z)
z − 𝜔

dz

𝜒 ′′(𝜔) = − 1
𝜋
—∫

∞

−∞

𝜒 ′(z) − 𝜒∞
z − 𝜔

dz

where 𝜒(𝜔) = 𝜒 ′(𝜔) − j𝜒 ′′(𝜔). By using the symmetric properties of 𝜒 ′(𝜔) and 𝜒 ′′(𝜔),
these equations can be written as

𝜒 ′(𝜔) = 𝜒∞ + 2
𝜋
—∫

∞

0

z𝜒 ′′(z)
z2 − 𝜔2

dz

𝜒 ′′(𝜔) = −2𝜔
𝜋

—∫
∞

0

𝜒 ′(z) − 𝜒∞

z2 − 𝜔2
dz.

Substituting these into the relation 𝜖(𝜔) = 𝜖0 + 𝜖0𝜒e(𝜔), we obtain Kramers–Krönig’s
relations given in Equation (1.7.58), where 𝜖∞ = 𝜖0 + 𝜖0𝜒e,∞. Since the magnetic sus-
ceptibility function has the same property, the complex permeability satisfies the same
Kramers–Krönig’s relations. Also note that at an infinite frequency, since the polariza-
tion cannot adapt instantaneously to the changes of the electric field, we usually have
𝜒e,∞ = 0 and hence 𝜖∞ = 𝜖0.
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PROBLEMS

1.1 Starting from the definition of the divergence in Equation (1.1.1), derive the expres-
sions of the divergence in rectangular, cylindrical, and spherical coordinates as given
in Equations (1.1.2)–(1.1.4). Furthermore, derive Gauss’ theorem in Equation (1.1.5).

1.2 Derive the alternative definition of the curl in Equation (1.1.10) from the definition
given in Equation (1.1.6). Furthermore, derive Stokes’ theorem in Equation (1.1.11).

1.3 Starting from the definition of the gradient in Equation (1.1.12), derive its alternative
definition in Equation (1.1.13).
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1.4 Define R as the distance between point P located at (x, y, z) and point P′ located at
(x′, y′, z′) and show that

∇
( 1
R

)
= − 𝐑

R3
, ∇′

( 1
R

)
= 𝐑

R3

where 𝐑 = 𝐫 − 𝐫′ and ∇′ operates on the primed variables.

1.5 Use the results obtained in Problem 1.4 and show that

∇ ⋅ ∇
( 1
R

)
= −4𝜋𝛿(R)

where R = ||𝐫 − 𝐫′||.
1.6 Using the symbolic vector method, prove the following vector identities:

𝐚 × (∇ × 𝐛) = (∇𝐛) ⋅ 𝐚 − 𝐚 ⋅ (∇𝐛)

∇ ⋅ (𝐚 × 𝐛) = 𝐛 ⋅ (∇ × 𝐚) − 𝐚 ⋅ (∇ × 𝐛).

Note that a quantity like ∇𝐛 is called a dyad and a brief discussion on it can be found
in Section 2.2.5.

1.7 Using the generalized Gauss’ theorem, derive a new integral theorem

∫∫∫V
(𝐛∇ ⋅ 𝐚 + 𝐚 ⋅ ∇𝐛) dV = ∫

�
�
�
�∫S
(n̂ ⋅ 𝐚)𝐛 dS.

1.8 Apply Green’s theorems in Equations (1.1.45)–(1.1.48) to a vanishingly thin surface
and derive the corresponding formulas that convert a surface integral to a contour
integral.

1.9 The Helmholtz decomposition theorem presented in Section 1.1.3 can be stated more
specifically as: A smooth vector function 𝐅(𝐫) that vanishes at infinity can always be
expressed as

𝐅(𝐫) = −∇𝜑(𝐫) + ∇ × 𝐀(𝐫)

where

𝜑(𝐫) = 1
4𝜋 ∫∫∫V

∇′ ⋅ 𝐅(𝐫′)|𝐫 − 𝐫′| dV ′

𝐀(𝐫) = 1
4𝜋 ∫∫∫V

∇′ × 𝐅(𝐫′)|𝐫 − 𝐫′| dV ′.

Prove this theorem.

1.10 A resistor can be considered as a conductive post having a finite conductivity 𝜎, a
length l, and a cross section s. Show that the total resistance is given by

R = l
𝜎s

.
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1.11 Three concentric conducting spherical shells have radii a, b, and c, and charges q1,
q2, and q3, respectively. Assume that a < b < c (Fig. 1.7). What are the potentials on
these spheres? If the innermost sphere is grounded (i.e., zero potential), what will be
the change of the potential on the outmost sphere? (Hint: Find the potential inside,
outside, and on a single spherical shell first.)

q3

q2

q1
a

b

c

Figure 1.7 Three concentric conducting spherical shells.

1.12 An infinitely long cylindrical conductor of radius a has a hole of radius bwhose axis is
parallel to but offset by a distance d from the axis of the conductor (Fig. 1.8). Assume
that a static current I uniformly distributed over the cross section flows along the
conductor in the z-direction. What is the magnetic field on the axis of the hole? (Hint:
Use superposition.)

a

y

b

d
x

Figure 1.8 An infinitely long conductor with an offset hole.

1.13 A parallel-plate capacitor of width 𝑤 and length l at a spacing d is connected to a
battery of V volts. A dielectric slab of relative permittivity 𝜖r and thickness h (h < d)
and having the same area𝑤 × l is inserted between the plates and placed on the bottom
plate. Find the force on the top plate (neglect the edge effect).

1.14 A condenser consists of two parallel plates of width 𝑤 and length l at a spacing d as
shown in Figure 1.9. A dielectric slab of relative permittivity 𝜖r and of thickness d and
the same area 𝑤 × l is placed between the plates. Assume that the dielectric slab is
pulled along its length from the plates so that a length x is left in-between the plates.
(a) Show that if Q is the total charge on the plate, there is an electric force (neglect
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xl – x

d ε0 εr

Figure 1.9 A dielectric slab inserted between two parallel plates.

the edge effect)

F =
Q2(𝜖r − 1)d

2𝜖0𝑤[(l − x) + 𝜖rx]2

pulling the slab back to its original position. (b) What is the charge over the dielectric
slab portion x and also over the free-space portion (l − x)? (c) If the condenser is
connected to a battery of V volts, what is the force? (Hint: Use the method of virtual
work.)

1.15 The electric charge density is distributed symmetrically in a cylinder infinitely long
in the z-direction. The charge density is given by the expression

𝜚e(𝜌) =
{

𝜚0(𝜌∕b)
2 𝜌 ≤ b

0 𝜌 > b

where 𝜌 is the cylindrical coordinate, 𝜚0 is a constant, and b is the radius of the
cylinder. (a) Using an appropriate Maxwell’s equation in the integral form and
the cylindrical symmetry, find expressions for the electric field in the region 𝜌 < b
and the region 𝜌 > b. (b) If a grounded metallic shell is added at 𝜌 = a (a > b) such
that the electric field 𝐄 = 0 for 𝜌 > a, calculate the electric surface charge density
𝜚e,s on the shell.

1.16 Consider two infinite planes parallel to the yz-plane (one at x = 0 and the other
at x = d). The medium between the planes is characterized by permittivity 𝜖0 and
permeability 𝜇0. The electric field between the planes is given by

EEE = ẑA sin
𝜋x
d

cos
𝜋ct
d

where A is a constant and c is the wave velocity. Outside the planes both the
electric and magnetic fields are zero. (a) Calculate the electric charge density distri-
bution (volume if any and surface). (b) Calculate the magnetic field. (c) Calculate the
electric current density distribution (volume if any and surface).

1.17 Even though Maxwell’s equations can be expressed in terms of either total or free
charges and currents, they can be more uniformly written as

∇ × EEE = −𝜕BBB
𝜕t

, ∇ ×HHH = 𝜕DDD
𝜕t

+JJJ

∇ ⋅DDD = 𝜚e, ∇ ⋅BBB = 0.
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The interpretation of the charge density 𝜚e and current density JJJ depends on the
constitutive relations used to relate DDD with EEE and BBB with HHH . When the free-space
constitutive relationsDDD = 𝜖0EEE andBBB = 𝜇0HHH are used, the charge and current densi-
ties are those of total charges and currents, which include bound charges and currents.
When the material constitutive relations DDD = 𝜖0EEE +PPP and BBB = 𝜇0(HHH +MMM ) are
used, the charge and current densities are those of free charges and currents since the
effects of bound charges and currents have already been included in the constitutive
relations. Show that these two approaches are indeed equivalent by casting Maxwell’s
equations in terms of EEE andBBB for both cases.

1.18 Starting fromMaxwell’s equations in differential form in Equations (1.4.8) and (1.4.9)
and boundary conditions in Equations (1.5.4) and (1.5.8), derive the corresponding
Maxwell’s equations in integral form in Equations (1.4.2) and (1.4.3) that are appli-
cable to general cases that may contain arbitrary discontinuities (including the surface
currents and charges).

1.19 Consider a thin sheet whose conductivity is 𝜎 and thickness is t (t → 0). The product
𝜎 t remains a constant as t → 0. The sheet is placed in free space. (a) Find the relation
between the tangential components of the electric fields on both sides of the sheet. (b)
Find the relation between the tangential components of the magnetic fields on both
sides of the sheet (in terms of the electric current density in the sheet). (c) Furthermore,
find the relation between tangential electric and magnetic fields.

1.20 For the permittivity derived in Example 1.6 for a dielectric medium and the effective
permittivity derived in Example 1.8 for a nonmagnetized plasma, find their electric
susceptibility functions 𝜒e(t).

1.21 Consider a section of a rectangular waveguide shown in Figure 1.10. There is no
source of any kind in this section of the waveguide. The transverse field components
at z = 0 are given by

Ex = E0 sin
𝜋y

b
, Hy = H0(1 + j) sin

𝜋y

b

and those at z = c are given by

Ex =
E0

4
sin

𝜋y

b
, Hy = H0 sin

𝜋y

b

x 

z 

y 

a 

b 

c 

Figure 1.10 A section of a rectangular waveguide.
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where E0 and H0 are real numbers. Find the time-average power dissipated in the
waveguide. (Express your result in terms of E0, H0, a, and b.)

1.22 Suppose a filament of z-directed time-harmonic electric current of 5 A is impressed
along the z-axis from z = 0 to z = 1 m and is completely enclosed in a perfectly
conducting circular cavity filled with a lossy material (Fig. 1.11). If along the z-axis
from z = 0 to z = 1 m the electric field is 𝐄 = −ẑ (1 + j) V/m and the frequency is
1 kHz, determine the time-average power dissipated in the cavity and the difference
between the time-average electric and magnetic energies within the cavity.

x

y

z

z = 1 m 

Figure 1.11 A filament of electric current placed in a circular cavity.

1.23 Figure 1.12 shows an open rectangular waveguide radiating into free space. The field
at the opening is given by

Ey = E0 sin
𝜋x
a
, Hx = −(1 + j)

E0

377
sin

𝜋x
a
.

Find the time-average power radiated into the free space. (Express your result in terms
of E0, a, and b.)

x

y

z
b a

Figure 1.12 An open rectangular waveguide radiating into free space.

1.24 Consider a section of a coaxial waveguide shown in Figure 1.13. The length of the
section is d and the coaxial waveguide is formed by two cylinders of radius a and b.
The transverse time-harmonic field components at z = 0 are given by

𝐄|z=0 = �̂�
A
𝜌
, 𝐇|z=0 = �̂�

B
𝜌
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and those at z = d are given by

𝐄|z=d = �̂�
jC
𝜌
, 𝐇|z=d = �̂�

(D + jE)
𝜌

where A, B, C, D, and E are real numbers. (a) Find the time-average power dissipated
or gained within the volume between the planes z = 0 and z = d. (b) What are the
conditions on A, B,C,D, and E (or part of them) leading to (1) dissipated time-average
power and (2) gained time-average power?

x

y

z

z = d

Figure 1.13 A section of a coaxial waveguide.

1.25 Show that the permittivity derived in Example 1.6 for a dielectric medium and the
effective permittivity derived in Example 1.8 for a nonmagnetized plasma satisfy
Kramers–Krönig’s relations given in Equation (1.7.58).


