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Single Degree of Freedom Systems

. Introduction

In this chapter, the vibration of a single degree of freedom system (SDOF) will
be analyzed and reviewed. Analysis, measurement, design and control of SDOF
systems are discussed. The concepts developed in this chapter constitute a review
of introductory vibrations and serve as an introduction for extending these con-
cepts to more complex systems in later chapters. In addition, basic ideas relating to
measurement and control of vibrations are introduced that will later be extended
to multiple degree of freedom systems and distributed parameter systems. This
chapter is intended to be a review of vibration basics and an introduction to a
more formal and general analysis for more complicated models in the following
chapters.

Vibration technology has grown and taken on a more interdisciplinary nature.
This has been caused by more demanding performance criteria and design speci-
fications of all types of machines and structures. Hence, in addition to the stan-
dard material usually found in introductory chapters of vibration and structural
dynamics texts, several topics from control theory are presented. This material is
included not to train the reader in control methods (the interested student should
study control and system theory texts), but rather to point out some useful connec-
tions between vibration and control as related disciplines. In addition, structural
control has become an important discipline requiring the coalescence of vibration
and control topics. A brief introduction to nonlinear SDOF systems and numerical
simulation is also presented.

. Spring-Mass System

Simple harmonic motion, or oscillation, is exhibited by structures that have elastic
restoring forces. Such systems can be modeled, in some situations, by a spring-
mass schematic (Figure 1.1). This constitutes the most basic vibration model of a
structure and can be used successfully to describe a surprising number of devices,
machines and structures. The methods presented here for solving such a sim-
ple mathematical model may seem to be more sophisticated than the problem
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Figure . (a) A spring-mass schematic, (b) a free body diagram, and (c) a free body diagram of
the static spring mass system.

requires. However, the purpose of this analysis is to lay the groundwork for solv-
ing more complex systems discussed in the following chapters.

If x = x(t) denotes the displacement (in meters) of the mass m (in kg) from its
equilibrium position as a function of time, t (in sec), the equation of motion for
this system becomes (upon summing the forces in Figure 1.1b)

mẍ + k(x + xs) − mg = 0

where k is the stiffness of the spring (N/m), xs is the static deflection (m) of
the spring under gravity load, g is the acceleration due to gravity (m/s2) and the
over dots denote differentiation with respect to time. A discussion of dimensions
appears in Appendix A and it is assumed here that the reader understands the
importance of using consistent units. From summing forces in the free body dia-
gram for the static deflection of the spring (Figure 1.1c), mg = kxs and the above
equation of motion becomes

mẍ(t) + kx(t) = 0 (1.1)

This last expression is the equation of motion of an SDOF system and is a linear,
second-order, ordinary differential equation with constant coefficients.

Figure 1.2 indicates a simple experiment for determining the spring stiffness
by adding known amounts of mass to a spring and measuring the resulting static
deflection, xs. The results of this static experiment can be plotted as force (mass
times acceleration) versus xs, the slope yielding the value of k for the linear portion
of the plot. This is illustrated in Figure 1.3.
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Figure . Measurement of spring constant using static deflection caused by added mass.
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Figure . Determination of the spring constant. The dashed box indicates the linear range of
the spring.

Once m and k are determined from static experiments, Equation (1.1) can be
solved to yield the time history of the position of the mass m, given the initial
position and velocity of the mass. The form of the solution of Equation (1.1) is
found from substitution of an assumed periodic motion (from experience watch-
ing vibrating systems) of the form

x(t) = A sin(𝜔nt + 𝜙) (1.2)

where 𝜔n =
√

k∕m is called the natural frequency in radians per second (rad/s).
Here A, the amplitude, and 𝜙, the phase shift, are constants of integration deter-
mined by the initial conditions.

The existence of a unique solution for Equation (1.1) with two specific initial
conditions is well known and is given in Boyce and DiPrima (2012). Hence, if a
solution of the form of Equation (1.2) is guessed and it works, then it is the solution.
Fortunately, in this case, the mathematics, physics and observation all agree.

To proceed, if x0 is the specified initial displacement from equilibrium of mass
m, and v0 is its specified initial velocity, simple substitution allows the constants
of integration A and 𝜙 to be evaluated. The unique solution is

x(t) =

√√√√𝜔2
nx2

0 + v2
0

𝜔2
n

sin
[
𝜔nt + tan−1

(
𝜔nx0

v0

)]
(1.3)
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Alternately, x(t) can be written as

x(t) =
v0
𝜔n

sin𝜔nt + x0 cos𝜔nt (1.4)

by using a simple trigonometric identity or by direct substitution of the initial con-
ditions (Example 1.2.1).

A purely mathematical approach to the solution of Equation (1.1) is to assume
a solution of the form x(t) = Ae𝜆t and solve for 𝜆, i.e.

m𝜆2e𝜆t + ke𝜆t = 0

This implies that (because e𝜆t ≠ 0 and A ≠ 0)

𝜆2 +
(

k
m

)
= 0

or that

𝜆 = ±j
(

k
m

)1∕2
= ±𝜔nj

where j = (–1)1/2. Then the general solution becomes

x(t) = A1e−𝜔njt + A2e𝜔njt (1.5)

where A1 and A2 are arbitrary complex conjugate constants of integration to be
determined by the initial conditions. Use of Euler’s formulas then yields Equa-
tions (1.2) and (1.4) (Inman, 2014). For more complicated systems, the exponen-
tial approach is often more appropriate than first guessing the form (sinusoid) of
the solution from watching the motion.

Another mathematical comment is in order. Equation (1.1) and its solution are
valid only as long as the spring is linear. If the spring is stretched too far or too
much force is applied to it, the curve in Figure 1.3 will no longer be linear. Then
Equation (1.1) will be nonlinear (Section 1.10). For now, it suffices to point out that
initial conditions and springs should always be checked to make sure that they fall
into the linear region, if linear analysis methods are going to be used.

Example 1.2.1
Assume a solution of Equation (1.1) of the form

x(t) = A1 sin𝜔nt + A2 cos𝜔nt

and calculate the values of the constants of integration A1 and A2 given arbitrary
initial conditions x0 and v0, thus verifying Equation (1.4).

Solution: The displacement at time t = 0 is

x(0) = x0 = A1 sin(0) + A2 cos(0)

or A2 = x0. The velocity at time t = 0 is

ẋ(0) = v0 = 𝜔nA1 cos(0) − 𝜔nx0 sin(0)
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Solving this last expression for A1 yields A1 = v0/x0, so that Equation (1.4)
results in

x(t) =
v0
x0

sin𝜔nt + x0 cos𝜔nt

Example 1.2.2
Compute and plot the time response of a linear spring-mass system to initial
conditions of x0 = 0.5 mm and v0 = 2

√
2 mm∕s, if the mass is 100 kg and the

stiffness is 400 N/m.

Solution: The frequency is

𝜔n =
√

k∕m =
√

400∕100 = 2 rad∕s

Next compute the amplitude from Equation (1.3):

A =

√√√√𝜔2
nx2

0 + v2
0

𝜔2
n

=

√
22(0.5)2 + (2

√
2)2

22 = 1.5 mm

From Equation (1.3) the phase is

𝜙 = tan−1
(
𝜔nx0

v0

)
= tan−1

(
2(0.5)

2
√

2

)
≈ 10 rad

Thus the response has the form

x(t) = 1.5 sin(2t + 10)

and this is plotted in Figure 1.4.

Time (s)

–A –1.5

 –1

–0.5

0
2 4 6 8 10 12

0.5

1

A 1.5

x(t) (mm)

T = 2πωn

Figure . The response of
a simple spring-mass
system to an initial
displacement of x0 =
0.5 mm and an initial
velocity of v0 = 2

√
2

mm∕s. The period, defined
as the time it takes to
complete one cycle off
oscillation, T = 2𝜋∕𝜔n,
becomes T = 2𝜋∕2 = 𝜋s.
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. Spring-Mass-Damper System

Most systems will not oscillate indefinitely when disturbed, as indicated by the
solution in Equation (1.3). Typically, the periodic motion dies down after some
time. The easiest way to treat this mathematically is to introduce a velocity term,
cẋ, into Equation (1.1) and examine the equation

mẍ + cẋ + kx = 0 (1.6)

This also happens physically with the addition of a dashpot or damper to dissipate
energy, as illustrated in Figure 1.5.

Equation (1.6) agrees with summing forces in Figure 1.5 if the dashpot exerts a
dissipative force proportional to velocity on the mass m. Unfortunately, the con-
stant of proportionality, c, cannot be measured by static methods as m and k are.
In addition, many structures dissipate energy in forms not proportional to veloc-
ity. The constant of proportionality c is given in Newton-second per meter (Ns/m)
or kilograms per second (kg/s) in terms of fundamental units.

Again, the unique solution of Equation (1.6) can be found for specified initial
conditions by assuming that x(t) is of the form

x(t) = Ae𝜆t

and substituting this into Equation (1.6) to yield

A
(
𝜆2 + c

m
𝜆 + k

m

)
e𝜆t = 0 (1.7)

Since a trivial solution is not desired, A ≠ 0, and since e𝜆t is never zero, Equation
(1.7) yields

𝜆2 + c
m
𝜆 + k

m
= 0 (1.8)

Equation (1.8) is called the characteristic equation of Equation (1.6). Using simple
algebra, the two solutions for 𝜆 are

𝜆1,2 = − c
2m

± 1
2

√
c2

m2 − 4 k
m

(1.9)
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Figure . (a) Schematic of spring-mass-damper system. (b) A free-body diagram of the system
in part (a).
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The quantity under the radical is called the discriminant and together with the
sign of m, c and k determines whether or not the roots are complex or real. Physi-
cally, m, c and k are all positive in this case, so the value of the discriminant deter-
mines the nature of the roots of Equation (1.8).

It is convenient to define the dimensionless damping ratio, 𝜁 , as

𝜁 = c
2
√

km

In addition, let the damped natural frequency, 𝜔d, be defined by (for 0 < 𝜁 < 1)

𝜔d = 𝜔n
√

1 − 𝜁2 (1.10)

Then Equation (1.6) becomes

ẍ + 2𝜁𝜔nẋ + 𝜔2
nx = 0 (1.11)

and Equation (1.9) becomes

𝜆1,2 = −𝜁𝜔n ± 𝜔n
√
𝜁2 − 1 = −𝜁𝜔n ± 𝜔dj, 0 < 𝜁 < 1 (1.12)

Clearly the value of the damping ratio, 𝜁 , determines the nature of the solution
of Equation (1.6). There are three cases of interest. The derivation of each case is
left as an exercise and can be found in almost any introductory text on vibrations
(Inman, 2014; Meirovitch, 1986).

Underdamping occurs if the system’s parameters are such that

0 < 𝜁 < 1

so that the discriminant in Equation (1.12) is negative and the roots form a com-
plex conjugate pair of values. The solution of Equation (1.11) then becomes

x(t) = e−𝜁𝜔nt(A cos𝜔dt + B sin𝜔dt) (1.13)

or

x(t) = Ce−𝜁𝜔nt sin(𝜔dt + 𝜙)

where A, B, C and 𝜙 are constants determined by the specified initial velocity, v0
and position, x0

A = x0 C =
√

(v0 + 𝜁𝜔nx0)2 + (x0𝜔d)2

𝜔d

B =
(v0 + 𝜁𝜔nx0)

𝜔d
𝜙 = tan−1

[ x0𝜔d
(v0 + 𝜁𝜔nx0)

] (1.14)

The underdamped response has the form given in Figure 1.6 and consists of a
decaying oscillation of frequency 𝜔d.

Overdamping occurs if the system’s parameters are such that

𝜁 > 1
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Figure . Response of an
underdamped system
illustrating oscillation with
exponential decay.

so that the discriminant in Equation (1.12) is positive and the roots are a pair of
negative real numbers. The solution of Equation (1.11) then becomes

x(t) = Ae
(
−𝜁+

√
𝜁2−1

)
𝜔nt + Be

(
−𝜁−

√
𝜁2−1

)
𝜔nt (1.15)

where A and B are again constants determined by v0 and x0. They are

A =
v0 +

(
𝜁 +

√
𝜁2 − 1

)
𝜔nx0

2𝜔n
√
𝜁2 − 1

and B = −
v0 +

(
𝜁 −

√
𝜁2 − 1

)
𝜔nx0

2𝜔n
√
𝜁2 − 1

(1.16)

The overdamped response has the form given in Figure 1.7. An overdamped sys-
tem does not oscillate, but rather returns to its rest position exponentially.

Critical Damping occurs if the system’s parameters are such that 𝜁 = 1, so that
the discriminant in Equation (1.12) is zero and the roots are a pair of negative real
repeated numbers. The solution of Equation (1.11) then becomes

x(t) = e−𝜔nt[(v0 + 𝜔nx0)t + x0] (1.17)

The critically damped response is plotted in Figure 1.8 for values of the initial
velocity v0 of different signs and x0 = 0.25 mm.
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Figure . Response of an overdamped system illustrating exponential decay without
oscillation.
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Figure . Response of critically damped system to an initial displacement and three different
initial velocities indicating no oscillation.

It should be noted that critically damped systems can be thought of in several
ways. First, they represent systems with the minimum value of damping rate that
yields a non-oscillating system (Exercise 1.5). Critical damping can also be thought
of as the case that separates non-oscillation from oscillation.

Example 1.3.1
Derive the constants A and B of integration for the overdamped case of Equa-
tion (1.15).

Solution: Substitution of x(0) = x0 into Equation (1.15) yields
x(0) = Ae0 + Be0 or x0 = A + B (1.18)

Differentiating Equation (1.15) and setting t = 0 in the result yields
ẋ(0) = A𝜆1e0 + B𝜆2e0 or v0 = 𝜆1A + 𝜆1B (1.19)

where 𝜆1 and 𝜆2 are defined in Equation (1.12). These two initial conditions
result in two independent equations in two unknowns, A and B, which can be
solved in many ways. Writing Equations (1.17) and (1.18) as a single matrix
equation yields[ x0

v0

]
=
[ 1 1
𝜆1 𝜆2

] [A
B

]
or

[A
B

]
=
[ 1 1
𝜆1 𝜆2

]−1 [ x0
v0

]
Solving by computing matrix inverse (see Appendix B for details on computing
a matrix inverse) yields[A

B

]
= 1

𝜆2 − 𝜆1

[
𝜆2 −1
−𝜆1 1

] [ x0
v0

]
Expanding, substituting in the values for 𝜆1 and 𝜆2, recalling that they are real
numbers (i.e. 𝜁2 > 1) and writing as two separate equations results in

A =
−v0 + (−𝜁 −

√
𝜁2 − 1)𝜔n

−2𝜔n
√
𝜁2 − 1

and B =
v0 + (𝜁 −

√
𝜁2 − 1)𝜔n

−2𝜔n
√
𝜁2 − 1

Factoring out the minus sign in the denominator results in Equations (1.16).
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. Forced Response

The preceding analysis considers the vibration of a device or structure due to
some initial disturbance (nonzero v0 and x0). In this section, the vibration of a
spring-mass-damper system subjected to an external force is considered. In partic-
ular, the response to harmonic excitations, impulses and step forcing functions is
examined.

In many environments, rotating machinery, motors, etc., cause periodic
motions of structures to induce vibrations into other mechanical devices and
structures nearby. It is common to approximate the driving forces, F(t), as peri-
odic of the form

F(t) = F0 sin𝜔t (1.20)

where F0 represents the amplitude of the applied force and 𝜔 denotes the fre-
quency of the applied force, or the driving frequency, in rad/s. On summing forces,
the equation for the forced vibration of the system in Figure 1.9 becomes

mẍ + cẋ + kx = F0 sin𝜔t (1.21)

Recall from the discipline of differential equations (Boyce and DiPrima, 2012),
that the solution of Equation (1.21) consists of the sum of the homogeneous solu-
tion Equation (1.5) and a particular solution. These are usually referred to as the
transient response and the steady-state response, respectively. Physically, there is
motivation to assume that the steady state response will follow the forcing func-
tion. Hence, it is tempting to assume that the particular solution has the form

xp(t) = X sin(𝜔t − 𝜃) (1.22)

where X is the steady-state amplitude and 𝜃 is the phase shift at steady state. Math-
ematically, the method is referred to as the method of undetermined coefficients.
Substitution of Equation (1.22) into Equation (1.21) yields

X =
F0∕k√

(1 − m𝜔2∕k)2 + (c𝜔∕k)2

x

fk

fc

N

y

k

c

x(t)

F(t)

(a) (b)

F(t)mgm

Figure . (a) The schematic of the forced spring-mass-damper system, assuming no friction
on the surface. (b) The free-body diagram of the system of part (a).
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or
Xk
F0

= 1√[
1 − (𝜔∕𝜔n)2

]2 + [2𝜁 (𝜔∕𝜔n)]2
(1.23)

and

tan 𝜃 =
(c𝜔∕k)

1 − m𝜔2∕k
=

2𝜁 (𝜔∕𝜔n)
1 − (𝜔∕𝜔n)2 (1.24)

where 𝜔n =
√

k∕m as before. Since the system is linear, the sum of two solutions
is a solution, and the total time response for the system in Figure 1.9 for the case
0 < 𝜁 < 1 becomes

x(t) = e−𝜁𝜔nt(A sin𝜔dt + B cos𝜔dt) + X sin(𝜔t − 𝜃) (1.25)

Here A and B are constants of integration determined by the initial conditions and
the forcing function (and in general will be different than the values of A and B
determined for the free response). See Examples 1.4.2 and 1.5.1 for the case where
the driving force is a cosine function.

Examining Equation (1.25), two features are important and immediately obvi-
ous. First, as t gets larger, the transient response (the first term) becomes very
small – hence the term steady-state response is assigned to the particular solution
(the second term). The second observation is that the coefficient of the steady state
response, or particular solution, becomes large when the excitation frequency is
close to the undamped natural frequency, i.e. 𝜔 ≈ 𝜔n. This phenomenon is known
as resonance and is extremely important in design, vibration analysis and testing.

Example 1.4.1
Compute the response of the following system (assuming consistent units)

ẍ(t) + 0.4ẋ(t) + 4x(t) = 1√
2
sin 3t, x(0) = −3√

2
, ẋ(0) = 0

Solution: First solve for the particular solution by using the more convenient
form of

xp(t) = X1 sin 3t + X2 cos 3t

rather than the magnitude and phase form, where X1 and X2 are the constants
to be determined. Differentiating xp yields

ẋp(t) = 3X1 cos 3t − 3X2 sin 3t
ẍp(t) = −9X1 sin 3t − 9X2 cos 3t

Substitution of xp and its derivatives into the equation of motion and collecting
like terms yields(

−9X1 − 1.2X2 + 4X1 −
1√
2

)
sin 3t + (−9X2 + 1.2X1 + 4X2) cos 3t = 0
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Since the sine and cosine are independent, the two coefficients in parenthesis
must vanish, resulting in two equations in the two unknowns, X1 and X2. This
solution yields

xp(t) = −0.134 sin 3t − 0.032 cos 3t

Next consider adding the free response to this. From the problem statement

𝜔n = 2 rad∕s, 𝜁 = 0.4
2𝜔n

= 0.1 < 1, 𝜔d = 𝜔n
√

1 − 𝜁2 = 1.99 rad∕s

Thus, the system is underdamped, and the total solution is of the form

x(t) = e−𝜁𝜔nt(A sin𝜔dt + B cos𝜔dt) + X1 sin𝜔t + X2 cos𝜔t

Applying the initial conditions requires the derivative

ẋ(t) = e−𝜁𝜔nt(𝜔dA cos𝜔dt − 𝜔dB sin𝜔dt) + 𝜔X1 cos𝜔t
−𝜔X2 sin𝜔t − 𝜁𝜔ne−𝜁𝜔nt(A sin𝜔dt + B cos𝜔dt)

The initial conditions yield the constants A and B

x(0) = B + X2 = −3√
2
⇒ B = −X2 −

3√
2
= −2.089

ẋ(0) = 𝜔dA + 𝜔X1 − 𝜁𝜔nB = 0 ⇒ A = 1
𝜔d

(𝜁𝜔nB − 𝜔X1) = −0.008

Thus the total solution is

x(t) = −e−0.2t(0.008 sin 1.99t + 2.089 cos 1.99t)− 0.134 sin 3t − 0.032 cos 3t

Example 1.4.2
Calculate the form of the forced response if, instead of a sinusoidal driving force,
the applied force is given by

F(t) = F0 cos𝜔t.

Solution: In this case, assume that the response is also a cosine function out of
phase or

xp(t) = X cos(𝜔t − 𝜃)

To make the computations easy to follow, this is written in the equivalent form
using a basic trig identity

xp(t) = As cos𝜔t + Bs sin𝜔t

where the constants As = X cos 𝜃 and Bs = X sin 𝜃 satisfying

X =
√

A2
s + B2

s and 𝜃 = tan−1 Bs
As
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are undetermined constant coefficients. Taking derivatives of the assumed form
of the solution and substitution of these into the equation of motion yields(

− 𝜔2As + 2𝜁𝜔n𝜔Bs + 𝜔2
nAs − f0

)
cos𝜔t

+
(
− 𝜔2Bs − 2𝜁𝜔n𝜔As + 𝜔2

nBs
)
sin𝜔t = 0

This equation must hold for all time, in particular for t = 𝜋/2𝜔, so that the coef-
ficient of sin 𝜔t must vanish. Similarly, for t = 0, the coefficient of cos 𝜔t must
vanish. This yields the two equations(

𝜔2
n − 𝜔2)As +

(
2𝜁𝜔n𝜔

)
Bs = f0

and

(−2𝜁𝜔n𝜔)As +
(
𝜔2

n − 𝜔2) + Bs = 0

in the two undetermined coefficients As and Bs. Solving yields

As =
(
𝜔2

n − 𝜔2)f0(
𝜔2

n − 𝜔2
)2 + (2𝜁𝜔n𝜔)2

Bs =
2𝜁𝜔n𝜔f0(

𝜔2
n − 𝜔2

)2 + (2𝜁𝜔n𝜔)2

Substitution of these expressions into the equations for X and 𝜃 yields the par-
ticular solution

xp(t) =

X
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

f0√(
𝜔2

n − 𝜔2
)2 + (2𝜁𝜔n𝜔)2

cos

⎛⎜⎜⎜⎜⎜⎝
𝜔t −

𝜽

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

tan−1 2𝜁𝜔n𝜔

𝜔2
n − 𝜔2

⎞⎟⎟⎟⎟⎟⎠
Resonance is generally to be avoided in designing structures, since it means large

amplitude vibrations, which can cause fatigue failure, discomfort, loud noises, etc.
Occasionally, the effects of resonance are catastrophic. However, the concept of
resonance is also very useful in testing structures and in certain applications such
as energy harvesting (Section 7.10). In fact, the process of modal testing (Chap-
ter 12) is based on resonance. Figure 1.10 illustrates how𝜔n and 𝜁 affect the ampli-
tude at resonance. The dimensionless quantity Xk/F0 is called the magnification
factor and Figure 1.10 is called a magnification curve or magnitude plot. The max-
imum value at resonance, called the peak resonance, and denoted by Mp, can be
shown (Inman, 2014) to be related to the damping ratio by

Mp = 1
2𝜁
√

1 − 𝜁2
(1.26)

Also, Figure 1.10 can be used to define the bandwidth of the structure, denoted
by BW, as the value of the driving frequency at which the magnitude drops below
70.7% of its zero frequency value (also said to be the 3-dB down point from the zero
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ζ = 0.3

ω/ωn

ζ = 1.5

.707

1 BW

1

Mp

Xk/F0

ζ = 0.2

ζ = 0.1

Figure . Magnification curves (dimensionless) for an SDOF system showing the normalized
amplitude of vibration versus the ratio of driving frequency to natural frequency (r = 𝜔∕𝜔n).

frequency point). The bandwidth can be calculated (Kuo and Golnaraghi, 2009:
p. 359) in terms of the damping ratio by

BW = 𝜔n

√
(1 − 2𝜁2) +

√
4𝜁4 − 4𝜁2 + 2 (1.27)

Two other quantities are used in discussing the vibration of underdamped struc-
tures. They are the loss factor defined at resonance (only) to be

𝜂 = 2𝜁 (1.28)

and the Q value, or resonance sharpness factor, given by

Q = 1
2𝜁

= 1
𝜂

(1.29)

Another common situation focuses on the transient nature of the response,
namely, the response of Equation (1.6) to an impulse, to a step function, or to
initial conditions. Many mechanical systems are excited by loads, which act for
a very brief time. Such situations are usually modeled by introducing a fictitious
function called the unit impulse function, or the Dirac delta function. This delta
function, denoted 𝛿, is defined by the two properties

𝛿(t − a) = 0 t ≠ a

∫
∞

−∞
𝛿(t − a) dt = 1

(1.30)

where a is the instant of time at which the impulse is applied. Strictly speaking, the
quantity 𝛿(t) is not a function; however, it is very useful in quantifying important
physical phenomena of an impulse.
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The response of the system of Figure 1.9 for the underdamped case (with
a = x0 = v0 = 0) can be given by

x(t) =
⎧⎪⎨⎪⎩

0 t < a
1

m𝜔d
e−𝜁𝜔nt sin𝜔dt t ≥ a

⎫⎪⎬⎪⎭ (1.31)

Note from Equation (1.13) that this corresponds to the transient response of
the system to the initial conditions x0 = 0 and v0 = 1/m. Hence, the impulse
response is equivalent to giving a system at rest an initial velocity of (1/m). This
makes the impulse response, x(t), important in discussing the transient response
of more complicated systems. The impulse is also very useful in making vibration
measurements, as described in Chapter 12.

A physical impact applied to a structure can be modeled by using the Dirac delta
function with a magnitude representing the size of the impact. In this case, the
impulse applied to the structure is modeled as having a magnitude F applied over
a short time period Δt so that the effective change in momentum is mv0 – 0 =
F Δt, assuming the structure is initially at rest. This is equivalent to imparting an
initial velocity of v0 = F Δt/m. Thus, for an impulse of magnitude F applied over
time Δt, the response becomes

x(t) =
⎧⎪⎨⎪⎩

0 t < a
FΔt
m𝜔d

e−𝜁𝜔nt sin𝜔dt t ≥ a

⎫⎪⎬⎪⎭ (1.32)

Often design problems are stated in terms of certain specifications based on
the response of the system to step function excitation. The response of the system
in Figure 1.9 to a step function (of magnitude m𝜔2

n for convenience), with initial
conditions both set to zero, is calculated for underdamped systems from

mẍ + cẋ + kx = m𝜔2
n𝜇(t), 𝜇(t) =

{0 t < 0
1 t ≥ 0

(1.33)

to be

x(t) = 1 −
e−𝜁𝜔nt sin(𝜔dt + 𝜙)√

1 − 𝜁2
(1.34)

where

𝜙 = arctan

[√
1 − 𝜁2

𝜁

]
(1.35)

A sketch of the response is given in Figure 1.11, along with the labeling of several
significant specifications for the case m = 1, 𝜔n = 2 and 𝜁 = 0.2.

In some situations, the steady-state response of a structure may be at an accept-
able level, but the transient response may exceed acceptable limits. Hence, one
important measure is the overshoot, labeled O.S. in Figure 1.11 and defined to be
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0

1

tp

Td

ts
t

O.S.

x(t) Figure . Step response of
an SDOF system.

the maximum value of the response minus the steady-state value of the response.
From Equation (1.34) it can be shown that

overshoot = O.S. = xmax(t) − 1 = e−𝜁𝜋∕
√

1−𝜁2 (1.36)

This occurs at the peak time, tp, which can be shown to be

tp = 𝜋

𝜔n
√

1 − 𝜁2
(1.37)

In addition, the period of oscillation, Td, is given by

Td = 2𝜋
𝜔n
√

1 − 𝜁2
= 2tp (1.38)

Another useful quantity, which indicates the behavior of the transient response, is
the settling time, ts. This is the time it takes the response to get within ±5% of the
steady-state response and remain within ±5%. One approximation of ts is given by
Kuo and Golnaraghi (2009: p. 263)

ts =
3.2
𝜔n𝜁

(1.39)

The preceding definitions allow designers and vibration analysts to specify and
classify precisely the nature of the transient response of an underdamped system.
These definitions also give some indication of how to adjust the physical parame-
ters of the system so that the response has a desired shape.

The response of a system to an impulse may be used to determine the response
of an underdamped system to any input F(t) by defining the impulse response
function by

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin𝜔dt (1.40)

Then the solution of

mẍ(t) + cẋ(t) + kx(t) = F(t)
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can be shown to be

x(t) =
t

∫
0

F(𝜏)h(t − 𝜏)d𝜏 = 1
m𝜔d

e−𝜁𝜔nt

t

∫
0

F(𝜏)e𝜁𝜔n𝜏 sin𝜔d(t − 𝜏)d𝜏 (1.41)

for the case of zero initial conditions. This last expression gives an analytical rep-
resentation for the response to any driving force that has an integral.

Example 1.4.3
Consider a spring-mass-damper system with m = 1 kg, c = 2 kg/s and k =
2000 N/m, with an impulsive force applied to it of 10,000 N for 0.01 s. Com-
pute the resulting response.

Solution: A 10,000 N force acting over 0.01 s provides (area under the curve)
a value of FΔt = 10000 × 0.01 = 100 N ⋅ s Using the values given, the equation
of motion is

ẍ(t) + 2ẋ(t) + 2000x(t) = 100𝛿(t)

Thus the natural frequency, damping ratio and damped natural frequency are

𝜔n =
√

2000
1

= 44.721 rad∕s, 𝜁 = 2
2
√

1 × 2000
= 0.022,

𝜔d = 44.721
√

1 − 0.0222 = 44.71 rad∕s

Using Equation (1.32), the response becomes

x(t) = F̂e−𝜁𝜔nt

m𝜔d
sin𝜔dt = 2.237e−0.1t sin(44.71t)

. Transfer Functions and Frequency Methods

The preceding analysis of the response was carried out in the time domain. Current
vibration measurement methodology (Ewins, 2000), as well as much control analy-
sis (Kuo and Golnaraghi, 2009), often takes place in the frequency domain. Hence,
it is worth the effort to reexamine these calculations using frequency domain
methods (a phrase usually associated with linear control theory). The frequency
domain approach arises naturally from mathematics (ordinary differential equa-
tions) via an alternative method of solving differential equations, such as Equa-
tions (1.21) and (1.33), using the Laplace transform (Boyce and DiPrima, 2012;
Chapter 6).

Taking the Laplace transform of Equation (1.33), assuming both initial condi-
tions to be zero, yields

X(s) =
[

1
ms2 + cs + k

]
𝜇(s) (1.42)
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where X(s) denotes the Laplace transform of x(t), and 𝜇(s) is the Laplace trans-
form on the right-hand side of Equation (1.33). If the same procedure is applied to
Equation (1.21), the result is

X(s) =
[

1
ms2 + cs + k

]
F0(s) (1.43)

where F0(s) denotes the Laplace transform of F0 sin𝜔t. Note that

G(s) = X(s)
𝜇(s)

= X(s)
F0(s)

= 1
ms2 + cs + k

(1.44)

Thus, it appears that the quantity G(s) = [1/(ms2 + cs + k)], the ratio of the Laplace
transform of the output (response) to the Laplace transform of the input (applied
force) to the system characterizes the system (structure) under consideration. This
characterization is independent of the input or driving function. This ratio, G(s), is
defined as the transfer function of this system in control analysis (or of this struc-
ture in vibration analysis). The transfer function can be used to provide analysis of
the vibrational properties of the structure, as well as to provide a means of mea-
suring the structure’s dynamic response.

In control theory, the transfer function of a system is defined in terms of an out-
put to input ratio, but the use of a transfer function in structural dynamics and
vibration testing implies certain physical properties, depending on whether posi-
tion, velocity or acceleration is considered as the response (output). It is common,
for instance, to measure the response of a structure by using an accelerometer. The
transfer function resulting is then s2X(s)/U(s), where U(s) is the Laplace transform
of the input and s2X(s) is the Laplace transform of the acceleration. This transfer
function is called the inertance and its reciprocal is referred to as the apparent
mass. Table 1.1 lists the nomenclature of various transfer functions. The physical
basis for these names can be seen from their graphical representation.

The transfer function representation of a structure is very useful in control the-
ory as well as in vibration testing. It also forms the basis of impedance methods
discussed in the next section. The variable s in the Laplace transform is a complex
variable, which can be further denoted by

s = 𝜎 + j𝜔d

where the real numbers 𝜎 and 𝜔d denote the real and imaginary parts of s, respec-
tively (j =

√
−1). Thus, the various transfer functions are also complex-valued.

Table . Various transfer functions.

Response
Measurement

Transfer
Function

Inverse Transfer
Function

Acceleration Inertance Apparent mass
Velocity Mobility Impedance
Displacement Compliance Dynamic stiffness
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ωd

ωn

jωn

–ωn

–ζωn

σ

Figure . Complex s-plane of the poles (roots of the
characteristics of Equation (1.39).

In control theory, the values of s where the denominator of the transfer func-
tion G(s) vanishes are called the poles of the transfer function. A plot of the poles
of the compliance (also called receptance) transfer function for Equation (1.44)
in the complex s-plane is given in Figure 1.12. The points on the semi-circle
occur where the denominator of the transfer function is zero. These values of s
(s = −𝜁𝜔n ± 𝜔dj) are exactly the roots of the characteristic equation for the struc-
ture. The values of the physical parameters m, c and k determine the two quantities
𝜁 and 𝜔n , which in turn determine the position of the poles in Figure 1.12.

Another graphical representation of a transfer function useful in control is the
block diagram illustrated in Figure 1.13a. This diagram is an icon for the definition
of a transfer function. The control terminology for the physical device represented
by the transfer function is the plant, whereas in vibration analysis the plant is usu-
ally referred to as the structure. The block diagram of Figure 1.13b is meant to
imply the formula

X(s)
U(s)

= 1
(ms2 + cs + k)

(1.45)

exactly.
The response of Equation (1.21) to a sinusoidal input (forcing function) moti-

vates a second description of a structure’s transfer function called the frequency
response function (often denoted by FRF). The FRF is defined as the transfer func-
tion evaluated at s = j𝜔, i.e. G(j𝜔). The significance of the FRF follows from Equa-
tion (1.22), namely, that the steady-state response of a system driven sinusoidally
is a sinusoid of the same frequency with different amplitude and phase. In fact,

Input Output U(s) X(s)

(a) (b)

Plant or

Structure ms2 + cs + k
1

Figure . Block diagram representation of an SDOF system.
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substitution of j𝜔 into Equation (1.45) yields exactly Equations (1.23) and (1.24)
from

X
F0

= |G(j𝜔)| =√
x2(𝜔) + y2(𝜔) (1.46)

where |G(j𝜔)| indicates the magnitude of the complex FRF

𝜙 = tan−1 G(j𝜔) = tan−1
[

y(𝜔)
x(𝜔)

]
(1.47)

indicates the phase of the FRF, and

G(j𝜔) = x(𝜔) + y(𝜔)j (1.48)

This mathematically expresses two ways to represent a complex function, as the
sum of its real part (Re G(j𝜔) = x(𝜔)) and its imaginary part (Im (G(j𝜔)) = y(𝜔)),
or by its magnitude (|G(j𝜔)|) and phase (𝜙). In more physical terms, the FRF of
a structure represents the magnitude and phase shift of its steady-state response
under sinusoidal excitation. While Equations (1.23), (1.24), (1.46) and (1.47) verify
this for an SDOF viscously damped structure, it can be shown in general for any
linear time invariant plant (Melsa and Schultz, 1969: p. 187)).

It should also be noted that the FRF of a linear system can be obtained from the
transfer function of the system and vice versa. Hence, the FRF uniquely determines
the time response of the structure to any known input.

Graphical representations of the FRF form an extensive part of control analysis
and also form the backbone of vibration measurement analysis. Next, three sets
of FRF plots that are useful in testing vibrating structures are examined. The first
set of plots consists simply of plotting the imaginary part of the FRF versus the
driving frequency and the real part of the FRF versus the driving frequency. These
are shown for the damped SDOF system in Figure 1.14 (the compliance FRF for
𝜁 = 0.01 and 𝜔n = 20 rad/s).

The second representation consists of a single plot of the imaginary part of the
FRF versus the real part of the FRF. This type of plot is called a Nyquist plot (also
called an Argand plane plot) and is used for measuring the natural frequency and
damping in testing methods and for stability analysis in control system design. The

Im G( jω)

ω

ω

Re G( jω)

20 Hz 20 Hz

Figure . Plots of the real part and the imaginary part of the FRF.
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Im G( jω)

Re G( jω)1/2c 1/c

Figure . Nyquist plot for Equation 1.44.

Nyquist plot of the mobility FRF of a structure modeled by Equation (1.44) is given
in Figure 1.15.

The last plots considered for representing the FRF are called Bode plots and con-
sist of a plot of the magnitude of the FRF versus the driving frequency and the
phase of the FRF versus the driving frequency (a complex number requires two
real numbers to describe it completely). Bode plots have long been used in control
system design and analysis as well as for determining the plant transfer function
of a system. More recently, Bode plots have been used in analyzing vibration test
results and in determining the physical parameters of the structure.

In order to represent the complete Bode plots in a reasonable space, log10 scales
are often used to plot |G(j𝜔)|. This has given rise to the use of the decibel and
decades in discussing the magnitude response in the frequency domain. The mag-
nitude and phase plots (for the compliance transfer function) for the system in
Equation (1.21) are shown in Figures 1.16 and 1.17 for different values of 𝜁 . Note
the phase change at resonance (90◦), as this is important in interpreting measure-
ment data.

Note that Figures 1.10 and 1.17 show the same physical phenomenon and are
both plots of the compliance transfer function. However, the magnitude in Fig-
ure 1.10 is dimensionless versus dimensionless frequency, while Figure 1.17 is usu-
ally the magnitude in decibels versus frequency on a semi-log scale.

Example 1.5.1
Solve the following system using the Laplace Transform method and using a
Table of Laplace Transform pairs (from the Internet)

mẍ(t) + kx(t) = F0 cos𝜔(t), x(0) = x0, ẋ(0) = v0

0°

–90°

Semilog scale

–180°

ϕ

1 10

ζ = 1.0

ζ = 0.05
ω

0.4

0.2

100 1000

Figure . Bode phase plot for Equation (1.39) showing resonance at –90◦.
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10010

(1/k)

.1 1000

ζ = 0.707

ζ = 0.05

|G(jω)|

ω

1.0

0.2

0.1

Slope = –2/m

Figure . Bode magnitude plot for Equation (1.39) showing resonance and values of mass and
stiffness.

Solution: First divide through by the mass to get

ẍ(t) + 𝜔2
nx(t) = f0 cos𝜔t, x(0) = x0, ẋ(0) = v0

Here f0 = F0/m. Taking the Laplace Transform (see the Table of Laplace Trans-
forms: from the Internet) of the equation of motion considering the initial con-
ditions yields

s2X(s) − sx0 − v0 + 𝜔2
nX(s) =

sf0
s2 + 𝜔2

⇒
(
s2 + 𝜔2

n
)
X(s) = sx0 + v0 +

sf0
s2 + 𝜔2

Solving this for X(s) yields

X(s) =
sx0 + v0
s2 + 𝜔2

n
+

sf0(
s2 + 𝜔2

n
)

(s2 + 𝜔2)

= (x0) s
s2 + 𝜔2

n
+
( v0
𝜔n

)
𝜔n

s2 + 𝜔2
n
+

sf0(
s2 + 𝜔2

n
)

(s2 + 𝜔2)

Taking the Inverse Laplace Transform using an online table of each term yields

x(t) = x0 cos𝜔nt +
v0
𝜔n

sin𝜔nt +
f0

𝜔2
n − 𝜔2 (cos𝜔t − cos𝜔nt)

=
v0
𝜔n

sin𝜔nt +
(

x0 −
f0

𝜔2
n − 𝜔2

)
cos𝜔nt +

f0
𝜔2

n − 𝜔2 cos𝜔t
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In comparing this with the solution given in Equation (1.25) for zero damping,
note that Equation (1.25) is the solution for the case where the driving force is
a sine function instead of a cosine as solved here.

. Complex Representation and Impedance

Table 1.1 formally defines impedance as the ratio of a sinusoidal driving force, F,
acting on the system to the resulting velocity, v, of the system. Impedance is usually
denoted by the symbol Z and is a measure of a structure’s resistance to motion. In
working with impedance methods it is common to use the complex exponential
notation to represent harmonic quantities. Using the exponential notation, the
sinusoidal force in Equation (1.21) can be written as

F(t) = F0ej𝜔t (1.49)

Here,𝜔 is the driving frequency as before. The impedance approach offers an alter-
native way to examine systems vibrating harmonically based on using complex
functions to represent the response.

A useful way to visualize harmonic motion is to think of the response x(t) as a
vector rotating in the complex plane, as illustrated in Figure 1.18. Here the vec-
tor has magnitude A and rotates an angle 𝜔t in the complex plane. From Euler’s
formula for the complex exponential function

x(t) = Aej𝜔t = A cos𝜔t + Aj sin𝜔t (1.50)

which agrees with representation in Figure 1.18. Differentiation of the complex
exponential yields simply

d
dt

(Aej𝜔t) = j𝜔Aej𝜔t = j𝜔x(t)

d2

dt2 (Aej𝜔t) = j2𝜔2Aej𝜔t = −𝜔2x(t)
(1.51)

Re

Im

ω t

x(t) = Re(Ae

A

jω t
)

= Acosωt

Im(Aejωt)
= Asinωt

x(t)

Figure . Graphic illustration of Euler’s
formula of the complex exponential.
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Thus, each differentiation of the complex exponential results in simply multiplying
by j𝜔, similar to multiplying by s in the Laplace domain.

From the Figure 1.18, the physical displacement is interpreted from the complex
exponential as just the real part of Equation (1.50). Thus the velocity becomes the
real part of the derivative of the complex exponential and the acceleration is the
real part of the derivative of that or

x(t) = Re(Aej𝜔t) = A cos(𝜔t)
ẋ(t) = Re(j𝜔Aej𝜔t) = −𝜔A sin(𝜔t)
ẍ(t) = Re(j2𝜔2Aej𝜔t) = −𝜔2A cos(𝜔t)

(1.52)

If the displacement is thought to be a sine function, then the physical motion vari-
ables become the imaginary parts of the complex exponential. Using the complex
notation equation for the forced response of an SDOF system becomes

mẍ(t) + cẋ(t) + kx(t) = F0ejwt (1.53)

Assuming the resulting displacement is of the form

x(t) = A sin(𝜔t − 𝜃)

its complex form is the corresponding velocity as

v(t) = Aj𝜔ej(𝜔t+𝜃) (1.54)

Here 𝜔 and 𝜃 are the driving frequency and phase shift between the applied force
and the resulting response respectively. Substituting the complex form of x(t) into
Equation (1.48) yields

[−𝜔2m + j𝜔c + k]Aej𝜔−j𝜃 = F(t) (1.55)

Solving for the complex value A yields

A =
F0ej𝜃

[−𝜔2m + j𝜔c + k]
(1.56)

which has magnitude and phase given by

|A| = F√
(k − 𝜔2m)2 + (𝜔c)2

and 𝜃 = tan 𝜔c
k − 𝜔2m

(1.57)

These values are of course the same as those derived in the previous section in
Equations (1.23 and 1.24).

Examination of the force/velocity expressions for each element reveals the
impedance of each, and these are given in Table 1.2.

Table . Impedance values for mass, damping and stiffness.

Mass Z = j𝜔m
Damping Z = c
Stiffness Z = −jk∕𝜔
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Example 1.6.1
Compute the mechanical impedance of the spring-mass-damper system of
Figure 1.9.

Solution: Dividing Equation (1.55) by (1.54) and simplifying yields that directly
the mechanical impedance of the spring-mass-damper system becomes

Z = F
v
=

[k − 𝜔2m + j𝜔c]Aej𝜔t−j𝜃

Aj𝜔ej𝜔t−j𝜃 = 1
j𝜔

(k − 𝜔2m + j𝜔c)

= 𝜔jm + c − k
j𝜔

(1.58)

Comparing this expression to the terms in Table 1.2 reveals that the mechan-
ical impedance of the system is just the sum of the impedance expressions for
each element. The use of the impedance method is essentially the existence of
following rules developed in electrical engineering for combining deferent cir-
cuit elements by adding their impedances (e.g. series and parallel combinations)
and making the analogy to electrical components of capacitance (reciprocal of
stiffness), inductance (mass) and resistance (damping). The units of mechanical
impedance are kg/s, the same as the viscous damping coefficient.

. Measurement and Testing

One can also use the quantities defined in the previous sections to measure the
physical properties of a structure. As mentioned before, resonance can be used to
determine a system’s natural frequency. Methods based on resonance are referred
to as resonance testing (or modal analysis techniques) (Bishop and Gladwell, 1963)
and are briefly introduced here and discussed in more detail in Chapter 8.

As mentioned earlier, the mass and stiffness of a structure can often be deter-
mined by making simple static measurements. However, damping rates require
a dynamic measurement and hence are more difficult to determine. For under-
damped systems one approach is to realize, from Figure 1.6, that the decay enve-
lope is the function e−𝜁𝜔nt . The points on the envelope illustrated in Figure 1.19

t

e–at

x(t)Figure . Free decay measurement
method.
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can be used to curve-fit the function e−at, where a is the constant determined by
the curve fit. The relation a = 𝜁𝜔n can next be used to calculate 𝜁 and hence the
damping rate c (assuming that m and k or 𝜔n are known).

A second approach is to use the concept of logarithmic decrement, denoted by
𝛿 (delta) and defined by

𝛿 = ln x(t)
x(t + Td)

(1.59)

where Td is the period of oscillation. Using Equation (1.13) in the form

x(t) = Ae−𝜁𝜔nt sin(𝜔dt + 𝜙) (1.60)

the value for 𝛿 becomes

𝛿 = ln
[ e−𝜁𝜔nt sin(𝜔dt + 𝜙)

e−𝜁𝜔n(t+Td) sin(𝜔dt + 𝜔dTd + 𝜙)

]
= ln e𝜁𝜔nTd = 𝜁𝜔nTd (1.61)

where the sine functions cancel because 𝜔dTd is a one period shift by definition.
Further evaluating 𝛿 yields

𝛿 = 𝜁𝜔nTd = 2𝜋𝜁√
1 − 𝜁2

(1.62)

Equation (1.62) can be manipulated to yield the damping ratio in terms of the
decrement, i.e.

𝜁 = 𝛿√
4𝜋 + 𝛿2

(1.63)

Hence, if the decrement is measured, Equation (1.63) yields the damping ratio.
The various plots of the previous section can also be used to measure 𝜔n, 𝜁 , m, c

and k. For instance, the Bode diagram of Figure 1.17 can be used to determine the
natural frequency, stiffness and damping ratio. The stiffness is determined from
the intercept of the FRF and the magnitude axis, since the value of the magnitude
of the FRF for small 𝜔 is log(1/k). This can be seen by examining the function
log10|G(j𝜔)| for small 𝜔. Note that

log |G(j𝜔)| = log 1
k
− 1

2
log

[(
1 − 𝜔2

𝜔2
n

)2
+
(

2𝜁𝜔
𝜔n

)2
]
= log

(1
k

)
(1.64)

for very small values of 𝜔. Also note that |G(j𝜔)| evaluated at 𝜔n yields

k|G(j𝜔n)| = 1
2𝜁

(1.65)

which provides a measure of the damping ratio from the magnitude plot of
the FRF.

Note that Equations (1.65) and (1.26) appear to contradict each other, since
1

2𝜁
√

1 − 𝜁2
= k max |G(j𝜔)| = Mp ≠ k|G(j𝜔n)| = 1

2𝜁

except in the case of very small 𝜁 (i.e. the difference between Mp and |G(j𝜔n)|
goes to zero as 𝜁 goes to zero). This indicates a subtle difference between using the
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damping ratio obtained by using resonance as the value of 𝜔, where |G(j𝜔n)| is a
maximum, and using the point, where 𝜔 = 𝜔n, the undamped natural frequency.
This point is also illustrated by noting that the damped natural frequency, Equa-
tion (1.8), is 𝜔d = 𝜔n

√
1 − 𝜁2 and 𝜔p, the frequency at which |G(j𝜔n)| is maxi-

mum, is

𝜔p = 𝜔n
√

1 − 2𝜁2 (1.66)

Also note that Equation (1.66) is valid only if 0 < 𝜁 < 0.707.
Finally, the mass can be related to the slope of the magnitude plot for the iner-

tance transfer function, denoted by GI(s), by noting that

GI(s) = s2

(ms2 + cs + k)
(1.67)

and for large 𝜔 (i.e. 𝜔n ≪𝜔), the value of |GI(j𝜔)| is|GI(j𝜔)| ≈ (1∕m) (1.68)

Plots of these values are referred to as straight-line approximations to the actual
magnitude plot (Bode, 1945).

The preceding formulas relating the physical properties of the structure to the
magnitude Bode diagrams suggest an experimental way to determine a structure’s
parameters: namely, if the structure can be driven by a sinusoid of varying fre-
quency and if the magnitude and phase (needed to locate resonance) of the result-
ing response are measured, then the Bode plots and the preceding formulas can be
used to obtain the desired physical parameters. This process is referred to as plant
identification in the controls literature and can be extended to systems with more
degrees of freedom (see Melsa and Schultz (1969), for a more complete account).

There are several other formulas for measuring the damping ratio and natu-
ral frequency from the results of such experiments, sine sweeps. For instance, if
the Nyquist plot of the mobility transfer function is used, a circle of diameter 1/c
results (Figure 1.15). Another approach is to plot the magnitude of the FRF on
a linear scale near the region of resonance (Figure 1.20). If the damping is small
enough so that the peak at resonance is sharp, the damping ratio can be deter-
mined by measuring the frequencies at 0.707 at the maximum value (also called

x

.707x

x(ω)

ω1 ω2

ω

Figure . Quadrature peak
picking method.
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the 3-dB down point or half-power points), denoted by 𝜔1 and 𝜔2, respectively.
Then, using the formula (Ewins, 2000)

𝜁 = 1
2

[
𝜔2 − 𝜔1

𝜔d

]
(1.69)

to compute the damping ratio. This method is referred to as quadrature peak pick-
ing and is illustrated in Figure 1.20.

. Stability

In all the preceding analysis, the physical parameters m, c and k are, of course, pos-
itive quantities. There are physical situations, however, in which equations of the
form of Equations (1.1) and (1.6) result but have one or more negative coefficients.
Such systems are not well behaved and require some additional analysis.

Recalling that the solution to Equation (1.1) is of the form A sin(𝜔t + 𝜙), where
A is a constant, it is easy to see that the response, in this case x(t), is bounded. That
is to say that|x(t)| ≤ A (1.70)

for all t where A is some finite constant and |x(t)| denotes the absolute value of
x(t). In this case, the system is well behaved or stable (called marginally stable in
the control’s literature). In addition, note that the roots (also called characteristic
values or eigenvalues) of

𝜆2m + k = 0

are purely complex numbers±j𝜔n as long as m and k are positive (or have the same
sign). If k happens to be negative and m is positive, the solution becomes

x(t) = A sinh𝜔nt + B cosh𝜔nt (1.71)

which increases without bound as t does. Such solutions are called divergent or
unstable.

If the solution of the damped system of Equation (1.6) with positive coefficients
is examined, it is clear that x(t) approaches zero as t becomes large, because of the
exponential term. Such systems are considered to be asymptotically stable (called
stable in the controls literature). Again, if one or two of the coefficients are neg-
ative, the motion grows without bound and becomes unstable as before. In this
case, however, the motion may become unstable in one of two ways. Similar to
overdamping and underdamping, the motion may grow without bound and not
oscillate, or it may grow without bound and oscillate. The first case is referred to
as divergent instability and the second case as flutter instability; together they fall
under the topic of self-excited vibrations.

Apparently, the sign of the coefficient determines the stability behavior of the
system. This concept is pursued in Chapter 4, where these stability concepts are
formally defined. Figures 1.21 to 1.24 illustrate each of these concepts.

These stability definitions can also be stated in terms of the roots of the char-
acteristic Equation (1.8) or in terms of the poles of the transfer function of the
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Figure . Response of a stable system.
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Figure . Response of an asymptotically stable
system.
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Figure . Response of a system with a
divergent instability.
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Figure . Response of a system with flutter
instability.

system. In fact, referring to Figure 1.12, the system is stable if the poles of the
structure lie along the imaginary axis (called the j𝜔 axis), unstable if one or more
poles are in the right half-plane, and asymptotically stable if all of the poles lie in
the left half-plane. Flutter occurs when the poles are in the right half-plane and
not on the real axis (complex conjugate pairs of roots with positive real part) and
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divergence occurs when the poles are in the right-half plane along the real axis. In
the simple SDOF case considered here, the pole positions are entirely determined
by the signs of m, c and k.

The preceding definitions and ideas about stability are stated for the free
response of the system. These concepts of a well-behaved response can also be
applied to the forced motion of a vibrating system. The stability of the forced
response of a system can be defined by considering the nature of the applied force
or input. The system is said to be bounded-input, bounded-output stable (or, sim-
ply, BIBO stable) if for any bounded input (driving force) the output (response) is
bounded for any arbitrary set of initial conditions. Such systems are manageable
at resonance.

It can be seen immediately that Equation (1.21) with c = 0, the undamped sys-
tem, is not BIBO stable, since for f (t) = sin(𝜔nt), the response x(t) goes to infinity
(at resonance), whereas f(t) is certainly bounded. However, the response of Equa-
tion (1.21) with c > 0 is bounded whenever f(t) is. In fact, the maximum value
of x(t) at resonance Mp is illustrated in Figure 1.10. Thus, the system of Equation
(1.21) with damping is said to be BIBO stable.

The fact that the response of an undamped structure is bounded when f(t) is
an impulse or step function suggests another, weaker, definition for the stability
of the forced response. A system is said to be bounded, or Lagrange stable, with
respect to a given input if the response is bounded for any set of initial conditions.
Structures described by Equation (1.1) are Lagrange stable with respect to many
inputs. This definition is useful when f(t) is known completely or known to fall in
some specified class of functions.

Stability can also be thought of in terms of whether or not the energy of the sys-
tem is increasing (unstable), constant (stable) or decreasing (asymptotically sta-
ble), rather than in terms of the explicit response. Lyapunov stability, defined in
Chapter 4, extends this idea. Another important view of stability is based on how
sensitive a motion is to small perturbations in the system’s parameters (m, c and
k) and/or small perturbations in initial conditions. Unfortunately, there does not
appear to be a universal definition of stability that fits all situations. The concept of
stability becomes further complicated for nonlinear systems. The definitions and
concepts mentioned here are extended and clarified in Chapter 4.

Example 1.8.1
Most structures are asymptotically stable (m, c, k are all positive) or at least
stable (m, k positive c = 0). However, if other forces are present, such as flow
through a pipe or over an airfoil, stability can be lost as the effective coefficients
in the equation of motion could become negative. In addition, active control
systems constructed to improve performance also add forces that can poten-
tially destabilize a structure or machine. Discuss the stability properties of the
following equation of motion

J 𝜃̈ + (c − fd)𝜃̇ + k𝜃 = 0

Here, 𝜃 is the angle of rotation of the flap, J is the moment of inertia of the
flap (assumed positive), k is the rotational stiffness of the device plus a control
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force and assumed positive, c is the internal damping of the device (positive)
and fd is the aerodynamic force applied to the flap (also positive). This is a crude
representation of a control surface (flap or tab).

Solution: As long as k and J are positive, stability is controlled by the sign of the
equivalent damping term, c – fd. If c = fd, then the system is stable, having the
response of the form illustrated in Figure 1.21. If c – fd > 0, then the solution is
that of Equation (1.13) and exponential decay and the system is asymptotically
stable, as illustrated in Figure 1.22. If, on the other hand, aerodynamic force
overcomes the actuation force and internal damping so that c – fd < 0, then the
exponent in Equation (1.13) becomes positive and flutter instability occurs, as
illustrated in Figure 1.23.

. Design and Control of Vibrations

One can use the quantities defined in the previous sections to design structures
and machines to have a desired transient and steady state response to some extent.
For instance, it is a simple matter to choose m, c and k so that the overshoot is a
specified value. However, if one needs to specify the overshoot, the settling time
and the peak time, then there may not be a choice of m, c and k that will satisfy
all three criteria. Hence, the response cannot always be completely shaped, as the
formulas in Section 1.4 may seem to indicate.

Another consideration in designing structures is that each of the physical
parameters m, c and k may already have design constraints that have to be satis-
fied. For instance, the material the structure is made of may fix the damping rate,
c. Then, only the parameters m and k can be adjusted. In addition, the mass may
have to be within 10% of a specified value, for instance, which further restricts the
range of values of overshoot and settling time. The stiffness is often designed based
on the static deflection limitation and strength.

For example, consider the system of Figure 1.11 and assume it is desired to
choose values of m, c and k so that 𝜁 and 𝜔n specify a response with a settling
time ts = 3.2 units and a time to peak, tp, of 1 unit. Then Equations (1.37) and
(1.39) imply that 𝜔n = 1/𝜁 and 𝜁 = 1∕

√
1 + 𝜋2. This, unfortunately, also specifies

the overshoot, since

O.S. = exp

(
−𝜁𝜋√

(1 + 𝜁2)

)

Thus, all three performance criteria cannot be satisfied. This leads the designer
to have to make compromises, to reconfigure the structure or to add additional
components.

Hence, in order to meet vibration criteria such as avoiding resonance, it may be
necessary in many instances to alter the structure by adding vibration absorbers
or isolators (Machinante, 1984; Rivin, 2003). Another possibility is to use active
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vibration control and feedback methods. Both of these approaches are discussed
in Chapters 6 and 7.

The choice of the physical parameters m, c and k determines the shape of the
response of the system. The choice of these parameters can be considered as the
design of the structure. Passive control can also be considered as a redesign pro-
cess of changing these parameters on an already existing structure to produce a
more desirable response. For instance, some mass could be added to a given struc-
ture to lower its natural frequency. Although passive control or redesign is gen-
erally the most efficient way to control or shape the response of a structure, the
constraints on m, c and k are often such that the desired response cannot be
obtained. Then the only alternative, short of starting over again, is to try active
control.

There are many different types of active control methods, and only a few will be
considered to give the reader a feel for the connection between the vibration and
control disciplines. Again, the comments made in this text on control should not
be considered as a substitute for studying standard control or linear systems texts.
Output feedback control is briefly introduced here and discussed in more detail
in Chapter 7.

First, a clarification of the difference between active and passive control is in
order. Basically, an active control system uses some external adjustable or active
(e.g. electronic) device, called an actuator, to provide a means of shaping or con-
trolling the response. Passive control, on the other hand, depends only on a fixed
(passive) change in the physical parameters of the structure. Passive control can
also involve adding external devices to the structure; however, such devices are not
powered. Active control often depends on current measurements of the response
of the system and passive control does not. Active control requires an external
energy source and passive control typically does not.

Feedback control consists of measuring the output, or response, of the struc-
ture and using that measurement to determine the force to apply to the struc-
ture to obtain a desired response. The device used to measure the response
(sensor), the device used to apply the force (actuator) and any electronics required
to transfer the sensor signal into an actuator command (control law) make up the
control hardware. This is illustrated in Figure 1.25 by using a block diagram. Sys-
tems with feedback are referred to as closed-loop systems, while control systems
without feedback are called open-loop systems, as illustrated in Figures 1.25 and

Actuator

–

+
F(s)

Control Law

H(s)

Structure

G(s)
X(s)

Sensor

K

Figure . Block diagram of closed-loop system.
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F(s)
K Structure

G(s)
X(s)

Figure . Block diagram
of an open-loop system.

1.26, respectively. A major difference between open-loop and closed-loop con-
trol is simply that closed-loop control depends on information about the system’s
response and open-loop control does not.

The rule that defines how the measurement from the sensor is used to com-
mand the actuator to effect the system is called the control law, denoted H(s) in
Figure 1.25. Much of control theory focuses on clever ways to choose the control
law to achieve a desired response.

A simple open-loop control law is to multiply (or amplify) the response of the
system by a constant. This is referred to as constant gain control. The magnitude
of the FRF for the system in Figure 1.25 is multiplied by the constant K, called the
gain. The frequency domain equivalent of Figure 1.25 is

X(s)
F(s)

= KG(s) = K
(ms2 + cs + k)

(1.72)

where the plant is taken to be an SDOF model of structure. In the time domain,
this becomes

mẍ(t) + cẋ(t) + kx(t) = Kf (t) (1.73)

The effect of this open-loop control is simply to multiply the steady-state response
by K and to increase the value of the peak response, Mp.

On the other hand, the closed-loop control, illustrated in Figure 1.25, has the
equivalent frequency domain representation given by

X(s)
F(s)

= KG(s)
(1 + KG(s)H(s))

(1.74)

If the feedback control law is taken to be one that measures both the velocity
and position, multiplies them by some constant gains g1 and g2, respectively, and
adds the result, the control law H(s) is given by

H(s) = g1s + g2 (1.75)

As the velocity and position are the state variables for this system, this control law
is called full state feedback, or PD control (for position and derivative). In this case,
Equation (1.74) becomes

X(s)
F(s)

= K
ms2 + (kg1 + c)s + (kg2 + k)

(1.76)

The time domain equivalent of this equation is (obtained by using the inverse
Laplace Transform) is

mẍ(t) + (c + kg1)ẋ(t) + (k + kg2)x(t) = Kf (t) (1.77)

By comparing Equations (1.73) and (1.77), the versatility of closed-loop control
versus open-loop, or passive, control is evident. In many cases the choice of values
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of K, g1 and g2 can be made electronically. By using a closed-loop control, the
designer has the choice of three more parameters to adjust than are available in
the passive case to meet the desired specifications.

On the negative side, closed-loop control can cause some difficulties. If not care-
fully designed, a feedback control system can cause an otherwise stable structure
to have an unstable response. For instance, suppose the goal of the control law
is to reduce the stiffness of the structure so that the natural frequency is lower.
From examining Equation (1.77), this would require that g2 be a negative number.
Then suppose that the value of k was over-estimated and g2 calculated accordingly.
This could result in the possibility that the coefficient of x(t) becomes negative,
causing instability. That is, the response of Equation (1.77) would be unstable if
(k + Kg2) < 0. This would amount to positive feedback and is not likely to arise by
design on purpose, but can happen if the original parameters are not well known.
On physical grounds, instability is possible because the control system is adding
energy to the structure. One of the major concerns in designing high-performance
control systems is to maintain stability. This introduces another constraint on the
choice of the control gains and is discussed in more detail in Chapter 7. Of course,
closed-loop control is also expensive because of the sensor, actuator and electron-
ics required to make a closed-loop system. On the other hand, closed-loop con-
trol can always result in better performance provided the appropriate hardware is
available.

Feedback control uses the measured response of the system to modify and
add back into the input to provide an improved response. Another approach to
improving the response consists of producing a second input to the system that
effectively cancels the disturbance to the system. This approach, called feedfor-
ward control, uses knowledge of the response of a system at a point to design a
control force that when subtracted from the uncontrolled response yields a new
response with desired properties, usually a response of zero. Feedforward control
is most commonly used for high frequency applications and in acoustics (for noise
cancellation) and is not considered here. An excellent treatment of feedforward
controllers can be found in Fuller et al. (1996).

Example 1.9.1
Consider the step response of an underdamped system (Figure 1.11). Calculate
the value of the damping ratio 𝜁 in terms of the performance measures tp and
ts. Show that it is not possible to specify all three performance measures O.S.,
tp and ts in the design of a passive system.

Solution: Rearranging the definition of settling time given in Equation (1.37)
yields

𝜔n = 3.2
ts𝜁

The time to peak is given in Equation (1.39) for underdamped systems as

tp = 𝜋

𝜔n
√

1 − 𝜁2
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Squaring this last expression and solving for 𝜁 yields

𝜁 =
tp√

t2
p + a2t2

s

, where a =
(

𝜋

3.2

)
Thus, specifying tp and ts completely determines both 𝜁 and 𝜔n. Since O.S. is
only a function of 𝜁 , its value is also determined once tp and ts are specified.
Recall that

𝜁 = c
2
√

km
, and 𝜔n =

√
k
m

Thus, no passive adjustment of m, c and/or k can arbitrarily assign all three per-
formance values of O.S., tp and ts.

. Nonlinear Vibrations

The force versus displacement plot for a spring of Figure 1.3 curves off after the
deflections and/or forces become large enough. Before enough force is applied to
permanently deform or break the spring, the force deflection curve becomes non-
linear and curves away from a straight line, as indicated in Figure 1.27. So rather
than the linear spring relationship fk = kx, a model such as fk = 𝛼x – 𝛽x3, called a
softening spring, might better fit the curve. This nonlinear spring behavior greatly
changes the physical nature of the vibratory response and complicates the math-
ematical description and analysis to the point that numerical integration usually
has to be employed to obtain a solution. Stability analysis of nonlinear systems also
becomes more complicated.

In Figure 1.27, the force-displacement curves for three springs are shown.
Notice that the linear range for the two nonlinear springs is a good approxima-
tion until about 1.8 units of displacement or 2000 units of force. If the spring is
to be used beyond that range, then the linear vibration analysis of the preceding
sections no longer applies.

5000

3750

2500

1250

–1250
420–2–4

–2500

–3750

–5000 x

Figure . Force (vertical
axis) deflection (horizontal
axis) curves for three different
springs in dimensionless
terms, indicating their linear
range. The curve g(x) = kx is
a linear spring (short dashed
line), the curve f (x) = kx −
𝛽x3 is called a softening
spring (solid line) and the
curve h(x) = kx + 𝛽x3 is
called a hardening spring
(long dashed line), for the
case k = 1000 and 𝛽 = 10.
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Consider then the equation of motion of a system with a nonlinear spring of the
form

mẍ(t) + 𝛼x(t) − 𝛽x3(t) = 0 (1.78)

which is subject to two initial conditions. In the linear system, there was only one
equilibrium point to consider, v(t) = x(t) = 0. As will be shown in the following,
the nonlinear system of Equation (1.78) has more than one equilibrium position.
The equilibrium point of a system, or set of governing equations, may be defined
best by first placing the equation of motion into state space form.

A general SDOF system may be written as

ẍ(t) + f (x(t), ẋ(t)) = 0 (1.79)

where the function f can take on any form, linear or nonlinear. For example, for
a linear spring-mass-damper system, the function f is just f (x, ẋ) = 2𝜁𝜔nẋ(t) +
𝜔2

nx(t), which is a linear function of the state variables of position and velocity.
For a nonlinear system, the function f will be some nonlinear function of the state
variables. For instance, for the nonlinear spring of Equation (1.78), the function is

f (x, ẋ) = 𝛼x − 𝛽x3

The state space model of Equation (1.79) is written by defining the two state
variables the position: x1 = x(t), and the velocity: x2 = ẋ(t). Then Equation (1.79)
can be written as the first-order pair

ẋ1(t) = x2(t)
ẋ2(t) = −f (x1, x2)

(1.80)

This state space form of the equation of motion is used for numerical integration,
in control analysis and for formally defining an equilibrium position. Define the
state vector, x, and a nonlinear vector function F, as

x(t) =
[ x1(t)

x2(t)

]
, and F =

[ x2(t)
−f (x1, x2)

]
(1.81)

Then Equation (1.80) may be written in the simple form of a vector equation

ẋ = F(x) (1.82)

An equilibrium point of this system, denoted xe, is defined to be any value of the
vector x for which F(x) is identically zero (called zero phase velocity). Thus the
equilibrium point is any vector of constants, xe, that satisfies the relations

F(xe) = 0 (1.83)

Placing the linear SDOF system into state space form then yields

ẋ =
[ x2
−2𝜁𝜔nx2 − 𝜔2

nx1

]
(1.84)

The equilibrium of a linear system is thus the solution of the vector equality[ x2
−2𝜁𝜔nx2 − 𝜔2

nx1

]
=
[0

0

]
(1.85)
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which has the single solution: x1 = x2 = 0. Thus, for any linear system, the equi-
librium point is a single point consisting of the origin. On the other hand, the
equilibrium condition of the soft spring system of Equation (1.78) requires that

x2 = 0
−𝛼x1 + 𝛽x3

1 = 0
(1.86)

Solving for x1 and x2, yields the three equilibrium points

xe =
[0

0

]
,

⎡⎢⎢⎣
√

𝛼

𝛽

0

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
−
√

𝛼

𝛽

0

⎤⎥⎥⎦ (1.87)

In principle, the soft spring system of Equation (1.78) could oscillate around any of
these equilibrium points and which one will depend on the initial conditions (and
the magnitude of any applied forcing function). Each of these equilibrium points
may also have a different stability property.

Note that placing an nth order, ordinary differential equation into n first-order,
ordinary differential equations can always be done (Boyce and DiPrima, 2012).

This existence of multiple equilibrium points also complicates the notion of
stability introduced in Section 1.7. In particular, solutions near each equilibrium
point could potentially have different stability behavior. Since the initial condi-
tions may determine which equilibrium the solution centers around, the behavior
of a nonlinear system will depend on the initial conditions. In contrast, for a lin-
ear system with fixed parameters, the solution form is the same regardless of the
initial conditions. This represents another important difference to consider when
working with nonlinear components.

Example 1.10.1
Sliding or Coulomb friction applied to a spring-mass system results in an equa-
tion of motion of the form

mẍ(t) + 𝜇mg sgn(ẋ) + kx(t) = 0

where m and k are the mass and stiffness values, 𝜇 is the coefficient of sliding
friction and the function sgn denotes the signum function which is zero when
the velocity is zero and is 1 the rest of the time, having the same sign of the
velocity. This force reflects the fact that dry friction is always opposite to the
direction of motion. Discuss the equilibrium positions of this nonlinear system.

Solution: First put the equation of motion into state space form resulting in

ẋ =
[ x(t)

ẋ(t)

]
= d

dt

[ x1
x2

]
=
[ x2
−𝜇sgn(x2) − kx1

]
The equilibrium is thus defined as[ x2

−𝜇sgn(x2) − kx1

]
=
[0

0

]
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This requires x2 = 0 and −𝜇 sgn (x2) − kx1 = 0. This last expression is a static
condition, which is also satisfied for any value of x1 that satisfies

−
𝜇smg

k
< x1 <

𝜇smg
k

Thus the equilibrium is not a series of points but rather a region of values. Basi-
cally the solution can only move out of this region if the spring force is large
enough to overcome static friction. Hence, the response will end up in this equi-
librium position depending on the initial condition, as typical of a nonlinear
system.

. Computing and Simulation in MATLABTM

Modern computer codes such as MatlabTM make the visualization and compu-
tation of vibration problems available without much programming effort. Such
codes can help enhance understanding through plotting responses, can help find
solutions to complex problems lacking closed form solutions through numerical
integration and can often help with symbolic computations. Plotting certain para-
metric relations or plotting solutions can often aid in visualizing the nature of
relationships or the effect of parameter changes on the response. Most of the plots
used in this text are constructed from simple Matlab commands, as the follow-
ing examples illustrate. If you are familiar with Matlab, you may wish to skip this
section.

Matlab is a high-level code, with many built-in commands for numerical inte-
gration (simulation), control design, performing matrix computations, symbolic
manipulation, etc. Matlab has two areas to enter information. The first is the
command window, which is an active area where the entered command is com-
piled as it is entered. Using the command window is somewhat like a calculator.
The second area is called an m-file, which is a series of commands that are saved
then called from the command window to execute. All of the plots in the figures
in this chapter can be reproduced using these simple commands.

Example 1.11.1
Plot the free response of the underdamped system to initial conditions x0 = 0.01
m, v0 = 0 for values of m = 100 kg, c = 25 kg/s and k = 1000 N/m, using Matlab
and Equation (1.13).

Solution: To enter numbers in the command window, just type a symbol and
use an equal sign after the blinking cursor. The following entries in the command
window will produce the plot of Figure 1.28. Note that the prompt symbol “≫”
is provided by Matlab and the information following it is code typed in by the
user. The symbol % is used to indicate comments so that anything following this
symbol is ignored by the code and is included to help explain the situation. A
semicolon typed after a command suppresses the command from displaying the
output. Matlab uses matrices and vectors so that numbers can be entered and
computed in arrays. Thus, there are two types of multiplication. The notation
a*b is a vector operation demanding that the number of rows of a be equal to
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Figure . The response of an underdamped system (m = 100 kg, c = 25 kg∕s and
k = 1000 N∕m) to the initial conditions x0 = 0.01 m, v0 = 0 plotted using MATLAB.

the number of columns of b. The product a*b, on the other hand, multiplies
each element of a times the corresponding element in b.

>> clear % used to make sure no previous values are stored

>> %assign the initial conditions, mass, damping and stiffness

>> x0=0.01;v0=0.0;m=100;c=25;k=1000;
>> %compute omega and zeta, display zeta to check if under-

damped

>> wn=sqrt(k/m);z=c/(2∗sqrt(k∗m))

z =

0.0395

>> %compute the damped natural frequency

>> wd=wn*sqrt(1-zˆ2);
>> t=(0:0.01:15*(2*pi/wn));%set the values of time from 0 in

increments of 0.01 up to 15 periods

>> x=exp(-z*wn*t).*(x0*cos(wd*t)+((v0+z*wn*x0)/wd)*sin(wd*t));
% computes x(t)

>> plot(t,x)%generates a plot of x(t) vs t
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The Matlab code used in this example is not the most efficient way to plot the
response and does not show the detail of labeling the axis, etc. but is given as a
quick introduction.

The next example illustrates the use of m-files in a numerical simulation. Instead
of plotting the closed-form solution given in Equation (1.13), the equation of
motion can be numerically integrated using the ode command in Matlab. The
ode45 command uses a fifth-order Runge-Kutta, automated time step method for
numerically integrating the equation of motion (Pratap, 2002).

In order to use numerical integration, the equations of motion must first be
placed in first order, or state space form, as in Equation (1.84). This state space
form is used in Matlab to enter the equations of motion.

Vectors are entered in Matlab by using square brackets, spaces and semi-
colons. Spaces are used to separate columns and semicolons are used to separate
rows. So that a row vector is entered by typing

>> u = [1 −1 2]

which returns the row

u =
1 −1 2

and a column vector is entered by typing

>> u = [1; −1; 2]

which returns the column

u =
1

−1
2

To create a list of formulas in an m-file, choose “New” from the file menu and
select “m-file”. This will display a text editor window, in which you can enter com-
mands. The following example illustrates the creation of an m-file and how to call
it from the command window to numerically integrate the equation of motion
given in Example 1.11.1.

Example 1.11.2
Numerically integrate and plot the free response of the underdamped system to
initial conditions x0 = 0.01 m, v0 = 0 for values of m = 100 kg, c = 25 kg/s and
k = 1000 N/m, using Matlab and Equation (1.13).
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Solution: First create an m-file containing the equation of motion to be inte-
grated and save it. This is done by selecting “New” and “M-File” from the File
menu in Matlab, then typing:

----------------------

function xdot=f2(t,x)
c=25; k = 1000; m = 100;

% set up a column vector with the state Equations

xdot=[x(2); -(c/m)*x(2)-(k/m)*x(1)];

----------------------

This file is now saved with the name f2.m. Note that the name of the file must
agree with the name following the equal sign in the first line of the file. Now
open the command window and enter the following:

>> ts=[0 30]; % this enters the initial and final time

>>x0 =[0.01 0]; % this enters the initial conditions

>>[t, x]=ode45(‘f2’,ts,x0);
>>plot(t,x(:,1))

The third line of code calls the Runge-Kutta program ode45 and the state equa-
tions to be integrated contained in the file named f2.m. The last line plots the
simulation of the first state variable x1(t), which is the displacement, denoted
x(:,1) in Matlab. The plot is given in Figure 1.29.

Note that the plots of Figures 1.28 and 1.29 look the same. However, Figure 1.28
was obtained by simply plotting the analytical solution, whereas the plot of Fig-
ure 1.29 was obtained by numerically integrating the equation of motion. The
numerical approach can be used successfully to obtain the solution of a nonlin-
ear state equation, such as Equation (1.78), just as easily.

The forced response can also be computed using numerical simulation and this
is often more convenient then working through an analytical solution when the
forcing functions are discontinuous or not made up of simple functions. Again
the equations of motion (this time with the forcing function) must be placed in
state space form. The equation of motion for damped system with general applied
force is

mẍ(t) + cẋ(t) + kx(t) = F(t)

In state space form, this expression becomes[ ẋ1(t)
ẋ2(t)

]
=
⎡⎢⎢⎣

0 1

− k
m

− c
m

⎤⎥⎥⎦
[ x1(t)

x2(t)

]
+
[ 0

f (t)

]
,
[ x1(0)

x2(0)

]
=
[ x0

v0

]
(1.88)

where f(t) = F(t)/m and F(t) is any function that can be integrated. The following
example illustrates the procedure in Matlab.
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Figure . A plot of the numerical integration of the underdamped system of Example 1.10.1
resulting from the MATLAB code given in Example 1.10.2.

Example 1.11.3
Use Matlab to compute and plot the response of the following system

100ẍ(t) + 10ẋ(t) + 500x(t) = 150 cos 5t, x0 = 0.01, v0 = 0.5.

Solution: The Matlab code for computing these plots is given. First an m-file is
created with the equation of motion given in first-order form.

-------------------------------------------

function v=f(t,x)
m=100; k=500; c=10; Fo=150; w=5;
v=[x(2); x(1)*-k/m+x(2)*-c/m + Fo/m*cos(w*t)];

-------------------------------------------

Then the following is typed in the command window:

>>clear all

>>xo=[0.01; 0.5]; %enters the initial conditions

>>ts=[0 40]; %enters the initial and final times

>>[t,x]=ode45(’f’,ts,xo); %calls the dynamics and integrates

>>plot(t,x(:,1)) %plots the result
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Figure . A plot of the numerical integration of the damped forced system resulting from the
MATLAB code given in Example 11.1.3

This code produces the plot given in Figure 1.30. Note that the influence of the
transient dynamics dies off due to the damping after about 20 sec.

Such numerical integration methods can also be used to simulate the nonlin-
ear systems discussed in the previous section. Use of high-level codes in vibration
analysis such as Matlab is now commonplace and has changed the way vibration
quantities are computed. More detailed codes for vibration analysis can be found
in Inman (2014). In addition, there are many books written on using Matlab
(Pratap, 2002) as well as available online help.

Chapter Notes

This chapter attempts to provide a review of introductory vibrations and to expand
the discipline of vibration analysis and design, by intertwining elementary vibra-
tion topics with the disciplines of design, control, stability and testing. An early
attempt to relate vibrations and control at an introductory level was written
by Vernon (1967). More recent attempts are by Meirovitch (1985, 1990) and
Inman (1989), which is the predecessor or first edition of this text. Leipholz and
Abdel-Rohman (1986) give the civil engineering approach to structural control.
The latest attempt to combine vibration and control is by Preumont (2011) and
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Benaroya (2004), who also provides excellent treatment of uncertainty in vibra-
tions. Pruemont and Seto (2008) presents control of structures slanted towards
civil structures. Moheimani et al. (2003) focuses on vibration control of flexible
structures. The information contained in Sections 1.2, 1.3 and part of 1.4 can be
found in every introductory vibrations text, such as my own (Inman, 2014) and
such as the standards by Thomson and Dahleh (1993), Rao (2012) and Meirovitch
(1986). A complete summary of most vibration related topics can be found in
Braun et al. (2002) and Harris and Piersol (2002).

A good reference for vibration measurement is McConnell (1995). The reader is
encouraged to consult a basic text on control, such as the older text of Melsa and
Schultz (1969), which contains some topics dropped in modern texts, or Kuo and
Golnaraghi (2009), which contains more modern topics integrated with Matlab.
These two texts also give background on specifications and transfer functions
given in Sections 1.4 and 1.5, as well as feedback control discussed in Section 1.9.
A complete discussion of plant identification, as presented in Section 1.7, can be
found in Melsa and Schultz (1969). The book by Neubert (1987) was issued by
the Naval Sea Systems Command and provides a treatise on impedance methods
(Section 1.6).

There are many introductory controls texts with various slants and focus on
sub-topics, as addressed by Davison et al. (2007). The excellent text by Fuller et al.
(1996) examines controlling high frequency vibration. Control is introduced here,
not as a discipline by itself, but rather as a design technique for vibration engineers.
A standard reference on stability is Hahn (1967), which provided the basic ideas
of Section 1.8. The topic of flutter and self-excited vibrations is discussed in Den
Hartog (1985). Nice introductions to nonlinear vibration can be found in Virgin
(2000), Worden and Tomlinson (2001) and the standards by Nayfeh and Mook
(1978) and Nayfeh and Balachandra (1995). While there are many excellent texts
introducing how to use Matlab, the website of the MathWorks contains excellent
tutorials for using their code.

References

Benaroya, H. (2004) Mechanical Vibration: Analysis, Uncertainties and Control, 2nd
Edition. Marcel Dekker, Inc., New York.

Bishop, R. E. D. and Gladwell, G. M. L. (1963) An investigation into the theory of res-
onance testing. Proceedings of the Royal Society Philosophical Transactions 255(A):
241.

Bode, H. W. (1945) Network Analysis and Feedback Amplifier Design. D. Van Nostrand,
New York.

Boyce, W. E. and DiPrima, R. C. (2012) Elementary Differential Equations and Bound-
ary Value Problems, 10th Edition. John Wiley & Sons, Hoboken, NJ.

Braun, S. G., Ewins, D. J. and Rao, S. S. (eds) (2002) Encyclopedia of Vibration. Aca-
demic Press, London.

Davison, D. E., Chen, J., Ploen, S. R. and Bernstein, D. S. (2007) What is your favorite
book on classical control? IEEE Control Systems Magazine, 27, 89–94.

Den Hartog, J. P. (1985) Mechanical Vibrations. Dover Publications, Mineola, NY.



JWST788-c01 JWST788-Inman January 13, 2017 16:32 Printer Name: Trim: 244mm × 170mm

Single Degree of Freedom Systems 

Ewins, D. J. (2000) Modal Testing: Theory and Practice, 2nd Edition. Research Studies
Press, Hertfordshire, UK.

Fuller, C. R., Elliot, S. J. and Nelson, P. A. (1996) Active Control of Vibration. Academic
Press, London.

Hahn, W. (1967) Stability of Motion. Springer Verlag, New York.
Harris, C. M. and Piersol, A. G. (eds) (2002) Harris’ Shock and Vibration Handbook,

5th Edition. McGraw Hill, New York
Inman, D. J. (1989) Vibrations: Control, Measurement and Stability. Prentice Hall,

New Jersey.
Inman, D. J. (2014) Engineering Vibration, 4th Edition. Pearson Education, Upper

Saddle River, NJ.
Kuo, B. C. and Golnaraghi, F. (2009) Automatic Control Systems, 9th Edition. John

Wiley & Sons, New York.
Leipholz, H. H. and Abdel-Rohman, M. (1986) Control of Structures. Martinus Nijhoff,

Boston, MA.
McConnell, K. G. (1995) Vibration Testing; Theory and Practice. John Wiley & Sons,

New York.
Machinante, J. A. (1984) Seismic Mountings for Vibration Isolation. John Wiley & Sons,

New York.
Meirovitch, L. (1985) Introduction to Dynamics and Control. John Wiley & Sons,

New York.
Meirovitch, L. (1986) Elements of Vibration Analysis, 2nd Edition. McGraw-Hill,

New York.
Meirovitch, L. (1990) Dynamics and Control of Structures. John Wiley & Sons, New

York.
Melsa, J. L. and Schultz, D. G. (1969) Linear Control System. McGraw-Hill, New

York.
Moheimani, S.O.R., Halim, D. and Fleming, A. J. (2003) Spatial Control of Vibration

Theory and Experiments. World Scientific, Singapore.
Nayfeh, A. H. and Balachandra, B. (1995) Applied Nonlinear Dynamics. John Wiley &

Sons, New York.
Nayfeh, A. H. and Mook, D. T. (1978) Nonlinear Oscillations. John Wiley & Sons,

New York.
Neubert, V. H. (1987) Mechanical Impedance: Modelling/Analysis of Structures.

Jostens Pringint and Publishing Co, State College, PA.
Pratap, R. (2002) Getting Started with MATLAB: A Quick Introduction for Scientists

and Engineers. Oxford University Press, New York.
Preumont, A. and Seto, K. (2008) Active Control of Structures. John Wiley & Sons,

Chichester, UK.
Preumont, A. (2011) Vibration Control of Active Structures: An Introduction, 3rd Edi-

tion. Springer-Verlag, Berlin.
Rao, S. S. (2012) Mechanical Vibrations, 5th Edition. Pearson, New Jersey.
Rivin, E. I. (2003) Passive Vibration Isolation. ASME Press, New York.
Thomson, W. T. and Dahleh, M. D. (1993) Theory of Vibration with Applications, 5th

Edition. Prentice Hall, Englewood Cliffs, NJ.
Vernon, J. B. (1967) Linear Vibrations and Control System Theory. John Wiley & Sons,

New York.



JWST788-c01 JWST788-Inman January 13, 2017 16:32 Printer Name: Trim: 244mm × 170mm

 Vibration with Control

Virgin, L. N. (2000) Introduction to Experimental Nonlinear Dynamics: A case study
in mechanical vibrations. Cambridge University Press, Cambridge, UK.

Wordon, K. and Tomlinson, G. T. (2001) Nonlinearity in Structural Dynamics: Detec-
tion, Identification and Modeling. Institute of Physics Publishing, Bristol, UK.

Problems

1.1 Derive the solution of mẍ + kx = 0 and sketch your result (for at least 2 peri-
ods) for the case.

1.2 Solve mẍ − kx = 0 for x0 = 1, v0 = 0, for x(t) and sketch the solution.

1.3 Derive the solutions given in the text for 𝜁 > 1, 𝜁 = 1 and 0 < 𝜁 < 1 with
x0 and v0 as the initial conditions (i.e. derive Equations 1.14 to 1.16 and
corresponding constants).

1.4 Solve ẍ − ẋ + x = 0 with x0 = 1 and v0 = 0 for x(t), and sketch the solution.

1.5 Prove that 𝜁 = 1 corresponds to the smallest value of c such that no oscilla-
tion occurs. (Hint: Let 𝜆 = –b, b be a positive real number, and differentiate
the characteristic equation.)

1.6 Consider a small spring about 30 mm long, welded to a stationary table
(ground) so that it is fixed at the point of contact, with a 12-mm bolt welded
to the other end, which is free to move. The mass of this system is about
49.2 × 10−3 kg. The spring stiffness is k = 857.8 N/m. Calculate the natural
frequency, period and the maximum amplitude of the response if the spring
is initially deflected 10 mm.

1.7 A simple model of a vehicle wheel, tire and suspension assembly is just the
basic spring-mass equation of motion. If its mass is measured to be about
30 kilograms (kg) and its frequency of oscillation is observed to be 10 Hz,
what is the approximate stiffness of the suspension?

1.8 Calculate tp, OS, Td, Mp and BW for a system described by

2ẍ + 0.8ẋ + 8x = f (t)

where f(t) is either a unit step function or a sinusoidal as required.

1.9 Derive an expression for the forced response of the undamped system

mẍ(t) + kx(t) = F0 sin𝜔t, x(0) = x0, ẋ(0) = v0

to a sinusoidal input and nonzero initial conditions. Compare your result to
Equation (1.25) with 𝜁 = 0.

1.10 Compute the total response to the system

4ẍ(t) + 16x(t) = 8 sin 3t, x0 = 1 mm, v0 = 2 mm∕s

1.11 Calculate the maximum value of the peak response (magnification factor)
for the system of Figure 1.10 with 𝜁 = 1/

√
2.
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1.12 Derive Equation (1.26).

1.13 Calculate the impulse response function for a critically damped system.

1.14 Solve for the forced response of an SDOF system to a harmonic excitation
with 𝜁 = 1.1 and𝜔2

n = 4. Plot the magnitude of the steady state response ver-
sus the driving frequency. For what value of 𝜔n is the response a maximum
(resonance)?

1.15 Consider the forced vibration of a mass m connected to a spring of stiffness
2000 N/m being driven by a 20-N harmonic force at 10 Hz (20𝜋 rad/s). The
maximum amplitude of vibration is measured to be 0.1 m and the motion
is assumed to have started from rest (x0 = v0 = 0). Calculate the mass of the
system.

1.16 Consider a spring-mass-damper system with m = 100 kg, c = 20 kg/s and
k = 2000 N/m, with an impulsive force applied to it of 1000 N for 0.01 s.
Compute the resulting response.

1.17 Calculate the compliance transfer function for the system described by the
differential equation

a
...
x + b

...
x + cẍ + dẋ + ex = f (t)

where f(t) is the input and x(t) is a displacement. Also calculate the FRF for
this system.

1.18 Use the frequency response approach to compute the amplitude of the par-
ticular solution for the undamped system of the form

mẍ(t) + kx(t) = F0 cos𝜔t

1.19 Derive Equation (1.66).

1.20 Plot (using a computer) the unit step response of an SDOF system with𝜔2
n =

4, k = 1 for several values of the damping ratio (𝜁 = 0.01, 0.1, 0.5 and 1.0).

1.21 Plot 𝜔p/𝜔n versus 𝜁 and 𝜔d/𝜔n versus 𝜁 , and comment on the difference as
a function of 𝜁 .

1.22 For the system of Problem 1.8, construct the Bode plots for (a) the iner-
tance transfer function, (b) the mobility transfer function, (c) the compli-
ance transfer function, and (d) the Nyquist diagram for the compliance
transfer function.

1.23 The free response of the damped SDOF system with a mass of 2 kg is
observed to be underdamped. A static deflection test is performed and the
stiffness is determined as 1.5 × 103 N/m. The displacements at two suc-
cessive maximum amplitudes t1 and t2 are measured to be 9 and 1 mm,
respectively. Calculate the damping coefficient.

1.24 Discuss the stability of the following system

2ẍ(t) − 3ẋ(t) + 8x(t) = −3ẋ(t) + sin 2t
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 Vibration with Control

1.25 An inverted pendulum has equation of motion

ml2𝜃̈ +
(

kl2

2
sin 𝜃

)
cos 𝜃 − mgl sin 𝜃 = 0

Linearize the equation and discuss the stability of the result.

1.26 Using the system of Problem 1.8, refer to Equation (1.77) and choose the
gains K, g1 and g2 so that the resulting closed-loop system has a 5% over-
shoot and a settling time of less than 10.

1.27 Calculate an allowable range of values for the gains K, g1 and g2 for the sys-
tem of Problem 1.8, such that the closed loop system is stable and the for-
mulas overshoot and peak time of an underdamped system is valid.

1.28 Compute a feedback law with full state feedback (of the form given in
Equation 1.77) that stabilizes (makes it asymptotically stable) the follow-
ing system: 4ẍ(t) + 16x(t) = 0 and causes the closed loop settling time to be
1 second.

1.29 Compute the equilibrium positions of the pendulum equation

ml2𝜃̈(t) + mgl sin 𝜃(t) = 0

1.30 Compute the equilibrium points for a system with Coulomb damping
given by

mẍ(t) + 𝜇mgsgn(ẋ) + kx(t) = 0

where 𝜇 is the coefficient of friction and g denotes the acceleration due to
gravity. Here sgn denotes the signum function takes on a plus, minus or zero
value, depending on whether the argument is plus, minus or zero.

1.31 Compute the equilibrium points for the system defined by

ẍ + 𝛽ẋ + x + x2 = 0

1.32 The linearized version of the pendulum equation is given by 𝜃̈(t) + g
l 𝜃(t) =

0. Use numerical integration to plot the solution of the nonlinear equation
of Problem 1.29 and this linearized version for the case that

g∕l = 0.01, 𝜃(0) = 0.1 rad, 𝜃̇(0) = 0.1 rad∕s

Compare your two simulations.


