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This chapter introduces measurement errors and methods of describing
them so that measured data is interpreted properly. Statistical principles
involved in error analysis are discussed in sufficient detail. Concepts such
as precision and accuracy are clearly explained. Different statistics useful in
experimental studies are discussed. Tests of normality of error distribution
and procedure for rejection of data are discussed. Results from sampling
theory are discussed because of their use in the interpretation of sparse
experimental data that is almost the rule.
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4 Chapter.1 Measurements and Errors in measurement

1.1 Introduction
We recognize three reasons for making measurements as indicated in Figure

1.1. From the point of view of the present book measurements for commerce is
outside its scope. Engineers design physical systems in the form of machines to
serve some specified functions. The behavior of the parts of the machine during the
operation of the machine needs to be examined or analyzed or designed such that
it functions reliably. Such an activity needs data regarding the machine parts in
terms of material properties. These are obtained by performing measurements in
the laboratory.

Why Measure?

Generate Data
for Design

For Commerce

Generate Data
to Validate or Propose

a Theory

The scientific method consists in the study of nature to understand the way it
works. Science proposes hypotheses or theories based on observations and these need
to be validated with carefully performed experiments that use many measurements.
When once a theory has been established it may be used to make predictions which
may themselves be confirmed by further experiments.

1.1.1 Measurement categories

Broadly measurements may be categorized as given below.

• Primary quantity: It is possible that a single quantity that is directly
measurable is of interest. An example is the measurement of the diameter
of a cylindrical specimen. It is directly measured using an instrument such as
vernier calipers. We shall refer to such a quantity as a primary quantity.

• Derived quantity: There are occasions when a quantity of interest is not
directly measurable by a single measurement process. The quantity of interest
needs to be estimated by using an appropriate relation involving several
measured primary quantities. The measured quantity is thus a derived
quantity. An example of a derived quantity is the determination of acceleration
due to gravity (g) by finding the period (T) of a simple pendulum of length (L).
T and L are the measured primary quantities while g is the derived quantity.

• Probe or intrusive method: It is common to place a probe inside a system to
measure a physical quantity that is characteristic of the system. Since a probe
invariably affects the measured quantity the measurement process is referred
to as an intrusive type of measurement.
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• Non-intrusive method: When the measurement process does not involve
insertion of a probe into the system the method is referred to as being non-
intrusive. Methods that use some naturally occurring process, like radiation
emitted by a body to measure a desired quantity relating to the system, may
be considered as non-intrusive. The measurement process may be assumed to
be non-intrusive when the probe has negligible interaction with the system.
A typical example for such a process is the use of Laser Doppler Velocimeter
(LDV) to measure the velocity of a flowing fluid.

1.1.2 General measurement scheme

Figure 1.2 shows the schematic of a general measurement process. Not all the
elements shown in Figure 1.2 may be present in a particular case.

Measured
Quantity

Detector
and Transducer

Calibration
or Reference signal

Signal
Conditioner COMPUTER

Output

Controller

The measurement process requires invariably a detector that responds to the
measured quantity by producing a measurable change in some property of the
detector. The change in the property of the detector is converted to a measurable
output that may be either mechanical movement of a pointer over a scale or an
electrical output that may be measured using an appropriate electrical circuit. This
action of converting the measured quantity to a different form of output is done by
a transducer. The output may be manipulated by a signal conditioner before it is
recorded or stored in a computer. If the measurement process is part of a control
application the computer can be used to drive the controller. The relationship that
exists between the measured quantity and the output of the transducer may be
obtained by calibration or by comparison with a reference value. The measurement
system requires external power for its operation.

1.1.3 Some issues

• Errors - Systematic or Random
• Repeatability
• Calibration and Standards
• Linearity or Linearization
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Any measurement, however carefully conducted, is subject to measurement errors.
These errors make it difficult to ascertain the true value of the measured quantity.
The nature of the error may be ascertained by repeating the measurement a number
of times and looking at the spread of the values. If the spread in the data is small
the measurement is repeatable and may be termed as being good. If we compare the
measured quantity obtained by the use of any instrument and compare it with that
obtained by a standardized instrument the two may show different performances as
far as the repeatability is concerned. If we add or subtract a certain correction to
make the two instruments give data with similar spread the correction is said to
constitute a systematic error. Then the spread of data from each of the instruments
will constitute random error.

The process of determining the systematic error is calibration. The response of
a detector to the variation in the measured quantity may be linear or non-linear.
In the past the tendency was to look for a linear response as the desired response.
Even when the response of the detector was non-linear the practice was to make the
response linear by suitable manipulation. With the advent of automatic recording of
data using computers this practice is not necessary since software can take care of
this aspect during the post-processing of the data.

1.2 Errors in measurement
Errors accompany any measurement, however well it has been conducted. The

error may be inherent in the measurement process or it may be induced due to
variations in the way the experiment is conducted. The errors may be classified
as systematic errors and random errors.

1.2.1 Systematic errors (Bias)

Systematic error or bias is due to faulty or improperly calibrated instruments.
These may be reduced or eliminated by careful choice and calibration of instruments.
Sometimes bias may be linked to a specific cause and estimated by analysis. In such
a case a correction may be applied to eliminate or reduce bias.

Bias is an indication of the accuracy of the measurement. Smaller the bias more
accurate the data.

1.2.2 Random errors

Random errors are due to non-specific causes like natural disturbances that may
occur during the measurement process. These cannot be eliminated. The magnitude
of the spread in the data due to the presence of random errors is a measure of the
precision of the data. Smaller the random error more precise is the data. Random
errors are statistical in nature. These may be characterized by statistical analysis.

We shall explain these through the familiar example shown in Figure 1.3. Three
different individuals with different skill levels are allowed to complete a round of
target1 practice. The outcome of the event is shown in the figure.

1Target shown in Figure 1.3 is non-standard and for purposes of illustration only.
Standard targets are marked with 10 evenly spaced concentric rings.
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Good Precision
Good Accuracy

Good Precision
Poor Accuracy

Poor Precision
Poor Accuracy

It is evident that the target at the left belongs to a highly skilled shooter. This is
characterized by all the shots in the inner most circle or the ‘bull’s eye’. The result
indicates good accuracy as well as good precision. A measurement made well must
be like this! The individual in the middle is precise but not accurate. Maybe it is
due to a faulty bore of the gun. The individual at the right is an unskilled person
who is behind on both counts. Most beginners fall into this category. The analogy
is quite realistic since most students performing a measurement in the laboratory
may be put into one of the three categories. A good experimentalist has to work
hard to excel at it! The results shown in Figure 1.4 compare the response of an

individual thermocouple (that measures temperature) and a standard thermocouple.
The measurements are reported between room temperature (close to) 20◦C and
an upper limit of 500◦C. That there is a systematic variation between the two is
clear from the figure that shows the trend of the measured temperatures indicated
by the individual thermocouple. The systematic error appears to vary with the
temperature. The data points indicated by the full symbols appear also to hug the
trend line (we look at in detail at trend lines while discussing regression analysis of
data in Section 2.2), which is a linear fit to the data. However the data points do not
lie on it. This is due to random errors that are always present in any measurement.
Actually the standard thermocouple would also have random errors that are not
indicated in the figure. We have deliberately shown only the trend line for the
standard thermocouple to avoid cluttering up the graph.
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1.3 Statistical analysis of experimental data

1.3.1 Statistical analysis and best estimate from replicate
data

Let a certain quantity x be measured repeatedly to get

xi, i = 1,n (1.1)

Because of random errors these will all be different. How do we find the best estimate
xb for the true value of x? It is reasonable to assume that the best value be such that
the measurements are as precise as they can be! In other words, the experimenter
is confident that he has conducted the measurements with the best care and he is
like the skilled shooter in the target practice example presented earlier! Thus, we
minimize the variance with respect to the best estimate xb of x. Thus we minimize:

S =
n∑

i=1
[xi − xb]2 (1.2)

This requires that
∂S
∂xb

= 2
n∑

i=1
[xi − xb](−1)= 0 (1.3)

or

xb =
∑n

i=1 xi

n
(1.4)

The best estimate is thus nothing but the mean of all the individual measurements!

1.3.2 Error distribution

When a quantity is measured repeatedly it is expected that it will be randomly
distributed around the best value. The random errors may be distributed as a normal
distribution. If μ and σ are respectively the mean and the standard deviation,2 then,
the normal probability density is given by

f (x)= 1

σ
�

2π
e−

1
2
{ x−μ

σ

}2
or f (z)= 1

σ
�

2π
e−

z2
2 (1.5)

The distribution is also represented some times as N(μ, σ). Normal distribution
is also referred to as Gaussian distribution 3 or “bell shaped curve”. The probability
that the error around the mean is (x−μ ) is the area under the probability density

2The term standard deviation was first used by Karl Pearson, 1857-1936, an English
mathematician, who has made outstanding contributions to the discipline of mathematical
statistics

3Named after Johann Carl Friedrich Gauss, 1777-1855, a German mathematician and
physical scientist
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function between (x −μ)− dx
2

and (x −μ)+ dx
2

represented by the product of the
probability density and dx. The probability that the error is anywhere between −∞
and x is thus given by the following integral:

F(x)= 1

σ
�

2π

∫x

−∞
e−

1
2
{ x−μ

σ

}2
dx or F(z)= 1�

2π

∫z

−∞
e−

z2
2 dz (1.6)

This is referred to as the cumulative probability. It is noted that if x → ∞ the
integral tends to 1. Thus the probability that the error is of all possible magnitudes
(between −∞ and +∞) is unity! The integral is symmetric with respect to z = 0
where z = x−μ

σ
, as is easily verified. The above integral is in fact the error integral

that is a tabulated function. A plot showing f (z) and F(z) with respect to z is given
in Figure 1.5.

Many times we are interested in finding out the chances of error lying between
two values in the form ±pσ around the mean or ±z. This is referred to as the
“confidence interval” and the corresponding cumulative probability specifies the
chances of the error occurring within the confidence interval. Table 1.1 gives the
confidence intervals that are useful in practice. A more complete table of confidence
intervals is given in Appendix B as Table B.4.

p 0 ±1 ±2 ±1.96 3 ±2.58 ±3.30

CP 0 0.6827 0.9545 0.95 0.9973 0.99 0.999
CP = Cumulative Probability

Example 1.1
A certain measurement gave the value of C, the specific heat of water, as
4200 J/kgoC. The precision of measurement is specified by the standard
deviation given by 25 J/kgoC. If the measurement is repeated what is the
probability that the value is within 4200±35 J/kgoC? You may assume that
the error is normally distributed.

Solution :
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The maximum and minimum values that are expected for the specific heat of
water are given by

Cmin = 4200−35= 4165, and Cmax = 4200+35= 4235 J/kgoC

Scaling the values in terms of σ the spread of the readings should be ±35
25

σ=
±1.4σ with respect to the mean or z =±1.4. Cumulative probability required
is nothing but the cumulative probability of N(0,1) between −1.4 and +1.4.
This is obtained from Table B.4 of Appendix B as 0.8385≈ 0.84. Thus roughly
84% of the time we should get the value of specific heat of water between 4165
and 4235 J/kgoC.

Gaussian distribution: Consider an experiment where the outcome is either a
success s = 1 or a failure f = 0. Assuming that probability of a success is p, we
expect the value of successes in n trials to be nps+ n(1− p) f = np. For example,
if the number of experiments is 8, it is likely that 4 experiments will show success
as the outcome, assuming that the chances of success or failure are the same i.e.
p = 0.5. Since the outcome is countable in terms of number of successes or failures,
the probability B(k) of a certain number k of successes (0 ≤ k ≤ n), when n number
of experiments have been performed, is given by the product of binomial coefficient

n!
k!(n−k)!

(this represents the number of combinations that yield k successes) and

pk(1− p)n−k. For example, if n = 8 and p = 0.5 we have 0.5k(1−0.5)8−k = 0.58 = 1
256

where the denominator 256 represents total number of possible ways of getting all
possible combinations of outcomes when 8 experiments are performed. Thus we
have the binomial distribution function

B(k;n, p)= n!
k!(n−k)!

pk(1− p)n−k

where n and p are indicated as parameters, by placing them after a semicolon
following k. The expression given above is one of the terms in the binomial

[p+ (1− p)]n. In the special case p = 1
2

of interest to us (we are expecting equal
likelihood of positive and negative errors in measurements) this becomes

B(k;n,0.5)= n!
2nk!(n−k)!

Binomial distribution is a function of a discrete variable k and satisfies the

requirement that
k=n∑
k=0

B(k;n,0.5)= 1. Mean value of k can be obtained as

k̄ =
k=n∑
k=0

kB(k;n,0.5)= 0.5n

The variance may be shown to be given by

σ2
k =

k=n∑
k=0

(k− k̄)2B(k;n,0.5)= 0.25n = k̄
2
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For sufficiently large n the Binomial distribution is closely approximated by the
Normal distribution or the Gaussian curve. Thus we have

B(k;n,0.5)≈ N(μ,σ)= N

⎛⎝k̄,

√
k̄
2

⎞⎠
For example, with n = 30 we have μ= 15, σ= 2.739, the Binomial distribution very
closely resembles the Normal distribution as shown in Figure 1.6. Note that the

Normal distribution function is a function of continuous variable
k− k̄
σk

when n >> 1.

n = 30

1.3.3 Principle of Least Squares

Earlier we have dealt with the method of obtaining the best estimate from
replicate data based on minimization of variance. No mathematical proof was given
as a basis for this. We shall now look at the above afresh, in the light of the fact that
the errors are distributed normally, as has been made out above.

Consider a set of replicate data xi. Let the best estimate for the measured quantity

be xb. The probability for a certain value xi within the interval xi − dxi

2
, xi + dxi

2
to

occur in the measured data is given by the relation

p(xi)= 1

σ
�

2π
e−

(xi−xb )2

2σ2 dxi (1.7)

The probability that the particular values of measured data are obtained in replicate
measurements must be the compound probability given by the product of the
individual probabilities. Thus

p =
(

1

σ
�

2π

)n n∏
i=1

e−
(xi−xb )2

2σ2 dxi =
(

1

σ
�

2π

)n
e−
∑n

i=1
(xi−xb )2

2σ2
n∏

i=1
dxi (1.8)

The reason the set of data was obtained as replicate data is that it was the most
probable! Since the intervals dxi are arbitrary, the above will have to be maximized
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by the proper choice of xb and σ such that the exponential factor is a maximum. Thus
we have to choose xb and σ such that

p′ =
(

1
σ

)n
e−
∑n

i=1
(xi−xb )2

2σ2 (1.9)

has the largest possible value. As usual we set the derivatives
∂p′

∂xb
= ∂p′

∂σ
= 0 to get

the values of the two parameters xb and σ . We have:

∂p′

∂xb
= 1

2

(
1
σ

)n+2
e−
∑n

i=1
(xi−xb )2

2σ2 ·
n∑

i=1
2(xi − xb) · (−1)= 0 (1.10)

The term shown with underline in Equation 1.10 should go to zero. Hence we should
have

n∑
i=1

(xi − xb)= 0 or xb =
∑n

i=1 xi

n
= x̄ (1.11)

It is thus clear that the best value is nothing but the mean value! We also have:

∂p′

∂σ
=
[
− n
σn+1 + 1

σn+3

n∑
i=1

(xi − xb)2
]

e−
∑n

i=1
(xi−xb )2

2σ2 = 0 (1.12)

or, again setting the underlined term to zero, we have

σ2 =
∑

(xi − xb)2

n
(1.13)

Equation1.13 indicates that the parameter σ2 is nothing but the variance of the data
with respect to the mean! Thus the best value of the measured quantity and its
spread are based on the minimization of the squares of errors with respect to the
mean. This embodies what is referred to as the “Principle of Least Squares”. We
shall be making use of this principle while considering regression.

1.3.4 Error estimation - single sample

In practice measurements are expensive in terms of cost and time. Hence it
is seldom possible to record a large number of replicate data. In spite of this
one would like to make generalizations regarding the parameters that describe
the population from the parameters like mean and variance that characterize the
sample. Population represents the totality of experiments that could have been
conducted had we the resources to do it. For example, if we would like to study the
characteristics of student performance under a schooling system, all the students
in the schooling system would make up the population. In order to reduce the cost
a statistician would draw a random sample of students, characterize this sample,
and extrapolate by statistical theory to get parameters that describe the entire
population. In engineering we may want to estimate a physical quantity based on a
small number of experiments. The problem is not trivial and hence is discussed in
some detail here.
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Variance of the means

The problem is posed as given below:

• Replicate data is collected with n measurements in a set or a sample
• Several (possibly) such sets of data are collected
• Sample mean is ms and sample variance is σ2

s
• What is the mean and variance of the mean of all samples?

Population mean:

Let N be the total number of data in the entire population, if indeed, a large
number of samples have been collected. Without loss of generality we assume that
the population mean is zero. Hence we have

m =
N∑

i=1

xi

N
= 0 (1.14)

Consider sample s whose members are identified as xk,s with 1 ≤ k ≤ n. Mean of the
sample then is

ms =
N∑

k=1

xk,s

n
(1.15)

The number of samples ns each comprising n data, drawn out of the population N is
given by ns =N Cn.4 Mean of all sample means - m̄s - is then given by

m̄s =
N Cn∑
s=1

ms
NCn

(1.16)

A particular data xi will occur in N−1Cn−1 samples as may be easily seen. Hence the
summation in the above equation may be written as

m̄s =
N∑

i=1

N−1Cn−1xi

nNCn
=

N∑
i=1

xi

N
= m = 0 (1.17)

Thus the mean of all samples is also the population mean.

Population variance:

The population variance is given by

σ2 =
N∑

i=1

(xi −m)2

N
=

N∑
i=1

x2
i

N
(1.18)

since the population mean is zero.

4This result is analogous to filling n bins with one object each, drawing objects from a
container with N objects, without replacing them. Number of samples is just the number of
ways the bins may be filled.
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Variance of the means:

Let the variance of the means be σ2
m. By definition we then have

NCnσ
2
m =

N Cn∑
s=1

(ms − m̄)2 =
N Cn∑
s=1

m2
s (1.19)

Using Equation 1.15 we have, for the sth sample

m2
s =
[

n∑
k=1

xk,s

n

]2

= (x1 + x2 + ....+ xn)2s
n2

On expanding squares, the right hand will contain terms such as x2
l and 2xl xm

with l 
= m. Both l and m are bounded between 1 and n. Hence the summation
over s indicated in Equation 1.19 will have x2

l appearing N−1Cn−1 times and 2xl xm

appearing N−2Cn−2 times. Hence we have

NCnσ
2
m = 1

n2

[ N∑
i=1

N−1Cn−1x2
i +2

N∑
i=1

N∑
j=1

N−2Cn−2xix j︸ ︷︷ ︸
i 
= j

]
= 0 (1.20)

However, since the population mean is zero, we have(
N∑

i=1
xi

)2

=
N∑

i=1
x2

i +2
N∑

i=1

N∑
j=1

xix j︸ ︷︷ ︸
i 
= j

= 0

Hence we have 2
N∑

i=1

N∑
j=1

xix j =−
N∑

i=1
x2

i . Substitute this in Equation 1.20 and simplify

to get

σ2
m = 1

n2

(N−1Cn−1
NCn

)
︸ ︷︷ ︸

= n
N

[
1−
(N−2Cn−2

N−1Cn−1

)]
︸ ︷︷ ︸

=1− n−1
N−1

N∑
i=1

x2
i =

(N −n)
n(N −1)

σ2 (1.21)

If n << N and N is large, the above relation may be approximated as

σ2
m = 1− n

N

n
(
1− 1

N
)σ2 ≈ σ2

n
(1.22)

Estimate of variance:

• Sample variance - how is it related to the population variance?
• Let the sample variance from its own mean ms be σ2

s

• i.e. σ2
s =

1
n

n∑
i=1

x2
i,s −m2

s
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The mean of all the sample variances may be calculated by summing all the sample
variances and dividing it by the number of samples. Since the total number of
samples is NCn

σ̄2
s =

1
NCn

[
N−1Cn−1

n

N∑
i=1

x2
i −

N Cn∑
j=1

m2
j,s

]
=σ2 −σ2

m (1.23)

Combine this with Equation 1.21 and simplify to get

σ2
s =

N(n−1)
n(N −1)

σ2 (1.24)

If n << N the above relation will be approximated as

σ2
s ≈σ2

(
1− 1

n

)
(1.25)

Error estimator σe:

The last expression may be written down in the more explicit form

σ2
e =

n∑
1

(xi −ms)2

n−1
(1.26)

Essentially the experimenter has only one sample and the above formula tells him
how the variance of the single sample is related to the variance of the population!

Physical interpretation

Equation 1.26 may be interpreted using physical arguments. Since the mean (the
best value) is obtained by one use of all the available data, the degrees of freedom
available (units of information available) is one less than before. Hence the error
estimator should use the factor (n − 1) rather than n in the denominator! The
estimator thus obtained is referred to as unbiased variance.

Example 1.2
Resistance of a certain resistor is measured repeatedly to obtain the following
data.

Expt. No. 1 2 3 4 5 6 7 8 9

R,kΩ 1.22 1.23 1.26 1.21 1.22 1.22 1.22 1.24 1.19

What is the best estimate for the resistance? What is the error with 95%
confidence?
Solution :

Best estimate is the mean of the data.

R̄ = 4×1.22+1.23+1.26+1.21+1.24+1.19
9

= 1.223 kΩ≈ 1.22 kΩ
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Standard deviation of the error σe:

Unbiased Varianceσ2
e =

[
4×1.222 +1.232 +1.262

+1.212 +1.242 +1.192

]
8

−1.2232 = 3.75×10−4 kΩ2

Hence
σe =

√
3.75×10−5 = 0.0194 kΩ

The corresponding error estimate based on 95% confidence interval is

Error= 1.96×σe = 1.96×0.0194= 0.038 kΩ

Example 1.3
Thickness of a metal sheet (in mm) is measured repeatedly to obtain the
following replicate data. What is the best estimate for the sheet thickness?
What is the variance of the distribution of errors with respect to the best
value? Specify an error estimate to the mean value based on 99% confidence.

No. 1 2 3 4 5 6

t,mm 0.202 0.198 0.197 0.215 0.199 0.194

No. 7 8 9 10 11 12

t,mm 0.204 0.198 0.194 0.195 0.201 0.202

Solution :
The best estimate for the metal sheet thickness is t̄, the mean of the 12
measured values. This is given by

t̄ =

[
2×0.202+2×0.198+0.1972 +0.215

+0.199+2×0.194+0.204+0.195+0.201

]
12

= 0.200 mm

The variance with respect to the mean or the best value is then given by

σ2
e =

[
2×0.2022 +2×0.1982 +0.1972 +0.2152

+0.1992 +2×0.1942 +0.2042 +0.1952 +0.2012

]
11

−0.22

= 3.3174×10−5 mm2

The corresponding standard deviation is given by

σe =
√

3.3174×10−5 = 0.0058 mm

The corresponding error estimate based on 95% confidence is

Error= 2.58×σe = 2.58×0.0058= 0.0149 mm
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1.3.5 Student t distribution

We have seen above that, an estimate for the variance of the population, based

on a single sample of n values is given by σ2
e = n(N −1)

N(n−1)
σ2

s . We also know that

the variance of the sample means is given by the expression σ2
m = σ2

n
. In practice

only one sample of n values may have been obtained experimentally. The population
variance σ2 is, in fact, not known and hence we use σ2

e for σ2 and hence we have

σ2
m = σ2

e
n

. Thus the standard deviation of the means is given by σm = σe�
n

. The

advantage of doing this is that the standard deviation of the population may be
calculated based on this expression even though the population variance is not
known. Now we consider the following function given by

Tn = ms −m
σe�

n

(1.27)

Note that σe is a random variable and hence the function T given by Equation 1.27 is
not standard normal. The distribution is referred to as the “Student t distribution”
and is defined as Tn = tn−1. This distribution depends on n and is given by the
following expression

t(y,d)=
Γ
(

d+1
2

)
�
πd Γ

(
d
2

) [1+ y2

d

]− (d+1)
2

(1.28)

Here d is the degrees of freedom given by d = n−1 and Γ is the Gamma function

t

also referred to as the Generalized Factorial function. The argument y = ms − m
represents the difference between the sample mean and the population mean. This
distribution was discovered by a British mathematician who published his work
under the pseudonym “Student”.5 For large n (or d) the t - distribution approaches
the normal distribution with 0 mean and unit variance given by N(0,1). For small n
the distribution is wider than the Normal distribution with larger areas in the tails
of the distribution. Plots in Figure 1.7 show these trends. We see that for d = 30,

5real name William Sealy Gosset, 1876-1937, well known statistician
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the t -distribution is quite close to the normal distribution. If the number of samples
available is more than about 30 one may simply use the N distribution.

In statistical analysis of data what are more important are the confidence intervals
that are appropriate with the t - distributions. These are, in deed, larger than the
corresponding values for the Normal distribution. A short table useful for analysis
is given as Table B.5. Notice that the 95% confidence interval tends asymptotically
to ±1.96σ, characteristic also of the Normal distribution.

Example 1.4
The temperature of a controlled space was measured at random intervals and
the spot values are given by the following 10 values:

Trial 1 2 3 4 5

Temperature ◦C 45.3 44.2 45.5 43.5 46.2

Trial 6 7 8 9 10

Temperature ◦C 46.4 43.8 47 45.5 44.4

The control was expected to maintain the temperature at 44.5◦C. How would
you describe the above observations?

Solution :
The number of data in the sample is n = 10.
The number of degrees of freedom is d = n−1= 9.
Tabulation of data helps in pursuing the statistical analysis of data. Sample
mean is the arithmetic mean of all the spot values of temperature while the
estimated variance is based on d.

Trial No. 1 2 3 4 5

Temperature,◦C 45.3 44.2 45.5 43.5 46.2

Square of error 0.0144 0.9604 0.1024 2.8224 1.0404
with respect to mean

Trial No. 6 7 8 9 10

Temperature,◦C 46.4 43.8 47 45.5 44.4

Square of error 1.4884 1.9044 3.3124 0.1024 0.6084
with respect to mean

Sample mean ms= 45.2◦C
Estimated variance σ2

e=1.373
Estimated standard deviation σe=1.172◦C
The population mean is specified to be m = 44.5◦C.
Hence the t - value based on the data may now be calculated as

t = m−ms

σe

�
n = 45.2−44.5

1.172

�
10= 1.835
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The 95% Confidence Interval for the t - distribution with d = 9 is read from
Table B.5 in Appendix B as 2.262. Since the t - value is less than the
95% Confidence Interval we conclude that the sample indicates satisfactory
functioning of the controller.

Example 1.5
A sample of 6 resistors is picked up from a lot during a manufacturing process.
The resistances are measured in the laboratory and the values are found to
be 1020, 1040, 995, 1066, 970 and 992 Ω. The manufacturer will label all the
resistors as being equal to a mean value of 1000 Ω. Is this justified? Also
specify a tolerance for the resistors from this lot.

Solution :
It is convenient to make a spreadsheet as in Table 1.2.

The table shows the sample mean, the population mean, estimated standard
error and finally the value of t calculated for the sample of 6 measured
resistance values with degrees of freedom of d = 6−1= 5. The 95% confidence
interval for t with d = 5 is 2.571 (Table B.5). Since the t calculated from the
sample is less than this the manufacturer is justified in labeling the resistors
as having a mean value of 1000 Ω. We may now use the 95% confidence
interval to specify the tolerance. We thus have

Tolerance=±2.571×35.2=±90.5Ω

The resistors from this lot may be labeled as 1000 Ω nominal with 10%
tolerance.

Resistor Resistance Square of
Number Value Ω Error
1 1020 38.44
2 1040 686.44
3 995 353.44
4 1066 2724.84
5 970 1918.44
6 992 475.24
ms = 1013.8
σ2

e = 1239.368
σe = 35.2
t = 0.963

1.3.6 Test for normality

Distribution of random errors in measurements are obtained by repeated measure-
ments of a physical quantity. These are done by keeping the conditions under which
the experiments are conducted invariant. For example, in most measurements,
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pressure and temperature may affect the outcome and hence these need to be kept
fixed during the experiment. Once replicate data is collected we should like to
ascertain the error distribution so that we may draw conclusions on the quality of
the measurement based on the distribution of errors. Specifically we would like to
ascertain whether random errors are distributed normally.

Box and whisker plot

Many methods are available for test of normality of a sample distribution. Shape
of the histogram may indicate whether the distribution is close to being normal.
Alternately, we look for symmetry, lower and upper quartile values and the minimum
and maximum values to make a “box and whisker plot” to check for normality as
shown in Figure 1.8. The box and whisker plot shown here is for a sample of data
that follows closely a normal distribution. If the sample size is large the values on

MQ1 Q3Min Max

Q1
Q3

the box and whisker plot are like those indicated here: Min = −2.33, Q1 = −0.67,
Median = 0, Q3= 0.67, Max = 2.33. The values shown are the z values for N(0,1).

Box and whiskers plot is a construct introduced by Tukey6 and gives a summary
of the distribution. Obvious asymmetry, outliers and sharpness of the distribution
may be gleaned by looking at the plot.

Example 1.6
A sample data consists of 15 values shown in the table. i is the serial number
of data and vi is the corresponding value. Make a box and whisker plot and
comment on the nature of the distribution.

i 1 2 3 4 5 6 7 8

vi -1.829 -1.259 -1.187 -0.884 -0.854 -0.745 -0.343 -0.130

i 9 10 11 12 13 14 15

vi 0.097 0.224 0.844 1.098 1.112 1.806 2.050

Solution :
6J. W. Tukey, “Box-and-Whisker Plots”, Section 2C in Exploratory Data Analysis, Reading,

Mass, Addison-Wesley, pp. 39-43, 1977.
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We note that the data is already arranged in the ascending order. Hence the
minimum and maximum values are the first and last entries in the table.
Thus Min =−1.829 and Max = 2.050.

Since there are an odd number of data values, the median is the value
corresponding to the eighth data point i.e. Median =−0.130. Lower quartile
Q1 may be calculated as the median of first eight data points and hence

we have Q1 = −0.884−0.854
2

= −0.869. Similarly the upper quartile Q3 is

obtained as the median of data points 8 through 15. Thus Q3 = 0.844+1.098
2

=
0.971. The standard deviation may easily be calculated as σe = 1.171. It may
be verified that the mean of all data is 0. With these values we make a box
and whisker plot as shown in Figure 1.9. It is seen that the mean is slightly

Median=-0.130

Mean=0.000

Q1=
-0.869

Q3=
0.971

Min=
-1.829

Max=
2.050

larger than the median and hence the distribution is heavier to the right and
marginally skewed.

QtiPlot software has an option to make a menu driven Box and Whisker plot. To
demonstrate its use we solve a typical problem below.

Example 1.7
Repeated measurement of a certain quantity gives replicate data. The deviate
from mean is calculated to yield deviate data which has zero mean. Scaling
the deviates with respect to the standard deviation gives the data shown
rank ordered in the table. Use QtiPlot to make a Box and Whisker plot and
comment on the quality of the data.

Rank
Order

di

σ

Rank
Order

di

σ

Rank
Order

di

σ

Rank
Order

di

σ

1 -1.946 6 -0.442 11 0.275 16 0.520
2 -1.057 7 -0.193 12 0.305 17 0.585
3 -0.829 8 -0.164 13 0.316 18 1.102
4 -0.675 9 -0.091 14 0.398 19 1.919
5 -0.660 10 -0.028 15 0.489 20 2.520
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Solution :
Key in the given data in two columns of QtiPlot table. Invoke the option
“Box plot” under “Statistical graphs” menu to obtain the Box and Whisker
plot shown below (Figure 1.10).

QtiPlot also gives the following statistics:
28/04/14 9:12 PM Statistics for Table 1:

Min=−1.95 D1 (1st decile)=−0.85
Q1 (1st quartile)=−0.50 Median= 0.12
Q3 (3rd quartile)= 0.50 D9 (9th decile)= 1.18
Max = 2.52 Size= 20

All the calculations required for the plot are automatically done by QtiPlot
and the box plot is the output. In this plot the minimum and maximum are
shown by ‘×’ and the median by �. Other percentiles are as explained earlier.

In the present example there is a slight amount of skewness in the
distribution. However there is no indication that the distribution is not
normal.

Q-Q plot

Another useful graphical method, that helps in identifying match or mismatch
with a normal distribution, is a Quantile-Quantile plot or a Q-Q plot. This plot is
made with z values for a normal distribution against the z values for the sample.
The sample data is arranged in ascending order and the deviates with respect
to the sample mean or divided by the unbiased estimate of the sample standard
deviation. The rank order of the samples are used for calculating the probability as

p(i)= i−0.5
n

where i is the rank order and n is the number of data in the sample. The
corresponding z values for a normal distribution are calculated consulting a table.
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If the sample is close to being normal the data points will lie close to a 45◦ line
(called the parity line) assuming that the same scale is used along the two axes.
Departures from linearity will be clear indication of non normal behavior of the
sample. We consider the sample in Example 1.6 and demonstrate how a Q-Q plot
is made and what conclusions we may draw from it.

Example 1.8
Consider the sample of data of Example 1.6 and make a Q-Q plot. Draw
conclusions regarding the distribution underlying the sample.

Solution :
Since the data is already presented in ascending order rank order is the same
as the number in column 1 (see table below). With the mean being zero and
estimated standard deviation being σe = 1.171 the data is recalculated as

z(i) = vi − v̄
σe

and is in the third column of the table. The probabilities are

calculated based on the rank order and are in column 4. zN (i) is calculated
using built in function NORMSINV(p(i)) in the spreadsheet program.7

Q-Q plot is obtained by plotting zN along the abscissa and z along the
ordinate. The parity line is obtained by plotting a 45◦ line passing through
the origin. In the present case the Q-Q plot is as shown in Figure 1.11.

The data points in the Q-Q plot lie close to the parity line. Also the data
points are distributed evenly around the parity line and do not present any
systematic variation. Hence it is safe to conclude that the sample of data is
from a normal distribution.

Median value of v(i) is calculated as -0.130. With the mean being
zero, skewnwss in the sample distribution is represented by skewness =
3(mean−median)

σe
= 3(0−0.130)

1.171
= 0.333 (Note that skewness is bounded

between -3 and +3). This is less than critical value of 0.863 and hence is
considered to be not significant.8 Skewness in the sample is purely due to
chance and not due to non normality of the distribution.

i v(i) z(i) p(i) zN (i)
1 -1.829 -1.561 0.033 -1.834
2 -1.259 -1.074 0.100 -1.282
3 -1.187 -1.013 0.167 -0.967
4 -0.884 -0.755 0.233 -0.728
5 -0.854 -0.729 0.300 -0.524

· · · Continued on next page

7Most spreadsheet programs have built in functions useful for statistical analysis. The
reader may familiarize herself/himself with these.

8D.P. Doane and L.E. Seward, Measuring Skewness: A Forgotten Statistic?, Journal of
Statistics Education, Vol. 19, No.2, 2011. Critical values are taken from this reference.
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continued from previous page· · ·
i v(i) z(i) p(i) zN (i)
6 -0.745 -0.636 0.367 -0.341
7 -0.343 -0.293 0.433 -0.168
8 -0.130 -0.111 0.500 0.000
9 0.097 0.083 0.567 0.168

10 0.224 0.192 0.633 0.341
11 0.844 0.721 0.700 0.524
12 1.098 0.937 0.767 0.728
13 1.112 0.949 0.833 0.967
14 1.806 1.541 0.900 1.282
15 2.050 1.750 0.967 1.834

v̄ = 0.000
σe = 1.171

Jarque-Bera test for normality

It is well known that the normal distribution is symmetric with respect to the
mean. In other words the distribution is not skewed and hence the third moment
defined as

g1 =
n∑

i=1

(
xi − x̄
σ

)3
or g1 = n

(n−1)(n−2)

n∑
i=1

(
xi −μ

σe

)3
︸ ︷︷ ︸
Unbiased estimator, small sample

(1.29)

is zero. The fourth moment, known as the Kurtosis, is defined by the relation
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g2 =
n∑

i=1

(
xi − x̄
σ

)4
−3 or g2 = n(n+1)

(n−1)(n−2)(n−3)

n∑
i=1

(
xi −μ

σe

)4
− 3(n−1)2

(n−2)(n−3)︸ ︷︷ ︸
Unbiased estimator, small sample

(1.30)
also has a value of zero. Any departure of the sample data from normality
would mean that these two quantities are non-zero. Note that g1 and g2 are
available as functions in spreadsheet programs invoked by SKEW(Sample Data) and
KURT(Sample Data) where the sample data is a column of numbers invoked as with
the other functions. In case of Jarque-Bera test the statistic JB is defined as

JB = n
6

[
g2

1 +
g2

2
4

]
(1.31)

The critical values for JB are obtained by simulations and useful critical value tables
are available from references.9

Example 1.9
Fifteen deviates arranged in ascending order forms a sample (second column
of the spreadsheet). The sample is expected to follow a normal distribution.
Test it using JB test.

Solution :
Extract of spreadsheet used is shown below as a table. The first two columns
show the deviates in ascending order. The appropriate statistical parameters
have been calculated using the functions available in the spreadsheet program
and presented in the last column. The JB value that characterizes the sample
and the critical value taken from the cited reference is also shown in the last
column.

Data Data Parameters

No. Deviate No. Deviate μ= 0.000
1 -1.829 9 0.097 σe = 1.171
2 -1.259 10 0.224 g1 = 0.321
3 -1.187 11 0.844 g2 = -0.916
4 -0.884 12 1.098 JB = 0.781
5 -0.854 13 1.112 α= 0.05
6 -0.745 14 1.806 JBcrit = 3.768
7 -0.343 15 2.050
8 -0.130

Since JB < JBcrit the hypothesis that the deviates are normally distributed
is valid.

9Thadewald T., and Büning H, Working Paper - “Jarque-Bera test and
its competitors for testing normality: A power comparison”, accessed at
www.econstor.eu/bitstream/10419/49919/1/668828234.pdf
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χ2 test for normality

Another useful test for normality is the χ2 test that is recommended to be used
for large samples with n ≥ 50. We work with the frequencies of occurrence rather
than the magnitude of the data values. Essentially, the test compares the observed
frequencies with the expected frequencies according to normal distribution, to test
for normality. We work with “binned” data such that each bin contains at least five
values.

Let the data consist of n values vi arranged in ascending order. We create bins by
defining lower and upper bound values for the data to group the data. Each group
fills a bin of certain width. The number of data values which are within a particular
bin is the observed frequency fO for that particular bin. Let there be k bins. The sum

of frequencies in all the bins is thus equal to n i.e.
k∑

i=1
fO,i = n.

Arrange the data now by calculating the z values defined, as usual as, zi = vi − v̄
σe

.

Compute the z values that bound a particular bin and calculate the cumulative
probability that the chosen values are within the particular bin. Multiply this
probability with the number of data n to get the expected frequency fE . We see

that
k∑

i=1
fE,i = n.

The statistic χ2 (refer Chapter 2 for a more detailed discussion about the χ2

distribution) defined as

χ2 =
k∑

i=1

(
fO,i − fE,i

)2
fE,i

(1.32)

follows the χ2 distribution which is one sided and has a range of 0 ≤ χ2 ≤ ∞. The
critical χ2 value is calculated based on the chosen α for a particular number of
degrees of freedom ν. In the case of normality test of a sample there are c columns
and n rows of data. Hence ν= (n−1)×(c−1). Tables of χ2 is available in the Appendix
as Table B.6 in Appendix B.

Example 1.10
A set of 50 deviates arranged in ascending order has been obtained and shown
in Table 1.4. Perform χ2 test of normality on this sample.

Solution :

Step 1 We calculate the mean and variance of the sample and hence order
the data according the z values. The bounds are rephrased in terms of z
values. We create bins using the lower and upper bounds as shown in Table
1.5. The corresponding observed frequencies are also shown.
Step 2 The cumulative probabilities are obtained by subtracting the cumu-

lative probabilities between z = −∞ to z = left bound from the cumulative
probability between z =−∞ to z = right bound for each bin. In the spreadsheet
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i di i di i di i di

1 -2.803 14 -0.972 27 -0.084 40 0.660
2 -1.781 15 -0.928 28 -0.020 41 0.677
3 -1.571 16 -0.815 29 0.070 42 0.749
4 -1.555 17 -0.701 30 0.132 43 0.753
5 -1.512 18 -0.605 31 0.151 44 0.868
6 -1.422 19 -0.576 32 0.156 45 0.967
7 -1.388 20 -0.562 33 0.236 46 1.070
8 -1.213 21 -0.556 34 0.375 47 1.255
9 -1.204 22 -0.393 35 0.398 48 1.335

10 -1.128 23 -0.358 36 0.405 49 1.552
11 -1.049 24 -0.346 37 0.543 50 1.841
12 -0.987 25 -0.277 38 0.547
13 -0.982 26 -0.249 39 0.654

we use the function NORMSDIST(z) for this purpose. The expected frequen-
cies are then obtained by multiplying the probability of occurrence within each
bin and the total number of data n. The expected frequencies are indicated in
the 5th column of the table.
Step 3 We calculate the value of χ2 as χ2 = 5.877 from the observed and

expected frequencies from the binned data as shown by the sum of entries
in the last column of the table. Calculations have been performed using a
spreadsheet program. The critical χ2 for ν = (9−1)× (2−1) = 8 and α = 0.1
is calculated using the function CHISQINV(0.9,8)10 as 13.362. Since the
calculated χ2 is less than the critical value there is no reason to doubt the
normality of the sample data.

χ2

Bin No. i Bin bounds fO,i fE,i
( fO,i − fE,i)2

fE,i

1 −∞ to -1.2 5 5.753 0.099
2 -1.2 to -1 4 2.179 1.521
3 -1 to -0.7 5 4.165 0.167
4 -0.7 to -0.2 7 8.939 0.421
5 -0.2 to 0.2 6 7.926 0.468
6 0.2 to 0.4 7 3.808 2.675
7 0.4 to 0.7 4 5.131 0.249
8 0.7 to 1 5 4.165 0.167
9 1 to ∞ 7 7.933 0.110

Total number of data = 50 χ2 = 5.877

10Argument 0.9 is the probability which is nothing but 1−α with α= 0.1.
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Example 1.11
5 machines are used to produce identical parts in a factory setting. Number
of parts made by each machine and the number rejected during inspection are
shown in the table. Test the hypothesis that all machines are of equal quality.

Machine No. i 1 2 3 4 5

No. of parts made ni 300 400 250 150 200

No. of parts rejected, Oi 24 13 10 16 8

Solution :
The hypothesis that all the machines are of similar quality requires that the
number of parts rejected be the same proportion of the number of parts made
by each machine. Thus the expected number of parts rejected are given by

Ei =
ni ×∑5

i=1 Oi∑5
i=1 ni

.

We round the Ei to whole numbers and have the following:

i Oi Ei
(Oi −Ei)2

Ei
1 24 16 4.0000
2 13 22 3.6818
3 10 14 1.1429
4 16 8 8.0000
5 8 11 0.8182
χ2 = 17.643
ν= 4
χ2(α= 0.05,ν)= 9.4877

Since χ2 > χ2
critical the hypothesis is not sustained. The machines are not all

of the same quality.

1.3.7 Nonparametric tests

In experimental studies, we often need to compare samples of data and decide
whether they follow the same distribution. What the distribution itself is, as long
as it is continuous, may be secondary and hence the parameters that characterize
the distributions are not important for the proposed test. We essentially devise a
nonparametric test for comparing two samples of data. For example, if two samples
of data have been collected at different times, we would like to know whether there
are significant changes between them.

A commonly used nonparametric test is the Kolmogorov Smirnov11 or KS two
sample test.

11Andrey Nikolaevich Kolmogorov 1903 - 1987, Russian mathematician; Nikolai
Vasilyevich Smirnov 1900 - 1966, Russian mathematician



1.3. Statistical analysis of experimental data 29

Kolmogorov Smirnov two sample test

Let the first sample consist of n1 data and the second sample n2 data. Order both
the data in ascending order. We assume that each data is independent and identically
distributed. Assume that an empirical distribution function (EDF) is assumed such
that the probability is defined by a uniform distribution. Hence the cumulative

empirical probability distribution (CEDF) jumps by
1
n1

at each data point for the

first sample and by
1
n2

for the second sample. We make a plot of CEDF vs data value

for the two samples on the same graph. The supremum of the difference between the
two cumulative probabilities Dmax is the statistic of interest to us. Critical value of
Dcrit(n1,n2,α) depends on the number of data and the significance level α.12 The null
hypothesis H0 is that the two samples follow the same distribution. If Dmax < Dcrit
the hypothesis is accepted. Otherwise it is concluded that the two samples do not
follow the same distribution.

An example is presented below to demonstrate the KS two sample test.

Example 1.12
Two samples of data were collected by two batches of students taking part in
a laboratory class. Each batch had 20 students (i.e. n1 = n2 = 20) and the
task consisted of measuring a physical quantity d using the same method.
The data has been arranged in ascending order and presented in the table
below. Perform a KS test to determine whether the two samples follow the
same distribution.

Data
No.i

Batch 1
di

Batch 2
di

Data
No.i

Batch 1
di

Batch 2
di

1 4.541 4.543 11 5.040 4.930
2 4.611 4.586 12 5.053 4.940
3 4.708 4.781 13 5.099 4.965
4 4.737 4.808 14 5.122 5.031
5 4.739 4.817 15 5.164 5.033
6 4.777 4.835 16 5.171 5.096
7 4.912 4.836 17 5.215 5.181
8 4.939 4.865 18 5.249 5.345
9 4.939 4.882 19 5.266 5.431
10 5.031 4.905 20 5.311 5.489

Solution :

Step 1 Since both samples have the same number of data the CEDF is the
same for the two samples. As we pass each data point the CEDF increases by
1

20
= 0.05. We make a plot of CEDF versus the data value as shown in Figure

1.12.

12Table of critical values may be downloaded from
“www.soest.hawaii.edu/wessel/courses/gg313/Critical_KS.pdf”
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Step 2 The maximum value of D is equal to 0.2 as shown in Figure 1.12.
Step 3 Critical value (based on reference cited) is obtained for n1 = n2 = 20

and α= 0.05 as Dcrit = 1.36

√
20+20
20×20

= 0.430.

Step 4 Since Dmax < Dcrit the hypothesis that the two samples are from the
same distribution holds. This means that the observed differences between
the two samples are solely due to chance.

Kolmogorov-Smirnov test for normality

The KS two sample test has to be modified to use it as a test for normality of a
single sample. In that case the test is also known as Kolmogorov-Smirnov goodness
of fit test. We assume that the mean of the sample μ is known and calculate the
standard deviation with respect to the mean σe, the usual way, based on an unbiased
estimator. We compare the ECDF with the normal distribution function based on
z = x−μ

σe
. The cumulative normal probability is then calculated, after transforming

the measured values to corresponding z values. The maximum difference between
the two cumulative probabilities is the statistic that is used to test H0.

Since the standard deviation has been calculated by using the sample data the
critical values need a correction as given by Lilliefors13.

Example 1.13
Consider the first sample data in Example 1.12. Test whether it is distributed
normally using KS test for normality.

Solution :

13Lilliefors, H., “On the Kolmogorov-Smirnov test for normality with mean and variance
unknown”, Journal of the American Statistical Association, Vol. 62. pp. 399-402, 1967
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Step 1 Calculations are best performed using a spreadsheet as shown below.
The mean μ and standard deviation σe of the sample are calculated using
the data di for 1 ≤ i ≤ 20. Based on these the z values are obtained. The
corresponding cumulative normal probabilities Pi are then calculated. The Di
and D′

i are obtained as indicated. The maximum of the last two columns is
the Dmax required to perform the KS normality test (shown as bold entry).

zi = pi = p′
i = Di = D′

i =
i di

di −μ

σe
Pi

i−1
n

i
n

|Pi − pi| |Pi − p′
i|

1 4.541 -1.914 0.028 0 0.05 0.028 0.022
2 4.611 -1.611 0.054 0.05 0.1 0.004 0.046
3 4.708 -1.188 0.117 0.1 0.15 0.017 0.033
4 4.737 -1.063 0.144 0.15 0.2 0.006 0.056
5 4.739 -1.055 0.146 0.2 0.25 0.054 0.104
6 4.777 -0.890 0.187 0.25 0.3 0.063 0.113
7 4.912 -0.301 0.382 0.3 0.35 0.082 0.032
8 4.939 -0.184 0.427 0.35 0.4 0.077 0.027
9 4.940 -0.180 0.429 0.4 0.45 0.029 0.021

10 5.031 0.218 0.586 0.45 0.5 0.136 0.086
11 5.040 0.257 0.602 0.5 0.55 0.102 0.052
12 5.053 0.313 0.623 0.55 0.6 0.073 0.023
13 5.099 0.510 0.695 0.6 0.65 0.095 0.045
14 5.122 0.613 0.730 0.65 0.7 0.080 0.030
15 5.164 0.795 0.787 0.7 0.75 0.087 0.037
16 5.171 0.825 0.795 0.75 0.8 0.045 0.005
17 5.215 1.016 0.845 0.8 0.85 0.045 0.005
18 5.249 1.166 0.878 0.85 0.9 0.028 0.022
19 5.266 1.239 0.892 0.9 0.95 0.008 0.058
20 5.311 1.432 0.924 0.95 1 0.026 0.076
μ= 4.981
σe = 0.230

Step 2 A plot is made, with sample values along the abscissa and the
cumulative probabilities along the ordinate, as shown in Figure 1.13. The
maximum Dmax is identified on the figure.
Step 3 We note that the maximum deviate is 0.136. The critical value for

comparison is obtained from a recent paper14 as 0.192 for α= 0.05.
Step 4 Since Dmax < Dcrit the hypothesis that the sample data is from a

normal distribution is valid.

14Hervé Abdi ansd Paul Molin, Lilliefors/Van Soest’s test of normality, In: Neil Salkind
(Ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks (CA): Sage, 2007
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1.3.8 Outliers and their rejection

We have seen that most data should lie within the bracket ±3σ (if a large number
of data has been collected) around the mean granting that the error distribution is
normal. Those data that lie outside this range are called outliers. Even though there
may be special cases where an outlier may be physically meaningful it is unusual
to get such errors in normal practice. Since the outlier will change the mean and
standard deviation it is best to reject such outliers unless there is a reason to believe
them to be important. There are a large number of statistical tests that may be used
to determine or reject outliers. From the point of view of the present book we shall
discuss a few of the more useful ones.

Chauvenet’s criterion for discarding outliers

Chauvenet’s 15 criterion states that outliers (one or more than one) may be
discarded as spurious or suspicious data if the data is outside a range on either side of

the mean with probability less than
1

2n
where n is the number of data. For example,

if the number of data is 20, the probability we are looking for is
1

2×20
= 0.025 and

this corresponds to the region outside the cumulative probability interval 0.025 to
0.975 of the standard normal distribution N(0,1). The corresponding critical value
of the confidence interval is ±2.24. Similarly we may evaluate critical values for
different number of data as shown in Table 1.7. This table is useful in applying the
Chauvenet criterion for data sets with different number of data points. Chauvenet’s
test is recommended to be used only once. After rejection of data the statistical
parameters calculated using the rest of the sample is accepted.

An example is given below to show the effect of outliers and also the improvement
in the deduced results when outliers are discarded.

Example 1.14
A certain experiment has been conducted by 12 students using the same

15after William Chauvenet, 1820-1870, American mathematician
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n
∣∣∣∣dmax

σ

∣∣∣∣ n
∣∣∣∣dmax

σ

∣∣∣∣ n
∣∣∣∣dmax

σ

∣∣∣∣
3 1.38 14 2.10 80 2.74
4 1.54 16 2.15 100 2.81
5 1.65 18 2.20 150 2.93
6 1.73 20 2.24 200 3.02
7 1.81 25 2.33 300 3.14
8 1.86 30 2.39 400 3.23
9 1.91 40 2.49 500 3.29

10 1.96 50 2.57 1000 3.48
12 2.04 60 2.64

Note: dmax = maximum deviation in the data set

experimental set up, to determine the acceleration due to gravity g in m/s2.
The value of g estimated by various students is given in the following table.
What is the best estimate for the value of the measured quantity? Specify a
suitable error bar. Would you like to discard any data? If so which ones and
why? What are the mean and error bar when you discard spurious data?

Student No. 1 2 3 4 5 6

Value g 9.628 9.813 9.729 9.81 9.836 9.718

Student No. 7 8 9 10 11 12

Value g 9.666 9.725 9.615 9.999 9.701 8.245

Solution :

Step 1 Calculate first with all data included Calculation has been made, us-
ing a spreadsheet program which calculated the mean and the variance using
in-built functions, AVERAGE(number 1,number 2,...) or AVERAGE(B1:B12)
to calculate the mean, VAR(number 1,number2,...) or VAR(B1:B12) to
calculate the variance or STDEV(number 1,number2,...) or STDEV(B1:B12)
to calculate the standard deviation 16 assuming that the data is entered in
column B and occupies rows 1 to 12. Error with respect to the mean may be
calculated for each entry as shown in column C. Absolute value of the error
divided by the standard deviation is shown in column D. It is seen from Table
1.7 that this ratio is more than the critical value 2.04 for the data collected by
student number 12. It represents an outlier which is suspect data. We may
delete this data and recalculate the statistical parameters.
Step 2 Calculate next after discarding data number 12

The calculations after dropping the data point 12 are shown in the columns
E - H. The entries are self explanatory. We see that the mean has changed

16Spreadsheet uses the unbiased estimate for the variance and the standard deviation
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significantly and is more representative of the data. The standard deviation
or the spread with respect to the mean has also changed significantly.
The revised calculations paint a much better picture of the data collected by
the students in the class.
Step 3 It is interesting to make Q-Q plots for the two samples - (a) before

rejecting outlier and (b) after rejecting outlier.
The single outlier has the effect of introducing a pattern to the departure from
the parity line. The single outlier indicated by the arrow in Figure 1.14, of
course, is far away from the parity line. However when the outlier is removed
all the data points move close to the parity line and do not show any specific
pattern of variation. Hence one may conclude that errors in the experimental
data are normally distributed.

Column identifier
A B C D E F G H

Value Error Value Error

No. g g− ḡ
∣∣∣∣ g− ḡ

σ

∣∣∣∣ No. g g− ḡ
∣∣∣∣ g− ḡ

σ

∣∣∣∣
1 9.628 0.004 0.010 1 9.628 -0.121 1.098
2 9.813 0.189 0.424 2 9.813 0.064 0.580
3 9.729 0.105 0.236 3 9.729 -0.020 0.182
4 9.81 0.186 0.417 4 9.81 0.061 0.552
5 9.836 0.212 0.475 5 9.836 0.087 0.788
6 9.718 0.094 0.211 6 9.718 -0.031 0.282
7 9.666 0.042 0.095 7 9.666 -0.083 0.753
8 9.725 0.101 0.227 8 9.725 -0.024 0.218
9 9.615 -0.009 0.020 9 9.615 -0.134 1.216
10 9.999 0.375 0.840 10 9.999 0.250 2.266
11 9.701 0.077 0.173 11 9.701 -0.048 0.436
12 8.245 -1.379 3.086
ḡ 9.624 ḡ 9.749
σe 0.447 σe 0.110
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Pierce’s criterion for discarding outliers

Pierce’s17 criterion is useful if we have to discard more than one outlier. Rejection
of data is based on the principle - to quote the author -

“that the proposed observations should be rejected when the probability
of the system of errors obtained by retaining them is less than that of the
system of errors obtained by their rejection multiplied by the probability
of making so many, and no more, abnormal observations”

In a recent publication Ross18 has discussed in detail the use of Pierce’s criterion
for rejection of abnormal data. He has also provided a table of critical values
that correspond to the probabilities of obtaining “so many, and no more, abnormal
observations”. The detailed method given in this paper (the reader should read this
paper) is summarized below:

1. Number of data = n. Calculate ms and σs
2. Assume one data is suspect
3. Read off R from table in paper by Ross
4. If any deviate (absolute value) > Rσs discard the corresponding data.
5. Assume a second data may be suspect.
6. Read off R from table in paper by Ross. No change in n for now.
7. If any deviate (absolute value) > Rσs discard the corresponding data.
8. Continue till no more data needs to be rejected.
9. Use the reduced number of data after rejection of all suspect data. Let number

of data equal to n1.
10. Calculate ms and σs with n1.
11. Repeat 2 - 9 with new parameters.
12. Break the loop whenever there is no scope for rejecting any more data.

An example is worked out now to demonstrate the above method.

Example 1.15
In a laboratory class students were asked to measure a certain physical
quantity and came up with the readings given in the table. Use Pierce’s test
to discard abnormal data. How would you summarize the data after rejecting
the abnormal data points?
Is it reasonable to assume that the deviates are normally distributed? Base
your decision making a box and whisker plot.

17after Benjamin Peirce, 1809 - 1880, an American mathematician who authored the paper
“Criterion for rejection of doubtful observations”, The Astronomical Journal, Vol. II, No.21, pp.
161-163, 1852.

18Stephen M. Ross, Peirce’s criterion for the elimination of suspect experimental data,
Journal of Engineering Technology, Fall 2003, pp. 38-41
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i vi i vi i v

1 4.590 8 4.952 15 5.062
2 4.764 9 4.78 16 5.129
3 4.854 10 5.106 17 4.452
4 5.254 11 5.039 18 4.959
5 4.894 12 5.143 19 4.903
6 4.998 13 5.442
7 5.114 14 4.813

Solution :

Step 1 Consider all the data in the sample i.e. n = 19. We calculate the
mean and standard deviation of the sample as ms = 4.960 and σe = 0.230.
Step 2 We would like to check if a single data is abnormal. From table

critical value is R = 2.185 for n = 19 and one abnormal data. We calculate
the maximum possible deviate as R×σe = 2.185×0.230= 0.502. We calculate
absolute values of all the 19 deviates and pick the maximum value. The
maximum value is found to correspond to student No. 17 and is 0.508. Since
this value is greater than the critical value of 0.502 we discard this data.
Step 3 Now assume that there may be a second data that is abnormal. From

table critical value is R = 1.890 for n = 19 and two abnormal data. We calculate
the maximum possible deviate as R ×σe = 1.890×0.230 = 0.434. The second
largest value is found to correspond to student No. 13 and is 0.482. Since this
value is greater than the critical value of 0.434 we discard this data also.
Step 4 Now assume that there may be a third data that is abnormal. From

table critical value is R = 1.707 for n = 19 and three abnormal data. We
calculate the maximum possible deviate as R×σs = 1.707×0.230= 0.392. The
third largest value is found to correspond to student No. 1 and is 0.370. Since
this value is less than the critical value of 0.392 we conclude that there are no
more abnormal data.
Step 5 We discard the two abnormal data found above and end up with a

sample containing 17 data points. The mean and standard deviation of this
data set are given by ms = 4.962 and σe = 0.170.
Step 6 We would like to check if a single data is abnormal in the reduced set

obtained by discarding the outliers found previously. From table critical value
is R = 2.134 for n = 17 and one abnormal data. We calculate the maximum
possible deviate as R×σe = 2.134×0.170= 0.362. We calculate absolute values
of all the 17 deviates and pick the maximum value. The maximum value is
found to correspond to student No. 1 and is 0.372. Since this value is greater
than the critical value of 0.362 we discard this data.
Step 7 We would like to check if a second data is abnormal in the reduced set

obtained by discarding the outliers found previously. From table critical value
is R = 1.836 for n = 17 and one abnormal data. We calculate the maximum
possible deviate as R ×σs = 1.836×0.170 = 0.311. The second largest deviate
is found to correspond to student No. 4 and is 0.292. Since this value is less
than the critical value of 0.311 we conclude that there are no more abnormal
data.
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Step 8 We break the loop and accept three data as abnormal and hence have
a sample containing 16 values. A repeat of the Pierce’s test for these data
shows that no more abnormal data are present in the sample. The pruned
sample is shown in the following table.

i vi i vi i v

2 4.764 8 4.952 15 5.062
3 4.854 9 4.78 16 5.129
4 5.254 10 5.106 18 4.959
5 4.894 11 5.039 19 4.903
6 4.998 12 5.143
7 5.114 14 4.813

The mean and standard deviation values characterizing the pruned sample
are ms = 4.985 cm and σe = 0.144 cm.
Step 9 We now calculate the parameters required for nmaking a Box and

Whisker plot.

Mean = 4.985 Median = 4.979
Sigma = 0.144 Quartile 3 = 5.108
Minimum = 4.764 Maximum = 5.254
Quartile 1 = 4.884

We make a Box and Whisker plot as Figure 1.15. We have also included the
three discarded data points in this plot. The plot shows good symmetry and
spread close to a normal distribution. Hence it is reasonable to assume that
the data is distributed normally. Also, it seems the three outliers that were
discarded, had some calculation errors!

Median=4.979

Mean=4.985

Q1=

4.884

Q3=

5.108

Min=

4.764

Max=

5.254
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Thompson τ for discarding outliers

Another test useful for discarding abnormal data from a sample is the Thompson
τ test. Consider a data of n samples in which we would like to discard abnormal
data. Calculate the mean and the standard deviation of the sample, the usual
way. Calculate the absolute value of the difference between data and the mean i.e.
calculate di = |vi − v̄|. Determine the largest, di,max among these. The Thomson
statistic τ is given by

τ(α,n)= tα/2(n−1)
�

n
√

n−2+ t2
α/2

(1.33)

The Student t value is calculated based on a chosen α and the number of data
n. For example, if α = 0.1, we calculate t as TINV(0.05,n), a function available in
spreadsheet programs. Corresponding critical τ value may be calculated based on
the definition given above. If di,max >σeτ discard the data.

If a data has been discarded as abnormal, redo the above steps with n−1 data to
discard a second outlier, if it exists.

Continue the process till no more outliers are found.

Example 1.16
The period of a simple pendulum was repeatedly measured and the replicate
data is tabulated below.

i Ti i Ti i Ti i Ti

1 2.013 6 1.987 11 1.992 16 1.998
2 2.000 7 2.012 12 1.786 17 2.008
3 2.225 8 1.997 13 2.003 18 1.981
4 2.000 9 1.994 14 1.983 19 1.989
5 1.991 10 1.998 15 2.016 20 2.004
Bold entries represent likely outliers

Discard outliers using Thompson τ test. Calculate the mean and standard
deviation of pruned data.

Solution :

Step 1 We calculate a few critical values of τ making use of function
available in spreadsheet. We take n = 20 to n = 17 expecting no more than
4 abnormal data. The critical values are tabulated below.

n 17 18 19 20

τ(0.1,n) 1.871 1.876 1.881 1.885

We note in passing that as n →∞ the critical value of τ tends to 1.96. Note
also that all calculations have been rounded to 3 digits after decimals.
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Step 2 The mean and standard deviation of the given sample consisting
of 20 replicate data is calculated as T̄ = 1.999 and σe = 0.072. The biggest
absolute deviate is identified as data No. 3 of T3 = 2.225 and d3 = |2.225−
1.999| = 0.226. With n = 20, we have, τ×σe = 1.885× 0.072 = 0.136. Since
d3 > 0.136 we discard this data as an outlier.
Step 3 After discarding T3 perform the above calculations with the rest of

the 19 data points. The mean and standard deviation are given by T̄ = 1.987
and σe = 0.050. Identify the maximum deviation (absolute value) as that
corresponding to T12 in the original sample (or T11 in the pruned sample). The
maximum deviate of 0.201 is compared with critical value of τ(0.1,19)×σe =
0.093 . Discard T12 in the original sample.
Step 4 Repeat the calculations with 18 data and show that no more data is

to be rejected.
Step 5 The statistical parameters that represent the pruned data are

calculated with n = 18 and are given by T̄ = 1.998 and σe = 0.010.

Dixon’s Q test

Ordered sample data is characterized by the difference between the extreme
values, also known as the range. If abnormal data is present, it may be at either end
of the table. We may identify such an outlier by comparing the difference between the
suspected outlier and its nearest neighbor to the range and decide whether to retain
or reject data. In the Dixon’s Q (Rejection Quotient) test we calculate the ratio of
the difference alluded to above with the range and compare this ratio with a critical
Dixon Q value to make a decision. Table of critical Q values are presented in a paper
by Rorabacher.19

Several Q values are defined as given in the cited reference. Correspondingly
different Q’s are used to make a decision regarding retention or rejection of data. We
shall demonstrate the method by taking a simple example.

Example 1.17
A certain experiment has been conducted by 12 students using the same
experimental set up. The value of a measured quantity estimated by various
students is given in the following table. Would you like to discard any data?
If so which ones and why? Base your decision on Dixon’s test. What are the
mean and error estimator for the pruned data.

i vi i vi
1 7.962 7 8.000
2 8.147 8 8.059
3 8.063 9 7.949
4 8.144 10 8.664
5 8.170 11 8.035
6 8.052 12 6.579

19D. B. Rorabacher, Statistical Treatment for Rejection of Deviant Values: Critical Values of
Dixon’s “Q” Parameter and Related Subrange Ratios at the 95% Confidence Level, Analytical
Chemistry, Vol. 63, NO. 2, pp. 139-146, 1991
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Solution :

Step 1 Arrnage the data in ascending order as shown below.

i vi i vi

1 6.579 7 8.059
2 7.949 8 8.063
3 7.962 9 8.144
4 8.000 10 8.147
5 8.035 11 8.170
6 8.052 12 8.664

Supected outliers are shown bold. The difference between adjacent readings
in ordered data is the basis for this suspicion. Thus we suspect v1 or v12.

Step 2 We use Dixon’s ratio defined as r10 = v2 −v1

v12 −v1
or r10 = v12 −v11

v12 −v1
,

following the cited reference.

r10 = 7.949−6.579
8.664−6.579

= 0.657 or r10 = 8.664−8.170
8.664−6.579

= 0.237

Step 3 Critical value for r10 with n = 12 is read from the table as r10,critical =
0.426. At once we see that v1 is to be discarded.
Step 4 The pruned data at this stage will consist of 11 values from i = 2 to

i = 12 from the original set. The data may be renumbered so that i spans from
1 to 11. The last data point is the next suspect data.
Step 5 The reader may redo the test with the 11 data and show that the last

data point is also to be discarded.
Step 6 Finally the following data set with 10 data points is obtained.

i vi i vi

1 7.949 6 8.059
2 7.962 7 8.063
3 8.000 8 8.144
4 8.035 9 8.147
5 8.052 10 8.170

Step 7 We report the mean and standard deviation for the pruned data as
v̄ = 8.058 and σe = 0.077.

1.4 Propagation of errors
Replicate data collected by measuring a single quantity, enables us to calculate the

best value and characterize the spread by the variance with respect to the best value,
using the principle of least squares. Now we look at the case of a derived quantity
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that is estimated from the measurement of several primary quantities. The question
that needs to be answered is the following:

“A derived quantity D is estimated using a formula that involves the primary
quantities a1,a2...am. Each one of these is available in terms of the respective best
values ā1, ā2...ām and the respective variances σ2

1,σ2
2...σ2

m . What is the best estimate
for D and what is the corresponding variance σD?”

We have, by definition
D = D(a1,a2...am) (1.34)

It is obvious that the best value of D should correspond to that obtained by using the
best values for the a’s. Thus, the best estimate for D is given by D̄ as

D̄ = D(ā1, ā2...ām) (1.35)

Again, by definition, we should have:

σ2
D =

n∑
i=1

[Di − D̄]2

n−1
(1.36)

In the above expression n represents the number of measurements that have been
made and subscript i stands for the experiment number. The ith estimate of D is
given by

Di = D(a1i,a2i...ami) (1.37)

If we assume that the spread in values are small compared to the mean or the
best values (this is what one would expect from a good experiment), the difference
between the ith estimate and the best value may be written using a Taylor expansion
around the best value as

σ2
D = 1

n−1

n∑
i=1

[
∂D
∂a1

Δa1i + ∂D
∂a2

Δa2i + . . .+ ∂D
∂am

Δami

]2
(1.38)

where the partial derivatives are all evaluated at the best values for the ai. The
partial derivatives evaluated at the best values of ai are also known as influence
coefficients, usually represented as Iai . Note that only the first partial derivatives
are retained in the above expansion. If ai are all independent of one another
then the errors in these are unrelated to one another and hence the cross terms
N∑

i=1
Δami ·Δaki = 0 for m 
= k. Thus Equation 1.38 may be rewritten as

σ2
D = 1

n−1

n∑
i=1

[(
∂D
∂a1

Δa1i

)2
+
(
∂D
∂a2

Δa2i

)2
+ . . .+

(
∂D
∂am

Δami

)2]
(1.39)

Noting that
n∑

i=1

Δa2
ji

n−1
=σ2

j we may recast Equation 1.39in the form

σ2
D =

[(
∂D
∂a1

σ1

)2
+
(
∂D
∂a2

σ2

)2
+ . . .+

(
∂D
∂am

σm

)2]
(1.40)
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Equation 1.40 is the error propagation formula. It may also be recast in the form

σD =±
√(

∂D
∂a1

σ1

)2
+
(
∂D
∂a2

σ2

)2
+ . . .+

(
∂D
∂am

σm

)2
(1.41)

or

σD =±
√

(Ia1σ1)2 + (Ia2σ2)2 +·· ·+ (Iamσm)2 (1.42)

Example 1.18
A derived quantity D follows the relation D = 0.023a0.8

1 a0.3
2 where a1 and

a2 are measured quantities. In a certain case it has been determined that
a1 = 20000±125 and a2 = 5.5±0.2. Determine the nominal value of D and
specify a suitable uncertainty for the same. Which of the two quantities a1 or
a2 has a bigger influence on the uncertainty in D?

Solution :

Step 1 Using the mean values we first estimate the best value for D.

D = 0.023×200000.8 ×5.50.3 = 105.8

Step 2 In this case it is possible to perform logarithmic differentiation to get
the error propagation formula. Taking logarithms on both sides of the defining
relation between D and the a’s we have

ln(D)= ln(0.023)+0.8ln(a1)+0.3ln(a2)

Differentiating the above we get

dD
D

= 0.8
da1

a1
+0.3

da2

a2
or dD = 0.8

Dda1

a1
+0.3

Dda2

a2

We recognize the influence coefficients as Ia1 = 0.8D
a1

and Ia2 = 0.8D
a2

. These

may be used in Equation 1.42 to obtain the desired result.
Step 3 Calculate the influence coefficients now.

Ia1 =
0.8×105.8

20000
= 4.234×10−5; Ia2 =

0.3×105.8
5.5

= 5.773

Step 4 Set σa1 = 125 and σa2 = 0.2, use Equation 1.42 to get

σD =
√

(4.234×10−5 ×125)2 + (5.773×0.2)2 = 1.270

Step 5 We also have the following:

Ia1σa1 = 4.234×10−5 ×125= 0.529; Ia2σa2 = 5.773×0.2= 1.155

The uncertainty in measured quantity a2 has a bigger influence on the
uncertainty of D.
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Role of variances: In Example 1.18 we have seen that uncertainty in the
measured quantity a2 had a larger influence on the uncertainty in the derived
quantity D. The error propagation formula simply states that the variance in
the derived quantity is weighted sum of variances of the measured quantities.
The weights are the respective squares of influence coefficients. The fractional
contribution of the respective weighted variances to the variance of the derived
quantity gives us the relative influences of the variances in the measured quantities.

In Example 1.18 the fractional contributions to variance in D from a1 is
(Ia1σa1 )2

σ2
D

=

0.5292

1.2702 = 0.280
1.613

= 0.174 while that from a2 is
(Ia2σa2 )2

σ2
D

= 1.1552

1.2702 = 1.333
1.613

= 0.826.

Example 1.19
Two resistances R1 and R2 are given as 1000±25Ω and 500±10Ω. Determine
the equivalent resistance when these two are connected in a) parallel and b)
series. Also determine the uncertainties in these two cases.
Solution :

Given Data: R1 = 1000Ω, R2 = 500Ω, σ1 = 25Ω, σ2 = 10Ω,

Case a) Resistances connected in parallel:

Equivalent resistance is

Rp = R1 ·R2

R1 +R2
= 1000×500

1000+500
= 333.3Ω

The influence coefficients are

I1 =
∂Rp

∂R1
= R2

R1 +R2
− R1 ×R2

(R1 +R2)2
= 500

1000+500
− 1000×500

(1000+500)2
= 0.111

I2 =
∂Rp

∂R2
= R1

R1 +R2
− R1 ×R2

(R1 +R2)2
= 1000

1000+500
− 1000×500

(1000+500)2
= 0.444

Hence the uncertainty in the equivalent resistance is

σs = ±
√

(I1σ1)2 + (I2σ2)2

= ±
√

(0.111×25)2 + (0.444×10)2 =±5.24Ω

Case b) Resistances connected in series:

Equivalent resistance is

Rs = R1 +R2 = 1000+500= 1500Ω

The influence coefficients are

I1 = ∂Rs

∂R1
= 1; I2 = ∂Rs

∂R2
= 1

Hence the uncertainty in the equivalent resistance is

σs =±
√

(I1σ1)2 + (I2σ2)2 =±
√

(1×25)2 + (1×10)2 =±26.93Ω
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1.5 Specifications of instruments and their
performance

In this section we look at the limitations introduced by the instruments used
for making measurements. In the past measuring instruments were mostly of the
analog type with the reading displayed by a pointer moving past a scale. Resolution
of such instruments were basically limited to the smallest scale division. Of course,
in addition, the manufacturer would also specify the accuracy as a percentage of the
full scale reading, based on calibration with reference to a standard.

In recent times most measuring instruments are digital in nature and the
performance figures are specified somewhat differently. Take the example of meter

that displays 4
1
2

digits20. The reading of the instrument may be anywhere between

0.0000 and 1.9999. The number of counts21 is 20000. Accuracy specification
is usually represented in the form ±(%of reading+ counts). For example, typical
specification of a DMM (Digital Multi Meter)) is of form ±(0.5 %of reading+5 counts)
when DC voltage is being measured. In a typical example, we may be measuring
the voltage of a DC source whose nominal value is 1.5 V. This DMM would give a
reading in between 1.492 and 1.508 V. We take an example below to show how the
instrument specification affects the measurement.

Example 1.20
A resistor is picked up from a lot labeled 150 Ω with a precision of 1%. Its
value is measured using a DMM which has a range of 0−600.0 Ω, accuracy
of ±(0.9 %of reading+2 counts). What would be the expected outcome of the
measurement?
Solution :

Step 1 The nominal value of the resistor is R = 150Ω. Precision of 1% would
mean that it may have a minimum value of Rl = 148.5 Ω and a maximum
value of Rm = 151.5Ω.
Step 2 Let us assume that the actual value of the resistor is Rl . The meter

will then give either of the readings shown in the last row below:

Rl = 148.5 Ω

0.9% of Rl = 1.3 Ω

Error due to count = 0.2 Ω

Reading is either 147.0 Ω or 150.0 Ω

Step 3 Let us assume that the actual value of the resistor is Rm. The meter
will then give either of the readings shown in the last row below:

20Most significant digit can be either 0 or 1 while all other digits may have any value
between 0 and 9.

21Number of levels equals the number of counts.
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Rm = 151.5 Ω

0.9% of Rm = 1.4 Ω

Error due to count = 0.2 Ω

Reading is either 149.9 Ω or 153.1Ω

Step 4 Thus the actual value of the resistance indicated by the instrument
may be anywhere between 147.0 and 153.1 Ω.

Example 1.21
In a wind tunnel air flow is maintained steady at a nominal speed of
15 m/s. A vane anemometer is used to measure the wind speed. Specify
an error bar for the measurement if the resolution (4 digit display) of the
anemometer is 0.01 m/s and the accuracy specification by the manufacturer of
the anemometer is ±(3% reading + 0.20) m/s.

Solution :
The nominal value of the wind speed is V = 15 m/s. We assume that the
reading of the anemometer is this value i.e. 15.00 m/s. Using the accuracy
specification the uncertainty is calculated as follows:

1. 3%of reading= 3×15.00
100

= 0.45 m/s
2. Total uncertainty is equal to 0.45+0.2= 0.65 m/s.

Hence the measured velocity is specified as V = 15± 0.65 m/s. In terms of
percentages the uncertainty in the wind speed is ±4.33%.

Concluding remarks

This chapter has set the tone for the rest of the book by presenting statistical
principles that play important role in analysis and interpretation of experimental
results. Properties of normal distribution are relevant in most measurements and
hence have been discussed in detail. Test for normality and data rejection based
on sound statistical principles have been presented. Other topics considered
include sampling theory and error propagation.




