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Signal Sampling

We are living in an analog world that makes it fairly easy to overwhelm our compu-
tation system to process the vast information carried by the analog signal. To process
the analog signal, it will have to be sampled in a way that the sampled signal can be
handled by our computation system. The sampled signal should be able to faithfully
represent the analog signal. With this, it is natural to ask: “Is it possible to reconstruct
the analog signal from the samples?” Such an important question has been answered
by the sampling theorem [56]. The sampling theorem considers the signal sequence f [k]
obtained by uniformly sampling an analog function f (x) with a sampling interval Δx,
such that

f [k] = f (x)𝛿(x − kΔx) = f (kΔx), ∀k ∈ ℤ, (1.1)
where 𝛿(⋅) is a Dirac delta function and ℤ is the set of integers. The sampling theorem
tells us when and how to reconstruct the analog signal f (x) from the sampled signal
sequence f [k]. At the same time, the signal sequence f [k] to be handled by the compu-
tation system is not only a sampled version of f (x) along x; the amplitude of the signal is
also “sampled” by a process known as quantization. We shall discuss the x domain (also
known as the time domain) sampling process in the next section and the quantization
process in Section 1.3. Following the presentation of the sampling theorem, the signal
reconstruction problem is alleviated by means of interpolation and/or approximation.
Other problems that affect the signal reconstruction accuracy, including quantization,
will be discussed in Section 1.3. The quantization problem is an important problem
because the quantization process is lossy, which poses tremendous difficulties in the
recovery of the analog signal. A number of reconstruction methods for imperfect signal
will be discussed subsequently.

1.1 Sampling and Bandlimited Signal

The readers should have studied Engineering Mathematics in their freshman year;
therefore, we shall not discuss the Fourier theorem in detail. Nevertheless, the discrete
Fourier transform (DFT) of sampled signal sequence will be introduced in Section 1.2.1
to familiarize the readers with the mathematical notations used in this book. This book
also assumes the readers have already acquired the basic knowledge about spectral
domain signal processing, and, therefore, this section starts with a formal definition
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Figure 1.1 (a) Spectrum of a bandlimited signal f (x) with bandwidth B; (b) sampled with rate Δx = 2π
𝜔s

with B ≤ 𝜔x can be recovered with a sinc filter with bandwidth 𝜔s.

of bandlimited signal. A signal f (x) is said to be bandlimited with bandwidth B if and
only if it does not contain any frequency components outside the spectral range of
−B∕2 ⩽ 𝜔 ⩽ B∕2, where 𝜔 is the angular frequency. An example of bandlimited signal
is shown in Figure 1.1, where the B bandlimited signal f (x) has its Fourier transform
F(𝜔) equal 0 with |𝜔| > B∕2.

The sampling theorem tells us the sufficient conditions for the reconstructed signal
g(x) obtained from

g(x) = f [k]⊗ h(x) =
∞∑

k=−∞
f (kΔx)h(x − kΔx), (1.2)

where h(x) is the reconstruction function and the sample sequence f [k] = f (kΔx) with
k ∈ ℤ and Δx > 0 (as discussed in Eq. (1.1)) is lossless, such that g(x) = f (x), with f (x)
being bandlimited by B with sampling frequency 𝜔x =

2π
Δx

⩾ B. A formal and also one of
the oldest definition of the sampling theorem is given by the following

Theorem 1.1 Sampling theorem: Consider a sampled signal f [k] with samples
taken at a B-bandlimited function f (x) at sampling period Δx. The reconstructed
signal,

g(x) =
∞∑

k=−∞
f [k]sinc

(π(x − kΔx)
Δx

)
=

∞∑
k=−∞

f [k]sinc
(𝜔x

2
(x − kΔx)

)
, (1.3)

with 𝜔x =
2π
Δx

being the sampling frequency and sinc(a) = sin(a)∕a being a sinc func-
tion, is an exact reconstruction of f (x) when 𝜔s ⩾ B. It should be noted that both 𝜔x
and B are in radian and 𝜔x = B is known as the Nyquist frequency or Nyquist rate.
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To understand Eq. (1.3) of the sampling theorem, we can make use of the discrete time
Fourier transform (DTFT) to examine the reconstructed signal g(x).

G(𝜔) =
∑

k
f [k]e−2j𝜔k ×  (

sinc
(𝜔s

2
(x − kΔx)

))
,

=
Hsinc,Δx(𝜔)

Δx

∞∑
k=−∞

F(𝜔 − k𝜔s), (1.4)

where Hsinc,Δx(𝜔) is the DTFT of sinc(⋅) that is a box function of height Δx in the spectral
domain from [−𝜔x∕2, 𝜔x∕2], and zero everywhere else, and  is the Fourier transform
operator. It is vivid from Eq. (1.4) that the spectrum of the sampled signal is a series of
duplications of the original analog signal spectrum of F(𝜔) located at spectral locations
k𝜔x with k ∈ ℤ as shown in Figure 1.1b. Therefore, when the bandwidth of f [k] is smaller
than 𝜔s, the contributions of the duplicated spectral components F(𝜔 − k𝜔x) at differ-
ent k will not overlap (also known as aliasing-free). Otherwise, as shown in Figure 1.2b,
when the signal spectrum of f (x) has a bandwidth wider than 𝜔s as shown in Figure 1.2a,
the spectral contributions of the sampled signal spectra at different k will overlap. As a
result, the reconstructed signal obtained by filtering with Hsinc(𝜔) will be a distorted
signal F̂(𝜔) (not the same as F(𝜔)). Such kind of distortion is known as the aliasing
distortion. This helps to illustrate the Nyquist frequency (𝜔x = B) as a sufficient condi-
tion to perfectly reconstruct the analog function f (x) from its sample sequence f [k] at a
sampling rate Δx =

2π
B

.
The sampling theorem (Theorem 1.1) stated that a bandlimited signal f (x) can be sam-

pled at a rate equal to or higher than the Nyquist rate and then reconstructed from its
sample sequence without loss by passing the sample sequence f [k] through a noncausal
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Figure 1.2 (a) Spectrum of a bandlimited signal f (x) with bandwidth B; (b) sampled with rate Δx = 2π
𝜔x

with B > 𝜔s will suffer from spectrum overlap error, also known as aliasing noise, which makes it
difficult to be recovered by a sinc filter with bandwidth 𝜔s.
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filter with the impulse response equal to a sinc function. In reality, Eq. (1.3) is of theoret-
ical interest only because the equation is numerically ill conditioned (the range of f [k]
includes both causal and noncausal components). However, it is intuitively clear that the
analog function could be closely reconstructed from the sampled sequence using prac-
tical reconstruction function (provided that the signal does not change too rapidly and
hence bandlimited), and the sampling frequency is relatively high when compared with
that of the signal (in that case the sampling frequency is higher than that of the signal
bandwidth).

1.2 Unitary Transform

The DTFT can be applied to signal sequence with infinite length to represent the signal
in frequency domain. For finite length signals, the concept of spectral (Fourier) domain
representation is generalized to transform domain representation with unitary trans-
forms. Let us consider a length N finite duration sequence

f = [ f [0] f [1] · · · f [N − 1] ]T , (1.5)

where f can be a vector in either ℝN×1 or ℂN×1. Similarly, consider an invertible matrix
U that is in either ℝN×N or ℂN×N , which is known as the basis matrix or kernel matrix.
A linear transform and the associated inverse transform of f by U are defined to be

F = U ⋅ f, (1.6)

f = U−1 ⋅ F, (1.7)

with F ∈ ℝN×1 or ℂN×1 being the transform coefficient vector of f . In other words, the
signal vector f is represented by F in a domain described by the basis matrix U. The
transform defined by the set of Eqs. (1.6) and (1.7) is said to be a unitary transform pair
when U ∈ ℝN×N and

U−1 = UT ⇌ UUT = I. (1.8)

In the case of U ∈ ℂN×N , the basis matrix U is a unitary transform when it satisfies

U−1 = U† ⇌ UU† = I, (1.9)

where the superscript † denotes the complex conjugate transpose operation and the
resulting matrix is known as the Hermitian matrix. The following will present an
example of the complex unitary transform, the DFT.

1.2.1 Discrete Fourier Transform

The DFT is derived from the DTFT by assuming f [n] is periodic, which implicitly
defines a mapping from ℂN to ℂN between f [n] and F[k] as

f [n]


−−−−→ F[k] =
N−1∑
n=0

e
−j2πkn

N f [n], ∀k = 0,… ,N − 1, (1.10)
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with j =
√
−1. The inverse discrete Fourier transform (IDFT) of the sequence F[k] is

given by

F[k]
−1

−−−−→ f [n] =
N−1∑
k=0

e
j2πkn

N F[k], ∀n = 0,… ,N − 1. (1.11)

In the form of unitary transform, the transform kernel of the DFT is given by the N × N
DFT (Fourier) matrix WN , where the subscript N indicates the kernel size.

WN =
[
e

−j2πkn
N

]
0⩽k,n<N

. (1.12)

If we denote W k
N = e

−j2πk
N , the Nth root of unity, then the Fourier matrix can be expressed

as a Vandermonde matrix in W . As an example, the 3 × 3 Fourier matrix is given by

W3 =
⎡⎢⎢⎢⎣

W 0
3 W 0

3 W 0
3

W 0
3 W 1

3 W 2
3

W 0
3 W 2

3 W 4
3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 1 1
1 W 1

3 W 2
3

1 W 2
3 W 1

3

⎤⎥⎥⎥⎦ . (1.13)

Therefore, one can view the computation of F[k] from f [n] as a matrix vector product of

 (f ) = WN f = F. (1.14)

The IDFT can be easily obtained by multiplication of W−1
N to Eq. (1.14). Since the matrix

WN is an orthogonal matrix, therefore, W−1
N = W†

N as given by Eq. (1.9). In image inter-
polation, N is usually very large, and an efficient method to compute the DFT is required.
In MATLAB, an efficient computation of the DFT is available by means of the fast
Fourier transform (FFT) command fft.

It is vivid that the kernel of the Fourier matrix WN is a function of j =
√
−1, which

makes this kernel complex. As a result the power of the signal in frequency domain
(Fourier domain) given by the power spectrum P[u] is obtained as the sum of squares
of the real and imaginary part of the DFT

P[u] = |F[u]|2 = (R2( [u]) + 2(F[u])), (1.15)

which measures the power of individual sinusoidal components contained in the signal.

1.3 Quantization

The time domain (x domain) sampled signal has a continuum of values, as can be
observed from the solid line in Figure 1.3. However, the sampled analog signal must
be representable in digital form for storage or transmission. Since the number of bits
(binary digits) for representing each signal sample is limited, the analog samples must
be quantized to a finite number of levels before it can be coded in the form of binary
numbers. As a result, the quantization process compresses the continuum of analog
values to a finite number of discrete values. It is vivid that the quantization process
will introduce distortion into the quantized signal when compared with the original
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Figure 1.3 Sampling and quantization of a
one-dimensional continuous signal.

analog signal. This kind of distortion is known as quantization noise. In simple terms, a
scalar quantizer for real signal is a mapping from ℝ to a finite set of discrete values on
the real number line. The quantized value is chosen to be the closest approximation to
the amplitude of the input signal within the finite set. Formally, a scalar quantizer Q(⋅)
defines the mapping of the input decision intervals (dk ∶ k = 0, 1,… , L) to output or
reconstruction levels (rk ∶ k = 0,… , L − 1). The quantized signal is given by

fQ(x) = Q(f (x)) = rk with dk ⩽ f (x) < dk+1 for k = 0,… , L − 1. (1.16)

Without loss of generality, the decision levels are chosen such that

d0 < d1 < · · · < dL. (1.17)

Furthermore, d0 and dL are selected to be the minimum and maximum possible input
signals. It should be noted that d0 = −∞ and dL = ∞ are valid and are being chosen for
most of the quantizers applied in practice. As a result, the number of bits required to
address any one of the output levels is ⌈log2L⌉ bits with ⌈⋅⌉ being the ceiling operator that
returns the smallest integer equal to or larger than log2L. There exist a lot of quantizers
(a particular choice of dk and rk) that are optimal for different applications. Without
loss of generality and limitation in our discussions, we shall focus on uniform quantizer
in this book, where the difference between decision levels of the quantizer equals to a
constant step size ΔQ.

ΔQ = dk − dk−1, ∀k ∈ ℤ+. (1.18)

An example of an analog signal being sampled and quantized is shown in Figure 1.3,
where the analog signal plotted in the figure is a damped cosine function.

f (x) = 10e−x∕10 cos
( x

10
𝜔 − 𝜃

)
− 𝛾, (1.19)

with 𝜔 = 2π, 𝜃 = 3, and 𝛾 = −9.9. The sampled and quantized signal samples are plot-
ted in Figure 1.3 by black dots together with the analog signal f (x) by solid line. It can be
observed that the sampled signal can faithfully represent the analog signal with quanti-
zation error 𝜖(x) (also known as quantization noise as marked in Figure 1.3 for the case
of x = 6). The quantization error is highly correlated with the number of bits applied to
quantize the signal. Shown in Figure 1.4 is the same signal being sampled with the same
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Figure 1.4 Signal sampling with different quantization bit depths.

sampling rate and quantized with a uniform quantizer under different numbers of bits.
It can be observed from Figure 1.4 that the “quality” of the sampled and quantized signal
sequence improves rapidly with small increases in the number of bits being applied to
the uniform quantizer. The higher the quality, the better the sampled and quantized sig-
nal sequences resemble the analog signal, both visually and also in least squares sense. In
fact, the improvement is very efficient in particular for the case of increasing the num-
ber of quantization bits from 2 bits to 3 bits. This visual evidence leads us to conjecture
that there exists a close relationship between the sampling rate and the quantization bit
length that affects the quality of the sampled signal.

1.3.1 Quantization and Sampling Interaction

The interaction between sampling and quantization can be revealed by observing the
sampling and quantization results shown in Figure 1.5. Shown in Figure 1.5a is the
damped cosine function as depicted in Eq. (1.19) being sampled and quantized with
a particular rate and bit length. Figure 1.5b shows the same damped cosine function
sampled with doubled sampling rate but quantized with the same bit length as that in
Figure 1.5a. It can be observed that the quality of the sampled signal does not improve
significantly. In other words, the quality of the sampled signal sequence cannot be
improved by increasing the sampling rate alone. It requires the increment of both the
sampling rate and the quantization bit length to improve the quality of the sampled
signal as shown in Figure 1.5c, where the damped cosine function is sampled with
doubled sampling rate and quantized with one more bit when compared with that in
Figure 1.5a. In the rest of this book, we shall assume that adequate number of quan-
tization bit length is applied to all the image processing and interpolation problems,
such that the quality of different image processing and interpolation problems will be
independent of the quantization bit length.
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Figure 1.5 Effects of sampling rate and number of quantization bit on the sampling quality of a
one-dimensional continuous signal: (a) a damped cosine function sampled with a particular sampling
rate and number of quantization bit, (b) the same function sampled with doubled sampling rate but
the same number of quantization bit length, and (c) the same function with the same sampling rate as
that in (b) and increased number of quantization bit by one.

1.4 Sampled Function Approximation: Fitting
and Interpolation

Theoretically the sampled signal can be perfectly reconstructed by Eq. (1.3). However,
the filter in Eq. (1.3) is noncausal and thus cannot be used in practice. Furthermore, the
samples are obtained with sampling rate that may not satisfy the sampling theorem. Even
if the above two conditions are satisfied, the sampled signal will suffer from quantization
error. As a result, exact signal reconstruction is difficult, if not impossible. In practice,
the signal reconstruction problem is very often reformulated as a function approxima-
tion problem that extracts a function representation from the given signal samples. The
function approximation can be roughly classified into two categories: interpolation and
fitting. The fundamental difference between these two techniques is that the interpola-
tion function passes through all the given signal samples, while the fitting function may
not pass all the signal samples. Figure 1.6 is an example illustrating the fundamental dif-
ference between interpolation and fitting. The dots lying on the sampling grid are the
data points sampled from the original damped cosine function depicted in Eq. (1.19).
The solid line is the curve obtained by interpolation, while the dashed line is the result
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Figure 1.6 Reconstructing the analog signal
from its samples through interpolation (solid
line) and fitting by least squares approximation
(dashed line).
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obtained by fitting. It can be observed that the interpolation curve does pass through
all data points, while the fitting curve does not. Formally, we can define the interpola-
tion problem as a constrained functional fitting problem, such that the fitting function
is constrained to pass through all the given signal samples. There exist a lot of functions
that can be applied to the interpolation (function approximation) problem. In particu-
lar the one shown in Figure 1.6 is obtained by minimizing the least squares difference
between the given samples with a set of predefined basis functions. One of such func-
tion is a degree n polynomial Pn(x). The Weierstrass theorem formulated the function
approximation problem between f (x) and Pn(x) as a least squares problem that mini-
mizes 𝜖 with|f (x) − Pn(x)|2 ⩽ 𝜖, x ∈ [0,N], (1.20)
with | ⋅ |2 being the 2 norm operator and 𝜖 > 0 being a predetermined small quantity
also known as the approximation error. If the problem is further constrained to satisfy

comb(x,Δx)f (x) = comb(x,Δx)Pn(x). (1.21)
Then the function approximation problem is equivalent to an interpolation problem,
where Pn(kΔx) = f [k]. The comb function comb(x,Δx) is given by

comb(x,Δx) =
∞∑

k=−∞
𝛿(x − kΔx), (1.22)

which is equivalent to a pulse train function. If n is sufficiently large, a polynomial Pn(x)
can be found to satisfy Eq. (1.21), which in our example is plotted with a solid line in
Figure 1.6. On the other hand, when the order of the polynomial is not large enough,
Pn(x) may not be able to satisfy Eq. (1.21), and the best Pn(x) that satisfies Eq. (1.20) will
be similar to that plotted in Figure 1.6 with a dashed line, which does not pass through
all the given sample points.

It is vivid that it is impractical to apply polynomial function with a given degree n to
interpolate any given set of signal samples within a predefined interval. As a result, inter-
polation by polynomial functions is always performed in a piecewise fashion, such as
those shown in the following sections, where two frequently used signal reconstruction
techniques (which involve the application of two polynomials with degrees 0 and 1) are
presented. These two methods are simple and easy to use and are thus adopted in many
real-life applications, even though the reconstruction results are far from satisfactory in
many cases.
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1.4.1 Zero-Order Hold (ZOH)

One practical reconstruction method that has been applied in many applications is the
zero-order hold (ZOH) method. The ZOH method is also known as the nearest neigh-
bor method, where the interpolated signal samples are filled with the same value as that
of the signal sample on the left (time or x domain index smaller than that of the signal
location under concern) of it. For theoretical and sometimes practical purposes, it is
useful to model the interpolation method by a convolution process. The ZOH interpo-
lation method follows the signal reconstruction Eq. (1.2) with the reconstruction filter
h(x) = h0(x) given by

h0(x) =
{ 1, for 0 ⩽ x ⩽ Δx,

0, elsewhere.
(1.23)

This interpolation kernel is plotted in Figure 1.7a. The filtering can be evaluated between
fΔx

(x) and h0(x) in time domain through convolution to obtain the reconstructed signal
g(x) as

g(x) = h0(x)⊗ fΔx
(x) = ∫

Δx

0

∞∑
k=−∞

f [k]𝛿(x − kΔx − �)d�

=
∞∑

k=−∞
f [k](u(x − kΔx) − u(x − (k + 1)Δx)), (1.24)

with u(⋅) being the step function. The difference between the two-step functions
in Eq. (1.24) will lead to a g(x) that looks like staircase approximation as shown in
Figure 1.7b for the sampled damped cosine function f (x) in Eq. (1.19).

1.4.2 First-Order Hold (FOH)

Another frequently used interpolation method constructs an analog signal by connect-
ing adjacent signal samples using a straight line. This is equivalent to interpolate the
missing signal as a weighted sum of adjacent signal samples where the weight equals
the distance between the missing signal and the two adjacent signal samples. Following
Eq. (1.2), the interpolation can be accomplished by passing f [k] through the first-order
hold (FOH) (noncausal) but finite in length filter h(x) = h1(x) given by

h1(x) = tri
(

x
Δx

)
=

{
1 − |x|

Δx
, for |x| ⩽ Δx,

0, otherwise,
(1.25)

with Δx being the distance between two signal samples. The interpolation kernel in
Eq. (1.25) is equivalent to a triangular function (tri(⋅)), and its impulse response is plotted
in Figure 1.7c. The reconstructed signal g(x) is thus given by

g(x) = h1(x)⊗ fΔx
(x)

=
∞∑

k=−∞
f [k]tri

(x − kΔx

Δx

)
. (1.26)

The reconstructed signal of the sampled damped cosine function in Eq. (1.19) is shown in
Figure 1.7d. It can be observed that the FOH gives much better interpolation results than
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Figure 1.7 Illustration of (a) impulse response of a zero-order hold (ZOH) filter h0(x); (b) the sampled
signal g(x) reconstructed using the ZOH filter h0(x); (c) impulse response of a first-order hold (FOH)
filter h1(x); (d) the reconstructed signal filtered by h1(x).

those obtained by ZOH. If we consider the ZOH and FOH filters in spectral domain,
which are given by

h0(x)

↔H0(j𝜔) =

2
𝜔

sin
(
𝜔Δx

2

)
e−j𝜔Δx∕2, (1.27)

h1(x)

↔H1(j𝜔) =

4
𝜔2Δx

sin2
(
𝜔Δx

2

)
, (1.28)

and are plotted in Figure 1.8b,c, respectively, for the case of Δx = 1, it is vivid that both
the time and spectral domain responses of the filter kernels of ZOH and FOH are the
approximation to that of the sinc filter with a finite kernel size as shown in Figure 1.8a.
The FOH is observed to produce better interpolation result in Figure 1.7d, and at the
same time, the FOH kernel (in both time and spectral domains) also achieves better
approximation to that of the sinc filter. This observation led us to draw the conclusion
that the quality of the interpolated signal not only depends on how well the interpo-
lation filter mimics the sinc filter but also depends on how well the time and spectral
responses of the interpolation filter match the time and spectral responses of the analog
signal. High-order polynomial interpolation kernel can provide very good mimic to the
sinc interpolator. It is, however, the signal reconstructed by higher-order polynomial fil-
ter that has a higher-order differentiability. The higher the order of the filter kernel, the
faster the decay rate of the filter response in high frequency than that of lower degree fil-
ter kernel. As a result, these filters help to minimize the introduction of high frequency
interpolation error. But at the same time, they may also remove some high frequency
components of the original signal. We shall discuss the two-dimensional (2D) digital
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Figure 1.8 Time and spectral responses for various reconstruction filters: (a) Sinc filter; (b) Zero-order
hold; and (c) First-order hold.

image interpolation in a sequel, where it is concluded that the sharpness of the interpo-
lated image is being traded for edge blurring as the degree of the interpolation kernel
increases. Disregarding the kind of performance trade-off, it is the purpose of the rest of
this book to introduce interpolation kernels and methods that aim at interpolating the
sampled signal with the best performance trade-off to reconstruct a signal that closely
mimics the analog signal.

1.4.3 Digital Interpolation

Instead of reconstructing the analog signal, most of the digital signal applications only
interested in digital interpolation. The objective of digital interpolation is to obtain a
new sequence that is a close approximation to the sampled sequence obtained from sam-
pling the associated analog signal with high sampling rate. Such process is sometimes
known as up-sampling. The digital interpolation is considered to be computationally
efficient, as it avoids the analog function reconstruction problem. As an example, the
digital interpolation by a factor of r through linear filtering can be achieved through a
two-stage process, where (i) r − 1 zeros are inserted between every two samples of f [k]
in the first stage and then (ii) filter the zero-inserted signal by a digital filter (the interpo-
lated kernel). Two possible filters (ZOH and FOH) are introduced in previous sections
as depicted in Eqs. (1.23) and (1.25). More interpolation filters and their properties will
be discussed in subsequent chapters.

1.5 Book Organization

In Chapter 2, the fundamental theories of digital and analog images and related mathe-
matical manipulations will be presented, together with a formal definition of the image
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interpolation problem. We shall also discuss the application of MATLAB to manipulate
digital images in a PC environment. The performance of the interpolation algorithm
should be determined by human; however, such quality assessment method is either
biased due to small sample size (human observers) or very expensive and slow when the
sample size is large (a large group of human observers). Instead, various analytical qual-
ity measures are developed, where some are developed specifically to mimic the human
visual system to provide limited subjective quality measure. Some of the frequently used
quality measures will be discussed in Chapter 3 to assist the performance evaluation of
various image interpolation algorithms to be presented in subsequent chapters.

The rest of the book is formally divided into three parts: the traditional nonadaptive
image interpolation methods, the model-based image interpolation methods, and the
fractal-based interpolation methods. Many other arrangements could be adopted; how-
ever, the authors have chosen this framework because they believe that it is the most
natural way for the readers to first learn the conventional image interpolation methods
and work their way up to the advanced image interpolation methods. Algorithms pre-
sented in Chapter 4 are pure nonadaptive interpolation methods, where the image is
interpolated with only one assumption, that is, the sampled signal (image) is bandlim-
ited. Chapter 4 derives the traditional nonadaptive linear filtering-based interpolation
methods from sampling theorem. Some of the interpolation algorithms are very effective
in interpolating texture-rich areas, which will be integrated as part of the model-based
image interpolation methods to be presented in later chapters. Chapter 5 is devoted
to the discussion of image interpolation in the spectral domain. The basic theoreti-
cal performance is the same as the corresponding nonadaptive methods presented in
Chapter 4. However, the implementation in frequency domain through block-based
transformation allows the change of interpolation kernels (transform basis) on the fly
and thus can achieve mixed-basis interpolation with ease. Furthermore, we shall also
present iterative interpolation methods, which can be considered as a back propagation
algorithm that helps to improve the interpolated image quality.

Chapter 6 extends the image interpolation problem from spatial to spectral domain
and then to scale-space. Traditionally wavelet transform can be viewed as conventional
transform as those discussed in Chapter 5. However, the multi-resolution decomposi-
tion method adopted by wavelet transform allows us to construct a scale-space rep-
resentation of the image where the transform kernel adopts to the changing scales.
Features that are important to the human visual system can be easily located in scale-
space. The application of across scale information is the first step to apply model-based
image interpolation. The advantage of model-based image interpolation is fully revealed
in subsequent chapters.

The model-based image interpolation methods that preserve the structure and edges
of the image using explicit edge maps obtained from edge detectors are presented in
Chapter 7. The interpolated image quality can be greatly improved; however, their per-
formance is limited by the accuracy of the edge map. Due to the existence of image noise
(which includes the quantization noise) and the complexity of the edges in two dimen-
sions, it is difficult to obtain good edge localization and completeness. Edge-directed
image interpolation methods that make use of implicit edge information, such as scale-
invariant geometric duality in second-order statistics, are presented in Chapter 8.

The iterative interpolation algorithm first discussed in Chapter 5 can be implemented
in all model-based algorithms to improve the image interpolation results. This is because
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subsequent interpolation loop helps to correct the interpolation error resulted from the
previous loop. Similar iterative approach will be applied to the model-based method in
Chapter 8.

The fractal image interpolation method presented in Chapter 9 is the ultimate iter-
ative image interpolation method. Instead of modeling the image as composed with
edges and filled with texture in between, fractal image coding models the image as self-
organized low-resolution fractal images. As a result, interpolation is just as simple as
growing the fractal image to the desired resolution. However, fractal image interpolation
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Figure 1.9 Book organization.
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is probabilistic and does not guarantee the original image pixel intensities that are pre-
served in the interpolation process. An appropriate modification of the conventional
fractal reconstruction algorithm is required to preserve the low-resolution image pixel
values to achieve image interpolation instead of fitting.

This text is intended for use as a senior course in image processing. The above topics
can be arranged in many ways in the lectures, depending on the coverage required in
the course. Shown in Figure 1.9 is the suggested course material arrangement. A use-
ful approach for undergraduate teaching will cover the materials from Chapters 1 to 6
to provide the understanding of image interpolation from basic signal processing algo-
rithms and interpolated image quality evaluations to nonadaptive image interpolation
methods. Chapters 7–9 are advanced topics on image interpolation. In particular, we
focus on edge-directed image interpolation methods. A senior undergraduate course
can be easily organized from materials presented in Chapters 1 –5 and 7. Chapters 6, 8,
and 9 involve graduate-level understanding of image processing using high-order statis-
tics, wavelet, and fractal image processing. The materials presented in Chapters 5–9 will
form a one-semester graduate-level course, where Chapter 5 will provide the necessary
review of the transform domain image processing.

In our experience, students learn more when they are given realistic assignments to
carry out. To this end, we would encourage substantial assignments on, for example,
the MATLAB implementation of the studied image interpolation methods and tweak-
ing those algorithms to achieve the desired subjective performance. This work should
be designed to demonstrate and reinforce the techniques taught. It is important that
students actually participate and attend lectures to gain the best from the course.

1.6 Exercises

1.1 Consider the inverse DFT with N = 5.
1. Find the inverse Fourier matrix −1.
2. Verify that it is the inverse of  , that is, show −1 = I.

1.2 Develop a MATLAB program that accepts N + 1 pairs of data points (x0, y0), … ,

(xN , yN ) and generates a 1 × N vector [aN aN−1 a0] such that the polynomial P(x) =
aN xN + aN−1xN−1 + · · · a0 will pass through the given data points.

1.3 Develop a MATLAB program that accepts N data points and generates 2 × N data
points by resampling the first-order hold function constructed with the given N
data points.
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