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1.1 Introduction

Many diagnostic and therapeutic procedures require a thermal model for perfused
tissues for determining in vivo temperatures in order to better plan and implement
those procedures (e.g., heating during MRI, burn management, etc.). However, it is
extremely challenging to determine in vivo temperatures by solving the ‘exact’ thermal
model, derived from first principles, and called the convective energy equation (CEE)
[1]. This is so because it requires at least 20 linear computational nodes across the
diameter of a blood vessel to obtain a numerically converged temperature solution
of the CEE [2]. Blood vessel diameters range from ∼3 cm in large vessels (e.g., aorta,
vena cava) to ∼3 μm in capillaries inside a human body. Thus, it requires a stupendous
amount of computational power (∼3(1011) nodes for every 1 mm3 assuming a uniform
mesh resolution of 0.15 μm) to solve for the temperatures in perfused tissues if the CEE
is used alone. This is in addition to the daunting challenge of knowing the blood velocity
field in all the vessels down to every single capillary as a function of space and time since
the blood velocity is a necessary input to the CEE. Therefore, to manage computational
costs, temperatures in tissues embedded with ‘small’ (<1 mm in diameter) more
frequent blood vessels are determined using ‘approximate’ thermal models known as
bioheat transfer models (BHTMs) [3, 4], and temperatures in ‘large’ (vessel diameter ≥
1 mm), less frequent blood vessels are determined using the ‘exact’ thermal model, the
CEE [1].

BHTMs can be derived using first principles or proposed intuitively. The objective of
this chapter is to present a general methodology to derive BHTMs from first principles.
Deriving BHTMs from first principles is important since it helps relate the variables and
parameters of the bioheat models to the underlying physiology, which provides better
insight into the most fundamental mechanisms at play. The methodology is used to,
first, derive a general, ‘two-compartment’ BHTM with very few assumptions – herein
called the two-compartment generic bioheat transfer model (GBHTM) [5]. Later,
more general forms of the model (i.e., a three-compartment GBHTM and an ‘N + 1’
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4 Theory and Applications of Heat Transfer in Humans

compartment GBHTM) are derived using the same methodology. Next, the newly
derived two-compartment GBHTM is compared with Pennes’ intuitively proposed (and
thus, empirical) ‘gold standard’ BHTM to better understand the implicit and explicit
assumptions, and thereby application regime of Pennes’ BHTM. Pennes’ BHTM is cho-
sen since it is a simple, empirical, and widely used BHTM. Lack of a formal derivation
makes it difficult to relate the parameters and variables of this simple BHTM to the
underlying physiology (e.g., blood flow, blood vasculature geometry, thermal properties
of tissue and blood vessels), which in turn has, historically, made the implementation
and interpretation of Pennes’ BHTM and its results controversial and unreliable.
Finally, in vivo temperature predictions of the two-compartment GBHTM and Pennes’
BHTM are compared to the measured temperatures for magnetic resonance imaging
(MRI) applications to further illustrate the usefulness of the bioheat models.

1.2 Derivation of Generic Bioheat Thermal Models (GBHTMs)

Above, we discuss the complexity and the impracticality of solving the exact thermal
model, the CEE, alone in perfused tissues to obtain point-wise true tissue temperature
distribution in space and time. That scenario forces us, as a compromise, to develop an
approximate thermal model to determine the temperature of a ‘volume’ of tissue (i.e., a
‘volume averaged’ tissue temperature), rather than determining the temperature of each
point in tissue (i.e., point-wise true tissue temperature).

Let’s derive an approximate thermal model, a two-compartment GBHTM, by vol-
ume averaging the CEE. The presented methodology is general and is used to derive a
three-compartment GBHTM and an ‘N + 1’ compartment GBHTM later in this chapter.
For those of you who are not interested in the derivation, you may refer directly to the
final differential form of the two-compartment GBHTM presented in Equations 1.10
and 1.11 below. The three-compartment GBHTM is presented in Equations 1.12–1.14.
The ‘N + 1’ compartment GBHTM is presented in Equations 1.15, 1.16. Simplifications
used to obtain the GBHTMs are presented in Equations 1.7–1.9.

1.2.1 A Two-Compartment Generic Bioheat Transfer Model

Let’s consider a finite, vascularized, heated tissue. Let’s assume that the blood stays
inside the vasculature and everything surrounding the blood is a non-moving solid
tissue. Conserving energy at a point in the solid tissue and blood results in the following
point-wise true, exact thermal model, the CEE [1]. Note that the velocity of solid tissue
uT is zero in Equation 1.1 by our assumption.

(ρcP)i

[
𝜕Ti

𝜕t
+ ui.∇Ti

]
= ∇.ki∇Ti + Qi, i = T , Bl (1.1)

Also, note that solving Equation 1.1 for the point-wise temperatures in tissue perfused
with smaller (<1 mm in diameter), more frequent blood vessels is impractical due to the
tremendous cost of computation and the unavailability of the three-dimensional blood
velocity field uBl. Next, let’s imagine that our perfused tissue is made of several smaller
volumes put together, herein called the averaging volume and each averaging volume V
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consists of two sub-volumes or compartments: a solid tissue sub-volume VT and blood
sub-volume VBl. Integrating Equation 1.1 over the solid tissue and blood sub-volumes,
separately, in an averaging volume results in Equation 1.2.

∫Vi

(ρcP)i

[
𝜕Ti

𝜕t
+ ui.∇Ti

]
dV = ∫Vi

(∇.ki∇Ti)dV + ∫Vi

QidV , i = T , Bl (1.2)

Applying divergence theorem to the first terms on the left-hand side (LHS) and
right-hand side (RHS) of Equation 1.2 results in Equation 1.3. Interested readers are
encouraged to derive Equation 1.3 using Equation 1.2 for themselves.

∫Vi

(ρcP)i
𝜕Ti

𝜕t
dV − ∫Vi

Ti∇.(ρcPu)i dV = ∫Sout−i

[(−ki∇Ti) − (ρcP)iuiTi].nout−i dS

+ ∫Sj−i

(−ki∇Ti).nj−i dS + ∫Vi

Qi dV (1.3)

where, i and j = T , Bl and i ≠ j.
Assuming (a) constant density, (b) constant specific heat, and (c) incompressible

blood and blood vessels in the averaging blood sub-volume, the second term on the
LHS reduces to zero due to the principle of conservation of mass. (Note that this term
is zero for solid tissue since uT = 0.) Thus, Equation 1.3 simplifies as follows.

∫Vi

(ρcP)i
𝜕Ti

𝜕t
dV = ∫Sout−i

[(−ki∇Ti) − (ρcP)iuiTi].nout−i dS

+ ∫Sj−i

(−ki∇Ti).nj−i dS + ∫Vi

Qi dV (1.4)

where, i = j = T , Bl and i ≠ j.
In Equation 1.4, the first term on the RHS represents the energy gained by a solid

tissue (or blood) sub-volume from adjacent solid tissue (or blood) sub-volumes. The
second term on the RHS represents the energy exchange due to the interaction between
the solid tissue and blood sub-volumes inside an averaging volume. The third term on
the RHS represents the energy gained by the solid tissue (or blood) sub-volume in an
averaging volume due to source terms.

Next, normalizing Equation 1.4 by sub-volume Vi the following general integral
form of the generic BHTM (Equation 1.5) is obtained. This form satisfies the energy
equation and is valid for any unheated and heated tissue with no phase change. Note
that Equation 1.5 represents two equations; one for solid tissue and another for blood.

⟨(ρcP)i⟩i 𝜕⟨Ti⟩i

𝜕t
= 1

Vi ∫Sout−i

[
(−ki∇Ti) − (ρcP)iuiTi

]
.nout−i dS

+ 1
Vi ∫Sj−i

(−ki∇Ti).nj−i dS + ⟨Qi⟩i (1.5)

where, i = j = T , Bl and i ≠ j and

⟨(ρcP)i⟩i 𝜕⟨Ti⟩i

𝜕t
≡ 1

Vi ∫Vi

(ρcP)i
𝜕Ti

𝜕t
dV (1.6)
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1.2.2 Simplifications

The following three simplifications are made to obtain a differential form of the
two-compartment GBHTM.

1
Vi ∫Sout−i

(−ki∇Ti) . nout−i dS ≡ Ci1∇. ki∇⟨Ti⟩i (1.7)

1
Vi ∫Sj−i

(−ki∇Ti) . nj−i dS ≡ (US)j−i

Vi
(⟨Tj⟩j − ⟨Ti⟩i) (1.8)

where, i = j = T , Bl and i≠ j, and

1
Vi ∫Sout−i

[
−(ρcPuT)i . nout−i dS

] ≡ ∇ . (PcP⟨Ti⟩i), i = Bl (1.9)

The first simplification (Equation 1.7) relates the energy exchange among the tissue
(or blood) sub-volume of an averaging volume and tissue (or blood) sub-volumes
of surrounding averaging volumes to the average temperatures of tissue (or blood)
sub-volumes. This simplification is similar to the simplifications used by many other
BHTMs [e.g., [6–16]]. A new, to be determined, parameter Ci1 is introduced in
Equation 1.7 to keep the simplification general.

The second simplification (Equation 1.8) defines the thermal interaction between a
tissue and the embedded vasculature using the tissue and blood sub-volume averaged
temperatures and a heat transfer coefficient (i.e., U). Note that this heat transfer coeffi-
cient is different from conventional heat transfer coefficients and must be evaluated to
appropriately implement the GBHTM since the new heat transfer coefficient is defined
based on the volume-averaged temperatures. Conventional heat transfer coefficients are
defined using a tissue boundary temperature and a mixed mean blood temperature.

The third simplification (Equation 1.9) is similar to the simplification proposed by
Equation 1.7 and defines a new, to be determined, perfusion-related parameter P.
The simplification relates the energy transported through blood vessels of a blood
sub-volume to surrounding blood sub-volumes to the gradient of blood sub-volume
averaged temperature.

With the above simplifications substituted in Equation 1.5, the following differential
form of the two-compartment GBHTM is obtained. Equations 1.10 and 1.11 are coupled
equations. Equation 1.10 is valid for the tissue sub-volume, and Equation 1.11 is valid
for the blood sub-volume in an averaging volume.

⟨(ρcP)T⟩T 𝜕⟨TT⟩T

𝜕t
= CT1∇ .kT∇⟨TT⟩T +

(US)Bl−T

V (1 − ε)
(⟨TBl⟩Bl − ⟨TT⟩T ) + ⟨QT⟩T

(1.10)

⟨(ρcP)Bl⟩Bl 𝜕⟨TBl⟩Bl

𝜕t
= CBl1∇ .kBl∇⟨TBl⟩Bl + ∇.(PcP⟨TBl⟩Bl)

+
(US)Bl−T

Vε
(⟨TT⟩T − ⟨TBl⟩Bl) + ⟨QBl⟩Bl (1.11)

where, V = VT + VBl and ε = VBl

V
Note that in the above equations the local perfusion-related parameter P and the

blood volume ratio 𝜀 are unknown. These values need to be determined for a given
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application and tissue using imaging methods (e.g., MRI, positron emission tomography,
ultrasound, etc.). Alternatively, these values can be estimated by developing physiolog-
ically realistic geometric vascular network maps and assuming mean blood flow of ∼10
(diameter of vessel) m/s [17]. The tissue sub-volume VT can be estimated as the differ-
ence between the imaging voxel volume and blood sub-volume.

1.2.3 A Three-Compartment and ‘N + 1’ Compartment GBHTM

We derived above a two-compartment GBHTM by assuming that the averaging
volume is composed of only two sub-volumes or compartments: a non-moving tissue
sub-volume and a moving blood sub-volume. To derive a three-compartment GBHTM,
let’s assume, as an example, that the averaging volume is composed of the following
three sub-volumes or compartments (instead of two): a non-moving tissue sub-volume,
an arterial blood sub-volume, and a venous blood sub-volume. In this case, one can
derive the following set of equations for a new three-compartment GBHTM using
the methodology presented above and simplifications similar to the ones presented in
Equations 1.7–1.9.

⟨(ρcP)T⟩T 𝜕⟨TT⟩T

𝜕t
= CT1∇ .kT∇⟨TT⟩T +

(US)Ar−T

V (1 − εAr − εVn)
(⟨TAr⟩Ar − ⟨TT⟩T )

+
(US)Vn−T

V (1 − εAr − εVn)
(⟨TVn⟩Vn − ⟨TT⟩T ) + ⟨QT⟩T (1.12)

⟨(ρcP)Ar⟩Ar 𝜕⟨TAr⟩Ar

𝜕t
= CAr1∇ .kAr∇⟨TAr⟩Ar + ∇ . ((PcP)Ar⟨TAr⟩Ar)

+
(US)Ar−T

VεAr
(⟨TT⟩T − ⟨TAr⟩Ar)

+
(US)Ar−Vn

VεAr
(⟨TVn⟩Vn − ⟨TAr⟩Ar) + ⟨QAr⟩Ar (1.13)

⟨(ρcP)Vn⟩Vn 𝜕⟨TVn⟩Vn

𝜕t
= CVn1∇ .kVn∇⟨TVn⟩Vn + ∇ . ((PcP)Vn⟨TVn⟩Vn)

+
(US)Vn−T

VεVn
(⟨TT⟩T − ⟨TVn⟩Vn)

+
(US)Ar−Vn

VεVn
(⟨TAr⟩Ar − ⟨TVn⟩Vn) + ⟨QVn⟩Vn (1.14)

where, V =VT +Var +Vvn , εAr =
VAr

V
and εVn = VVn

V
. A point to note in this new GBHTM

is that it is relatively more complex than the two-compartment GBHTM presented in
Equations 1.10 and 1.11. In this new, three-compartment GBHTM, we have created a
need to separately identify and account for the two blood sub-volumes (i.e., arterial and
venous blood in this example) to solve for in vivo temperatures, which may or may not
be useful and/or feasible for a given application. Also, the sub-volumes don’t have to be
arterial or venous sub-volumes. One can think about creating blood sub-volumes based
on the relative thermal importance and frequency of blood vessels, as well. Generalizing
the above result further, the following set of equations can be obtained for a GBHTM
where the averaging volume is composed of ‘N + 1’ compartments: a non-moving tissue
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sub-volume and ‘N ’ blood sub-volumes.

⟨(ρcP)T⟩T 𝜕⟨TT⟩T

𝜕t
= CT1∇ .kT∇⟨TT⟩T +

N∑
i=1

(US)i−T

V
(

1 −
∑N

j=1 εj

) (⟨Ti⟩i − ⟨TT⟩T ) + ⟨QT⟩T

(1.15)

⟨(ρcP)i⟩i 𝜕⟨Ti⟩i

𝜕t
= Ci1∇ .ki∇⟨Ti⟩i + ∇ . ((PcP)i⟨Ti⟩i) +

(US)i−T

Vεi
(⟨TT⟩T − ⟨Ti⟩i)

+
N∑

j=1

(US)i−j

Vεi
(⟨Tj⟩j − ⟨Ti⟩i) + ⟨Qi⟩i (1.16)

where, i, j = 1… N blood sub-volumes, i≠ j, V = VT +
∑N

i=1 Vi and εi =
Vi

V
.

1.3 Comparing the Two-Compartment GBHTM with Pennes’
BHTM

Pennes’ BHTM is a simple and widely used BHTM [6] that was intuitively proposed
by a clinician named Henry H. Pennes in 1948 to predict in vivo temperatures
(Equation 1.17).

(ρcP)T
𝜕TT

𝜕t
= ∇ .kT∇TT + w(cP)Bl(1 − ζ)(TBl − TT ) + QT (1.17)

Traditionally, Pennes’ BHTM has been a point of contention and a source of confusion.
This is so because the lack of a formal derivation of Pennes’ BHTM makes it difficult
to interpret Pennes’ variables, parameters, and results in terms of the underlying
physiology. For example, it is not clear what ‘blood temperature’ is in the Pennes’
model. Thermodynamically, the blood temperature in Pennes’ BHTM can be defined
in at least four different ways: (1) local, point-wise true blood temperature, (2) blood
velocity-weighted blood vessel area-averaged blood temperature, (3) blood vessel
area-averaged blood temperature and (4) perfused tissue volume-averaged blood
temperature. Assuming the blood temperature as the point-wise true temperature
or the velocity-weighted temperature makes Pennes’ BHTM physically invalid since
it makes the model violate first principles. Assuming the blood temperature as the
area-averaged or volume-averaged temperature renders physically invalid the tradi-
tional conception of the Pennes’ w term as a blood flow term. It should be noted,
however, that Pennes’ BHTM has been shown to be capable of predicting reasonably
accurate in vivo temperatures in ‘local’ tissue regions for ‘short’ durations by adjust-
ing Pennes’ perfusion-related parameter w(cp)Bl(1− 𝜁 ) to minimize error between
model predictions and measurements. Adjusting Pennes’ perfusion related parameter
w(cp)Bl(1− 𝜁 ) is necessary because of the lack of a formal derivation of Pennes’ BHTM,
which makes it difficult to evaluate the parameter independently based on the under-
lying physiology. Simplicity and reasonable performance of Pennes’ BHTM (once the
blood-perfusion-related parameter w(cp)Bl(1− 𝜁 ) is adjusted, of course) has always
been puzzling for a ‘physically and theoretically invalid’ model.
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Let’s compare Pennes’ BHTM with the two-compartment GBHTM to gain a better
understanding of the implicit and explicit assumptions, and thus the application
regimes of Pennes’ model. Comparing Pennes’ BHTM with the newly developed
two-compartment GBHTM one notes the following:

1. The basic form of Equation 1.17 (i.e., Pennes’ BHTM) and Equation 1.10 (i.e.,
the tissue sub-volume equation in the GBHTM) is similar (with CT1 = 1). Thus,
Pennes’ tissue temperature and blood temperature should be interpreted as a
volume-averaged tissue temperature and a volume-averaged blood temperature,
respectively, instead of the point-wise true temperatures. Tissue properties (e.g.,
density, specific heat, conductivity) and source term should also be interpreted as
volume-averaged quantities.

2. Pennes’ blood perfusion related parameter w(cp)Bl(1− 𝜁 ) should be interpreted
as equivalent to the blood-tissue heat transfer rate term(US)T-Bl

/
V (1-ε) in the

GBHTM. In practice, Pennes’ blood perfusion related parameter w(cp)Bl(1− 𝜁 ) is
always determined by minimizing the error between the modeled and measured
temperatures to obtain reasonable estimates of the in vivo temperatures. This is
equivalent to obtaining (US)T-Bl

/
V (1-ε) values by minimizing the error.

3. Pennes’ BHTM assumes the blood temperature as constant. This is equivalent to
assuming that the blood has infinite thermal capacity in the two-compartment
GBHTM. Thus, Pennes’ BHTM artificially forces tissue temperatures to stay close to
the assumed blood temperature. The assumption results in the overestimation of the
blood-tissue heat transfer rate and the underestimation of the tissue heating in deep
tissues due to source terms. The lack of the ability to model the blood temperature
variation further limits Pennes’ BHTM to applications where the blood temperature
does not vary ‘significantly’ from the assumed value in space and time.

4. Pennes introduced a blood equilibration parameter 𝜁 (0 ≤ 𝜁 ≤ 1) to quantify the
blood-tissue heat transfer rate based on the local blood flow w. However, the spatial
and temporal behavior of this parameter 𝜁 is never studied in vivo. In the absence of
a known spatial and temporal variation of 𝜁 for an application and tissue type, sub-
stituting local blood flow value for w in Pennes’ model estimates blood-tissue heat
transfer rate incorrectly. Substituting local blood perfusion values for the term w
(assuming 𝜁 = 0) or w(1-𝜁 ) (assuming 𝜁 ≠ 0) and the absence of an equation for mod-
eling the blood sub-volume averaged blood temperature variation in Pennes’ BHTM
have been shown to result in large deviations between the predictions of the model
and the absolute temperature field in vascularized tissues [18].

1.4 Comparing the Predictions of the Two-Compartment
GBHTM and Pennes’ BHTM with Measured in vivo Temperature
Changes during MRI

Figures 1.1–1.4, below compare the predictions of the two-compartment GBHTM
and Pennes’ BHTM with the temperature changes measured in swine during MRI.
MRI scanners deposit radio frequency (RF) energy inside the body during MRI,
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Figure 1.1 RF power deposition-induced brain heating, as measured with a fluoroptic probe placed
15 mm deep in the swine brain after the dura, in a 3T (Larmor frequency = ∼123.2 MHz) MRI scanner.
The RF power was delivered using a body coil with the swine head placed in the isocenter.

Figure 1.2 RF power deposition-induced whole-body heating, as measured with a fluoroptic probe
placed 10 cm deep in the swine rectum, in a 3T (Larmor frequency = ∼123.2 MHz) MRI scanner. The RF
power was delivered using a body coil with the swine head placed in the isocenter.

which produces heating. Accurate prediction of this heating is necessary for the
safety and efficacy of the scanners. Note that Pennes’ BHTM is implemented by
assuming infinite thermal capacity of the blood in the two-compartment GBHTM, as
it should.

As discussed above, the figures clearly demonstrate that (1) the two-compartment
GBHTM predicts in vivo tissue heating accurately in space and time, (2) appropriately
implemented Pennes’ BHTM predicts tissue heating accurately only until the blood tem-
perature does not start varying appreciably in space and time from the baseline value,
and (3) the assumption of constant blood temperature makes Pennes’ BHTM overesti-
mate the blood-tissue heat transfer rate, and thus underestimate the deep tissue heating.
More details regarding the experimental evaluation of the two-compartment GBHTM
and Pennes’ BHTM can be found in [19, 20].
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Figure 1.3 RF power deposition-induced brain heating, as measured with a fluoroptic probe placed
15 mm deep in the swine brain after the dura, in a 3T (Larmor frequency = ∼123.2 MHz) MRI scanner.
The RF power was delivered using a body coil with the center of the swine trunk placed in the
isocenter.

Figure 1.4 RF power deposition-induced whole-body heating, as measured with a fluoroptic probe
placed 10 cm deep in the swine rectum, in a 3T (Larmor frequency = ∼123.2 MHz) MRI scanner. The RF
power was delivered using a body coil with the center of the swine trunk placed in the isocenter.

1.5 Summary

A general methodology is presented to derive BHTMs from first principles. The
methodology was used to, first, derive a general ‘two-compartment’ BHTM for
perfused tissues with very few assumptions – herein called the two-compartment
generic bioheat transfer model (GBHTM). Later, the same methodology was used to
derive more general forms of the model (i.e., a three-compartment GBHTM and an
‘N + 1’ compartment GBHTM). Finally, the new, two-compartment GBHTM was
compared with the empirical, ‘gold standard’ Pennes’ BHTM, theoretically as well
as experimentally, to better understand the potential and limitations of the GBHTM
and Pennes’ BHTM. The comparison helped better understand the relation between
the variables and parameters of Pennes’ BHTM and the underlying physiology. It
was demonstrated that the two-compartment GBHTM predicted accurate in vivo
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tissue heating in space and time while an appropriately implemented Pennes’ BHTM
predicted accurate in vivo tissue heating when the blood temperature did not change
‘appreciably’ from the baseline value.

Disclaimer

The subject matter, content, and views presented do not represent the views of the
Department of Health and Human Services (HHS), US Food and Drug Administration
(FDA), and/or the United States.

Nomenclature

cp specific heat (J/(kg⋅K))
D vessel diameter (m)
k thermal conductivity (W/(m⋅K))
ni–j normal vector from i to j
P Perfusion vector (kg/(m2⋅s))
Q power (W/m3)
Si–j surface area between volume i and j (m2)
T temperature (K)
U heat transfer coefficient
t time (s)
u velocity (m/s)
V volume (m3)
w Pennes’ perfusion-related term

Subscripts

Ar arterial
Bl blood
T tissue
Vn venous

Greek

𝛽 blood volume over imaged voxel volume
𝜀 blood volume fraction
𝜁 Pennes’ equilibration term (0–1)
𝜌 density (kg/m3)
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