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AN INTRODUCTION TO MOL ANALYSIS
OF PDEs: WAVE FRONT RESOLUTION
IN CHROMATOGRAPHY

This first chapter introduces a partial differential equation (PDE) model for chro-
matography which is a basic analytical method in biomedical science and engineering
(BSME). For example, chromatography can be used to analyze a stream of various
proteins through selective adsorption. Thus, the model can also be applied to adsorption
as a basic procedure for separating biochemical species such as proteins. The computer
implementation (programming, coding) of the model is in R1.

The intent of this chapter is to

• Derive a basic chromatography PDE model, including the required initial condi-
tions (ICs) and boundary conditions (BCs).

• Illustrate the coding of the model within the method of lines (MOL) through a
series of R routines, including the use of library routines for integration of the
PDE derivatives in time and space.

• Present the computed model solution in numerical and graphical (plotted) format.

• Discuss the features of the numerical solution and the performance of the algo-
rithms used to compute the solution.

• Consider extensions of the model and the numerical algorithms.

1R is an open source scientific programming system that can be downloaded (at no cost) from the Internet.
The R routines discussed in this book are available as a download from the author and the publisher.
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(1.1) 1D 2-PDE MODEL

The configuration of a chromatography column is illustrated in Fig. 1.1.
We can note the following details about the column represented in Fig. 1.1:

• The column is one dimensional (1D) with distance along the column, z, as the spa-
tial (boundary value) independent variable. Time t is an initial value independent
variable. A solid adsorbent is represented as spherical particles that fill the col-
umn. A fluid stream flows through the column in the interstices (voids) between
the adsorbent particles. The flowing stream enters the base of the column at z = 0,
and exits the top at z = zL.

• The two PDE dependent variables are:

– u1(z, t): concentration of the adsorbate (the chemical component to be pro-
cessed) in the fluid stream.

– u2(z, t): adsorbate concentration on the adsorbent.

u1(z, t) and u2(z, t) are the PDE dependent variables. The PDEs that define these
dependent variables are derived subsequently2.

• The adsorbate enters the column at z = 0 with a prescribed (entering) concentra-
tion u1e(t) that serves as a boundary condition (BC) for the u1 PDE

3. Note that the
boundary value can be a function of t.

u1(z = zL,t)

u2(z,t)

u1(z = 0,t)

z

z = 0

zL

Figure 1.1 Diagram of a chromatographic column

2In accordance with the usual convention in PDE modeling, the dependent variables are designated with the
letter u and a numerical subscript for each variable, e.g., u1(z, t), u2(z, t). The solution to the models PDEs
will be the dependent variables in numerical form as a function of the independent variables, e.g., z, t.
3The term boundary condition follows from the use of a mathematical condition specified at the physical
boundary of the system, in this case the adsorbate at z = 0, u1(z = 0, t) = u1e(t).
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• The exiting stream at z = zL has the concentration u1(z = zL, t) which is a
function of t. The t variation of this exiting stream is of primary interest when
using the model. A plot of u1(z = zL, t) against t is termed a breakthrough curve.

• An overall objective in formulating the model and computing numerical
solutions is to determine u1(z = zL, t), and in particular, how effective the
chromatographic column is in alterting the entering stream with concentration
u1(z = 0, t) = u1e(t).

In summary, the numerical solution of the PDE model will give the dependent variables
u1(z, t) and u2(z, t) as a function of z, t. u1(z = zL, t) is a primary output from the
model, that is, the outflow adsorbate concentration as a function of time.

A mass balance on the adsorbate stream4 gives

εAΔz
∂u1

∂t
= εAvu1|z − εAvu1|z+Δz − (1− ε)AΔz(kfu1(u

e
2 − u2)− kru2) (1.1a)

where
u1 concentration of adsorbate in the flowing stream

u2 concentration of adsorbate on the adsorbent

ue
2 equilibrium (saturation) concentration of adsorbate

on the adsorbent

t time

z axial position along the column

A cross sectional area of column (transverse to z)

v superficial velocity of flow

ε void fraction of the adsorbent interstices

kf forward rate constant for the adsorbate transfer
from the fluid to the adsorbent

kr reverse rate constant for the adsorbate transfer
from the adsorbent to the flowing stream

Table 1.1: Variables and parameters of eq. (1.1a)

Eq. (1.1a) is a mass conservation balance for the flowing adsorbate with the terms
explained further in the following comments.

LHS-1: εAΔz
∂u1

∂t
- accumulation of adsorbate in the incremental volume εAΔz.

The CGS units of this term are (cm2)(cm)(gmol/cm3)(1/s) =gmol/s, that is, the accumu-
lation of adsorbate per second within the incremental volume εAΔz. If the derivative

4A 3D PDE is derived in Appendix A that can be reduced to eq. (1.1a) as a special case.
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∂u1

∂t
is negative, the adsorbate is depleted (reduced). Also, some elaboration of the units

of length is possible.

• ε: cm3
fluid/cm

3
column (so that the void fraction is not dimensionless)

• A: cm2
column

• Δz: cmcolumn

• u1: g-mol/cm3
fluid

Thus, more detailed units of the LHS t derivative of eq. (1.1a) are:

(cm3
fluid/cm

3
column)(cm

2
column)(cmcolumn)(g-mol/cm3

fluid)(1/s)=gmol/s

The distinction between cmfluid and cmcolumn (and later, cmadsorbent) will not gen-
erally be retained in the subsequent discussion (only cmwill be used), but this distinction
should be kept in mind when analyzing units in the model.

RHS-1: εAvu1|z - flow (by convection) of absorbate into the incremental
volume at z. The units of this term are (cm2)(cm/s)(gmol/cm3) =gmol/s, that is,
the flow of adsorbate per second into the incremental volume. Note that v has
the units cmcolumn/s This is generally termed a superficial or linear velocity and
is assumed constant across the chromatographic column (any wall effects are neglected).

RHS-2: −εAvu1|z+Δz - flow (by convection) of absorbate out of the incremental
volume at z +Δz. Again, the units of this term are (cm2)(cm/s)(gmol/cm3)=gmol/s,
that is, the flow of adsorbate per second out of the incremental volume.

RHS-3: −(1− ε)AΔz(kfu1(u
e
2 − u2)− kru2) - volumetric rate of adsorption

(when this term is negative, adsorbate moves from the fluid to the adsor-
bent) or desorption (when this term is positive). The units of this term are
(cm2)(cm)(1/s)(gmol/cm3)=gmol/s, that is, the transfer of adsorbate per second within
the incremental volume.

Three additional points about this term can be observed.

• ue
2 and u2 are volumetric (not surface) adsorbent concentrations with the units

gmol/ cm3
absorbent. kf has the units cm3

fluid/gmol-s and kr has the units 1/s
(explained next).

By definition,

cm3
fluid+cm

3
absorbent=cm

3
column

and

(1-ε)→ (1-cm3
fluid/cm

3
column) = (cm3

column-cm
3
fluid)/cm

3
column

= cm3
adsorbent/cm

3
column



1D 2-PDE MODEL 5

Then the units of the term −(1− ε)AΔz(kfu1(u
e
2 − u2)− kru2) are:

(cm3
absorbent/cm

3
column) (cm

2
column)(cmcolumn)((cm

3
fluid/gmol-s)

(gmol/cm3
fluid)(gmol/cm3

adsorbent)-(1/s)(gmol/cm3
adsorbent))=gmol/s

• The forward rate of adsorption, kfu1(u
e
2 − u2), is usually termed a logistic rate.

Note that it is nonlinear from the product of the two dependent variables, u1u2,
which means that an analytical solution to the PDE model is probably precluded,
but a numerical solution can be easily programmed and calculated. Also, for (ue

2 −
u2) > 0 this forward rate is positive giving adsorption from this term in eq. (1.1a),
and for (ue

2 − u2) < 0 this term reflects desorption (when the adsorbate concen-
tration u2 exceeds the equilibrium adsorbent concentration, ue

2).

• When (kfu1(u
e
2 − u2)− kru2) > 0, adsorption takes place (with a reduction in

∂u1

∂t
from eq. (1.1a) since this term is multiplied by a minus). Conversely, when

(kfu1(u
e
2 − u2)− kru2) < 0, this term reflects desorption (and an increase in

∂u1

∂t
from eq. (1.1a)).

If eq. (1.1a) is divided by εAΔz,

∂u1

∂t
= −vu1|z+Δz − vu1|z

Δz
− (1− ε)

ε
(kfu1(u

e
2 − u2)− kru2)

or for Δz → 0,

∂u1

∂t
= −∂(vu1)

∂z
− (1− ε)

ε
(kfu1(u

e
2 − u2)− kru2) (1.1b)

Eq. (1.1b) is the PDE for the calculation of u1(z, t). For the subsequent analysis and
programming, we will take v as independent of z so it can be taken outside the derivative
in z (even though the transfer of adsorbate could affect v, but this will not be considered).
v as a function of t is an interesting case that could be investigated through the use of
eq. (1.1b). Note also that the column cross sectional area, A, canceled in going from
eq. (1.1a) to eq. (1.1b), that is, we come to the somewhat unexpected conclusion that
A does not appear in eq. (1.1b).

Also, in eq. (1.1b),

(1− ε)

ε
→ cm3

adsorbent/cm3
column

cm3
fluid/cm3

column

=
cm3

adsorbent

cm3
fluid

as expected for consistent units in eq. (1.1b), that is, the units in the various terms in
eq. (1.1b) are gmol/cm3

fluid-s since eq. (1.1b) is a mass balance on the fluid.
A PDE for u2 follows from an analogous mass balance for the adsorbent. The starting

point is

(1− ε)AΔz
∂u2

∂t
= (1− ε)AΔz(kfu1(u

e
2 − u2)− kru2) (1.2a)



6 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

Division by (1− ε)AΔz gives

∂u2

∂t
= kfu1(u

e
2 − u2)− kru2 (1.2b)

Note that the adsorption terms in eqs. (1.1b) and (1.2b) are opposite in sign which indi-
cates that the rate absorbate leaves (or enters) the fluid stream equals the rate adsorbate
is transferred to (or leaves) the adsorbent. Also, the LHS and RHS terms in eq. (1.2b)
have the units gmol/cm3

adsorbent-s, since eq. (1.2b) is a mass balance on the adsorbent
in an incremental volume (1− ε)AΔz. Again, A cancels in going from eq. (1.2a) to
eq. (1.2b).

Eqs. (1.1b) and (1.2b) are a 2× 2 (two equations in two unknowns) for the con-
centrations u1, u2. One other variable, ue

2 , appears in the adsorption rate in these two
PDEs. This adsorbent equilibrium concentration might be assumed to be a constant, for
example, corresponding to a monolayer of the adsorbate on the adsorbent. Or ue

2 can
be considered a variable from an equilibrium relation such as, for example, a Langmuir
isotherm of the form

ue
2 =

c1u1

1 + c2u1

(1.3)

where c1, c2 are constants typically measured experimentally.
Eq. (1.1b) is first order in t and z (and is termed a first-order, hyperbolic PDE). There-

fore, it requires one initial condition (IC)5 and one boundary condition (BC).6,7

The IC is taken as
u1(z, t = 0) = f1(z) (1.4a)

The BC is taken as

u1(z = 0, t) = g1(t) (1.4b)

where f1(z) and g1(t) are prescibed functions of z and t, respectively.
Eq. (1.2b) is first order in t so it requires one IC

u2(z, t = 0) = f2(z) (1.4c)

5An initial condition defines the value of the dependent variable, u1(z, t), for a particular value of the initial
value independent variable, t, typically time in a physical application. t is defined over an open interval t0 ≤
t ≤ ∞. The initial or beginning value, t0, in the present case will be taken as t0 = 0. Note that t can continue
without limit.
6A boundary condition defines the value of the dependent variable, u1(z, t), for a particular value of the
boundary value independent variable, z, typically at a physical boundary in an application. z can be defined
over a finite interval, z0 ≤ z ≤ zL, a semi infinite interval, z0 ≤ z ≤ ∞, or a fully infinite interval, −∞ ≤
z ≤ ∞. In the present case, we will use a finite interval corresponding to the length of the chromatographic
column, 0 ≤ z ≤ zL where zL is the specified length of the column.
7In general, the number of required ICs equals the order of the highest order derivative in the initial value

variable, one IC in the case of eq. (1.1b) for the first order derivative
∂u1

∂t
. The number of required BCs equals

the order of the highest order derivative in the boundary value variable, one BC in the case of eq. (1.1b) for

the first order derivative
∂u1

∂z
.
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Eq. (1.4b) is a Dirichlet BC since the dependent variable u1 is specified at the boundary
z = 0. Other types of BCs are discussed in subsequent chapters.

Eqs. (1.1) to (1.4) constitute the PDE model for the chromatographic column. We
next consider the programming of these equations within the MOL framework.

(1.2) MOL routines

The discussion of the routines for eqs. (1.1) to (1.4) starts with the main program.

(1.2.1) Main program

The listing of the main program follows.

#

# Delete previous workspaces

rm(list=ls(all=TRUE))

#

# 1D, one component, chromatography model

#

# The ODE/PDE system is

#

# u1_t = -v*u1_z - (1 - eps)/eps*rate (1.1b)

#

# u2_t = rate (1.2b)

#

# rate = kf*u1*(u2eq - u2) - kr*u2

#

# u2eq = c1*u1/(1 + c2*u1) (1.3)

#

# Boundary condition

#

# u1(z=0,t) = step(t) (1.4b)

#

# Initial conditions

#

# u1(z,t=0) = 0 (1.4a)

#

# u2(z,t=0) = 0 (1.4c)

#

# The method of lines (MOL) solution for eqs. (1.1) to

# (1.4) is coded below. Specifically, the spatial

# derivative in the fluid balance, u1_z in eq. (1.1b),

# is replaced by one of four approximations as selected

# by the variable ifd.

#

# Access ODE integrator
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library("deSolve");

#

# Access files

setwd("g:/chap1");

source("pde_1.R") ;source("step.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

source("max3.R") ;

#

# Step through cases

for(ncase in 1:2){

#

# Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; zL=50; n=41;

if(ncase==1){ kf=0; kr=0; }

if(ncase==2){ kf=1; kr=1; }

#

# Select an approximation for the convective derivative u1z

#

# ifd = 1: Two point upwind approximation

#

# ifd = 2: Centered approximation

#

# ifd = 3: Five point, biased upwind approximation

#

# ifd = 4: van Leer flux limiter

#

ifd=1;

#

# Level of output

#

# Detailed output - ip = 1

#

# Brief (IC) output - ip = 2

#

ip=1;

#

# Initial condition

u0=rep(0,2*n);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));



1D 2-PDE MODEL 9

ncall=0;

#

# ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

# Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

t[it]=out[it,1];

}

#

# Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

# Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate(z=zL,t)\n"));

u2eq=rep(0,nout);rate=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

rate[it]=kf*u1[it,n]*(u2eq[it]-u2[it,n])-kr*u2[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,n],rate[it]));

}

}

#

# Store solution for plotting

u1plot=rep(0,nout);tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

tplot[it]=t[it];

}

#

# Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

# Plot for u1(z=zL,t)

# ncase = 1

if(ncase==1){
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par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",

xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

#

# Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);

for(it in 1:nout){

u1expl[it]=step(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

}

#

# ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

#

# Next case

}

Listing 1.1: Main program pde 1 main for eqs. (1.1) to (1.4)

We can note the following details about pde 1 main.

• Previous files are cleared and a series of documentation comments for the
ODE/PDE system is included that restates eqs. (1.1) to (1.4) in the text.

#

# Delete previous workspaces

rm(list=ls(all=TRUE))

#

# 1D, one component, chromatography model

#

# The ODE/PDE system is

#

# u1_t = -v*u1_z - (1 - eps)/eps*rate (1.1b)

#
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# u2_t = rate (1.2b)

#

# rate = kf*u1*(u2eq - u2) - kr*u2

#

# u2eq = c1*u1/(1 + c2*u1) (1.3)

#

# Boundary condition

#

# u1(z=0,t) = step(t) (1.4b)

#

# Initial conditions

#

# u1(z,t=0) = 0 (1.4a)

#

# u2(z,t=0) = 0 (1.4c)

#

# The method of lines (MOL) solution for eqs. (1.1) to

# (1.4) is coded below. Specifically, the spatial

# derivative in the fluid balance, u1_z in eq. (1.1b),

# is replaced by one of four approximations as selected

# by the variable ifd.

The IC and BC functions of eqs. (1.4), f1(z) = 0, g1(t) = h(t), f2(z) = 0, are
explained subsequently (h(t) is the unit step function or Heaviside function).

• The R ODE integrator library deSolve and a series of routine discussed subse-
quently are accessed.

#

# Access ODE integrator

library("deSolve");

#

# Access files

setwd("g:/chap1");

source("pde_1.R") ;source("step.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

source("max3.R") ;

The set working directory, setwd, will have to be edited for the local computer.
Note the forward slash, /, rather than the usual backslash, \. The source utility is
used to select individual files that make up the complete code for the model of eqs.
(1.1) to (1.4). These files are explained subsequently.

• A for is used to step through a series of (two) cases, ncase=1,2.

#

# Step through cases
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for(ncase in 1:2){

#

# Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; zL=50; n=41;

if(ncase==1){ kf=0; kr=0; }

if(ncase==2){ kf=1; kr=1; }

The parameters in eqs. (1.1) to (1.4) for each case are defined numerically. In par-
ticular, for ncase=1, no adsorption takes place so that the fluid with adsorbate
concentration u1(z, t) merely flows through the column and there is no up take of
adsorbate with concentration u2(z, t) onto the adsorbent. This special condition is
used to check the coding of the model as discussed subsequently. For ncase=2,
the effect of adsorbate transfer to the adsorbent can be observed in the fluid outlet
with concentration u1(z = zL, t).

• An approximation for the spatial derivative
∂u1

∂z
in eq. (1.1b) (v constant and there-

fore outside of the derivative) is selected with index ifd. The performance of the
four approximations is discussed subsequently.

#

# Select an approximation for the convective derivative u1z

#

# ifd = 1: Two point upwind approximation

#

# ifd = 2: Centered approximation

#

# ifd = 3: Five point, biased upwind approximation

#

# ifd = 4: van Leer flux limiter

#

ifd=1;

• A level of numerical output is selected with ip. Initially, ip=1 is used to give
detailed numerical output along with graphical (plotted) output. ip=2 can be used
to give only graphical output (when experimenting with the model).

#

# Level of output

#

# Detailed output - ip = 1

#

# Brief (IC) output - ip = 2

#

ip=1;
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• ICs (1.4a) and (1.4c) are programmed as zero (homogeneous) ICs (since u10 =

u20 = 0). Note that these ICs are placed in a single vector or 1D array u0 as
required by the ODE integrator ode discussed next. This vector is first declared
(allocated, sized) with the utility rep (2*n = 2*41 = 82 zero elements).

#

# Initial condition

u0=rep(0,2*n);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

The time scale is defined as 0 ≤ t ≤ 150with nout=51 points in t for the numerical
solution. The utility seq is used to define the 51 values t = 0, 3, 6, ..., 150. Finally,
the counter for the calls to the ODE routine pde 1 is initialized. The use of this
counter is discussed later.

• The 2*n = 82 ODEs are integrated numerically with the library integrator ode
(part of the deSolve library specified previously).

#

# ODE integration

out=ode(func=pde_1,times=tout,y=u0);

The input arguments for ode require some explanation.

– The routine for the MOL/ODEs that approximate PDEs (1.1b), (1.2b), pde 1,
is declared for the parameter func (which is a reserved argument name). func
does not have to be the first input argument, but by convention, it usually is
when calling one of the R integrators (ode in this case).

– The vector of output values of t, tout, (defined previously) is assigned to the
input argument times. Again, times is a reserved name and can be placed
anywhere in the input argument list.

– The IC vector, u0, is assigned to the parameter y. The length of this IC vector
tells ode howmany ODEs are to be integrated, in this case 2*n = 82. Note that
the number of ODEs is not specified explicitly in the input argument list.

Numerical solutions to eqs. (1.1) to (1.4) are returned by ode in the 2D array out.
The content of this solution array is explained next. The various ODE integrators
in deSolve generally follow this format.

• The numerical solution is placed in matrices and a vector. These arrays are first
declared with the utilities matrix (for u1, u2 of eqs. (1.1b), (1.2b)) and rep (for t
of eqs. (1.1b) and (1.2b)).
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#

# Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

t[it]=out[it,1];

}

A pair of nested fors is used to place the numerical solutions in u1,u2. The outer
for with index it steps through t for 0 ≤ t ≤ 150. The inner for with index iz
steps through z for 0 ≤ z ≤ zL with zL = 50 (defined previously) and a spatial
increment (50− 0)/(41− 1) = 1.25, that is, z = 0, 1.25, 2.50, ..., 50 (based on
n=41 points in z).

The solution array out has the dimensions out(nout,2*n+1) =

out(51,82+1), that is, 82 ODEs at nout=51 points in t (including t = 0). The
offset of 1 in iz+1,iz+1+n,2*n+1,82+1 reflects the additional space for t, so
that out[it,1] contains the 51 values of t. This ordering of the output array out
is a unique feature of the ODE integrators in deSolve, including ode.

• The index for the spatial differentiator, ifd, and the value of ncase are displayed.

#

# Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

• For ip=1, the numerical solution is displayed as (1) t, (2) u1(z = zL, t), and (3)
rate(t) = kfu1(z = zL, t)(ue

2 − u2(z = zL, t))− kru2(z = zL, t) (note the use
of n for z = zL). Vectors are first defined with the utility rep.

#

# Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate(z=zL,t)\n"));

u2eq=rep(0,nout);rate=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

rate[it]=kf*u1[it,n]*(u2eq[it]-u2[it,n])-kr*u2[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,n],rate[it]));

}

}

ue
2 = u2eq is computed from the isotherm of eq. (1.3).
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• u1(z = zL, t), t are stored for subsequent plotting.

#

# Store solution for plotting

u1plot=rep(0,nout);tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

tplot[it]=t[it];

}

• At the end of the solution (after the call to ode), the number of calls to the
MOL/ODE routine pde 1 is displayed (this routine is discussed next).

#

# Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

• u1(z = zL, t) is plotted against t for ncase=1 (no adsorption). For this case, an
analytical solution is available that is plotted as a solid line while the numerical
solution is plotted as points on a solid line (this is clear in Fig. 1.2).

#

# Plot for u1(z=zL,t)

# ncase = 1

if(ncase==1){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",

xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

The scaling of the y axis is deactivated as a comment, #,ylim=c(0,1)); so that
oscillations in the solution outside 0 ≤ u1(z = zL, t) ≤ 1 can be accommodated
with the default scaling for the y axis (the oscillations are a numerical artifact that
is an incorrect part of the numerical solution as discussed subsequently).

• For ncase=1 (no adsorption), the analytical solution to eq. (1.1b) is computed by
a call to step (as explained subsequently). The resulting plot of the analytical
solution is superimposed on the preceding plot of u1(z = zL, t) (see Fig. 1.2).

#

# Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);

for(it in 1:nout){
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u1expl[it]=step(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

}

• For ncase=2 (with adsorption), the numerical solution u1(z = zL, t) is plotted
against t as points on a solid line.

#

# ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t)",

lwd=2,main="u1(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]));#,ylim=c(0,1));

points(tplot,u1plot, pch="o",lwd=2);

}

#

# Next case

}

The final } concludes the for in ncase.
The ODE routine pde 1 called by ode (Listing 1.1) is considered next.

(1.2.2) MOL/ODE routine

The ODE routine pde 1 called by ode (Listing 1.1) is in Listing 1.2.

pde_1=function(t,u,parms){

#

# Function pde_1 computes the t derivative vector of the u vector

#

# One vector to two PDEs

u1=rep(0,n);u2=rep(0,n);

for (i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

#

# Boundary condition

u1[1]=step(t,0,v);

#

# First order spatial derivative

#

# ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

#
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# ifd = 2: Three point center finite difference (3pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

#

# ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

#

# ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

#

# Temporal derivatives, mass transfer rate

u1t=rep(0,n); u2t=rep(0,n);

u2eq=rep(0,n);rate=rep(0,n);

#

# u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate[i]=kf*u1[i]*(u2eq[i]-u2[i])-kr*u2[i];

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

}

u2t[i]=rate[i];

}

#

# Two PDEs to one vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i]=u1t[i];

ut[i+n]=u2t[i];

}

#

# Increment calls to pde_1

ncall<<-ncall+1;

#

# Return derivative vector

return(list(c(ut)));

}

Listing 1.2: ODE routine pde 1 for eqs. (1.1) to (1.4)

We can note the following points about pde 1.

• The function is defined.

pde_1=function(t,u,parms){

#

# Function pde_1 computes the t derivative vector of the u

vector
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The input argument t is the current value of t along the numerical solution. u is the
current vector of (82) ODE dependent variables. parm is a set of input parameters
for the ODEs; in this case it is unused (but is required in the input arguments). Note
that the input arguments are not assigned to reserved names (as in the call to ode
in Listing 1.1), so the order that they are specified must be maintained, e.g., t first
followed by u.

• The single vector u that is the second input argument to pde 1 is placed in two
vectors, u1 for eq. (1.1b) and u2 for eq. (1.2b). This is not a required step, but
rather, is used so that the subsequent programming can be in terms of variables
closely resembling u1, u2 in eqs. (1.1b), (1.2b).

#

# One vector to two PDEs

u1=rep(0,n);u2=rep(0,n);

for (i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

}

The two vectors u1,u2 are first declared with the rep utility.

• The BC for eq. (1.1b), eq. (1.4b) with u1(z = 0, t) = h(t) = u1(1), is specified as
a unit step in function step (discussed subsequently).

#

# Boundary condition

u1[1]=step(t,0,v);

The arguments of step are for the current value of t, the value z = 0, and the
velocity v in eq. (1.1b) (and numerically defined previously).

• The first derivatives in z in eq. (1.1b),
∂u1

∂z
, is computed by one of four spatial

differentiators as selected by ifd (set previously). Some of the details of these
differentiators and their performance as evaluated by comparison of the numerical
solution with the analytical solution (for ncase=1) are considered subsequently.

#

# First order spatial derivative

#

# ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

#

# ifd = 2: Three point center finite difference (3pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

#

# ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }
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#

# ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

• Vectors for the LHS derivatives in t in eqs. (1.1b), (1.2b), the equilibrium concen-
tration ue

1 , and the rate of adsorption in eqs. (1.1b), (1.2b), are declared with the
rep utility over the n=41 points in z.

#

# Temporal derivatives, mass transfer rate

u1t=rep(0,n); u2t=rep(0,n);

u2eq=rep(0,n);rate=rep(0,n);

• The LHS derivatives in t in eqs. (1.1b), (1.2b),
∂u1

∂t
,
∂u2

∂t
, are programmed in a

for over the n=41 points in z.

#

# u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate[i]=kf*u1[i]*(u2eq[i]-u2[i])-kr*u2[i];

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

}

u2t[i]=rate[i];

}

We can note the following details in this programming.

– The equilibrium concentration ue
2 in eq. (1.3) is programmed first.

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

– The adsorption rate in eqs. (1.1b) and (1.2b) is then programmed.

rate[i]=kf*u1[i]*(u2eq[i]-u2[i])-kr*u2[i];

– The 41 MOL/ODEs are programmed.

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];

}

u2t[i]=rate[i];

}

Since u1(z = 0, t) is specified through BC (1.4b), its derivative in t is set to zero
so that the ODE integrator, ode, will not move it away from its prescribed BC
value, that is, u1t[i]=0;. Otherwise, eq. (1.1b) is programmed as

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate[i];
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Eq. (1.2b) is programmed as

u2t[i]=rate[i];

The close resemblance of this programming to the PDEs, eqs. (1.1b), (1.2b), is one
of the principal advantages of the MOL.

• The two derivatives vectors, u1t,u2t, are placed in a single vector ut (of length
2*n = 2*41 = 82) to be returned to the ODE integrator ode called in the main
program of Listing 1.1.

#

# Two PDEs to one vector

ut=rep(0,2*n);

for(i in 1:n){

ut[i]=u1t[i];

ut[i+n]=u2t[i];

}

The derivative vector ut is first declared with a rep.

• The counter for the calls to pde 1 is incremented and its value is returned to the
main program of Listing 1.1 with <<-.

#

# Increment calls to pde_1

ncall<<-ncall+1;

#

# Return derivative vector

return(list(c(ut)));

}

The derivative vector ut is returned to ode as a list which is a requirement of ode
(and generally, the ODE integrators in deSolve). c() is the vector operator in R.

The final } concludes function pde 1.

Additional subordinate routines called in the preceding program are now considered.

(1.2.3) Subordinate routines

The unit step (Heaviside function) h(t) in BC (1.4b) with g1(t) = h(t) is programmed
in step.

step=function(t,z,v) {

#

# Function step approximates a unit step function

#

tzv=t-z/v;



1D 2-PDE MODEL 21

if(tzv <0){u1s=0; }

if(tzv >0){u1s=1; }

if(tzv==0){u1s=0.5;}

#

# Return step

return(c(u1s));

}

Listing 1.3: Function step for a unit step

We can note the following details about Listing 1.3.

• The unit step is a traveling wave with argument tzv=t-z/v8. The step is a finite
discontinuity that occurs at t − z/v = 0. This discontinuity, which occurs at z = 0
in BC (1.4b), is approximated by three ifs. For tzv < 0, the function is 0, for
tzv > 0, the function is 1, and for tzv = 0, the function is 0.5. This approximation
is required since the unit step at t − z/v = 0 is undefined (it is not single valued).
Analysis of the unit step and the associated solution of eqs. (1.1) to (1.4) is given
subsequently.

• The value of the function, u1s, is returned as a 1-vector (through the operator c()).

The form of the unit step from function step will be clear from the graphical output of
the numerical solutions of eqs. (1.1) to (1.4), e.g., in Fig. 1.2. In summary, step gives
an approximation to a unit step as output for a given point along the chromatographic
column z as a function of time t. This traveling unit stepwill be clear from the subsequent
solution of eqs. (1.1) to (1.4).

The other routines called in the preceding programming, that is, dss004 to max3 as
accessed by a source in the main program of Listing 1.1, are library routines and are
briefly discussed later when the numerical solutions to eqs. (1.1) to (1.4) are considered.
The source code for these routines is available from a download site (see the publisher’s
Web site for this book).

We next consider the output from the R routines in Listings 1.1, 1.2 and 1.3.

(1.3) Model output, single component chromatography

We first consider FDs as implemented with ifd = 1,2,3

(1.3.1) FDs, step BC

Abbreviated numerical output from the execution of the routines in Listings 1.1, 1.2 and
1.3 is given in Table 1.2.

8A detailed discussion of traveling wave solutions to PDEs is given in [1].
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ifd = 1 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 21 deleted)

. .

. .

. .

24.00 0.0000 0.0000

27.00 0.0003 0.0000

30.00 0.0017 0.0000

33.00 0.0081 0.0000

36.00 0.0277 0.0000

39.00 0.0728 0.0000

42.00 0.1543 0.0000

45.00 0.2737 0.0000

48.00 0.4194 0.0000

51.00 0.5708 0.0000

54.00 0.7073 0.0000

57.00 0.8158 0.0000

60.00 0.8927 0.0000

63.00 0.9420 0.0000

66.00 0.9708 0.0000

69.00 0.9862 0.0000

72.00 0.9939 0.0000

75.00 0.9975 0.0000

78.00 0.9990 0.0000

81.00 0.9996 0.0000

84.00 0.9999 0.0000

87.00 1.0000 0.0000

90.00 1.0000 0.0000

. .

. .

. .

(output for t = 93 to

144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000
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ncall = 609

ifd = 1 ncase = 2

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 24 deleted)

. .

. .

. .

27.00 0.0001 0.0000

30.00 0.0008 0.0000

33.00 0.0031 0.0000

36.00 0.0089 0.0000

39.00 0.0196 0.0001

42.00 0.0359 0.0003

45.00 0.0577 0.0007

48.00 0.0852 0.0012

51.00 0.1185 0.0018

54.00 0.1584 0.0027

57.00 0.2057 0.0038

60.00 0.2617 0.0050

63.00 0.3269 0.0063

66.00 0.4014 0.0075

69.00 0.4839 0.0084

72.00 0.5710 0.0087

75.00 0.6580 0.0084

78.00 0.7393 0.0075

81.00 0.8101 0.0062

84.00 0.8676 0.0048

87.00 0.9114 0.0035

90.00 0.9430 0.0024

93.00 0.9646 0.0016

96.00 0.9787 0.0010

99.00 0.9875 0.0006

102.00 0.9929 0.0004

105.00 0.9961 0.0002

108.00 0.9979 0.0001

111.00 0.9989 0.0001

114.00 0.9994 0.0000

117.00 0.9997 0.0000

120.00 0.9999 0.0000
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123.00 0.9999 0.0000

126.00 1.0000 0.0000

129.00 1.0000 0.0000

132.00 1.0000 0.0000

135.00 1.0000 0.0000

138.00 1.0000 0.0000

141.00 1.0000 0.0000

144.00 1.0000 0.0000

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 1143

Table 1.2: Selected numerical output for eqs. (1.1) to (1.4) from pde 1 main and
pde 1 for ncase=1,2

We can note the following details about Table 1.2.

• The output is for 0 ≤ t ≤ 150 as programmed in Listing 1.1.

• The ICs of eqs. (1.4a) and (1.4c) are confirmed (checking the ICs of a numerical
solution is always a good idea since if the ICs are incorrect, the solution will start
incorrectly and will therefore most likely be entirely incorrect).

• The rate of adsorption for ncase=1 is zero as expected since no adsorption takes
place (rate = kf = kr = 0 in eqs. (1.1b), (1.2b)).

• The rate of adsorption for ncase=2 goes through a maximum of 0.0087 at t = 72.
This maximum is expected as the adsorption on the adsorbate increases initially,
then reaches a point where desorption begins to reduce the rate. Eventually, the
rate returns to zero. Also, the maximum adsorption rate occurs at approximately
the half way point in the transient, u1(z = zL, t = 72) = 0.5710, where the rate
of change of u1 is greatest (see Fig. 1.3).

• The solution is smooth (e.g., no oscillations) and approaches the expected final
value, u1(z = zL, t) = 1. In other words, the two-point upwind finite difference
(FD) approximation in dss012 corresponding to ifd=1 appears to function quite
well. However, there is a significant error as reflected in Fig. 1.2 where the exact
and analytical solutions are compared. This error is discussed in more detail later.

• The accuracy of a numerical PDE solution generally cannot be determined directly
or explicitly (since this implies an analytical solution is available for computing the
exact error). For ncase=1, an analytical solution is available, but this is unusual.
In fact, numerical solutions are generally computed because analytical solutions
are not available.

However, each new numerical solution should be evaluated indirectly. Here are
three procedures for an approximate error analysis that do not require an analytical
solution for the full PDE problem.

– The accuracy of the integration in z could be inferred by: (1) observing the
effect of increasing the number of grid points, e.g., n=41 to n=81 (termed h
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refinement since the grid spacing, which is typically given the symbol h, is var-
ied when the number of grid points is changed), and (2) by changing the spatial
derivative approximation, e.g., another value of ifd (termed p refinement since
the order of the FD approximation9, which is typically given the symbol p, is
varied as the FD approximation is changed). The procedure then in (1) and (2) is
to change h and p and observe the effect on the numerical solution. For example,
if the solution does not change in the third figure, three-figure accuracy can be
inferred. However, this is not a proof of numerical accuracy. Rather, it is just an
estimate of accuracy.

– The accuracy of the integration in t could be inferred by changing the error tol-
erances specified for the ODE integrator. In the case of the R integrator ode
(called in Listing 1.1), default error tolerances of 1× 10−6 (absolute and rela-
tive) are used in ode unless the defaults are reset to other values before ode is
called. ode is a sophisticated ODE integrator that changes the integration inter-
val (h refinement) and the algorithm order (p refinement) in an attempt to meet
the default or user-specified error tolerances. If ode is unable to meet the error
tolerances, it issues a warning message to this effect10.

– Special case analytical solutions can be used to test the numerical solutions. This
is particularly useful in locating coding (programming) errors. For example, for
ncase=1, the available analytical solution can be compared with the numerical
solution as in Fig. 1.2.

• The total calls to pde 1 is ncall = 609 for ncase=1 and ncall = 1143 for
ncase=2 indicating that ode computed numerical solutions with modest compu-
tational effort. The solutions presumably have the accuracy indicated through h
and p refinement (as discussed subsequently).

Additional features of the numerical solution are evident in Figs. 1.2 and 1.3.
We can note the following details in Fig. 1.2:

• The analytical solution, plotted as a solid line, is an approximation to a unit step at
t = 50. This solution is derived in the following way.

9The order of a FD approximation refers to the power p in a formula of the form

error = c1Δzp

where error is the truncation error, c1 is a constant, Δz is the grid spacing in z and p is the order of the
FD approximation. This formula for the error suggests that the error decreases with decreasing Δz (as the
number of grid points in z is increased). For the two-point upwind FD approximations in dss012, p = 1 so
the truncation error varies linearly with Δz and they are termed first-order correct. The term truncation error
refers to the error resulting from truncating the Taylor series from which the FD is derived. For the five-point
FD approximations in dss004 (with idf=2), p = 4 and for the five-point FD approximations in dss020 (with
ifd=3), p = 4. These FD approximations of various orders are discussed subsequently.
10The adjustment of the FD integration intervals in ode is also termed r refinement where the r designates
automatic (algorithmic, adaptive) refinement of the grid. This term is generally applied to the refinement of
spatial grids. However, the spatial grids in dss004, dss012, dss020 are not refined automatically, i.e., they
are fixed or constant grids that can be h-refined by changing the number of spatial grid points.
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Figure 1.2 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
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Figure 1.3 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=1

Eq. (1.1b) for kf = kr = 0, v constant (ncase=1 in Listing 1.1) is the linear
advection equation,

∂u1

∂t
= −v

∂u1

∂z
(1.5a)
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with IC (1.4a) and BC (1.4b). For the present analysis, we take (in eq. (1.4a))

f1(z) = 0 (1.5b)

and (in eq. (1.4b))
g1(t) = h(t) (1.5c)

where h(t) is the unit step (Heaviside) function

h(t) =

{
0, t < 0
1, t > 0

(1.5d)

Note that h(t) is not defined at t = 0.
If we assume a solution to eq. (1.5a) of the form

u1(z, t) = g1(t − z/v) = g1(λ); λ = t − z/v (1.6a)

with g1(λ < 0) = 0 (recall g1 is the BC function of eq. (1.4b)), substitution of
eq. (1.6a) in eq. (1.5a) gives

∂u1

∂t
=

dg1
dλ

∂λ

∂t

= −v
∂u1

∂z
= −v

dg1
dλ

∂λ

∂z

Since
∂λ

∂t
= 1;

∂λ

∂z
= −1/v

substitution in the preceding equation gives

∂u1

∂t
=

dg1
dλ

(1)

= −v
∂u1

∂z
= −v

dg1
dλ

(−1/v) (QED11)

so that eq. (1.6a) is a solution to eq. (1.5a).
Also, eq. (1.6a) satisfies IC (1.4a) (with f1(z) = 0) and BC (1.4b) (with z = 0).

Therefore, eq. (1.6a) is the analytical solution to eqs. (1.5a) to (1.5c). It is termed
a traveling wave solution [1] since it depends only on the Lagrangian variable
λ = t − z/v.

For the special case of g1(t) = h(t) of eq. (1.5d), the analytical solution is

u1(z, t) = h(t − z/v) (1.6b)

11QED =“quod erat demonstrandu” (Latin) or “that which was to be demonstrated”.
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Eq. (1.6b) defines a unit step12, starting at z = 0 and traveling in the direction of
increasing z (up the chromatographic column of Fig. 1.1) with velocity v. The unit
step occurs at λ = t − z/v = 0. Thus, at the exit of the column, λ = t − zL/v = 0
or at t = zL/v = 50/1 = 50). This unit step is evident in Fig. 1.2, except that the
step is actually undefined (not single valued) and is approximated over three grid
points as programmed in step of Listing 1.3.

The fact that u1(z = zL, t) is not a discontinuity at t = 50 is clear in Fig. 1.2
(the slope is finite). However, the approximation is required since a function that
is not single valued (and with an infinite slope) cannot be programmed (it can be
plotted using two points, u1(λ = 0) = 0 and u1(λ = 0) = 1 (both values used at
t = 50), but this is an artifice just to give the step the required appearance).

As another perspective, eqs. (1.5) constitute an impossible problem numerically

since the derivative (slope)
∂u1

∂z
at t − z/v = 0 is infinite. For the purpose of com-

puting a numerical solution, this discontinuity is approximated by a function with
a finite slope as in function step of Listing 1.3. In the subsequent discussion, we

will consider how closely the methods for calculating
∂u1

∂z
produce the solution of

eq. (1.6b), that is, for ifd = 1,2,3,4 in Listing 1.1.
In summary, eq. (1.5a) is an elementary hyperbolic PDE for which an analyti-

cal solution is easily derived, yet it is one of the most difficult PDEs to integrate
numerically (since it propagates steep fronts and discontinuities, a general feature
of hyperbolic PDEs).

• The numerical solution of eqs. (1.1) to (1.4) (in Fig. 1.2) plotted with o is a
smoothed (rounded) approximation of the unit step solution of eq. (1.6b). This
smoothing is generally termed numerical diffusion and is one of two distortions
(numerical artifacts) of solutions with steep moving fronts or discontinuities.
The other distortion is numerical oscillation that is described next. Numerical
diffusion may preclude the accurate calculation of moving front solutions in
applications for which this is unacceptable, e.g., chromatography, as discussed
subsequently.

• The two-point upwind FD approximations used in the numerical solution of eqs.
(1.1) to (1.4) are illustrated by the following code taken from dss012 (ifd=1)
listed in Appendix B.

for(i in 2:n){

ux[i]=(u[i]-u[i-1])/dx;

}

with n=41 in pde 1 of Listing 1.2where dss012 is called. The derivative, ux[i], is
approximated at grid point i by a FD based on a weighted sum of u[i] and u[i-1]
with a spacing dx (for v > 0). Point i-1 is upwind (upstream) of point i. This
upwinding is essential in the case of steep moving fronts and discontinuities in the

12A PDE with a solution that depends only on an IC is generally termed a Cauchy problem, that is, an initial
value problem. If the IC is discontinuous, the PDE is termed a Riemann problem. Eqs. (1.5) are an example
of a Riemann problem since they define a PDE problem with a solution that has a discontinuity for t ≥ 0, that
is, a discontinuity at t− z/v = 0 as stated in eq. (1.6b).
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solution. If u[i+1] is used in place of u[i-1], the numerical solution will become
unstable. Physically, this makes sense since what happens at i is determined by
what is happening upstream at i-1 and not downstream at i+1.

• This use of upwinding requires a priori knowledge of the direction of flow, e.g., bot-
tom to top in the chromatographic column of Fig. 1.1. An incorrect direction used
in the FD approximation leads to unstable solutions. For example, if v < 0, the
preceding FD approximation will produce an unstable numerical solution. Rather,
u[i] and u[i+1] are used in the FD since i+1 is now in the upstream direction
(see the listing of dss012 in Appendix B). Approximations that are centered (rather
than upwinded), and therefore do not require knowledge of the direction of flow,
are discussed subsequently (for ifd=2).

• For i=2 (one point inside the left boundary in z), u[1] is required (in the preceding
code). u[1] is set as a BC, as illustrated in pde 1 of Listing 1.2.

In summary, two-point upwinding generally produces a stable solution with no numer-
ical oscillation, but with numerical diffusion that may be excessive, depending on the
application, such as for hyperbolic (convective) PDEs that propagate steep fronts and
discontinuities.

For ncase=2 in Listing 1.1, Fig. 1.3 results (the numerical output is in Table 1.2).
We can note the following details in Fig. 1.3.

• The step input, u1(z = 0, t) = h(t), is smoothed beyond that from the two-point
upwind approximation of Fig. 1.2 by the adsorption onto the adsorbate. Whether
this is an accurate solution is difficult to assess without some form of error analysis,
for example, h and p refinement, which are considered next. As is generally the
case, an analytical solution is not readily available that can be used to calculate an
exact error as in Fig. 1.2. A principal reason for not having an analytical solution
is the nonlinearity of the rate, that is, the term u1(u

e
1 − u2) with the u1u2 product,

and the isotherm of eq. (1.3) which is nonlinear in u2 for c2 �= 0. In other words,
an analytical solution is precluded, and we accept a numerical solution that we
expect will be of reasonable accuracy, e.g., 3-4 significant figures. However, this
expectation must be justified (as it should for all PDE numerical solutions).

• An important consideration in evaluating the numerical solution of Table 1.2 and
Fig. 1.3 is whether the numerical diffusion from the two-point upwind approxi-
mation is significant relative to the physical smoothing from the adsorption. This
point requires further investigation through h and p refinement which is facilitated
by having the choice of four approximations selected with ifd. To start, we con-
sider the numerical solution of eqs. (1.1) to (1.4) with ifd=2 in the main program
of Listing (1.1) (everything else remains the same).

idf = 2 gives a call to dss004 in pde 1. dss004 has five-point centered
(fourth-order correct) FD approximations (except near the boundaries (z = 0, zL)
where noncentered FDs are used) so we would expect improved accuracy of the
solution relative to ifd=1 (five points rather than two). However, we will observe this
is incorrect.

The numerical output for ifd=2 is given in Table 1.3
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ifd = 2 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 36 deleted)

. .

. .

. .

39.00 0.0003 0.0000

42.00 -0.0019 0.0000

45.00 -0.0149 0.0000

48.00 0.0850 0.0000

51.00 0.6330 0.0000

54.00 1.1941 0.0000

57.00 0.9481 0.0000

60.00 0.9382 0.0000

63.00 1.1158 0.0000

66.00 0.8752 0.0000

69.00 1.1072 0.0000

72.00 0.9229 0.0000

75.00 1.0437 0.0000

78.00 0.9880 0.0000

81.00 0.9843 0.0000

84.00 1.0384 0.0000

87.00 0.9439 0.0000

90.00 1.0693 0.0000

93.00 0.9215 0.0000

96.00 1.0844 0.0000

99.00 0.9125 0.0000

102.00 1.0885 0.0000

105.00 0.9122 0.0000

108.00 1.0858 0.0000

111.00 0.9171 0.0000

114.00 1.0794 0.0000

117.00 0.9248 0.0000

120.00 1.0710 0.0000

123.00 0.9321 0.0000

126.00 1.0620 0.0000

129.00 0.9456 0.0000

132.00 1.0548 0.0000

135.00 0.9422 0.0000
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138.00 1.0490 0.0000

141.00 0.9667 0.0000

144.00 1.0267 0.0000

147.00 0.9660 0.0000

150.00 1.0459 0.0000

ncall = 1311

ifd = 2 ncase = 2

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 36 deleted)

. .

. .

. .

39.00 0.0001 0.0000

42.00 -0.0005 0.0000

45.00 -0.0049 0.0000

48.00 0.0036 0.0000

51.00 0.0337 0.0005

54.00 0.0654 0.0010

57.00 0.1012 0.0017

60.00 0.1460 0.0029

63.00 0.2051 0.0048

66.00 0.2886 0.0081

69.00 0.4133 0.0136

72.00 0.5950 0.0200

75.00 0.8073 0.0195

78.00 0.9486 0.0089

81.00 0.9866 0.0015

84.00 0.9945 0.0007

87.00 1.0004 0.0003

90.00 0.9996 -0.0001

93.00 0.9996 0.0001

96.00 1.0004 0.0000

99.00 0.9998 -0.0000

102.00 0.9999 0.0000

105.00 1.0001 -0.0000

108.00 0.9999 -0.0000
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Figure 1.4 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)

111.00 1.0000 0.0000

. .

. .

. .

(output for t = 114 to 144 deleted)

. .

. .

. .

147.00 1.0000 -0.0000

150.00 1.0000 -0.0000

ncall = 1035

Table 1.3: Numerical output for eqs. (1.1) to (1.4) for ncase=1,2, ifd=2

Figs. 1.4, 1.5 follow.
We can note the following points from Table 1.3 and Figs. 1.4, 1.5.

• In Table 1.3, ncase=1, and in Fig. 1.4, the numerical solution is highly oscillatory
(termed numerical oscillation). This is the second form of numerical distortion
(in addition to numerical diffusion illustrated in Fig. 1.2). Clearly, by comparison
with the analytical solution, the numerical solution is unacceptable (and it is also
unrealistic physically since we would not expect the output from the adsorption
column of Fig. 1.1 to oscillate).
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Figure 1.5 Numerical solution of eqs. (1.1b), (1.2b) for ncase=2, ifd=2

• In Fig. 1.5, the numerical oscillation is essentially eliminated by the adsorption
(ncase=2), which demonstrates that the performance of a spatial differentiator
may be strongly dependent on the characteristics (features) of the PDE problem.
For example, with no adsorption (ncase=1) (so that the solution is the propagation
of a unit step or discontinuity), the two-point upwind (2pu) approximation gives
excessive numerical diffusion (Fig. 1.2) and the five-point centered approximation
(5pc) gives numerical oscillation (Fig. 1.4). However, for the 2pu with adsorption
(ncase=2), the diffusion still appears to be unacceptable (Fig. 1.3) while for 5pc,
the physical smoothing was sufficient to give what appears to be an accurate solu-
tion (Fig. 1.5). But this use of p refinement (2pu to 5pc) is inconclusive and further
analysis is required.

The general conclusion we reach is that centered FD approximations should not be used
for strongly hyperbolic (convective) PDEs with a solution that includes a steep mov-
ing front or discontinuity. This conclusion remains valid if the number of grid points
is increased (e.g., n=41 to 81). In fact, the oscillations usually become even more pro-
nounced13. This conclusion also remains valid if the order of the FD approximation is
increased, e.g., seven-point centered approximations oscillate as much as the five-point
FD approximations.

To complete this discussion of five-point centered approximations, a section of code
from dss004 (listed in Appendix B) is given below.

13We should not conclude that five-point centered FDs are always unsatisfactory. In fact, they generally work
very well for parabolic (diffusive) PDEs such as the heat conduction equation (Fourier’s second law) and the
diffusion equation (Fick’s second law). This point will be illustrated in later applications.
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#

# Interior points (x=xl+2*dx,...,x=xu-2*dx)

for(i in 3:(n-2))ux[i]=r12dx*(-u[i+2]+8*u[i+1]-8*u[i-1]+u[i-2]);

Note that the derivative ux[i] is computed as a weighted sum of five values of u with
weighting coefficients -1 8 0 -8 1 that are skew symmetric with respect to the center
point i where the coefficient is 0 (and is therefore not programmed). At the boundary
points i=1,2,n-1,n, noncentered approximations are used. Details are given in dss004
listed in Appendix B.

The question then naturally arises if there is a FD approximation with acceptable
levels of numerical diffusion and oscillation. If the two-point upwind approximations
(in dss012) do not oscillate and the five-point approximations (in dss004) have a rel-
atively low level of numerical diffusion (see Fig. 1.4 along the near vertical analytical
solution) perhaps somehow combining the approximations would be worth trying. To
this end, we consider the five-point biased upwind (5pbu) approximations in dss020

listed in Appendix B. A section of the coding from dss020 for the derivative at i is
listed below.

for(i in 4:(n-1)){

ux[ i]=r12dx*( -u[i-3] +6*u[i-2]-18*u[i-1]+10*u[i ]+3*u[i+1]); }

The derivative ux[i] is the weighted sum of five values of u with grid indices
i-3,i-2,i-1,i,i+1 (for v > 0). That is, three points upstream of i and one point
downstream are used. This biasing in the upstream direction, designated as 5pbu,
is intended to maintain the effect of the flow. The effectiveness of this approach is
reflected in the numerical output in Table 1.4 and Figs. 1.6 and 1.7 (produced with
ifd=3 in main program of Listing 1.1).

ifd = 3 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 24 deleted)

. .

. .

. .

27.00 0.0001 0.0000

30.00 -0.0005 0.0000

33.00 0.0015 0.0000

36.00 -0.0019 0.0000

39.00 -0.0074 0.0000

42.00 0.0522 0.0000
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45.00 -0.1178 0.0000

48.00 0.1066 0.0000

51.00 0.7831 0.0000

54.00 1.0120 0.0000

57.00 1.0039 0.0000

60.00 1.0026 0.0000

63.00 0.9980 0.0000

66.00 1.0012 0.0000

69.00 0.9994 0.0000

72.00 1.0003 0.0000

75.00 0.9999 0.0000

78.00 1.0000 0.0000

. .

. .

. .

(output for t = 81 to 144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 914

ifd = 3 ncase = 2

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 0.0000 0.0000

. .

. .

. .

(output for t = 6 to 24 deleted)

. .

. .

. .

27.00 0.0001 0.0000

30.00 -0.0002 0.0000

33.00 0.0005 0.0000

36.00 -0.0005 -0.0000

39.00 -0.0020 -0.0000

42.00 0.0081 0.0000

45.00 -0.0086 0.0000

48.00 0.0012 -0.0000

51.00 0.0304 0.0004



36 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

54.00 0.0606 0.0009

57.00 0.0958 0.0016

60.00 0.1400 0.0028

63.00 0.1998 0.0048

66.00 0.2879 0.0086

69.00 0.4238 0.0149

72.00 0.6143 0.0203

75.00 0.8101 0.0171

78.00 0.9366 0.0086

81.00 0.9865 0.0027

84.00 0.9987 0.0005

87.00 1.0002 0.0000

90.00 1.0001 -0.0000

93.00 1.0000 -0.0000

. .

. .

. .

(output for t = 96 to 144 deleted)

. .

. .

. .

147.00 1.0000 -0.0000

150.00 1.0000 -0.0000

ncall = 1312

Table 1.4: Numerical output for eqs. (1.1) to (1.4) for ncase=1,2, ifd=3

Figs. 1.6, 1.7 follow.
We can note the following points from Table 1.4 and Figs. 1.6, 1.7.

• In Fig. 1.6, the 5pbu approximation has substantially reduced the numerical dif-
fusion and oscillation of Figs. 1.2 and 1.4. However, there is an oscillation at the
leading edge of the numerical solution that could still render the numerical solution
unacceptable. But we should keep in mind that the numerical solution approxi-
mates a unit step, which is essentially an impossible requirement (as discussed
previously), so that the numerical solution is a substantial improvement over the
previous 2pu (ifd=1) and 5pc (ifd=2) solutions.

• In Fig. 1.7, the oscillation of Fig. 1.6 has been essentially eliminated by the adsorp-
tion (for ncase=2) as occurred in Fig. 1.5. Also, Figs. 1.5 and 1.7 are quite similar
which suggests that they reflect an accurate solution (although this is certainly not
a proof of accuracy and some additional cases with a number of grid points other
than n=41 should be considered).

To demonstrate this point of the similarity of the solutions for ifd=2,3, from
Tables 1.3 and 1.4, we have at the portions of the solutions changing most rapidly
(see Figs. 1.5, 1.7):
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Figure 1.6 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.7 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=3

t = 63

5pc (ifd=2)

63.00 0.2051 0.0048

5pbu (ifd=3)

63.00 0.1998 0.0048 (n=41)

63.00 0.2026 0.0048 (n=81)
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t = 69

5pc (ifd=2)

69.00 0.4133 0.0136

5pbu (ifd=3)

69.00 0.4238 0.0149 (n=41)

69.00 0.4167 0.0142 (n=81)

t = 75

5pc (ifd=2)

75.00 0.8073 0.0195

5pbu (ifd=3)

75.00 0.8101 0.0171 (n=41)

75.00 0.8157 0.0182 (n=81)

For 5pbu, solutions are summarized with n=41,81 to demonstrate the level of con-
vergence from h refinement.

Experience has indicated that the 5pbu frequently works as required to pro-
duce an accurate numerical solution if the moving front of the solution is not very
steep, which is the case in many physical applications. But the preceding results
(for ifd=1,2,3) suggest that some experimentation and careful evaluation of the
numerical solution is usually required, including the use of h refinement, that is,
changing the number of grid points and observing the effect on the numerical solu-
tion. We have not done that here because of space limitations, but rather used only
n=41 (with results for n=81 indicated in the preceding table). Changes in the num-
ber of grid points requires only changing n in the main program of Listing 1.1.

We conclude this discussion of FD approximation of hyperbolic PDEs that propa-
gate steep fronts and discontinuities with Godunov’s barrier theorem that pertains to
numerical diffusion and oscillation. This theorem states ([1], p25): There is no linear
approximation to the Riemann problem, higher than first order, that is nonoscillatory.

To explain the wording:

• ncase=1 in the previous examples corresponds to the Riemann problem (the unit
step or discontinuity BC of eqs. (1.4b) and (1.5b)).

• The FD approximations 2pu, 5pc and 5pbu are linear in the sense that u[i] in
the RHS weighted sums for the calculation of ux[i] is to the first power (see the
preceding portions of code).

• 2pu is first order and does not oscillate (Fig. 1.2).

• 5pc and 5pbu are fourth order (i.e., higher than first order) and oscillate
(Figs. 1.4, 1.6).

Thus, if we are to use a higher order method to achieve better accuracy (e.g., less dif-
fusion than 2pu), we will have to use a nonlinear approximation or algorithm to avoid
oscillation. This is the approach considered next based on flux limiters.
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(1.3.2) Flux limiters, step BC

Flux limiters provide a nonlinear approximation to the first-order spatial derivatives in

convective (hyperbolic) PDEs, e.g.,
∂u1

∂z
in eq. (1.1b). The nonlinear algorithm can

be used to eliminate numerical oscillations as explained by Godunov’s theorem cited
previously.

For example, we can code the van Leer flux limiter ([1], pp 37-43) in the format of
the 5pc and 5pbu FD approximations. This has been done in function vanl listed in
Appendix B. We can then call vanl by using ifd=4 in the main program of Listing 1.1.
Abbreviated numerical output is listed in Table 1.5 below, and the graphical output is in
Figs. 1.8 and 1.9.

ifd = 4 ncase = 1

t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 -0.0000 0.0000

. .

. .

. .

(output for t = 6 to 42 deleted)

. .

. .

. .

45.00 0.0022 0.0000

48.00 0.2420 0.0000

51.00 0.6735 0.0000

54.00 0.9253 0.0000

57.00 0.9899 0.0000

60.00 0.9989 0.0000

63.00 0.9999 0.0000

66.00 1.0000 0.0000

. .

. .

. .

(output for t = 69 to 144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 2191

ifd = 4 ncase = 2
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t u1(z=zL,t) rate(z=zL,t)

0.00 0.0000 0.0000

3.00 -0.0000 0.0000

. .

. .

. .

(output for t = 6 to 45 deleted)

. .

. .

. .

48.00 0.0063 0.0000

51.00 0.0334 0.0004

54.00 0.0666 0.0011

57.00 0.1055 0.0020

60.00 0.1549 0.0033

63.00 0.2223 0.0057

66.00 0.3180 0.0096

69.00 0.4511 0.0143

72.00 0.6151 0.0169

75.00 0.7770 0.0146

78.00 0.8969 0.0091

81.00 0.9621 0.0042

84.00 0.9883 0.0015

87.00 0.9968 0.0005

90.00 0.9992 0.0001

93.00 0.9998 0.0000

96.00 0.9999 0.0000

99.00 1.0000 0.0000

. .

. .

. .

(output for t = 102 to 144 deleted)

. .

. .

. .

147.00 1.0000 0.0000

150.00 1.0000 0.0000

ncall = 5620

Table 1.5: Numerical output for eqs. (1.1) to (1.4) for ncase=1,2, ifd=4

Fig. 1.8 indicates that the unit step of eq. (1.5d) is closely approximated, with little
numerical diffusion and no oscillation. The latter is termed essentially non-oscillatory
or ENO.
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Figure 1.8 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
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Figure 1.9 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=4

Fig. 1.9 also indicates a smooth solution (no oscillation), but this was also achieved
with 5pc and 5pbu (Figs. 1.5, 1.7) because of smoothing of the transfer to the adsorbent
for ncase=2.

The three approaches, 2pc, 5pbu and van Leer, are briefly compared in Table 1.6
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t = 63

5pc (ifd=2)

63.00 0.2051 0.0048

5pbu (ifd=3)

63.00 0.1998 0.0048 (n=41)

63.00 0.2026 0.0048 (n=81)

van Leer (ifd=4)

63.00 0.2223 0.0057

t = 69

5pc (ifd=2)

69.00 0.4133 0.0136

5pbu (ifd=3)

69.00 0.4238 0.0149 (n=41)

69.00 0.4167 0.0142 (n=81)

van Leer (ifd=4)

69.00 0.4511 0.0143

t = 75

5pc (ifd=2)

75.00 0.8073 0.0195

5pbu (ifd=3)

75.00 0.8101 0.0171 (n=41)

75.00 0.8157 0.0182 (n=81)

van Leer (ifd=4)

75.00 0.7770 0.0146

Calls to pde_1, ncase=2

5pc ncall = 1035

5pbu ncall = 1312

van Leer ncall = 5620

Table 1.6: Abbreviated comparison of output for eqs. (1.1) to (1.4) for ncase=2

The differences in the numerical solutions in Table 1.6 (for ifd=2,3,4) suggest
that these differences are substantial. However, this is not necessarily the case as indi-
cated by the graphical output produced by the following variant of the main program of
Listing 1.1.

#

# Delete previous workspaces

rm(list=ls(all=TRUE))

#

# 1D, one component, chromatography model

#

# The ODE/PDE system is

#
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# u1_t = -v*u1_z - (1 - eps)/eps*rate (1.1b)

#

# u2_t = rate (1.2b)

#

# rate = kf*u1*(u2eq - u2) - kr*u2

#

# u2eq = c1*u1/(1 + c2*u1) (1.3)

#

# Boundary condition

#

# u1(z=0,t) = step(t) (1.4b)

#

# Initial conditions

#

# u1(z,t=0) = 0 (1.4a)

#

# u2(z,t=0) = 0 (1.4c)

#

# The method of lines (MOL) solution for eqs. (1.1) to

# (1.4) is coded below. Specifically, the spatial

# derivative in the fluid balance, u1_z in eq. (1.1b),

# is replaced by one of four approximations as selected

# by the variable ifd.

#

# Access ODE integrator

library("deSolve");

#

# Access files

setwd("G:/comp3/chromatography/R/ex1");

source("pde_1.R") ;source("step.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

#

# Declare (preallocate) array for plotted solutions

nout=51;

plot_2=matrix(0,nrow=nout,ncol=2);

#

# Step through cases

for(ncase in 1:2){

#

# Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; kf=1; kr=1;

zL=50; n=41;

if(ncase==1){ ifd=3; }

if(ncase==2){ ifd=4; }
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#

# Level of output

#

# Detailed output - ip = 1

#

# Brief (IC) output - ip = 2

#

ip=2;

#

# Initial condition

u0=rep(0,2*n);

for(i in 1:n){

u0[i]=u10;

u0[i+n]=u20;

}

t0=0;tf=150;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

# ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

# Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

}

t[it]=out[it,1];

}

#

# Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

# Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate(z=zL,t)\n"));

u2eq=rep(0,nout);rate=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

rate[it]=kf*u1[it,n]*(u2eq[it]-u2[it,n])-kr*u2[it,n];
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cat(sprintf(

"%7.2f%12.4f%12.4f\n",t[it],u1[it,n],rate[it]));

}

}

#

# Store solution for plotting

tplot=rep(0,nout);

for(it in 1:nout){

plot_2[it,ncase]=u1[it,n];

tplot[it]=t[it];

}

#

# Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

# Next case

}

#

# Plot for u1(z=zL,t)

par(mfrow=c(1,1))

plot(tplot,plot_2[,1],

xlab="t",ylab="u1(z=zL,t)",

xlim=c(0,tplot[nout]),ylim=c(0,1),

main="1 - 5pbu, 2 - van Leer",

type="l",lwd=2);

points(tplot,plot_2[,1], pch="1",lwd=2);

lines(tplot,plot_2[,2],type="l",lwd=2);

points(tplot,plot_2[,2], pch="2",lwd=2);

Listing 1.4: Main program pde 1 main for comparison of the 5pbu and van Leer
solutions for ncase=2

Listing 1.4 is similar to Listing 1.1, so we note only the differences here.

• The routine vanl for the van Leer flux limiter is included.

source("dss020.R");source("vanl.R");

• An array (matrix) is defined with the matrix utility for the two solutions ifd=3,4,
ncase=2.

#

# Declare (preallocate) array for plotted solutions

nout=51;

plot_2=matrix(0,nrow=nout,ncol=2);
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In this way, the two solutions can be superimposed on the same plot (Figs. 1.10,
1.11).

• Two cases are programmed corresponding to ifd=3,4 (5pbu, van Leer).

#

# Step through cases

for(ncase in 1:2){

#

# Model parameters

v=1; eps=0.4; u10=0; u20=0;

c1=1; c2=1; kf=1; kr=1;

zL=50; n=41;

if(ncase==1){ ifd=3; }

if(ncase==2){ ifd=4; }

• Brief numerical output is selected.

ip=2;

• The numerical solution for ncase=1,2 (ifd=3,4) is placed in array plot 2.

#

# Store solution for plotting

tplot=rep(0,nout);

for(it in 1:nout){

plot_2[it,ncase]=u1[it,n];

tplot[it]=t[it];

}

Note that this is at i=n corresponding to z = zL.

• At the end of the second solution, both solutions (for 5pbu and van Leer) are plotted
as a composite plot identified with 1 and 2.

#

# Plot for u1(z=zL,t)

par(mfrow=c(1,1))

plot(tplot,plot_2[,1],

xlab="t",ylab="u1(z=zL,t)",

xlim=c(0,tplot[nout]),ylim=c(0,1),

main="1 - 5pbu, 2 - van Leer",

type="l",lwd=2);

points(tplot,plot_2[,1], pch="1",lwd=2);

lines(tplot,plot_2[,2],type="l",lwd=2);

points(tplot,plot_2[,2], pch="2",lwd=2);

The composite plot is produced with a combination of three utilities, plot,
lines, points. The result is in Fig. 1.10, and when the two points are not
included (by making those statements comments), Fig. 1.11 results.
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Figure 1.10 Comparison of 5pbu (ifd=3) and van Leer (ifd=4)

The numerical output is

ifd = 3 ncase = 1

ncall = 1312

ifd = 4 ncase = 2

ncall = 5620

so that the van Leer limiter (from idf=4) requires substantially more computation than
5pbu (from ifd=3).

Fig 1.10 indicates that the two solutions agree closely. This is further confirmed in
Fig. 1.11 in which the numbered points have been surppressed.

The fact that the two solutions agree closely does not prove that they are accurate
and correct. However, this agreement resulting from two different algorithms, 5pbu and
van Leer, suggests that the two solutions are accurate. We can view this approach of
comparing solutions from two different algorithms as a generalized form of p refinement
in which not only is the order of the approximation changed (p usually denotes the order),
but the algorithm itself is changed.

To study this approach, we could consider other flux limiters. A set of limiters is
provided in [1], pp 40-43, and these can easily be used in place of the van Leer limiter
in vanl.

This completes the discussion of the model of eqs. (1.1) to (1.4). In particular, the
unit step of eq. (1.5d) provides a stringent test of the numerical algorithms (within the
MOL format). We now go through a similar analysis using a less stringent BC function,
a pulse in place of the unit step.
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Figure 1.11 Comparison of 5pbu (ifd=3) and van Leer (ifd=4)

(1.3.3) FDs, pulse BC

g1(t) in BC (1.4b) is a cosine pulse, defined as a function of the Lagrangian variable
(t − z/v).

pulse(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, (t − z/v) < 0
1− cos(ω(t − z/v), 0 ≤ (t − z/v) < π/2
1 + cos(ω(t − z/v), π/2 ≤ (t − z/v) ≤ π

0, (t − z/v) > π

(1.7a)

pulse(t) is a smooth (continuous) function of t in contrast with the step of eq. (1.5d).
Therefore, we would expect that calculating solutions to eqs. (1.1) to (1.4) would be
easier than for the step function. However, it is included in this analysis since for the
multi component case considered subsequently, we can observe the separation of the
component pulses as would occur in a chromatographic column.

The pulse of eq. (1.7a) is programmed in function pulse.

pulse=function(t,z,v) {

#

# Function pulse computes a pulse function

#

w=0.05;tzv=t-z/v;wtzv=w*tzv;

if((wtzv)< 0 ){u1p=0;}

if((wtzv>=0 )&(wtzv< pi/2)) {u1p=1-cos(wtzv);}

if((wtzv>=pi/2)&(wtzv<=pi )) {u1p=1+cos(wtzv);}

if((wtzv)>pi) {u1p=0;}

#
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# Return pulse

return(c(u1p));

}

Listing 1.5: Function pulse from eq. (1.7a)

The programming in Listing 1.5 follows directly from eq. (1.7a) and therefore does not
require elaboration. Note thatω = 0.05whichwas selected to give a pulse with a suitable
spread for the graphical output (plots of the following figures) for 0 ≤ t ≤ 150.

pulse of Listing 1.5 is used in Listings 1.1 to 1.3 by merely replacing the use of
step with pulse. So discussion of the programming details is not required. The exact
solution for ncase=1 is, from eq. (1.6a)

u1(z, t) = pulse(t − z/v) (1.7b)

As before, the analytical solution of eq. (1.7b) can be used to give the exact error in
the numerical solution for ncase=1 for the various spatial differentiation routines
(ifd=1,2,3,4). We would expect that the agreement between the numerical and
analytical solutions would be better than for the step since the pulse of eq. (1.7a) is
smoother than the step of eq. (1.5d).

The numerical and graphical output from Listings 1.1 to 1.3 follows.
In Fig. 1.12 (ncase=1), the numerical diffusion for 2pu (ifd=1) is substantial, par-

ticularly at the peak which is reduced from 1 to approximately 0.7. The defined vertical
scaling was used in producing this plot (ylim=c(0,1)) since the numerical solution is
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Figure 1.12 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=1, pulse BC



50 MOL ANALYSIS OF PDEs: WAVE FRONT RESOLUTION IN CHROMATOGRAPHY

0

0.0

0.1

0.2

0.3

0.4

0.5

50 100

t

150

u1
(z

=z
L

,t
)

u1(z=zL,t) vs t, ncase=2

Figure 1.13 Numerical solution of eqs. (1.1b), (1.2b), ncase=2, ifd=1, pulse BC

plotted first. Automatic scaling gives a vertical axis of 0 to 0.8, and then the peak of the
exact solution plotted next is truncated (the plot cannot reach 1).

In Fig. 1.13 (ncase=2), the numerical solution appears smooth, but the accuracy of
the solution cannot be ascertained. Later we compare the ncase=2 solutions for different
spatial differentiators.

Execution of the routines for ifd=2 gives the graphical output in Fig. 1.14 (the numer-
ical output and the plotted solution for ncase=2 are not given here).

In Fig. 1.14, the numerical and analytical solutions agree closely, except for some
numerical oscillation in the downstream portion of the solution, which is not unexpected
since we found previously that the 5pc approximations (ifd=2) oscillate (for steep mov-
ing fronts such as the unit step).

Execution of the routines for ifd=3 gives the graphical output in Fig. 1.15 (the numer-
ical output and the plotted solution for ncase=2 are not given here).

In Fig. 1.15, the numerical and analytical solutions agree closely, with no apparent
numerical diffusion or oscillation.

(1.3.4) Flux limiters, pulse BC

We next consider the solutions to eqs. (1.1b) and (1.2b) with the derivative
∂u1

∂z
in eq.

(1.1b) approximated with a flux limiter. Execution of the routines for ifd=4 gives the
graphical output in Fig. 1.16 (the numerical output and the plotted solution for ncase=2
are not given here).

In Fig. 1.16, the peak of the numerical solution is not resolved as closely as we
might expect. Also, the van Leer limiter (ifd=4) required substantially more calcula-
tions (higher value of ncall) than the 5pbu FD (ifd=3).
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Figure 1.14 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=2, pulse BC
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Figure 1.15 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=3, pulse BC

The error in the numerical solution at the peak is not unexpected when we consider
how rapidly the solution changes at the peak. In fact, the first derivative of the solution
is discontinuous at the peak. To show this, the derivative from the segment u1 = 1−
cos(ω(t − z/v)) (from eq. (1.7a)) is ω sin(ω(t − z/v)) and at the peak, ω(t − z/v) =
π/2 the derivative is ω. The derivative from the segment u1 = 1 + cos(ω(t − z/v)) is
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Figure 1.16 Comparison of the numerical and analytical solutions of eqs. (1.1b), (1.2b)
ncase=1, ifd=4, pulse BC

−ω sin(ω(t − z/v)) and at the peak, ω(t − z/v) = π/2 the derivative is−ω. Therefore,
the derivative at the peak is a finite step of magnitude 2ω (as demonstrated in Fig. 1.16),

and the calculation of
∂u1

∂z
is difficult numerically.

In summary, for ncase=1 the comparison of the numerical and analytical solutions
demonstrated smaller differences than for the unit step as expected since the cosine pulse
of eq. (1.7a) is smoother than the step of eq. (1.5d). But the differences are large enough
that some experimentation for ncase=2 is suggested.

We now compare the numerical solutions for ifd=3,4 and ncase=2 as was done
previously for the unit step. Again, this is easily accomplished by replacing the step
BC with the pulse BC. The graphical output is in Fig. 1.17 (with points) and Fig. 1.18
(without points).

The differences between 5pbu and van Leer are clear. If they are considered excessive,
one possibility to improve the agreement would be to use more points in z since n = 41
is a rather coarse grid (h refinement). Another possibility would be to use another flux
limiter (e.g., from the set in [1], pp 40-42) which is a generalized form of p refinement
in which the algorithm is changed.

The preceding discussion is for a single component with concentrations u1(z, t)
(fluid) and u2(z, t) (adsorbent). The intention is to demonstrate the features and

performance of some approximations for the derivative in
∂u1

∂z
in eq. (1.1b). However,

movement of fronts through the chromatographic column (Fig. 1.1) for multi component
systems is of primary interest in the application of chromatographic separation and
analysis. We therefore next consider how the preceding routines can be extended to two
components (and thus, for any number of components).
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Figure 1.17 Comparison of 5pbu (ifd=3) and van Leer (ifd=4), ncase=2
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Figure 1.18 Comparison of 5pbu (ifd=3) and van Leer (ifd=4), ncase=2

(1.4) Multi component model

The interest in chromatography is primarily within the context of analysis and separation
of multi component mixtures. Here we consider how the previous single component
model can be extended to multi component applications.
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Eqs. (1.1b), (1.2b) can be extended to a system of two components, with dependent
variables u1, u2, u3, u4

14

∂u1

∂t
= −∂(vu1)

∂z
− (1− ε)

ε
(kfu1(u

e
2 − u2)− kru2) (1.8a)

∂u2

∂t
= kfu1(u

e
2 − u2)− kru2 (1.8b)

∂u3

∂t
= −∂(vu3)

∂z
− (1− ε)

ε
(kfu3(u

e
4 − u4)− kru4) (1.8c)

∂u4

∂t
= kfu3(u

e
4 − u4)− kru4 (1.8d)

The adsorbent equilibrium concentrations, ue
2, u

e
4 are given by the isotherms

ue
2 =

c1u1

1 + c2u1

; ue
4 =

c3u3

1 + c4u3

(1.9a,b)

These isotherms are single component, but they could easily be extended to the multi
component case, e.g., ue

2 = f2(u1, u3), u
e
4 = f4(u1, u3).

The ICs for eqs. (1.8) are

u1(z, t = 0) = f1(z), u2(z, t = 0) = f2(z), u3(z, t = 0) = f3(z),

u1(z, t = 0) = f4(z) (1.10a,b,c,d)

The BCs for eqs. (1.8) are

u1(z = 0, t) = g1(t), u3(z = 0, t) = g3(t) (1.11a,b)

We will next consider eqs. (1.8) to (1.11) for homogeneous ICs, f1(z) = f2(z) =
f3(z) = f4(z) = 0, and pulse function BCs, g1(t) = g3(t) = pulse(t).

(1.5) MOL routines

The main program and subordinate routines for the multi component model are next. A
main program for eqs. (1.8) to (1.11) is in Listing 1.6.

(1.5.1) Main program

#

# Delete previous workspaces

rm(list=ls(all=TRUE))

#

# 1D, two component, chromatography model

#

14We have followed the usual convention of naming PDE dependent variables with u and a number.
The alternative is to use variables names that are more closely identified with physical variables, e.g.,
cf,1, ca,1, cf,2, ca,2 where f, a denote fluid and adsorbent, respectively.
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# The ODE/PDE system is

#

# u1_t = -v*u1_z - (1 - eps)/eps*rate1

#

# u2_t = rate1

#

# u3_t = -v*u3_z - (1 - eps)/eps*rate3

#

# u4_t = rate3

#

# Boundary conditions

#

# u1(z=0,t) = pulse(t)

#

# u3(z=0,t) = pulse(t)

#

# Initial conditions

#

# u1(z,t=0) = 0

#

# u2(z,t=0) = 0

#

# u3(z,t=0) = 0

#

# u4(z,t=0) = 0

#

# The method of lines (MOL) solution is coded below.

# Specifically, the spatial derivatives in the fluid

# balances, u1_z, u3_z, are replaced by one of four

# approximations as selected by the variable ifd.

#

# Access ODE integrator

library("deSolve");

#

# Access files

setwd("G:/chap1");

source("pde_1.R") ;source("pulse.R") ;

source("dss004.R");source("dss012.R");

source("dss020.R");source("vanl.R") ;

#

# Step through cases

for(ncase in 1:2){

#

# Model parameters

v=1; eps=0.4;

u10=0; u20=0; u30=0; u40=0;
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c1=1; c2=1; c3=1; c4=1;

zL=50; n=41;

if(ncase==1){ kf1=0; kr2=0; kf3=0; kr4=0;}

if(ncase==2){ kf1=1; kr2=1; kf3=0; kr4=0;}

#

# Select an approximation for the convective derivative u1z

#

# ifd = 1: Two point upwind approximation

#

# ifd = 2: Centered approximation

#

# ifd = 3: Five point, biased upwind approximation

#

# ifd = 4: van Leer flux limiter

#

ifd=3;

#

# Level of output

#

# Detailed output - ip = 1

#

# Brief (IC) output - ip = 2

#

ip=1;

#

# Initial condition

u0=rep(0,4*n);

for(i in 1:n){

u0[i]= u10;

u0[i+n]= u20;

u0[i+2*n]=u30;

u0[i+3*n]=u40;

}

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;

#

# ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

# Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

u3=matrix(0,nrow=nout,ncol=n);

u4=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);
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for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

u3[it,iz]=out[it,iz+1+2*n];

u4[it,iz]=out[it,iz+1+3*n];

}

t[it]=out[it,1];

}

#

# Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

# Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate1(z=zL,t)\n"));

cat(sprintf(

"\n\n t u3(z=zL,t) rate3(z=zL,t)\n"));

u2eq=rep(0,nout); u4eq=rep(0,nout);

rate1=rep(0,nout);rate3=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

u4eq[it]=c3*u3[it,n]/(1+c4*u3[it,n]);

rate1[it]=kf1*u1[it,n]*(u2eq[it]-u2[it,n])-kr2*u2[it,n];

rate3[it]=kf3*u3[it,n]*(u4eq[it]-u4[it,n])-kr4*u4[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n" ,t[it],u1[it,n],rate1[it]));

cat(sprintf(

"%7.2f%12.4f%12.4f\n\n",t[it],u3[it,n],rate3[it]));

}

}

#

# Store solution for plotting

u1plot=rep(0,nout);u3plot=rep(0,nout);

tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

u3plot[it]=u3[it,n];

tplot[it]=t[it];

}

#

# Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

# Plot for u1(z=zL,t)
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# ncase = 1

if(ncase==1){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",xlim=c(0,tplot[nout]),

ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

#

# Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);u3expl=rep(0,nout);

for(it in 1:nout){

u1expl[it]=pulse(tplot[it],zL,v);

u3expl[it]=pulse(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

lines(tplot,u3expl,lwd=2,type="l");

}

#

# ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]),ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

#

# Next case

}

Listing 1.6: Main program for the multi component model, eqs. (1.8) to (1.11)

Listing 1.6 is similar to Listing 1.1. Therefore, the differences will be emphasized
next.

• A block of documentation comments for the two component model, followed by
access to the library ofODE solvers deSolve and the routines specific to the coding
are at the beginning as before (e.g., in Listings 1.1 and 1.4).

• Two cases are programmed in a for
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#

# Step through cases

for(ncase in 1:2){

#

# Model parameters

v=1; eps=0.4;

u10=0; u20=0; u30=0; u40=0;

c1=1; c2=1; c3=1; c4=1;

zL=50; n=41;

if(ncase==1){ kf1=0; kr2=0; kf3=0; kr4=0;}

if(ncase==2){ kf1=1; kr2=1; kf3=0; kr4=0;}

For ncase=1, no transfer of the two components to the adsorbent occurs, so
the linear advection equation (1.5a) applies to both components. For ncase=2,
component 1 is adsorbed while component 2 is not. Thus, we would expect
some separation of the two components, that is, differences in u1(z = zL, t) and
u3(z = zL, t). This selective adsorption will be observed in the solutions reported
next.

• Four spatial differentiators are again programmed corresponding to ifd=1,2,3,4.
The 5pbu FD ifd=3 will be used primarily since it gives little numerical diffusion
and oscillation, and is computationally efficient, as observed previously for the
one component case.

• Homogeneous (zero) ICs are programmed for u1(z, t = 0), u2(z, t = 0), u3(z, t =
0), u4(z, t = 0).

#

# Initial condition

u0=rep(0,4*n);

for(i in 1:n){

u0[i]= u10;

u0[i+n]= u20;

u0[i+2*n]=u30;

u0[i+3*n]=u40;

}

Again n=41 so the number of ODEs in the MOL analysis (of eqs. (1.8a), (1.8b))
is now 4(41) = 164.

• The variation in t is again 0 ≤ t ≤ 150 with 51 output points (including
t = 0).

t0=0;tf=150;nout=51;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

ncall=0;
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• Integrator ode is used to compute the numerical solution in array out. The four
dependent variables are then placed in arrays u1,u2,u3,u4 that are 2D for the
variations in z and t.

#

# ODE integration

out=ode(func=pde_1,times=tout,y=u0);

#

# Store solution

u1=matrix(0,nrow=nout,ncol=n);

u2=matrix(0,nrow=nout,ncol=n);

u3=matrix(0,nrow=nout,ncol=n);

u4=matrix(0,nrow=nout,ncol=n);

t=rep(0,nout);

for(it in 1:nout){

for(iz in 1:n){

u1[it,iz]=out[it,iz+1];

u2[it,iz]=out[it,iz+1+n];

u3[it,iz]=out[it,iz+1+2*n];

u4[it,iz]=out[it,iz+1+3*n];

}

t[it]=out[it,1];

}

Also, t (out[it,1]) is placed in vector t as before.

• ifd and ncase are displayed at the beginning of the output. Then, for ip=1
(detailed numerical output), the equilibrium concentrations ue

2, u
e
4 are computed

from eqs. (1.9), and the adsorption rates in eqs. (1.8) are computed and placed in
vectors and displayed.

#

# Display ifd, ncase

cat(sprintf("\n ifd = %2d ncase = %2d",ifd,ncase));

#

# Display numerical solution

if(ip==1){

cat(sprintf(

"\n\n t u1(z=zL,t) rate1(z=zL,t)\n"));

cat(sprintf(

"\n\n t u3(z=zL,t) rate3(z=zL,t)\n"));

u2eq=rep(0,nout); u4eq=rep(0,nout);

rate1=rep(0,nout);rate3=rep(0,nout);

for(it in 1:nout){

u2eq[it]=c1*u1[it,n]/(1+c2*u1[it,n]);

u4eq[it]=c3*u3[it,n]/(1+c4*u3[it,n]);

rate1[it]=kf1*u1[it,n]*(u2eq[it]-u2[it,n])-kr2*u2[it,n];
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rate3[it]=kf3*u3[it,n]*(u4eq[it]-u4[it,n])-kr4*u4[it,n];

cat(sprintf(

"%7.2f%12.4f%12.4f\n" ,t[it],u1[it,n],rate1[it]));

cat(sprintf(

"%7.2f%12.4f%12.4f\n\n",t[it],u3[it,n],rate3[it]));

}

}

• The exiting concentrations u1(z = zL, t), u3(z = zL, t) are placed in
vectors for subsequent plotting (note the use of n corresponding to
z = zL).

#

# Store solution for plotting

u1plot=rep(0,nout);u3plot=rep(0,nout);

tplot=rep(0,nout);

for(it in 1:nout){

u1plot[it]=u1[it,n];

u3plot[it]=u3[it,n];

tplot[it]=t[it];

}

• The number of calls to the MOL/ODE routine pde 1 (discussed next) is
displayed. Then u1(z = zL, t), u3(z = zL, t) are plotted against t and iden-
tified with the characters 1,3 in the plot using the utilities plot, points,

lines.

#

# Calls to ODE routine

cat(sprintf("\n ncall = %4d\n",ncall));

#

# Plot for u1(z=zL,t)

# ncase = 1

if(ncase==1){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=1\n

line - anal, o - num",type="l",xlim=c(0,tplot[nout]),

ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

• For ncase=1 (no adsorption), the analytical solution of eqs. (1.8) is placed in two
arrays by a call to pulse of Listing 1.5.
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#

# Analytical solution, ncase=1

if(ncase==1){

u1expl=rep(0,nout);u3expl=rep(0,nout);

for(it in 1:nout){

u1expl[it]=pulse(tplot[it],zL,v);

u3expl[it]=pulse(tplot[it],zL,v);

}

lines(tplot,u1expl,lwd=2,type="l");

lines(tplot,u3expl,lwd=2,type="l");

}

The analytical solutions are then superimposed on the ncase=1 plot with the
lines utility. The superposition takes place because the par(mfrow=c(1,1)) is
not repeated (for a separate plot).

• For ncase=2 (with adsorption of component 1), the solutions u1(z =
zL, t), u3(z = zL, t) are plotted as lines with points.

#

# ncase = 2

if(ncase==2){

par(mfrow=c(1,1))

plot(tplot,u1plot,xlab="t",ylab="u1(z=zL,t),u3(z=zL,t)",

lwd=2,main="u1(z=zL,t),u3(z=zL,t) vs t, ncase=2",

type="l",xlim=c(0,tplot[nout]),ylim=c(-0.1,1.1));

points(tplot,u1plot,pch="1",lwd=2);

lines(tplot,u3plot,lwd=2,type="l");

points(tplot,u3plot,pch="3",lwd=2);

}

#

# Next case

}

The final } concludes the for in ncase.

(1.5.2) MOL/ODE routine

The MOL/PDE routine pde 1 called by ode in Listing 1.7 is next.

pde_1=function(t,u,parms) {

#

# Function pde_1 computes the t derivative vector of the u vector

#

# One vector to four PDEs

u1=rep(0,n);u2=rep(0,n);

u3=rep(0,n);u4=rep(0,n);
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for (i in 1:n){

u1[i]=u[i];

u2[i]=u[i+n];

u3[i]=u[i+2*n];

u4[i]=u[i+3*n];

}

#

# Boundary condition

u1[1]=pulse(t,0,v);

u3[1]=pulse(t,0,v);

#

# First order spatial derivative

#

# ifd = 1: Two point upwind finite difference (2pu)

if(ifd==1){ u1z=dss012(0,zL,n,u1,v); }

if(ifd==1){ u3z=dss012(0,zL,n,u3,v); }

#

# ifd = 2: Five point center finite difference (5pc)

if(ifd==2){ u1z=dss004(0,zL,n,u1); }

if(ifd==2){ u3z=dss004(0,zL,n,u3); }

#

# ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

if(ifd==3){ u3z=dss020(0,zL,n,u3,v); }

#

# ifd = 4: van Leer flux limiter

if(ifd==4){ u1z=vanl(0,zL,n,u1,v); }

if(ifd==4){ u3z=vanl(0,zL,n,u3,v); }

#

# Temporal derivatives, mass transfer rate

u1t=rep(0,n); u2t=rep(0,n);

u3t=rep(0,n); u4t=rep(0,n);

u2eq=rep(0,n);rate1=rep(0,n);

u4eq=rep(0,n);rate3=rep(0,n);

#

# u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate1[i]=kf1*u1[i]*(u2eq[i]-u2[i])-kr2*u2[i];

if(i==1){

u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate1[i];

}

u2t[i]=rate1[i];

}
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#

# u3t, u4t

for(i in 1:n){

u4eq[i]=c3*u3[i]/(1+c4*u3[i]);

rate3[i]=kf3*u3[i]*(u4eq[i]-u4[i])-kr4*u4[i];

if(i==1){

u3t[i]=0;

}else{

u3t[i]=-v*u3z[i]-(1-eps)/eps*rate3[i];

}

u4t[i]=rate3[i];

}

#

# Four PDEs to one vector

ut=rep(0,4*n);

for(i in 1:n){

ut[i] =u1t[i];

ut[i+n] =u2t[i];

ut[i+2*n]=u3t[i];

ut[i+3*n]=u4t[i];

}

#

# Increment calls to pde_1

ncall<<-ncall+1;

#

# Return derivative vector

return(list(c(ut)));

}

Listing 1.7: MOL/ODE routine pde 1 for eqs. (1.8), (1.9) and (1.11)

Listing 1.7 is similar to Listing 1.2 so only the differences are emphasized next.

• The function is first defined. Then the input vector u of length 4(41) = 164 is
placed in four vectors of length 41.

pde_1=function(t,u,parms) {

#

# Function pde_1 computes the t derivative vector

# of the u vector

#

# One vector to four PDEs

u1=rep(0,n);u2=rep(0,n);

u3=rep(0,n);u4=rep(0,n);

for (i in 1:n){

u1[i]=u[i];
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u2[i]=u[i+n];

u3[i]=u[i+2*n];

u4[i]=u[i+3*n];

}

This use of four arrays facilitates the programming of eqs. (1.8) (four PDEs).

• A pulse BC is used at z = 0 for both eqs. (1.8a) and (1.8c) for ncase=1,2.

#

# Boundary condition

u1[1]=pulse(t,0,v);

u3[1]=pulse(t,0,v);

In other words, this programming is for BCs (1.11) with a pulse. Since the pro-
gramming is the same for eqs. (1.8a) and (1.8c), the numerical solutions should
be the same (for ncase=1), which serves as a check on the coding in pde 1 of
Listing (1.6).

• The derivatives in z in eqs. (1.8a) and (1.8c) are computed by one of the four spatial
differentiators considered previously (in Listing 1.2). For the model of eqs. (1.8),
ifd=3 is used, for which the programming is

#

# ifd = 3: Five point biased upwind approximation (5pbu)

if(ifd==3){ u1z=dss020(0,zL,n,u1,v); }

if(ifd==3){ u3z=dss020(0,zL,n,u3,v); }

The two derivatives
∂u1

∂z
,
∂u3

∂z
in eqs. (1.8a) and (1.8c) are calculated in this way.

• Arrays are declared for the derivatives in t in eqs. (1.8a), (1.8c), the equilibrium
concentrations of eqs. (1.9), and the adsorption rates in eqs. (1.8a) and (1.8c).

#

# Temporal derivatives, equilibrium concentrations,

# mass transfer rates

u1t=rep(0,n); u2t=rep(0,n);

u3t=rep(0,n); u4t=rep(0,n);

u2eq=rep(0,n);rate1=rep(0,n);

u4eq=rep(0,n);rate3=rep(0,n);

• Eq. (1.8a) is programmed as

#

# u1t, u2t

for(i in 1:n){

u2eq[i]=c1*u1[i]/(1+c2*u1[i]);

rate1[i]=kf1*u1[i]*(u2eq[i]-u2[i])-kr2*u2[i];

if(i==1){
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u1t[i]=0;

}else{

u1t[i]=-v*u1z[i]-(1-eps)/eps*rate1[i];

}

u2t[i]=rate1[i];

}

A for is used for the interval 0 ≤ z ≤ zL. The equilibrium concentration ue
2 , and

adsorption rate are calculated and placed in vectors. For z = 0, since the entering
concentration is defined by BC (1.11a), the derivative in t is set to zero to retain this
boundary value. For z > 0, eqs. (1.8a), (1.8b) are used to compute the derivatives
∂u1

∂t
,
∂u2

∂t
.

• In the same way, the derivatives
∂u3

∂t
,
∂u4

∂t
in eqs. (1.8c), (1.8d) are computed.

#

# u3t, u4t

for(i in 1:n){

u4eq[i]=c3*u3[i]/(1+c4*u3[i]);

rate3[i]=kf3*u3[i]*(u4eq[i]-u4[i])-kr4*u4[i];

if(i==1){

u3t[i]=0;

}else{

u3t[i]=-v*u3z[i]-(1-eps)/eps*rate3[i];

}

u4t[i]=rate3[i];

}

• The four derivatives in t are placed in a single vector, ut, to return to the ODE
integrator, ode (called in Listing 1.6).

#

# Four PDEs to one vector

ut=rep(0,4*n);

for(i in 1:n){

ut[i] =u1t[i];

ut[i+n] =u2t[i];

ut[i+2*n]=u3t[i];

ut[i+3*n]=u4t[i];

}

• The counter for the calls to pde 1 is incremented and returned to the main program
of Listing 1.6 with <<-.

#

# Increment calls to pde_1

ncall<<-ncall+1;
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• The vector ut is returned to ode with a combination of c (the R vector operator),
list (required by ode), and return.

#

# Return derivative vector

return(list(c(ut)));

}

The final } concludes the function pde 1.

The only other required function is for the BCs of eqs. (1.11), pulse in this case in
Listing 1.5. The output from the routines in Listings 1.6, 1.7 and 1.5 is considered next.

(1.6) Model output, multi component chromatography

The numerical output from Listing 1.6 is not reproduced here to conserve space. The
two plots produced by the main program of Listing 1.6 are in Figs. 1.19 and 1.20.

In Fig. 1.19, all four solutions are essentially identical (for 5pbu, u1(t, z = zL),
u3(t, z = zL), numerical and analytical) as expected. This is a worthwhile check on the
coding since any errors might produce different solutions.

In Fig. 1.20, the numerical solutions reflect the difference of adsorption for the two
components, i.e., component 1 is adsorbed (from the values kf1=1,kr1=1 in Listing
1.6), while component 2 is not adsorbed (from the values kf2=0,kr2=0). As expected,
component 2 leaves the column first and a partial separation is effected. While the output

0

0.0

0.2

0.4

0.6

0.8

1.0

50 100

t

150

u1
(z

=z
L

,t
),

u3
(z

=z
L

,t
)

u1(z=zL,t),u3(z=zL,t) vs t, ncase=1

line - anal, o - num

Figure 1.19 Comparison of the numerical and analytical solutions of eqs. (1.8) ncase=1,
ifd=3, pulse BC
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Figure 1.20 Numerical solutions of eqs. (1.8), ncase=2, ifd=3, pulse BC

stream is not very pure in either component, the purity of the output stream could be
substantially enhanced by, for example, increasing the length of the column, changing
the velocity v, using multiple columns in sequence, using an adsorbent with different
selective properties, etc.

These various options can be studied with the model which would be time consum-
ing and expensive experimentally. Also, additional components can easily be added to
the coding in Listings 1.6 and 1.7. This type of design study and possible optimization
illustrates the inherent value of a mathematical model.

We now consider a series of PDE models for BMSE applications in subsequent
chapters. When considering the models, we will introduce diffusion modeled by
second derivatives in the spatial derivatives (parabolic PDEs), that is, the use of Fick’s
first and second laws, including nonlinear extensions. However, the intent in this
chapter is to focus on the inherent difficulties of solving PDE models numerically for
strongly convective (hyperbolic) systems. The addition of diffusion eases the numerical
requirements since steep fronts and discontinuities are smoothed by diffusion.
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