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SET THEORY

“The question for the ultimate foundations and the ultimate meaning of mathemat-
ics remains open; we do not know in which direction it will find its final solution
nor even whether a final objective answer can be expected at all.

“Mathematizing” may well be a creative activity of man, like language or music,
of primary originality, whose historical decisions defy complete objective rational-
ization.”

H. Weyl1

1.1 INTRODUCTION

The fact that you chose to read this bookmakes it likely that youmight have heard
of Kurt Gödel,2 the greatest logician since Aristotle,3 whose arguably revolution-
ary discoveries influenced our views on mathematics, physics, and philosophy,

1Hermann Klaus HugoWeyl (1885–1955), German mathematician, Yearbook of the American Philosoph-
ical Society, 1943 (copyright 1944).
2Kurt Gödel (1906–1978), Austrian–American logician, mathematician, and philosopher.
3J.A. Wheeler said that “if you called him the greatest logician since Aristotle you’d be downgrading him”
(quoted in Bernstein, J., Quantum Profiles, Princeton University Press, 1991. Also in Wang, H. A Logical
Journey, MIT Press, 1996).
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2 SET THEORY

comparable only to the discoveries of quantummechanics. Well, even if you have
not heard of him I want to start by rephrasing his famous theorem:

Mathematics is inexhaustible!

Notwithstanding the lack of a definition of what mathematics is, that still
sounds wonderful, doesn’t it? At this point, you may not fully understand the
meaning of this “theorem” or appreciate its significance for mathematics and phi-
losophy. You may even disagree with it, but I suppose you would agree with me
that mathematics is the study of abstract structures with enormous applications
to the “real world.” Also, wouldn’t you agree that the most impressive features
of mathematics are its certainty, abstractness, and precision? That has always
been the case, and mathematics continues to be a vibrant, constantly growing,
and definitely different discipline from what it used to be. I hope you would also
agree (at least after reading this book) that it possesses a unique beauty and ele-
gance recognized from ancient times, and yet revealing its beauty more and more
with/to every new generation of mathematicians. Where does it come from? Even
if you accept the premise that it is a construct of our mind, you need to wonder
how come it represents/reflects reality so faithfully, and in such a precise and
elegant way. How come its formalism matches our intuition so neatly? Is that
why we “trust” mathematics (not mathematicians) more than any other science;
indeed, very often we define truth as a “mathematical truth” without asking for
experimental verification of its claims? So, it is definitely reasonable to ask at the
very beginning of our journey (and we will ask this question frequently as we
go along): Does the world of mathematics exist outside of, and independently of,
the physical world and the actions of the human mind? Gödel thought so. In any
case, keep this question in mind as you go along – it has been in the minds of
mathematicians and philosophers for centuries.

The set theory that we start with comes as a culmination of 2000 years of
mathematics, with the work of the German mathematician George Cantor4 in the
1890s. Asmuch as the inception of set theorymight have had (apparently) modest
beginnings, there is virtually no mathematical field in which set theory doesn’t
enter as the very foundation of it. And it does it so flawlessly, so naturally, and
in such a “how-could-it-be-otherwise” way, that one wonders why it took us so
long to discover it. And arguably, there is no concept more fundamental than the
concept of the set. (Indeed, try to answer the question: What is a real number
without referring to set theory?) Be it as it may, now we have it. We start our
journey through the “Principles,” with the basic formalism of set theory.

No one shall be able to drive us from the paradise that Cantor created for us.5
D. Hilbert

4Georg Ferdinand Ludwig Philipp Cantor (1845–1918), German mathematician, the “father” of Set
Theory.
5David Hilbert (1862–1943), German mathematician.
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1.2 SET THEORY – DEFINITIONS, NOTATION, AND
TERMINOLOGY – WHAT IS A SET?

You are probably familiar with the notion in mathematics of a set as a collection,
an aggregate or a “group”6 of certain “(some)things,” or a collection of certain
“objects”7 that form a whole. We assume the existence of some domain of those
“objects,” out of which our mind will build a “whole.” Cantor suggested that one
should imagine a set as a collection into a whole A of definite and separate objects
of our intuition or our thought. These objects are called members or elements of a
set. For example, we can consider the set of all planets in the solar system,8 or the
set of all living people on Earth. Or, we can consider the set of all living females
on this planet. Those would be well-defined sets, and by the very “definition,”
that is, the description of the set, our mind effortlessly constructs the concept
of a “whole.” On the other hand, calling for a set of all tall men, or a set of
all big planets, triggers a similar concern. What is “a tall man” or “a big planet?”
Obviously, describing a set of real objects by means of their characteristics can be
problematic due to the imprecision of everyday language. So, it is fair to say that
once the nature of objects defining a set is unambiguously stated, the whole entity,
and not the individual elements, becomes the object of our study. Consequently,
what we care about is the relationship between different sets as well as the very
consistency of the “set” concept.

As you can see, at the very beginning of our discussion, we are introducing a
concept that looks, to say the least, pretty vague, especially since we are doing
mathematics, which we expect to be the epitome of precision. So, at this point
in the process of devising our theory – The Naïve Set Theory – we will use the
words “set” and “is an element of” without properly defining them. We will sim-
ply assume that we know exactly what they mean and hope that we won’t run into
any inconsistencies and paradoxes. In addition, we need the basic logical vocab-
ulary consisting of “not,” “and,” “or,” and “if … then… .” That’s it! With so
little, how can one satisfy the credo of modern mathematics – a “philosophy” by
the name of Cantorism – that everything (mathematical) is a set? This idea is not
as outlandish as you may think, so I suggest you wait for a while before decid-
ing whether to accept this doctrine or not. Remember the Pythagoreans9 who
thought that everything is a natural number. You can imagine their dismay upon

6To be precise, we want to make sure that here by the “group” we do not mean the mathematical term
“group” as in Group Theory, but simply a group of certain objects or elements.
7The term “object” could be misleading too, for sometimes by the “object” people instinctively think of
“(some)thing” that is, a “thing” that can be touched, seen, and so on. Since objects of a set theory can be
ordinary things, like pencils, chairs, people, or animals, and they can also be very abstract in nature, like
numbers, functions, and ideas, maybe the term “entity” instead of the “object” would be more appropriate.
8Of course, “all” in this case, by mathematical standards, might be a somewhat imprecise quantifier, but
let’s assume at this point that there will be no surprises of striping off a “planetary status” of an object in
our solar system, as we have recently witnessed in the case of Pluto.
9Religious sect founded by Pythagoras of Samos (ca. 570–495) Ionian–Greek philosopher.
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learning of the incommensurability of the side and the diagonal of a square. The
discovery of

√
2 must have been a catastrophe for this secluded sect, let alone

the pain of disclosing the findings to the uninitiated. Legend has it that for his
unfortunate discovery Hippasus10 was drowned by the members of this mystic
brotherhood. Later, we learned about certain other sets of numbers – the set of
real numbers, for instance – which is fundamentally more “infinite” than anything
we knew before. To understand those we definitely need sets.11 We may continue
on this rather vague path and also say that a set is a “thing” that is a collection
of other things (which themselves could be sets) called the elements of the set.
These hazy definitions by synonym suffice for most purposes, for our mind is
able to grasp (the essence of) the concept regardless of the abstractness of the
definition. Indeed, we want these concepts to be sufficiently abstract in order to
avoid contradictions, especially when dealing with the foundation of mathemat-
ics. At the same time, very few so “simple” ideas in mathematics proved to be
so fecund with the repercussions to almost all fields of mathematics. Not surpris-
ingly, Mathematical Logic and Philosophy of Mathematics in particular became
exceptionally interesting and rich fields notwithstanding the paradoxes spurred
by much ingenious work on the foundations of mathematics and set theory.

So, before we start with the formalism of set theory, I want to tell you some-
thing rather funny and interesting, something that will keep showing up over and
over again in the foundation of mathematics. This will certainly provoke some
curiosity in you and at the same time show you the richness of ideas that set
theory contains, and how our mind detects paradoxes in apparently simple con-
cepts – concepts that this very mind came up with. The following is known as the
Russell12 Paradox. (Remember, the notion of “elementhood” or “membership”
does not prevent us from thinking of sets as being elements of (i.e., belonging
to) other sets.) So, let’s follow Cantor and imagine all the definite distinguishable
concepts of your/our intellect. One of them could be the idea of unicorns – it
doesn’t matter that you/we know they don’t “exist.” (They do exist in your mind,
right?) Well, let’s think about the collection of definite concepts of our intellect
that doesn’t contain itself. Let me explain. It is easy to think of, say, a set of all
horses (or unicorns if you wish) on Earth. This set obviously represents a set that
does not contain itself as a member. A set of horses is not a horse, of course.
Now, can you think of a set that would be a member of itself? How about a set
of all ideas? It is an idea, right? So is it a member of itself? Or, how about a set
of all sets? It is a reasonable idea too. But, it is again also a set, hence a mem-
ber of itself. Well, let’s think about it. Let’s call any set that doesn’t contain itself

10Hippasus of Metapontum (ca. fifth century bc), Pythagorean philosopher.
11Could it be that even sets are not “everything”? Well, yes! It is possible that we may need an even
more fundamental structure to address, among other things, the even “greater,” Absolute Infinities. The
discussion of those we leave for some other time.
12Bertrand Arthur William Russell (1872–1970), British philosopher, logician, and mathematician.
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as one of its elements an ordinary set, say,  and the one that does – an extraor-
dinary,  . Now, here is what Russell said: Consider a set of all ordinary sets .
It exists – Cantor said so – since it is a distinguishable concept of one’s intuition
or one’s thought. So we could safely claim:

1.  is an ordinary set!
Suppose not. Suppose it is extraordinary and thus contains itself as one

of its elements. But every set in  is ordinary. Thus  is ordinary. But this
is a contradiction! Therefore, our assumption was wrong;  is definitely
ordinary. Well, is it? No!? What if we say:

2.  is an extraordinary set!
Suppose not. Suppose  is ordinary. Since  contains all ordinary sets,

it has to contain itself as one of its members. But that makes it extraordi-
nary. This is a contradiction. Our assumption that  is ordinary was wrong.
Therefore,  is extraordinary.

Obviously (1) and (2) are contradictory.
Here is another well-known example of a finite set, which we cannot properly
make out13:

Consider two sets of adjectives: set  of self-descriptive adjectives we call
autologous (autological) and set  of nonself-descriptive adjectives, called het-
erologous (heterological), that is, the set of all adjectives not belonging to. For
example, set contains adjectives such as English, finite, derived, and pentasyl-
labic. That is, they do have the properties they describe. On the other hand, set
 contains adjectives such as German, French, black, white, and monosyllabic,
that is, obviously none of them belongs to . Now, what about “heterologous”?
Which set does it belong to? What I am asking is this: Is “heterologous” heterol-
ogous?

If this sounds confusing to you, and it’s perfectly all right if it does, for it is
confusing indeed. Here is Russell again with an analogous “story” (and I assure
you this is not some silly game of words) to help us out:

There is a small town with only one (strange) barber. The strange thing about him
is that he shaves all men in town that do not shave themselves. Now, does he shave
himself or not?

So, what are we to make of it? At the very beginning, we are dealing only with
two concepts, “set” and “an element of,” and we are faced with a fundamental
problem of definitions that seems irresolvable. We cannot allow a seed of contra-
dictions sitting at the very concept we want as our foundation. How do we start?

13Due to Kurt Grelling (1886–1942) and Leonard Nelson (1882–1927), German mathematicians and
philosophers.
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How do we build a fundamental structure of mathematics, a structure precise
enough and rich enough, to encapsulate “all of mathematics” and all the rules of
inference, without contradictions and without any ambiguities? Mathematicians
and philosophers have been thinking about these questions for thousands of years,
going back to Euclid’s14 axiomatic treatment of geometry, to Leibnitz’s15 ideas
of mathematical logic, to Hilbert’s dream of unifying all of mathematics under
the umbrella of a formal axiomatic system, to the works of Cantor, Russell, and
Whitehead,16 and many others. In any case, the theory that Cantor developed,
indeed a mathematical theory unlike any before, proved to be the best candidate
to fulfill that. Mathematics arose on a system of axioms and precise formalism,
which we want to be

1. consistent;
2. complete; and
3. decidable.

That a formal system is “consistent” means that we should not be able to prove,
in finitely many steps, an assertion and its negation at the same time. A and not-A
cannot (should not) be true at the same time. By “complete” we mean a system
that is rich enough to allow us to determine whether A or not-A is a theorem,
that is, a true statement. And finally, “decidable” refers to what is known as “the
decision problem” (the famous “Entscheidungsproblem” in German), that is, a
procedure, an algorithm by which we can (always) determine, in a finite number
of steps, whether something is a theorem or not. That’s what we want. Not much
to ask for, wouldn’t you say? After all, consistent and complete should imply that
a decision procedure is at hand. Well, it’s not. It can’t be done! Mr Gödel said
so.17

Here is how Hilary Putnam18 “illustrates” Gödel’s theorem:

(i) That, even if some arithmetical (or set-theoretical) statements have no truth value,
still, to say of any arithmetical (or set-theoretical) statement that it has (or lacks)
a truth value is itself always either true or false (i.e. the statement either has a
truth value or it doesn’t).

14Euclid (of Alexandria) (ca. 325–270 bc), Greek mathematician/geometer.
15Gottfried Wilhelm Leibniz (1646–1716), German mathematician and philosopher.
16Alfred North Whitehead (1861–1947), British mathematician, logician, and philosopher.
17“The human mind is incapable of formulating all its mathematical intuitions, that is, if it has succeeded
in formulating some of them, this very fact yields new intuitive knowledge, for example, the consistency of
this formalism. This may be called the ‘incompletability’ of mathematics.” Kurt Gödel, Collected Works,
Oxford University Press, 2001.
18Putnam, H., Mathematics Without Foundation, in Philosophy of Mathematics, 2nd ed., Cambridge Uni-
versity Press, 1983.
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(ii) All and only decidable statements have a truth value.
For a statement that a mathematical statement  is decidable may itself be

undecidable. Then, by (ii), it has no truth value to say “ has a truth value” (in
fact falsity; since if  has a truth value, then  is decidable, by (ii), and if 
is decidable, then “ is decidable” is also decidable). Since it is false (by the
previous parenthetical remark) to say “ has a truth value” and since we accept
the equivalence of “ has a truth value” and “ is decidable”, then it must also
be false to say “ is decidable”. But it has no truth value to say “ is decidable”.
Contradiction.

Did you get it? Think about it. It literally grows on you. The whole point of all of
“this” is that you start getting a “feel” for what mathematics really is and where
we are actually “going.” Anyway, after this “warm-up,” let’s start slowly and
from the beginning.

First, we assume that there is a domain, or universe  , of objects, some of
which are sets.

Next, we need the formalism in which all our statements about sets can be
precisely written – let’s call it the language of set theory. This formal language
contains a specific alphabet, that is, a list of symbols that we judiciously use and
a number of specific statements that are called axioms. What are they? Well, in
order to start somewhere and in order to avoid an infinite regress, we choose
(there has to be (?)) a set of propositions that are not proved (not provable) but
can be used in sound construction of our formalism. In addition, we create a basis
for (all?) mathematics, which is inherently beautiful, and thus we can use it as
an aesthetical criterion that all other sciences can measure up to. Similarly, there
exists a collection of (mathematical) words or symbols that we do not define in
terms of others – undefined does not meanmeaningless – but simply take as given.
Those we call primitives. This idea is as old as mathematics itself. Remember
Euclid? The first lines of his Elements read as follows:

1. A point is that which has no parts.
2. A curve is length without width.
3. The extremity of a curve is a point.
4. A surface is that which has only a length and a width.
5. The extremity of a surface is a curve, and so on.

Surely, you feel some uneasiness about these statements. Still, the whole
gigantic structure of Euclidean geometry, unquestioned for 2000 years, is
based on these axioms. Putting aside the controversy among mathematicians on
how fundamental these axioms are in general, as well as the question of their
effectiveness, these axioms are needed and they are here to stay.

We also need the formal rules of inference so that the language we use is
precise enough to derive all the theorems of our theory.
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In addition to the aforementioned four basic symbols, we will soon need some
more. So, we list the somewhat extensive alphabet of the language we are going
to use throughout the book:

∈ : element; a member; x ∈ A ∶ x is an element of set A

∉ : not an element; not a member; x ∉ A ∶ x is not an element of set A

∋ : such that; sometimes “s.t.”
c : complement; Ac: complement of set A

⧵ : difference; A ⧵ B: A difference B; sometimes just: A “minus” B

Δ : symmetric difference: AΔB: symmetric difference of A and B

⊆ : subset; A ⊆ B: A is a subset of B

⊂ : proper subset: A ⊂ B

∩ : intersection: A ∩ B

∪ : union: A ∪ B

∅ : the empty set

× : Cartesian product; A×B: Cartesian product of sets A and B

N : the natural numbers

Z : the integers

Q : the rational numbers

R : the real numbers

Z+ : the nonnegative integers

Q+ : the nonnegative rational numbers

R+ : the nonnegative real numbers|A| : the cardinal number (cardinality) of A

∀ : for all; for every; for any; ∀x ∈ A: for every x from A

∃ : there exists

∃!: there exists a unique…
∄ : (same as ∼ ∃) does not exist
∧ : and; sometimes also “&”

∨ : or

→ : “conditional”; “implication”; a → b if a then b. Sometimes same as “⇒”

↔ : “biconditional”; a ↔ b a if and only if b; “iff”; Sometimes same as “⇔”

∼ : “negation”; “it is not the case that”; “opposite of”

= : equal

≡ : equivalent

iff: “if and only if”; “⇔”; “↔”
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Definition 1.1 A set is said to be a well-defined set iff there is a method of
determining whether a particular object is an element of that set.

The precise “description” of a set and its elements is based on the following
axioms.

Axiom 0 (Set Existence)19 There exists a set, that is, ∃A (A = A). In other
words, we postulate that there exists something, a “thing,” an entity, we call a
set.

Once a set A is given, we say that “a is an element of A” or that “a is a member
of A,” and we write a ∈ A. Similarly, if a is not a member of A, we simply write
a ∉ A.

It is worth mentioning again that the expression “an element of,” that is, an
elementhood relation, is also the elemental concept for which it is difficult to find
a suitable alternative, so we also take it as an undefined predicate.

Example 1.1
A = {a, b, c, d, e, f }

is a set whose elements are a, b, c, d, e, f , that is, a ∈ A, b ∈ A, c ∈ A, and so on.
This is nicely illustrated by the Venn diagram (Figure 1.1).

a

b

c

d

f

A

Figure 1.1 Venn diagram

Often it is convenient, especially when it is impossible to list all the elements
of a set, to introduce a set using the so-called set-builder notation. We write

A = {x|P(x)}
and we read: A is a set of all x, such that P(x), where P(x) designates some prop-
erty that all x’s possess, or P is a condition that specifies some property of all
objects x.

19We will have more to say about these axioms later.
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For instance, if we want A to be a set of all natural numbers greater or equal
to 5 we write:

A = {x| x ≥ 5, x ∈ N }

Certainly nothing prevents us from considering a set whose elements are also
sets. In other words, we can have a set X = {x, y, w, z}, where x, y, w, and z
are sets themselves. ◾

Example 1.2 Suppose we consider

X = {Alice,Bob}

as a set whose two elements are persons Alice and Bob. Set X is definitely differ-
ent from set, say,

Y = {Alice, {Bob}}

which also has two elements, but this time the elements are: Alice and {Bob},
that is, the element {Bob} is itself a set containing one element – Bob.

Formally, we write:

Alice ∈ Y ,Bob ∉ Y , but{Bob} ∈ Y

Of course, we could have constructed a set

Z = {{Alice, {Bob}}}

which has only one element, namely, Y . Do you see why? It may help if we
represent sets by Venn diagrams, where X, Y , and Z (Figure 1.2) look as
follows:

Alice Alice
Bob

Bob

Alice

Bob

X Y Z

Figure 1.2 Sets X, Y, and Z

◾

Axiom 1 (Axiom of extensionality) A set is uniquely determined by the ele-
ments it contains, that is, two sets are considered equal if they have the same
elements. Less clearly but often said: a set is determined by its extension.
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Example 1.3 Sets A = {a, b, c, d} and B = {d, a, a, a, b, c, c, d} are considered
the same, that is, we say that A = B. ◾

So, we have

Definition 1.2 Given sets A and B, we say that A equals B, and we write A = B
if and only if every element of A is an element of B and every element of B is
an element of A. For the sake of completeness and more precision (at this point
maybe prematurely20), using formal logic notation, we express this as follows:

A = B ↔ (∀x)(x ∈ A ↔ x ∈ B)

Definition 1.3 Given two sets A and B, we say that A is a subset of B, and we
write A ⊆ B if and only if every element of A is also an element of B (Figure 1.3),
that is,

A ⊆ B ↔ (∀ x ∈ A, x ∈ B)

B A

Figure 1.3 Subset A ⊆ B

Note that B could be “larger” than A, that is, that all elements of A are elements
of B, but not all elements of B are elements of A. To distinguish between these
subtleties, we state the following

Definition 1.4 Given two sets A and B, we say that A is a proper subset of B,
A ⊆ B, if and only if every element of A is an element of B, but not all elements
of B are elements of A.

Equality of sets can now be restated as

A = B ↔ A ⊆ B&B ⊆ A

20This formalism will become more clear after you have studied Chapter 2.
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What we are saying here is that two sets are considered equal solely on the basis
of their elements (i.e., what’s in the sets and how many) and not on the “arrange-
ment” or a repeat of some of the elements in the respective sets.

Example 1.4 Show that, if a set A is a set of all integers n, where every n is
expressible as n = 2p, with p ∈ Z, that is,

A = {n ∈ Z|n = 2p, p ∈ Z}

and B analogously described as

B = {m ∈ Z |m = 2q − 2, q ∈ Z}

then A = B.

Solution Set A is the set of all even integers. We would like to see whether any
integer of the form 2p, for some p ∈ Z, can also be written in the form 2q–2, for
some q ∈ Z. Suppose there is an n ∈ Z, such that n = 2p, for some integer p we
want to find an integer q, so that n = 2q − 2. Thus,

2q − 2 = 2p

2q = 2p + 2 = 2(p + 1)

q = p + 1

Therefore, for n = 2p, and p ∈ Z, q = p + 1. It follows that

2q − 2 = 2(p + 1) − 2 = 2p + 2 − 2 = 2p

Hence, A ⊆ B.
Let’s now assume that an integer can be expressed as m = 2q − 2, for some

q ∈ Z. Suppose, furthermore, that

2p = 2q − 2 = 2(q − 1)

that is,
p = q − 1

So, if m = 2q − 2, with q ∈ Z, we write

2p = 2(q − 1) = 2q − 2
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We conclude that B ⊆ A. Since A ⊆ B and B ⊆ A, it follows that A = B by defi-
nition of set equality. ◾

Example 1.5 Let A be a set of all solutions of the equation x2 = 2x, and let B
be a set of all solutions of the equation (x − 1)2 = 1. Then, it is easy to see that
A = B. ◾

Axiom 2 (Comprehension axiom)21

(i) For any reasonable22 propertyP, there exists a set containing exactly those
elements that are defined by that property; In particular, mathematical
entities that have a certain property in common constitute a set.

Certainly nothing prevents us from considering a set whose elements
are also sets. In other words, we can have a set X = {x, y,w, z}, where
x, y,w, and z are sets themselves. So we postulate:

(ii) Sets are mathematical entities, and, hence, they may in turn appear as
elements of a set.

This is one of the reasons why one should not restrict oneself on a style of let-
ters that represent sets. Thus, although we will most frequently use capitals to
designate sets, occasionally it will be more convenient to use lowercase letters.

Example 1.6 Let x1, x2, … , xn be a collection of n sets, then

X = {x1, x2, … , xn}

is also a set (Figure 1.4).

x1 x2 x3 xn

X

Figure 1.4

21This is sometimes called the Comprehensive principle.
22What is “reasonable” is debatable, and in any case a rather vague concept. We won’t be discussing these
subtleties here.
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Having elements of a set being sets themselves gives us more flexibility
in dealing with only one kind of object. Thus, we don’t need to postulate the
existence of every possible element of the various structures we intend to study.
It follows, let’s emphasize this again, that every set x is a unique element of
another set, namely, {x}.

After accepting the fact that the elements of a set are sets, let’s take a closer
look at Axiom 2: Let X be a set, and let Y be a set whose elements are exactly
those elements x ∈ X with a property P, that is,

Y = {x ∈ X|P(x)}
So, let the particular property be x ∉ x. (Remember, x is a set.) In other words,
whatever set X may be, if

Y = {x ∈ X|x ∉ x}

then for every y,
y ∈ Y iff y ∈ X and y ∉ y (*)

Is it possible that Y ∈ X? Let’s see. If Y ∈ X, we have two possibilities: either
Y ∈ Y or Y ∉ Y . Suppose Y ∈ Y . Then, from Y ∈ X and (*) it follows that
Y ∉ Y – obviously a contradiction. Suppose that Y ∉ Y . Then, again, from
Y ∈ X and (*) it follows that Y ∈ Y – a contraction again. We conclude that it is
impossible that Y ∈ X. (You may remember this argument from before.)

Now, let me digress a bit and say something about two very important concepts
that will be discussed in muchmore detail in Chapter 4. Many readers are familiar
with the concepts of relations and function: For the time being, let’s just say that:

A relation R is uniquely determined by pairs of elements x and y that are
somehow related.

A function f ∶ X → Y is uniquely determined by the pairs of two objects, an
argument x ∈ X and a functional value f (x) ∈ Y .

Now let’s look at these via Axioms 1 and 2: For instance, the usual relation ≤
on the set of natural numbers describes a particular property, so we can construct
a set R consisting of pairs of natural numbers (a, b) where a ≤ b, that is

R = {(a, b)|a ≤ b, a, b ∈ N}

Similarly, we think of a function f as the following set of pairs:

f = {(x, f (x))|x ∈ X, f (x) ∈ Y} ◾
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Axiom 3 There exists a set , called the universal set, such that for all sets A,
if x is an element of A, then x is an element of  (Figure 1.5). Symbolically,

∀A (x ∈ A → x ∈  )

A
xx

U

Figure 1.5

Axiom 4 If x ∈  and A is a set, the statement x ∈ A is a proposition that can
either be true or false, but not both.

Saying something so “obvious” is not that trivial, as will become evident
shortly.

Example/Exercise 1.7

(i) Is a = {a}?
(ii) Is a ∈ {a}?
(iii) Is a ⊆ {{a}}?
(iv) Is a ∈ { a, {a}}?

1.3 SETS GIVEN BY A DEFINING PROPERTY

As we have seen in the previous section, we often describe sets the following
way:

A = {x|P(x)}
and we say: A is a set of all x such that P(x), where P(x) designates some property
that all x’s possess, or P is a condition that specifies some property of all objects
x. In other words, x ∈ A ↔ P(x). (see Axiom 2).
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Note: Some sets have a universally accepted notation, so let’s just agree at this
point, without further explanation, to denote the set of natural numbers23

N = { 0, 1, 2, 3, …}

the set of integers

Z = {… − 3,−2, −1, 0, 1, 2, 3, …}

the set of rational numbers (which we will define later) Q, and the set of real
numbers (also to be defined later), R.

Example 1.8 If, for instance, we say

P(x) ∶ x ∈ N and x is even

then, in set-builder notation, we write

{x|P(x)}
by which we mean the set of all natural even numbers. ◾

Example 1.9 A = {x ∈ N|10 ≤ x ≤ 25} = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25}, that is, the set A is a set of all natural numbers greater
than or equal to 10, and less than or equal to 25. ◾

Definition 1.5 (The empty set) A set with no elements is called the empty set,
denoted by the symbol ∅ = {}.

Definition 1.5 ′ A set ∅ is said to be an empty set if

∅ = {x|x ≠ x}

Equivalently, we can argue as follows: let X be a set and let there be a set
A = {X|X ≠ X}. Then, X ∈ A ⇒ X ≠ X, which is a contradiction. Thus, A is
empty.

The “existence” of the empty set is postulated by

Axiom 5 (Empty set (null set) axiom) There is a set with no elements.

23Many authors do not include 0 in N (in particular, for historical reasons) and, indeed some-
times that may be more convenient, and they reserve the following notation for nonnegative integers:
Z+ = {0, 1, 2, 3, …} = N ∪ {0}.
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Example 1.10 Here are some examples of empty sets:

(i) { n ∈ N|n < 0} = ∅
(ii) {x ∈ Q|x2 = 2} = ∅
(iii) {x ∈ R|x = x + 1} = ∅
(iv) {x ∈ R|x2 < 0} = ∅ ◾

Example/Exercise 1.11 Determine whether or not, and why, are any of the
following sets empty:

(i) A = {{∅}, {{∅}}}
(ii) B = {{{∅}}, {∅}, {{{∅}}}}
(iii) C = {{{{∅}}}}

A remarkable property of the empty set is given by the following:

Theorem 1.1 A set with no elements is a subset of any set, that is, if A is any
set, and ∅ is the empty set, then

∅ ⊆ A

Proof Suppose that is not true, that is, suppose that there exists a set ∅ = { }
(with no elements), and a set A such that ∅ ⊈ A. That would mean, by defini-
tion of a subset, that there would be an element of ∅, which is not an element
of A. But there can be no such element, since ∅ has no elements by definition.
This contradiction leads us to conclude that the assumption ∅ ⊈ A was wrong;
therefore, the theorem is true. ◾

Example/Exercise 1.12 Show that {∅} ⊆ A for every set A.

You can think of this yet another way. Any set X is defined by a property P,
possessed by all of its members, that is, if x ∈ X, then x has a property P. In
particular, all elements of ∅ have to be defined by a certain property P, that is,
if x ∈ ∅, then x has a property P. But, it is false to say that x is an element of ∅
(since ∅ has no elements), and since a false statement implies any proposition,
it is true that if x ∈ ∅, then P holds for all the elements of ∅. Now, since P
is a property defining a set X, it follows that ∅ ⊆ X. All of this, as much as it
may sound confusing to you now, will become more clear after you have studied
Chapter 2.

Now you can try to prove the following:
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Corollary 1.1 The empty set is unique, that is, there is only one set with no
elements.

If you accept Axioms 3 and 4, then it is fun to contemplate the next claim,
which might otherwise sound as an outrageous doctrine of set theory.

Claim Everything (mathematical?) is a set.
The “Proof” would go something like this:
Suppose there is a (mathematical) object X that is not a set. Then, X has no

elements hence, X is equal to an empty set by Axiom 3, which contradicts the
assumption that it is not a set. ◾

This is pretty cute, don’t you think? And, as a very fundamental concept, it
will prove to be very useful. However, as a little exercise, try to think how you
would dispute the aforementioned proof.

Axiom 6 (Pairing axiom) For any two sets X and Y , there is a set whose ele-
ments are these two sets, namely {X, Y}. We call the set {X, Y} the unordered
pair or doubleton of X and Y , that is

{X, Y} = {Z|Z = X or Z = Y}

Theorem 1.2 Given two sets X and Y there is a unique set Z whose elements
are X and Y.

Proof Since Axiom 6 established the existence of at least one set Z, whose
elements are X and Y , the only thing we need to show is its uniqueness. Suppose
then that there is another set Z′ whose elements are also X and Y. But if X and Y
are the elements of both Z and Z′, by the axiom of extensionality, we have that
Z = Z′. ◾

The axiom of pairing gave us enough means to construct more sets, starting
from just the empty set.

Example 1.13 One way of constructing many simple sets, each having at most
two elements, is as follows:

∅, {∅}, {∅, {∅}} , {{∅}, {{∅}}}, … ◾

From Axiom 6, it also follows that if X = Y , then {X,X} = {X}. For obvious
reasons, we call this set the singleton {X}, or singleton ofX.This is formalized by

Theorem 1.3 For any set X, there is a set whose only element is X.
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As you can see, the key feature of set theory is that following Axioms 1–6
we can, in principle, construct a set from any object, or collection of objects,
satisfying a certain property P and consider that as a mathematical object in its
own right. In other words, we could consider a set X, which is a set of all sets x
with a property P, that is

X = {x|x is a set with property P}

As much as this principle is powerful, it has some fatal flaws. Consider this:
Let One be a set of all one-element sets, that is

One = {x|x is a one-element set}

Then nothing prevents us from forming the one-element set {One} whose only
element is One. Immediately you recognize a Russell-like paradox:

One ∈ {One} ∈ One

This can get even more intriguing. By Axiom 1, we can construct a set of (all)
sets

U = {x|x is a set}

Since U is a set, it follows that U ∈ U. Obviously, in order to avoid circularities
such as this one, we cannot treatU as any other “normal” set. We will have to say
more about this later.

For now, let me incite your curiosity a bit more, especially in case you still have
some doubts about the existence of the empty set. Let’s assume the existence of
the so-called pure sets, that is, sets that would exist even if there was nothing
else but sets – no you and me, no people, no stars and planets, and so on, and
simply refer to them as Sets (with a capital “S”). While the existence of the empty
set ∅ becomes evident right away, we can immediately conceive the set whose
only member is the empty set, that is, {∅} and, unsurprisingly, the next would
be {{∅}}, followed by {∅, {∅}}, and so on and so forth. So, we recognize the
collection of sets mentioned in the previous example as pure sets – Sets. Observe
that their “nature” is rather unique. That is, all Sets are sets but sets are not Sets.
(The set of horses is not a Set.) After inaugurating the concept of Sets why not
construct additional (particular) ones, respectively, assign familiar names to them,
and thus obtain “something” from “nothing.” One way to do it would be:

∅ = 𝟎

{∅} = 𝟏

{{∅}} = 𝟐

{{{∅}}} = 𝟑
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and so on.
The other way would be:

𝟎 = ∅

𝟏 = {∅}

𝟐 = {∅, {∅}}

𝟑 = {∅, {∅}, {∅, {∅}}}

and so on.
Certainly, you can think of some other way to construct “something” from

“nothing.”
However, before continuing, do

Example/Exercise 1.14 Prove that ∅ ≠ {∅}.

Definition 1.6 Given sets X and Y , we say that

⟨X, Y⟩ = {{X}, {X, Y}}

is an ordered pair.

Analogously, we define an ordered n-tuple:

Definition 1.7 Let X1,X2,X3, … ,Xn be sets where n ∈ N, n ≥ 3. We define an
ordered n-tuple recursively as follows:

⟨X1,X2,X3, … ,Xn⟩ = ⟨X1, ⟨X2,X3, … ,Xn⟩⟩
Theorem 1.4 For any sets X, Y ,U,V , ⟨X, Y⟩ = ⟨U,V⟩ iff X = U and Y = V .

Proof That X = U and Y = V implies ⟨X, Y⟩ = ⟨U,V⟩ is trivial, so we need to
examine only that ⟨X, Y⟩ = ⟨U,V⟩ implies X = U and Y = V .

Suppose that ⟨X, Y⟩ = ⟨U,V⟩ which by definition means that

{{X}, {X, Y}} = {{U}, {U,V}} (*)

We should consider two cases: (i) X = Y and (ii) X ≠ Y .
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(i) If X = Y then

⟨X, Y⟩ = {{X}, {X, Y}} = {{X}, {X,X}} = {{X}, {X}} = {{X}}

is a singleton, so ⟨U,V⟩ has to be a singleton too. Thus, U = V . But that
means that

{{U}, {U,V}} = {{U}, {U,U}} = {{U}, {U}} = {{U}}

With the assumption that equality in (∗) holds, we have that {{X}} =
{{U}}, that is, X = U hence,

X = Y = U = V

(ii) If X ≠ Y then from (*) it follows that the singleton {X} must correspond to
the singleton {U} and, likewise, the doubleton {X, Y} corresponds to the
doubleton {U,V}. We conclude that

X = U and Y = V ◾

Definition 1.8 (Cardinal number) Let A be a set. If there are exactly n dis-
tinct elements in A, where n is a finite natural number, we say that the set A is a
finite set and that n is the cardinality of A, or that n is the cardinal number of
A, and we denote cardinality by |A|, (Figure 1.6).

You may have an uneasy feeling about this definition. Considering the fact that
A was said to be a finite set, the definition seems to be too restrictive. Everything
is fine if a set has, say, 3175 elements – the cardinal number is 3175. Naturally,
one would ask: what about sets that have infinitely many elements? How would
we characterize the “number” of elements of an infinite set? After all, the issue
of infinities (as we will see shortly) is the issue of set theory. It turns out that this
is one of the most intuitively difficult mathematical concepts of the theory. Can
we “enumerate” a set with infinitely many members regardless of their “nature?”

Cantor used the symbol A to indicate the cardinal number of set A, emphasizing
double abstraction: first from the nature of elements and second from their order,
and he said:

Every set A has a definite “power” which we will call its “cardinal number.” We
will call by this name the general concept, which by means of our active faculty of
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thought arises from the set A when we make abstraction of its various elements x
and of the order in which they are given.

… This number has an existence in our minds as an intellectual image or projection
of the given set.

A
B

Figure 1.6 The concept of cardinality for a four-element set A à la Cantor

With all that said, and with tongue-in-cheek, let’s say for the time being that the
cardinality of a set means the “number” of the elements of a set or, even better,
the “size” of a set.

Example 1.15 Let A be the set from Example 1.9, then |A| = 16. ◾

Example 1.16 What is |∅|?
Well, since the empty set ∅ has no elements, it follows that |∅| = 0. ◾

Definition 1.9 A set is said to be infinite if it is not finite.

The existence of the “infinite” set is provided by

Axiom 7 (Axiom of infinity) There exists a set I that contains the empty set∅
and the singleton of each of its members, that is

∅ ∈ I &∀x ∈ I, {x} ∈ I

Example 1.17 Let I be a set defined in Axiom 7. Observe that ∅ ∈ I, but also,
{∅} ∈ I, {{∅}} ∈ I, … . So, with this family of complex singletons, we have
indeed obtained an infinite set of more abstract nature:

I = {∅, {∅}, {{∅}}, …} ◾
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Example 1.18 Here is how Dedekind24 argued that at least one infinite set
exists: Given some arbitrary thought 𝜏1, there is a separate thought 𝜏2, namely
that 𝜏1 is an object of thought. But there also exists a thought 𝜏3, that is, a thought
of 𝜏1 and 𝜏2. And so on ad infinitum. Thus, set of thoughts is infinite. ◾

The claims of the next two examples are usually accepted as obvious.

Example 1.19 A set of all natural numbers N is infinite. ◾

Example 1.20 A set of all integers Z is infinite. ◾

We will discuss the intricacies of infinite sets in a little while.

Definition 1.10 We say that two sets A and B are equivalent (or equinumer-
ous) or that they have the same cardinality, and we write

A ∼ B iff |A| = |B|
Following Cantor, we say that cardinal number of a set A is what A has in

common with all sets equivalent to A.

Example 1.21 Given sets A = {1, 2, 3}, B = {a, b, c}, andC = {b, c, a}, we say
that A ∼ B, and A ∼ C, but only B = C. ◾

Theorem 1.5 Given three sets A,B,C, such that A ∼ B, and B ∼ C, then
A ∼ C.

Proof Easy. You should do it! ◾

Now that we have a rudimentary knowledge of sets, in order to finish this
section and have some fun, I have to tell you something else. Something about
those strange sets I have mentioned in the introduction. In a sense, you may think
of what follows as a “historical” progress toward the paradoxes Russell pointed
out to us.

With the concept of a set handy, and assuming also that the attributes that apply
to a set are not mutually contradictive, then, by an extension of such an idea, we
can easily contemplate a set that contains sets as its elements. Why not, right?
For example, the concept of a finite set F is easily conceivable. Its extension 

would be a set of all sets with finitely many elements, that is

 = {F|F is a finite set} (1.1)

24Julius Wilhelm Richard Dedekind (1831–1916), German mathematician.
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Similarly, with the idea of an infinite set I (say, a set N) let’s define its extension
as a set

 = { I |I is an infinite set} (1.2)

Observe that, while all the elements of  are finite sets,  itself is an infinite set.
That makes  not a member of itself, but a member of . Symbolically,

 ∉  , and  ∈ 

On the other hand, it is clear that

 ∈ 

Again, do you see where we are going? Let’s call on Russell again. Consider the
concept of a “set that is not a member of itself,” and let’s call its extension

 = {X|X is a set & X ∈ X} (1.3)

From (1.1) – (1.3), we see that  ∈  and  ∉ . But how about ? Is it a
member of itself or not? From the aforementioned discussion, it follows that

 ∈  iff  ∉  (1.4)

But this is impossible! Either  is a member of itself or not. Claim (4) is a con-
tradiction par excellence. Thus, we state (we are forced to state):

Theorem 1.6 There is no set  such that

 = {X |X is a set & X ∉ X}

The reason I keep on mentioning this quintessential paradox is because of its
profound mathematical/philosophical importance. I’ll stop here abruptly, again
quoting Russell: “Whatever involves all of a collection must not be one of the
collection.” What he actually said was: just forget about those “crazy” sets, con-
sider only those sets that are ordinary.25 Can you do that? Can you just forget
about the “crazy” sets? I could never do that. They keep coming up in many dif-
ferent branches of mathematics, physics, and philosophy. It seems our mind, once
having become aware of them, simply cannot let go. In any case, we continue our
discussion of sets by introducing the formalism that will enable us to “calculate”
and discover even more interesting “stuff.”

25At this point, you may want to revisit the discussion on ordinary and extraordinary sets on pages
4 and 5.
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1.4 THE ALGEBRA OF SETS

In order to reasonably carry on a mathematical discussion in the context (a set) of
specific elements, we can often visualize the entity whose existence we postulated
in Section 1.2 by Axiom 1. For example, we may consider a set of all students
at the university, or we may consider a set of all books in your school library, a
set of all animals in the zoo, or a set of all real numbers, and so on. In each of
these cases, we call this a universe of discourse, or the universal set of the given
discourse. So, we formally state

Definition 1.11 By universal set , we mean the set of all the elements under
discussion (all the objects under consideration).

Note the important qualification “under discussion” in the aforementioned def-
inition. Without it, the concept of a universal set would create a rather difficult
problem. Namely, one could be tempted to consider the universal set as a set of
all “objects,” that is, a set of everything. Why not, right? But then, in particular,
 would contain itself as a member, and that would be a problem indeed as we
have indicated at the beginning of this chapter.

Definition 1.12 Given a universal set , and A and B the two subsets of , we
define the union of A and B, denoted A ∪ B, as a set of all the elements x ∈  ,
such that x is an element of A or x is an element of B (Figure 1.7), that is

A ∪ B = {x ∈  |x ∈ A or x ∈ B}

Note that in this definition “or” is the inclusive “or” (as opposed to
“either–or”).

Example 1.22 LetA be a set of all evenwhole numbers, that is, all even integers,
and let B be a set of all odd whole numbers, that is, all odd integers. Then, A ∪ B
represents the set of all whole numbers, that is, the set of all integers. Recall, we
denoted that set by the symbol Z. ◾

A
B

Figure 1.7 A ∪ B
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Example 1.23 Given two sets X = {a, b, c, d, e} and Y = {@, #, $,&}, then

X ∪ Y = {a, b, c, d, e,@, #, $,&} ◾

The union of an infinite sequence of sets is defined in the same way.

Definition 1.12 ′

∪ A =
∞
∪

n=0
An = A0 ∪ A1 ∪ A2 … = {x|x ∈ An, n ∈ N}

In general, considering the abstract nature of a set, the existence of the union
as a set is postulated by

Axiom 8 (Union axiom) For any set X, there is a set that is the union of all
the elements of X.

Asmuch as the concept of the union of two sets is easy to understand, Axiom 8
might take some time to absorb, so you can skip it until you have studied Chapter
2. For now let’s just say that one can think of the expression in Definition 1.12′

as ∪{An|n ∈ N}.

Example 1.24 Let’s take just two sets, A1 and A2, and consider {A1,A2}. Sup-
pose x ∈ ∪{A1,A2}. That is true iff x ∈ X for some X ∈ {A1,A2}. But the only
X′s in {A1,A2} are A1 and A2. Thus x ∈ ∪{A1,A2} iff x ∈ A1 or x ∈ A2. But
that’s exactly what we are saying with x ∈ A1 ∪ A2. ◾

Example 1.25 Suppose we have three sets A, B, C. Then, there is a set with
these sets as its elements:

{A} ∪ {B} ∪ {C} = {A, B} ∪ {C} = {A,B,C} ◾

Example 1.26 The next simple fact is that

∪{X|X ∈ {A}} = A ◾

Following the aforementioned three examples, it should not be difficult to
work out:

Example/Exercise 1.27 Determine whether the following is true:

(i) ∪{X} = X
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(ii) ∪∅ = ∪{∅} = ∅
(iii) {∅} ∪ ∅ = {∅}

Definition 1.13 Let A and B be sets. The intersection of A and B, denoted
A ∩ B, is the set of all elements x ∈  , such that x is an element of A and x is an
element of B (Figure 1.8), that is

A ∩ B = {x ∈  |x ∈ A & x ∈ B}

A A BBÐ

Figure 1.8 A ∩ B intersection

Example 1.28 Given two sets A = {1, 2, 3, a, b, c} and B = {3, b, x, y}, then

A ∩ B = {3, b} ◾

Example/Exercise 1.29 Show that for all sets A, B, and C

(i) A ⊆ A ∪ B and B ⊆ A ∪ B
(ii) If A ⊆ B and B ⊆ C then A ⊆ C

The intersection of an infinite sequence of sets is defined analogously

Definition 1.13 ′

∩∞
n=0 An = A0 ∩ A1 ∩ A2 · · · = {x|(∀n ∈ N )x ∈ An}

Example/Exercise 1.30 Show that

A ∩ B ⊆ A and A ∩ B ⊆ B

Example/Exercise 1.31 Convince yourself that

(i) A ⊆ B iff A ∪ B = B
(ii) A ⊆ B iff A ∩ B = A
(iii) {∅} ∩ ∅ = ∅
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Example/Exercise 1.32 The union of empty sets is clearly an empty set. You
may be wondering now: what about ∩∅? This is much trickier. Can you see why?

Definition 1.14 Let A and B be two sets. We say that A and B are disjoint, if
A ∩ B = ∅ (Figure 1.9).

A

B

Figure 1.9 A ∩ B = ∅.

Example 1.33 Consider the following:
Let A1 = {0},A2 = {0, 1},A3 = {0, 1, 2}, … ,Ai+1 = {0, 1, 2, … , i}, … . So

we have an infinite collection of A′s, such that for every n ∈ N+, n ∈ An+1.
26

Thus, N+ = A1 ∪ A2 ∪ · · · and A1 ∩ A2 ∩ · · · = 0. ◾

Example 1.34 Consider a set R. Let set A be the interval (−3, 5), and set B
the interval (3, 8).

Find:

(i) A ∩ B
(ii) A ∪ B

Solution First, recall the definition of intervals on the set of real numbers R:

An open interval
O = (a, b) = {x|a < x < b}

A closed interval
C = [a, b] = {x|a ≤ x ≤ b}

Of course, we can have a half-open–half-closed interval, such as

OC = (a, b] = {x|a < x ≤ b}

or
CO = [a, b) = {x|a ≤ x < b}

26In order to avoid confusion, when starting with zero in our collection of A’s, for the time being, we put
N ∪ {0} = N+, which is also designated by Z+.



�

� �

�

THE ALGEBRA OF SETS 29

Now, observe that set

A = (−3, 5) = {x|−3 < x < 5}

and set
B = [3, 8) = {x|3 ≤ x ≤ 8}

Hence,

(i) A ∩ B = [3, 5 ) = {x|3 ≤ x < 5}
(ii) A ∪ B = (−3, 8] = {x|−3 < x ≤ 8} ◾

Example/Exercise 1.35 Let the universal set be a set of all integers, that is,
 = Z, and let A = {x ∈ Z|x = 2n, n ∈ Z}, and B = {y ∈ Z|2m + 1,m ∈ Z},
then

A ∩ B = ∅

Convince yourself that this is indeed so.

Example/Exercise 1.3627 Consider the oldest mathematician among chess
players and the oldest chess player among mathematicians. Could they be two
different persons?

Definition 1.15 We say that a collection A1,A2,A3, … ,An is a partition P(A)
(Figure 1.10) of a set A iff

(i) A1 ∪ A2 ∪ A3 ∪ · · · ∪ An = A and
(ii) A1 ∩ A2 ∩ A3 ∩ · · ·An = ∅

A1

A2

A3

A4

A5

A6

A

Figure 1.10 Partition P(A)

27Shen, S., Vereshchagin, N. K., Naïve Set Theory, American Mathematical Society, 2002.
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Definition 1.16 Given two sets A and B, we say that the difference of A and
B, denoted A⧵B, and read “A minus B,” is the set of all elements x from , such
that x is in A and x is not in B (Figure 1.11). We write

A ⧵ B = {x ∈  |x ∈ A & x ∉ B}

A B

A \ B

Figure 1.11

Example 1.37 Let A = {a, b, c, d, e, f , g} and B = {c, e, g, h, i, k}, then

A ⧵ B = {a, b, d, f } ◾

Example/Exercise 1.38 Prove the following:

(i) A⧵∅ = A
(ii) A⧵A = ∅
(iii) A ∩ (B ⧵ A) = ∅

Definition 1.17 Let A and B be sets. The symmetric difference of A and B,
denoted AΔB (Figure 1.12), is defined

AΔB = (A ⧵ B) ∪ (B ⧵ A)

A B

Figure 1.12 A ⧵ B

Example/Exercise 1.39 Convince yourself that

(i) AΔB = 0 iff A = B

(ii) AΔ∅ = A
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Example/Exercise 1.40 Show that

A Δ B = (A ∪ B) ⧵ (A ∩ B)

Definition 1.18 Let A be a subset of the universal set  . We define the com-
plement of A, denoted Ac, as the set of all elements x from (Figure 1.13), such
that x is not in A:

Ac = {x ∈  |x ∉ A }

U

Ac

A

Figure 1.13 Ac

Example 1.41 Prove that A ⧵ B = A ∩ Bc. ◾

Proof The proof is easy. We need to show that ∀x if x ∈ A ⧵ B then x ∈ A ∩
Bc, and also that ∀x if x ∈ A ∩ Bc then x ∈ A ⧵ B.

So first, suppose we take any x ∈ A ⧵ B. That means that x ∈ A and x ∉ B,
which in turn implies x ∈ Bc. So, x ∈ A and x ∈ Bc, and therefore x ∈ A ∩ Bc.

Conversely, if x ∈ A ∩ Bc then x ∈ A and x ∈ Bc, that is, x ∈ A and x ∉ B and
thus x ∈ A ⧵ B. ◾

Example/Exercise 1.42 Let A, B ⊆  be any two subsets of the universal set.
Show that

A ⊆ B iff Bc ⊆ Ac

Example 1.43 Let A = [0, 1), B = (−1, 1), and C = (−2, 1].
Find

(i) Ac ∩ Bc ∩ Cc

(ii) (A ∩ B) ∪ C ∪ Bc
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Solution
(i) The complements of A,B, and C are as follows:

Ac = ([0, 10))c = (−∞, 0) ∪ [1,∞)

Bc = ((−1, 1))c = (−∞,−1] ∪ [1,∞)

Cc = ((−2, 1])c = (−∞,−2] ∪ (1,∞)

Then

Ac ∩ Bc ∩ Cc = ((−∞, 0) ∪ [1,∞)) ∩ ((−∞,−1] ∪ [1,∞)) ∩ ((−∞,−2] ∪ (1,∞))

= (−∞,−2] ∪ (1,∞)
(ii)

(A ∩ B) ∪ C ∪ Bc = ([0, 1) ∩ (−1, 1)) ∪ (−2, 1] ∪ (−∞,−1] ∪ [1,∞)

= [0, 1) ∪ (−2, 1] ∪ (−∞,−1] ∪ [1,∞)

= (−∞,−1] ∪ [0,∞) ◾

Theorem 1.7

(i) A ∩ ∅ = ∅
(ii) A ∪ ∅ = A

(iii) A ∩ Ac = ∅
(iv) A ∪ Ac = 

(v)  c = ∅
(vi) ∅c = 

Proof (i): Let A be any set. Suppose ∩ ∅ ≠ ∅, that is, suppose there exists
an x ∈ A ∩ ∅. By the definition of intersection, x ∈ A, and x ∈ ∅. But this is
impossible since ∅ has no elements by definition. Thus,

A ∩ ∅ = ∅

Now you should try to prove parts (ii)–(vi) of the theorem. ◾

Example/Exercise 1.44 Consider three sets A, B, and C. Is it possible that

A ∩ B ≠ ∅, A ∩ C = ∅ and (A ∩ B) ⧵ C = ∅?

Theorem 1.8 (Set identities) For all sets A, B and C.
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1.8.1
(i) A ∩ B = B ∩ A

(ii) A ∪ B = B ∪ A (Commutative Laws for intersection and union)
1.8.2

(i) A ∩ A = A

(ii) A ∪ A = A (Idempotent Laws)
1.8.3

(i) A ∩ (B ∩ C) = (A ∩ B) ∩ C

(ii) A ∪ (B ∪ C) = (A ∪ B) ∪ C (Associative Laws for intersection and
union)

1.8.4
(i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(ii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (Distributive Laws)

1.8.5
A ∩=A

1.8.6
A ∪ = 

1.8.7
(i) A ∪ (A ∩ B) = A

(ii) A ∩ (A ∪ B) = A (Absorption Laws)
1.8.8

(i) (A ∩ B)c = Ac ∪ Bc

(ii) (A ∪ B)c = Ac ∩ Bc (DeMorgan’s Laws)

Example/Exercise 1.45 Prove 1.8.1–1.8.8 of Theorem 1.8.

Proof Remember, two sets A and B are equal iff A ⊆ B and B ⊆ A. Thus, in
each case, we need to show that any x, being an element of the set on the left-hand
side (LHS) of our equation is also an element of the set on the right-hand side
(RHS) of our equation, and vice versa. So,

1.8.4 (ii):

Suppose x ∈ A ∩ (B ∪ C). By the definition of intersection that means that x ∈ A
and x ∈ (B ∪ C). That gives us two possible cases.

Case 1: x ∈ A and x ∈ B, by the definition of union. Hence, x ∈ A and x ∈ B
implies that x ∈ A ∩ B, therefore,

x ∈ (A ∩ B) ∪ (A ∩ C)
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Case 2: x ∈ A and x ∈ C, again by the definition of union. Hence, x ∈ A
and x ∈ C implies that x ∈ A ∩ B, therefore, x ∈ (A ∩ C) ∪ (A ∩ B). From
Theorem 1.8.1 (ii), it follows that

x ∈ (A ∩ B) ∪ (A ∩ C)

In both cases, x ∈ (A ∩ B) ∪ (A ∩ C).
Hence, we have proved that

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) (*)

Suppose now that x ∈ (A ∩ B) ∪ (A ∩ C). By the definition of union that
means that either

x ∈ (A ∩ B) or x ∈ (A ∩ C)

So, again, we have two possibilities.

Case 1: x ∈ (A ∩ B). By the definition of intersection, this implies that

x ∈ A and x ∈ B

Well, x being an element of B, means that x is also an element of (B ∪ C).
We have that x ∈ A, and

x ∈ A and x ∈ (B ∪ C)

Therefore, by the definition of intersection,

x ∈ A ∩ (B ∪ C)

Now consider
Case 2: x ∈ (A ∩ C). By the definition of intersection, this implies that

x ∈ A and x ∈ C

Since x is an element of C, it also has to be an element of (B ∪ C). So, again,
we have that

x ∈ A and x ∈ (B ∪ C)

Therefore, by the definition of intersection,

x ∈ A ∩ (B ∪ C)
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In both cases, x ∈ A ∩ (B ∪ C). Hence, we proved that

(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) (**)

Since both subset relations (*) and (**) have been proved, it follows by definition
of set equality that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

as stated in Theorem 1.8.3 (ii).
Now you can prove Theorem 1.8.3 (i).

Proof 1.8.8 (i)

We need to prove that for every x

if x ∈ (A ∩ B)c then x ∈ Ac ∪ Bc

Suppose x ∈ (A ∩ B)c. By the definition of complement, x ∉ A ∩ B. But this
implies that x ∉ A or x ∉ B. Saying that x ∉ A means that x ∈ Ac. Similarly, if
x ∉ B, then x ∈ Bc. Hence, x ∈ Ac or x ∈ Bc and by the definition of union this
implies that

x ∈ Ac ∪ Bc

So, we have proved that
(A ∩ B)c ⊆ Ac ∪ Bc (*)

Let’s now consider the converse, that is, let’s show that for every x

if x ∈ Ac ∪ Bc then x ∈ (A ∩ B)c

Suppose that ∈ Ac ∪ Bc. By definition of union, it follows that x ∈ Ac or x ∈ Bc.
So we have to consider two cases.

Case 1: x ∈ Ac. Being an element of Ac means that x ∉ A, and therefore x
cannot be in A ∩ B either, that is

x ∉ A ∩ B

Well, since x ∉ A ∩ B, it is definitely true that

x ∈ (A ∩ B)c (**)
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Case 2: x ∈ Bc would lead us, by the similar arguments, to the same conclusion
(**):

x ∈ (A ∩ B)c

Thus, we have also proved that

Ac ∪ Bc ⊆ (A ∩ B)c

By the definition of equality of sets, (*) and (**) imply that (A ∩ B)c = Ac ∪ Bc,
as was to be shown. ◾

Now you can prove Theorem 1.8.8(ii).

Example 1.46 (Generalized distributive property) Let Ai ∈  , i ∈ N, and
let B ∈  .28 Show that

B ∪ (∩n
i=1Ai) = ∩n

i=1(B ∪ Ai), ∀n ∈ N

Solution We will do the proof by the Method of Mathematical Induction:
First, we note that the statement is trivially true when n = 1. Theorem 1.8.4(b)

assures us that the claim is true for n = 2. We will assume that it is also true for
n = k. If we could prove that it is also true for n = k + 1, then the claim is true
for any n ∈ N. Consider

B ∪ (
k+1
∩

i=1
Ai) = B ∪ (

k
∩

i=1
Ai ∩ Ak+1)

= (B ∪ (
k
∩

i=1
Ai) ∩ Ak+1)

(Since we assumed that the claim is valid for n = k)

=
k
∩
i=1

(B ∪ Ai) ∩ (B ∩ Ak+1)

=
k+1
∩

i=1
(B ∪ Ai)

So, our proposition is true for n = k + 1 and thus,

B ∪ (
n
∩

i=1
Ai) =

n
∩

i=1
(B ∪ Ai) ∀n ∈ N ◾

28If you are unfamiliar with the “Proof by induction” method, you can skip this example until you have
studied Chapter 4.
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Example/Exercise 1.47 Let Ai ∈  , i ∈ N, and let B ∈  . Show that

B ∩ (
n
∪

i=1
Ai) =

n
∩

i=1
(B ∩ Ai), ∀n ∈ N

Example 1.48 Let A,B ⊆  be any two sets. Show that

(A ∩ B) ∪ (A ∩ Bc) = A

Solution

(A ∩ B) ∪ (A ∩ Bc) = A ∩ (B ∪ Bc)

= A ∩

= A

On the other hand,

A = A ∩

= A ∩ (B ∪ Bc)

= (A ∩ B) ∪ (A ∩ Bc)

◾

Example/Exercise 1.49 Let  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal
set, and let A = {1, 3, 5, 8 }, B = {2, 3, 4, 5}, and C = {3, 4, 6, 7, 8}. Using these
sets, convince yourself that Theorems 1.8.4 and 1.8.8 are indeed true.

Example 1.50 Prove that the following statements are equivalent:

(i) A ⊆ B

(ii) A ∩ B = A

(iii) A ∪ B = B ◾

Proof To prove that (i) implies (ii), let’s assume that A ⊆ B. We need to estab-
lish that A ∩ B ⊆ A and that A ⊆ A ∩ B. But, since A ∩ B ⊆ A for all A and B, it
is sufficient to prove that A ⊆ A ∩ B. So, if x ∈ A, it follows from (i) that x ∈ B
and therefore x ∈ A ∩ B. Hence, A ⊆ A ∩ B.
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To prove that (ii) implies (iii), let’s assume that A ∩ B = A holds. Then,

A ∪ B = (A ∩ B) ∪ B = (A ∪ B) ∩ (B ∪ B)

= (A ∪ B) ∩ B = B

Finally, to prove that (iii) implies (i), we assume thatA ∪ B = B holds. Then, since
A ⊆ A ∪ B for all A and B, it follows that A ⊆ B. ◾

Example 1.51 Let  = R, A = [0, 1), B = (−1, 1) and C = (−2, 1].29 Deter-
mine

(A ∩ B) ∪ (Ac ∩ Cc)

Solution
If A = [0, 1), then Ac = (−∞, 0) ∪ [1,∞).
If B = (−1, 1), then Bc = (−∞,−1] ∪ [1,∞).
If C = (−2, 1], then Cc = (−∞,−2] ∪ (1,∞).
So, we have

(A ∩ B) ∪ (Ac ∩ Cc) = ([0, 1) ∩ (−1, 1)) ∪ (((−∞, 0)

∪ [1,∞)) ∩ ((−∞,−2] ∪ (1,∞)))

= ([0, 1) ∩ (−1, 1)) ∪ ((−∞,−2) ∪ (1,∞))

= [0, 1) ∪ (−∞,−2] ∪ (1,∞)

= (−∞,−2] ∪ [0, 1) ∪ (1,∞) ◾

Example 1.52 (Generalized DeMorgan’s Law) Prove that for all n ∈ N, if
A1,A2,A3, … ,An are sets, then

(
n
∪

i=1
Ai)c =

n
∩

i=1
(Ai)c ◾

Proof 30 The formula is obviously true for n = 1. (Why?) Suppose it is also true
for n = k, that is, suppose

(
k
∪

i=1
Ai)c =

k+1
∩
i
(Ai)c

29We assume here that the reader is at least vaguely familiar with the properties of real numbers and she/he
won’t mind that we have not yet precisely defined the set R.
30Here, again, if you are not familiar with mathematical induction, you may skip this proof until you have
learned it in later chapters.
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We have to prove that it is also valid for k+ 1, that is

(
k+1
∪

i=1
Ai)c =

k+1
∩
i
(Ai)c

which would imply that our formula is valid for all n.
Recalling the properties of union and DeMorgan’s law for two sets, we get

(
k+1
∪

i=1
Ai)c = (

k
∪

i=1
Ai ∪ An)c

= (
k
∪

i=1
Ai)c∩(An)c

= (
k
∪

i=1
(Ai)c) ∩ (An)

=
k+1
∪

i=1
(Ai)c

Since the formula holds for k + 1, it holds for every n ∈ N. ◾

In a similar way, you can work out

Example/Exercise 1.53 Prove that for all n ∈ N, if A1,A2,A3, … ,An are sets,
then

(
n
∩

i=1
Ai)c =

n
∪

i=1
(Ai)c

Example 1.54 Let A,B,C ∈  be any three sets. Prove that

(A ∪ B)⧵C = (A⧵C) ∪ (B⧵C)

Solution

(A ∪ B) ⧵ C = (A ∪ B) ∩ Cc

= Cc ∩ (A ∪ B)

= (Cc ∩ A) ∪ (Cc ∩ B)

= (A ∩ Cc) ∪ (B ∩ Cc)

= (A ⧵ C) ∪ (B ⧵ C)
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On the other hand, we could have said:

(A ⧵ C) ∪ (B ⧵ C) = (A ∩ Cc) ∪ (B ∩ Cc)

= (A ∪ B) ∩ Cc

= (A ∪ B) ⧵ C

Thus, we have our proof. ◾

Example 1.55 Let A, B, C ∈  be any three sets. Prove that

C ⧵ (A ∩ B) = (C ⧵ A) ∪ (C ⧵ B)

Solution

C ⧵ (A ∩ B) = C ∩ (A ∩ B)c

= C ∩ (Ac ∪ Bc)

= (C ∩ Ac) ∪ (C ∩ Bc)

= (C ⧵ A) ∪ (C ⧵ B)

Similarly,

(C ⧵ A) ∪ (C ⧵ B) = (C ∩ Ac) ∪ (C ∩ Bc)

= C ∩ (Ac ∪ Bc)

= C ∩ (A ∩ B)c

= C ⧵ (A ∩ B)

which completes our proof. ◾

Example 1.56 Show that for any two sets A and B

Ac ⧵ Bc = B ⧵ A

Solution
Ac ⧵ Bc = Ac ∩ (Bc)c

= B ∩ Ac = B ⧵ A ◾

Example/Exercise 1.57 Prove that for any sets A,B,C ∈ 

A ⧵ B = A ⧵ (A ∩ B)

Example/Exercise 1.58 Show that for any sets Ai and C, the following is true.
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(i) C ⧵ (
n
∪

i=1
Ai) =

n
∩

i=1
(C ⧵ Ai)

(ii) C ⧵ (
n
∩

i=1
Ai) =

n
∪

i=1
(C ⧵ Ai)

Theorem 1.9 Let A,B ⊆  be any two sets. Then,

(i) A ⊆ B iff  ⧵ B ⊆  ⧵ A

(ii) A ⊆ B iff A ∩ ( ⧵ B) = ∅

Proof

(i) First, we prove that A ⊆ B implies that ∀x ∈  ⧵ B, x ∈  ⧵A. Let’s see:
Suppose x ∈  ⧵ B then x ∉ B. On the other hand, since A ⊆ B if y ∈ A,

then y ∈ B too, which implies that for any y ∉ B, y ∉ A. Thus, x ∉ B implies
that x ∉ A and therefore x ∈ U⧵A. Hence,  ⧵ B ⊆  ⧵ A.

Suppose  ⧵ B ⊆  ⧵ A. We need to prove that it implies A ⊆ B. Well,
if x ∈  ⧵ B then x ∈  ⧵ A, which furthermore implies that if x ∉ B then
x ∉ A, and since  ⧵ B ⊆  ⧵ A, it follows that A ⊆ B as claimed.

(ii) First, we prove that A ⊆ B implies A ∩ ( ⧵ B) = ∅:
Suppose A ⊆ B, then for any x ∈ A is true that x ∈ B. Therefore, x ∉

 ⧵B, and thus
A ∩ ( ⧵ B) = ∅.

Next, let A ∩ ( ⧵ B) = ∅. We need to prove that it implies that A ⊆ B.
Consider

A ∩ ( ⧵ B) = A ∩ ( ∩ Bc)

= (A ∩ ) ∩ Bc

= (A ∩ Bc)

= A ⧵ B

= ∅

Thus, A ⊆ B, as claimed. ◾

1.5 THE POWER SET

Definition 1.19 (Power set) Given a set X, the set of all subsets of the set X,
is called the power set of X, that is

(X) = {A|A ⊆ X}
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The existence of a power set is postulated by

Axiom 9 For any set X, there is a set consisting of all the subsets of X.

It is easy to convince yourself that the following theorem is true.

Theorem 1.10 For any set X, ∅, X ∈ (X).

Example 1.59 Let X = {a, b, c}, then (X) = { ∅, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, c}}.

Note that the empty set and the set itself are considered members of this set
of sets. ◾

Example 1.60

(i) What is the power set of the empty set?
(ii) What is the power set of {∅}?

Solution
(i) Since ∅ is a subset of any set, set ∅ has only one subset, namely itself.

Therefore,
(∅) = {∅}

(ii) By the definition of the power set, the set {∅} has exactly two subsets: ∅,
and the set {∅} itself, that is

({∅}) = {∅, {∅}}
◾

Example 1.61 Let Sn+1 = Sn ∪ (Sn), with S0 = ∅. Then, we can recursively
construct the sequence of sets as follows:

S0 = ∅

S1 = S0 ∪ (S0) = ∅ ∪ (∅) = ∅ ∪ {∅} = {∅}

S2 = S1 ∪ (S1) = {∅} ∪ ({∅})

= {∅} ∪ {∅, {∅}} = {∅, {∅}}

S3 = S2 ∪ (S2) = {∅, {∅}} ∪ ( { ∅, {∅}})

= {∅, {∅}} ∪ {∅, {∅}, {{∅}}, {∅, {∅}}}

= {∅, {∅}, {{∅}}, {∅, {∅}}}

and so on. ◾
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Theorem 1.11 Let A and B be any two sets. If A ⊆ B, then (A) ⊆ (B).

Proof We have to show that ∀X ∈ (A),X ∈ (B).
First note that if A ⊆ B, then every subset of A is also a subset of B. Suppose

that X ∈ (A). Now recall that, by the definition of power set, X being an element
of (A), has to be a subset of A. But A ⊆ B, so X ⊆ B too. It follows immediately
that X ∈ (B), which was to be shown. Thus,

(A) ⊆ (B) ◾

The next question we may ask is: Given a set X with n elements, how do we
find the number of subsets of X? The following theorem answers this question.

Theorem 1.12 Let X be any set such that |X| = n, n ∈ N. Then,|(X)| = 2|X| = 2n.
For the proof, we need the following lemma.

Lemma 1.1 Let X be any set, and let x0 ∈ X be any element of X, then there
are as many subsets of X that contain x0 as there are subsets of X that do not
contain x0.

We reason as follows: suppose we take a set Xn = {x1, x2, x3, … , xn} and
Xn−1 = {x1, x2, x3, … , xn−1}, that is, a set with one, say x0, fewer elements than
Xn. Evidently, Xn−1 ⊆ Xn. Then, we argue, if we collect all the subsets of Xn−1
together with those same subsets, where each one of them is adjoined with x0 ∈
Xn, we will get twice as many subsets of Xn than of Xn−1. Formally, and more
precisely, the proof of the lemma goes as follows:

Proof of Lemma Let’s express the set X as a union of two subsets A = ∪iAi and
B = ∪jBj, that is, the union of collections of subsets Ai and Bj.

X = A ∪ B

= (∪iAi) ∪ (∪jBj)

such that x0 ∈ Ai, ∀ i, and x0 ∉ Bj, ∀j. In other words, every Ai is a subset of
X, and every Bj is a subset of X ⧵ {x0}.

Observe that the number of subsets in collection A is the same as the number
of subsets in collection B. Indeed, every Bj subsets of X that do not contain x0 can
be matched up with Bj ∪ {x0} = Aj. Thus, there are as many subsets of X that
contain x0 as there are those that do not. ◾

Now, we proceed with the proof of Theorem 1.12.
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Proof 31 First note that Examples 1.59 and 1.60 in particular are in accord with
the theorem. We need to prove that the theorem holds for any set X.

Consider the statement of the theorem when n = 0. We ask if a set with zero
elements, that is, the empty set, has 20 = 1 subset? The answer is yes, as we have
shown in Example 1.60. So our theorem is true in the case n = 0. Let’s assume
that it is also true for n = k, that is, we assume that any set with k elements has
2k subsets. If we could show that the theorem is also true for n = k + 1, then it
is true for any n.

Let X be a set with k + 1 elements, and let x0 ∈ X. From the previous lemma,
we have learned that there is an equal number of subsets of X that contain x0,
and those that do not. What does that mean? Well – and this is the crux of the
matter – that tells us there are twice as many subsets of X as there are subsets of
X ⧵{x0}. But |X ⧵{x0}| = k, that is, X⧵{x0} has k elements by our assumption,
hence the number of subsets of X⧵{x0} = 2k, that is

|(X⧵{x0})| = 2k

as our inductive hypothesis required.
It follows that the number of subsets of X equals twice the number of subsets

of X⧵{x0}, that is |(X)| = 2 ⋅ 2k = 22k+1

as was to be shown.
In other words, the important conclusion is

|(X)| = 2|X| ◾

At this point, it may be intuitively clear to everyone that the power set of any
finite set, regardless of its size, is again a finite set. For infinite sets, of course,
power sets are infinite.

1.6 THE CARTESIAN PRODUCT

Definition 1.20 Let n ∈ N, and let x1, x2, … , xn be a collection of n, not nec-
essarily distinct, elements. We say that (x1, x2, … , xn) is an ordered n-tuple of
n elements, in which we distinguish the first, the second, and so on elements.

Definition 1.21 Two ordered n-tuples (x1, … , xn) and (y1, … , yn) are said to
be equal iff

x1 = y1, x2 = y2, … , xn = yn

31If you are not familiar with the technique of mathematical induction, you can skip this proof in the first
reading. After mathematical induction is introduced in the following chapters, you can come back to the
proof.
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Definition 1.22 (Cartesian product) Let A and B be two sets. The Cartesian
product of A and B, denoted A × B, is the set

A × B = {(a, b)| a ∈ A, b ∈ B}

Given n sets A1,A2, … ,An, then the n-fold Cartesian product of
A1,A2, … ,An is

A1 × A2 × · · · × An =
n∏
i

Ai

= {(a1, a2, … , an)|a1 ∈ A1, a2 ∈ A2, … , an ∈ An}

Example 1.62 Let A = {a, b, c} and B = {1, 2, 3, } then

A × B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}
◾

Theorem 1.13 Let A1,A2, … ,An be sets, where n ∈ N, and n ≥ 2, then the
Cartesian product A1 × A2 × · · · × An is a set defined recursively by

A1 × A2 × · · · × An = A1 × ( A2 × A3 · · · × An)

Example/Exercise 1.63 Convince yourself that

A × B ≠ B × A

Example/Exercise 1.64 Prove that A × ∅ = ∅ × A = ∅.
From the aforementioned discussion, we conclude that if A and B are (finite)

sets, and if one of them is empty, then the Cartesian product A × B is empty.
In other words, if neither A nor B is empty, then there is a ∈ A and b ∈ B so
that (a, b) ∈ A × B. The rather difficult question is : Can we generalize this to
infinite sets, that is, can we say that the Cartesian product of a nonempty family
of nonempty sets is nonempty?

Example/Exercise 1.65 Suppose that A ≠ ∅, and that B ≠ ∅. Show that

A × B = B × A, iff A = B

Theorem 1.14 If A,B, and C are sets, then

(i) (A ∪ B) × C = (A × C) ∪ (B × C)
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(ii) (A ∩ B) × C = (A × C) ∩ (B × C)
(iii) (A ⧵ B) × C = (A × C) ⧵ (B × C)

Definition 1.23 If A = B, then we write A × A = A2.

Example 1.66 R × R = R2 is our familiar 2-dimensional Euclidean plane. ◾

1.7 THE SETS N, Z, AND Q

The sets of numbers N, Z, andQ have been mentioned several times already, but
now we want to address some more interesting things about them.

The set of natural numbers is a collection

N = {1, 2, 3, …}

As was mentioned before, one will often find that some authors, especially those
working in mathematical logic and computer science, prefer to include “0” (zero)
in the set N, which is mostly for convenience. Consider this:

Suppose we came up with numerals such as this:

l, ll, lll, llll, …

Such a sequence can be considered a counterpart of natural numbers 1, 2, 3, 4, …
constructed with only one object “l.” On the other hand, if we wanted to begin
with zero, construction of our sequence would require two objects “0” and “l”
and we would have

0, 0l, 0ll, 0lll, …

representing 0, 1, 2, 3, . . . . So, it is debatable whether it is advantageous to con-
sider zero as a natural number. I hope the reader won’t find this confusing, since
it will be evident from the very context of every argument what is meant by the
set N.

Also, you will often hear that the set N is called the set of counting numbers,
or even the set of nonnegative integers.However, natural numbers is the name
most commonly used, and it is historically the most appropriate one.

More importantly, note that whether you are expressing the set of natural num-
bers with zero or as N = {1, 2, 3, …}, the amount of information contained in
this notation is astounding. Namely, just a few elements of this set, that is, “1,”
“2,” “3,” with the ellipsis “… ” following them, suffice to “completely describe”
the whole (infinite) set. In other words, our mind is able to grasp the enormous
amount of information contained in N by recognizing just a few “examples” and
that very significant “dot, dot, dot.” We feel that we know exactly what kind of
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numbers we are talking about when discussing the set N. But – what is a (natu-
ral) number?Well, assuming that we knowwhat wemean by the terms “number,”
“1,” and “successor,” we can formally define a set of natural numbers by using
axioms due to the Italian mathematician Giuseppe Peano.32

P1.: 1 is a natural number, that is, 1 ∈ N (i.e., N ≠ ∅).33

P2.: ∀ n ∈ N, ∃ n′ = S(n) ∈ N, called the successor of n.
P3.: n′ ≠ 1, that is, there exists no number whose successor is 1.
P4.: If n′ = m′ then n = m, that is, there is no number or there is exactly one

number whose successor is the given number.

More generally, we can state Peano’s axioms, and this time including “zero,”
as follows:

Let X be a set such that:

(P1′): There is a special element 0X ∈ X.
(P2′): There is a function S ∶ X → X such that the following holds: For every

x, y ∈ X, if x′ = S(x) = S(y) = y′then x = y.
(P3′): For every x ∈ X, 0X ≠ S(x).
(P4′): For every A ⊆ X, if 0X ∈ A and S(x) ∈ A whenever x ∈ A, then

A = X.

If we take X to be the set N with 0X = 0, that is, X = N = { 0, 1, 2, 3, …} and
defining the function S by n → n + 1, we see that N satisfies axioms P1′ − P4′.

Theorem 1.15 The set N with a special element 0 and the successor function
S defined by n → n + 1 satisfies Peano’s axioms.

Definition 1.24 (Russell’s hereditary principle) A property is said to be
“hereditary” in the natural number series if, whenever it belongs to a number n
it also belongs to n + 1. Similarly, a set is said to be “hereditary” if, whenever n
is an element of a set, so is n + 1.34

Speaking of sets in everyday parlance, we usually think of them as a collection
of objects, whatever the “objects” are. In mathematics, however, we can equally
well speak (and we often do) of “pure sets” – sets whose members are other pure
sets, like the empty set itself. Can we use those to construct other familiar sets?

At this point, you may recall Axioms 0–6 and revisit our discussion on pages
19 and 20, and in particular Example 1.13, where we listed a sequence of sets:

32Giuseppe Peano (1858–1932).
33One can equally well take zero to be the element of N and start with it as the first natural number.
34Bertrand Russell, Introduction to Mathematical Philosophy.
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∅, {∅}, {∅, {∅}}, {{∅}, {{∅}}}, … . One way to construct natural numbers
could be as follows:

𝟎 = ∅ = {}

𝟏 = {0} = {{}}

𝟐 = {0, 1} = {0, {0}} = {{}, {{}}}

𝟑 = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}

⋮ ⋮

n = {0, 1, 2, … , n − 2, n − 1} = {0, 1, 2, … , n − 2} ∪ {n − 1}

= (n − 1) ∪ {n − 1}

On the other hand, with the empty set ∅ = { } and a successor function35

defined by
S(x) = {x}

we can have

𝟎 = ∅ = {}

𝟏 = S(0) = {∅} = {{}}

𝟐 = S(1) = {1} = {{{}}}

𝟑 = S(2) = {2} = {{{{}}}}

and so on.
We can say that each natural number n is equal to the set of the natural number

preceding it, 1, 2, 3, … , n − 1.
Alternatively, defining zero as

𝟎 = {{}}

and the successor of x as
S(x) = x ∪ {x}

we have

S(∅) = ∅ ∪ {∅}

S(S(∅)) = S(∅) ∪ {S(∅)}

= ∅ ∪ {∅} ∪ {∅ ∪ {∅}}

35Here, for the sake of simplicity, we will designate a generic set by a lowercase x.
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S(S(S(∅)) = S(∅) ∪ {S(∅)} ∪ {S(∅) ∪ {S(∅)} }

= ∅ ∪ {∅} ∪ {∅ ∪ {∅}} ∪ {∅ ∪ {∅} ∪ {∅ ∪ {∅}}}

and so on (cf. Example 1.61).
Thus, our newly designed natural numbers look like this:

𝟎 = {{}}

𝟏 = {{}, 𝟎} = {{}, {{}}}

𝟐 = {{}, 𝟎, 𝟏}

and so on. (In those examples, I purposely wrote natural numbers bold-faced to
emphasize their “set-theoretical nature.”)

Now, let me show you two things that can cause you some headache.
First, suppose we ask: Is it true that S(x) has one element more than the set

x? (One would expect that this is indeed true. After all, that’s exactly how we
constructed S(x).) Well, let’s see. Since S(x) = x ∪ {x}, certainly x ⊆ S(x). Now,
S(x) obviously contains x, which is also an element of {x}. But –and now comes
the caveat – in order for this element (i.e., {x}) to be an extra element, we need x ∉
x (?!). On the other hand, if x ∈ x then {x} is a subset of x, and then x ∪ {x} = x.

Second, as you might have anticipated, the three different ways (defined ear-
lier) of identifying natural numbers with pure sets are not the only ones – there
are infinitely many. What one would expect though is that they are all equivalent.
Well, let’s see. Consider only two versions:
(i)

𝟎 = ∅

𝟏 = {∅}

𝟐 = {{∅}}

𝟑 = {{{∅}}}

⋮

and

(ii)

𝟎 = ∅

𝟏 = {∅}

𝟐 = {∅, {∅}}

𝟑 = {∅, {∅}, {∅, {∅}}}

⋮
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Obviously, the 3 from (i) and the 3 from (ii) are not the same. From the
set-theoretic standpoint {{{∅}}} ≠ {∅, {∅}, {∅, {∅}}}. So, the question
“What is a number?” is not as trivial as some might have thought.

Let’s introduce another concept, which will prove to be very useful later.

Definition 1.25 We say that a set I is inductive if∅ ∈ I, and if for all x ∈ I the
successor S(x) ∈ I.

Do inductive sets exist? We will assume that there exists at least one induc-
tive set.

Theorem 1.16 If two sets I and J are the inductive sets, then I ∩ J is also
inductive.

Proof Following Definition 1.24, we need to show that

(i) ∅ ∈ I ∩ J, and
(ii) whenever x ∈ I ∩ J, then S(x) ∈ I ∩ J too

For (i): Since both I and J are inductive, ∅ ∈ I and ∅ ∈ J, thus ∅ ∈ I ∩ J.
For (ii): If x ∈ I ∩ J, then x ∈ I and x ∈ J. But since I and J are inductive,

S(x) ∈ I and S(x) ∈ J. Hence, S(x) ∈ I ∩ J. ◾

As a simple exercise, you can now prove.

Theorem 1.17 The set N is inductive.

In more general terms, we state

Principle of Induction:

Let X be some set with 0X ∈ X such that for all properties P, if 0X has property
P, and the successor function S(x) has the same property P whenever x ∈ X has
it, then every element of X has property P.

This becomes “obvious” if we take X = N and 0X = 0. We will have to say
more about the principle of induction later but for now let’s illustrate it with

Theorem 1.18 Let X be the set that satisfies Peano’s axioms. Then, for every
x ∈ X different from 0X there exists y ∈ X such that x = S(y).

Proof Let A = {x ∈ X|x = 0X or x = S(y), y ∈ X}.
By definition, 0X ∈ A. On the other hand, if x is an element of A then, again by

definition, there has to be a y ∈ X, such that x = S(y) ∈ A and therefore S(x) =
S(S(y)) ∈ A. Thus, A = X. In other words, for every x ≠ 0X there exists y ∈ X,
such that x = S(y).
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We continue by “describing” a set of integers as a collection

Z = {… ,−3,−2,−1, 0, 1, 2, 3, …}

where, as in the case of natural numbers, a few elements of the set, together with
“… ,” capture much of the relevant information about the set Z. (The symbol Z,
which Cantor used to denote integers, comes from the German word die Zahl= a
number, Zahlen= to number.)

At this point, we want to list the rules of arithmetic, the “axioms of the set Z,”
which are generally well known but rarely justified in introductory textbooks.
Also, these rules, as well as many of the “everybody-knows-it” facts, point to
some more advanced algebraic structures that will be studied later.

Consider the set Z with two operations defined on it: addition “+,” and multi-
plication “⋅,” so that from now on we will be working with the structure (Z; +, ⋅).
Hence our rules of arithmetic are as follows:

1. a + b ∈ Z, ∀ a, b ∈ Z
2. a ⋅ b ∈ Z, ∀ a, b ∈ Z
3. a + (b + c) = (a + b) + c, ∀ a, b, c ∈ Z
4. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c, ∀ a, b, c ∈ Z
5. a + b = b + a, ∀ a, b ∈ Z
6. a ⋅ b = b ⋅ a, ∀ a, b ∈ Z
7. a ⋅ (b + c ) = a ⋅ b + a ⋅ c, ∀ a, b, c ∈ Z
8. ∃ 0 ∈ Z, s.t. 0 + a = a + 0 = a,∀ a ∈ Z
9. ∃ 1 ∈ Z, s.t. 1 ⋅ a = a ⋅ 1 = a, ∀ a ∈ Z
10. ∃ (− a) ∈ Z, s.t. a + (−a) = (−a) + a = 0, ∀ a ∈ Z ◾

Example 1.67 Prove that (i) the additive and (ii) the multiplicative identities
are unique. ◾

Proof (i) Suppose there are two additive identity, 0 and 0′, then according to
rule (7)

0 + 0′ = 0′ since 0 is an additive identity. But

0 + 0′ = 0 since 0′ is an additive identity too. Therefore

0 = 0 + 0′ = 0′

Now you should be able to prove part (ii). ◾

Example 1.68 Prove that

a ⋅ 0 = 0, ∀a ∈ Z ◾
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Proof
a ⋅ 0 = a ⋅ (b + (−b)) = a ⋅ b − a ⋅ b = 0 ◾

Example/Exercise 1.69 Show that if a ∈ Z, then

(−1) a = −a

Example/Exercise 1.70 Show that if a, b ∈ Z, then

(i) (−a)b = a(−b) = −ab
(ii) (−a)(−b) = ab

Example/Exercise 1.71 Show that ∀a, b, c ∈ Z, and a ≠ 0, if ab = bc, then

a = c

Example/Exercise 1.72 Show that if a, b ∈ Z, and a ⋅ b = 0, then either a = 0
or b = 0.

Here is another property of the set Z by the name of the

Trichotomy Law

∀a, b ∈ Z, only one of the following holds

(i) a < b
(ii) a = b
(iii) a > b

Example 1.73 Prove that for any a ∈ Z, a > 0 iff − a < 0. ◾

Proof Suppose a > 0, then

a + (−a) > 0 + (−a) > (−a)

which implies
0 > (−a) ◾

Example/Exercise 1.74 Prove that for any a, b ∈ Z, such that a > 0 and b < 0,

a ⋅ b < 0

Example 1.75 Prove that for any a, b ∈ Z, such that a < 0 and b < 0,

a ⋅ b > 0 ◾
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Proof Suppose a < 0 and b < 0, then −a > 0 and − b > 0. Hence

(−a) ⋅ (−b) = a ⋅ b > 0 ◾

Example 1.76 Let a, b ∈ Z, and a > 0, b > 0. Prove that a < b iff
a2 < b2. ◾

Proof Suppose a > 0 and b > 0, and, furthermore, suppose that a < b, then,
since a < b,

a2 < a ⋅ b < b2

as was to be shown.
Now suppose that a2 < b2. Then,

a ⋅ a < a ⋅ b < b ⋅ b

Therefore, a < b, as claimed. ◾

Example/Exercise 1.77 Let a, b ∈ Z, and let a < 0 and b < 0. Show that
a < b iff b2 < a2.

Theorem 1.19 There are no integers between 0 and 1.

Proof Suppose there is a set

A = {a ∈ Z|0 < a < 1}

Suppose, furthermore, that A ≠ ∅. Then there is a least element a0 ∈ A. Now, a0
being an element of A means that 0 < a0 < 1, which implies that 0 < a20 < a0.
But then it follows that a20 ∈ A, and therefore a0 is not the least element of A.
Hence A = ∅, that is, there are no elements between 0 and 1 in Z. ◾

So far, we haven’t discussed the numbers of the form a∕b, where a, b ∈ Z and
b ≠ 0. Those are ostensibly fully “legitimate” numbers and we have to include
them in our family of numbers.

In order to describe those numbers, called rational numbers Q, we cannot
proceed in the same way as before, that is, we cannot give a few examples that
would be sufficient to encapsulate all properties of the set Q. We need to refer to
set theory. So we define the set of all rational numbers Q as follows.

Definition 1.26 We say that the set

Q =
{

x
||||x =

p

q
, p, q ∈ Z, q ≠ 0

}
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is the set of rational numbers. In other words, we say a number x is rational if
and only if x = p∕q for some integers p and q, with q ≠ 0. In addition, to make
things simpler, occasionally we request that p and q be relatively prime, that is,
that there is no number that divides p and q at the same time (except, of course the
number 1). By doing this, we are simply collecting all the numbers expressible
as a quotient of two integers reduced to simplest form.

Observe that, based on everything we have discussed so far,

N ⊆ Z ⊆ Q

which makes the following theorem obvious.

Theorem 1.20 Every integer is a rational number.

Proof It’s easy – you should do it! ◾

Theorem 1.21 The sum of two rational numbers is rational.

Proof Suppose x, y ∈ Q. Then, by Definition 1.26, we know that x = a∕b and
y = c∕d for some a, b, c, d ∈ Z, with b ≠ 0, d ≠ 0. Then,

x + y = a
b
+ c

d
= ad + cb

bd

ad + cb is the sum of two integers, therefore an integer, say, p, and bd as the
product of two integers is also an integer, say, q. So we have a quotient of two
integers p∕q, with q ≠ 0. Hence, x + y is a rational number. ◾

Theorem 1.22 The set Q is dense, that is, between any two rational numbers
there is at least another one, that is

∀a, b ∈ Q, (a < b),∃ c ∈ Q, such that a < c < b

Thus, there are infinitely many.

Proof If a, b ∈ Q, then a = m∕n and b = p∕q. Consider

c = a + b
2

=
mq + mp

2nq

c, itself a rational number, is obviously an arithmetic mean of two rational num-
bers a and b, that is

a < c < b

as was to be shown. ◾

I want to show you some less obvious, and rather intriguing, properties of sets
N, Z, and Q. First, recall that
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(i) Set N has a least element but not a greatest.
(ii) Set Z has neither a least nor a greatest element.
(iii) Both sets N and Z are infinite.

Also, N ⊆ Z ⊆ Q, and since N and Z are infinite sets,Q has to be infinite too.
But how “big” are the infinities of N and Z andQ? In other words, if N ⊆ Z ⊆

Q, how do we compare those “three infinities?” Recall, in Definition 1.8, we said
that two sets A and B are equivalent if and only if their cardinal numbers are the
same, that is, they have the same number of elements. We need to examine the
“number” of elements in infinite sets.

We will follow Cantor and call the cardinal number of N, ℵ0 (aleph zero), that
is, we say |N| = ℵ0

Now, what about |Z| and |Q|, and what about ℵ0 itself? To address those ques-
tions, and some others pertaining to setR, we need to introduce briefly one of the
most important concepts in the whole of mathematics – the concept of a function.
We will devote much more time to functions later (see Chapter 4), but for now
we will just state two (equivalent) definitions.

Definition 1.27 Given two sets X and Y , we say that a function f from set
X to set Y is a map that assigns to every element of X a unique element of Y
(Figure 1.14). We write this as follows:

f ∶ X → Y

a

b

c

d

f (b)

f (c)f (a)

f (d)

X
Y

f

Figure 1.14 Function f ∶ X → Y .

Set X is called the domain of f and Y the codomain of f.36

36Some finesses in the definitions of domain, codomain, and range will be addressed in Chapter 4.
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Sometimes, it is convenient to simply write

X
f
−−→ Y

If there is no need to explicitly name the function, we abbreviate the notation
by writing

x → f (x)

For example, if x ∈ R, x → x2 would indicate the function f ∶ R → R that maps
every real number to its square (Figure 1.15).

x x2

f

R R

Figure 1.15 Function x → x2

Definition 1.28 A function f from set X into set Y, is a set of all ordered pairs
(x, y), where for all x ∈ X there exists a unique y ∈ Y , such that (x, y) ∈ f , that is

f = {(x, y)|x ∈ X, y ∈ Y}

f (x) ∈ Y is said to be an image of x ∈ X. We say that set X is the domain of f , set
Y is the codomain, and the set of all images of elements of X is the range of f .

Definition 1.29 Given a function f ∶ X → Y , and A ⊆ X, we say that the set

f [A] = {f (x)|x ∈ A}

is the image of A under action of f .
Consequently, if B ⊆ Y we call

f −1[B] = {x ∈ X|f (x) ∈ B}

the preimage of B under action of f .

Definition 1.30 Two functions are said to be equal if and only if they have
the same domain and assign the same value to every member of their common
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domain. Symbolically,

f = g ↔ (∀x ∈ X, f (x) = g(x))

Definition 1.31 The function f ∶ X → Y is said to be one-to-one, (𝟏−𝟏, or an
injection) if and only if

∀x1, x2 ∈ X, if f (x1) = f (x2) then x1 = x2

or equivalently

∀ x1, x2 ∈ X, if x1 ≠ x2 then f (x1) ≠ f (x2)

Often injections are designated with the special arrow “↣” (Figure 1.16), so for
an injection we write

f ∶ X ↣ Y

1

2

3

a = f (2)

c = f (3)

d

e

X

b = f(1)

Y

f

Figure 1.16 One-to-one function

Example/Exercise 1.7837 Let f ∶ X ↣ Y be an injection, and let A,B ⊆ X.
Show that

(i) f [A ∩ B] = f [A] ∩ f [B]
(ii) f [A ∪ B] = f [A] ∪ f [B]

37For this example and the others involving functions, you may want to consult Chapter 4.
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Definition 1.32 We say that a function f ∶ X → Y is onto (or a surjection,
Figure 1.17) iff

∀y ∈ Y ,∃ x ∈ X, such that f (x) = y

(Sometimes, we use “↠” to indicate surjection.)

1

2

3

4

5

6

7

a

b

c

d

X Y

f

Figure 1.17 Surjection

Definition 1.33 A function f ∶ X → Y , that is both one-to-one and onto, we
call a bijection or a one-to-one correspondence (Figure 1.18) between sets X
and Y (sometimes, we use “↣” to indicate bijection).

1

2

3

4

5

a

b

c

d

e

f

X Y

Figure 1.18 Bijection (one-to-one correspondence)
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Example 1.79 Nowwe can restate Definition 1.6 and say: The cardinal number
of a finite set A is a natural number n if there exists a bijection between A and the
set {x ∈ N |1 ≤ x ≤ n}, that is

{xf : A ∈ N 1 ≤ x ≤ n} ◾

Similarly, the concept of the equivalence of sets can be restatedmore precisely:

Definition 1.34 Given two sets X and Y , we say that they have the same cardi-
nality and we write |X| = |Y|, iff there is a one-to-one correspondence between
X and Y, that is, there exists a function f ∶ X → Y , which is one-to-one and onto.
Recall, in Definition 1.10, we call sets with the same cardinality equivalent and
we write X ∼ Y.

Definition 1.35 We say that set X has more elements than set Y , if there
exists a function f ∶ X → Y which is onto, but no function g ∶ X → Y which is
one-to-one.

Theorem 1.23 If X and Y are any two sets, such that there exist one-to-one

mappings X
f
−−→Y and Y

g
−−→X, then |X| = |Y|.

Definition 1.36 Let f ∶ X → Y be a bijection. We say that

f −1 ∶ Y → X

is the inverse function of f , if the following is true:

f −1(y) = x iff f (x) = y

Definition 1.37 We say that h = g ∘ f ∶ X → Z is a composition of functions
f and g, that is

X
f
−−→ Y

g
−−→ Z

if
h(x) = g(f (x))

Theorem 1.24 Let f ∶ X → Y and g ∶ Y → Z be two bijections. Then, g ∘ f is
also a bijection.

Proof See Chapter 4. ◾
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Definition 1.38

A set A is said to be finite iff there is a bijection from a set S = {1, 2, 3, … , n}
to A (see Example 1.79).

A set A is said to be infinite if there is no such bijection.

Example 1.80 Prove that if two finite sets X and Y have the same number of
elements, that is |X| = |Y| = n, then there exists a function h ∶ X → Y , which is
one-to-one and onto.

Solution According to Definition 1.38, a set A is said to be finite if there exists
n ∈ N, such that, given a set S = {1, 2, 3, … , n}, there exists some function

f ∶ S → A

which is one-to-one and onto. Accordingly, for our sets X and Y, there exist func-
tions

f ∶ S → X and g ∶ S → Y

both one-to-one and onto. Since f is a bijection, by Definition 1.34, it follows that
f −1 ∶ X → S is a bijection too. Hence,

g ∘ f −1 ∶ X → Y

is a bijection too. If we take h = g ∘ f −1 we have our proof. ◾

The proofs of the following two, very important, theorems we leave for
Chapter 4.

Theorem 1.25 (Schröder–Bernstein) If A and B are any two sets, and if there
exist injections f ∶ A → B and g ∶ B → A, then there exists a bijection between
A and B, and thus |A| = |B|.38
Theorem 1.26 If A and B are any two sets, then exactly one of the following is
true:

(i) |A| = |B|
(ii) |A| < |B|
(iii) |A| > |B|

38Ernst Schröder (1841–1902), Germanmathematician. Felix Bernstein (1878–1956), Germanmathemati-
cian.
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Theorem 1.27 Let A,B and C be any three finite sets. Then,

(i) |A ∪ B| = |A| + |B| − |A ∩ B|
(ii) |A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|

+ |A ∩ B ∩ C|
(iii) |A × B| = |A| ⋅ |B|
Proof

(i) Note that |A ∪ B| = |A ⧵ B| + |A ∩ B| + |B ⧵ A| (1.5)

On the other hand, observe that

|A| = |A ⧵ B| + |A ∩ B| (1.6)

and |B| = |B ⧵ A| + |A ∩ B| (1.7)

Combining (1.5)–(1.7), we get the desired result.
(ii) For this proof, we will use (i) and the following identities:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩ B) ∩ (B ∩ C) = A ∩ B ∩ C

So we have

|A ∪ B ∪ C| = |A ∪ B| + |C| − |(A ∩ C) ∪ (B ∩ C)|
= |A| + |B| − |A ∩ B| + |C| − |A ∩ C|
− |B ∩ C| + | A ∩ B ∩ C|

= |A| + |B| + |C| − |A ∩ B| − |A ∩ C| + |A ∩ B ∩ C|
(iii) From the definition of the Cartesian product of two finite sets A and B, for

any (a, b) ∈ A × B, there are |A| possibilities for a, and |B| possibilities for
b, and therefore |A × B| = |A| ⋅ |B|. ◾

Theorem 1.28 If A is a finite set with cardinality k, and x ∉ A, then|A ∪ {x}| = k + 1.

Proof First note, that if A = ∅ then |A| = |∅| = 0, therefore|A ∪ {x}| = 1 = 0 + 1.
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If A ≠ ∅ then A ∼ Nk, where Nk = {1, 2, … , k}. It follows that

A ∪ {x} ∼ Nk ∪ {k + 1} = Nk+1. Thus |A ∪ {x}| = k + 1 ◾

Things are quite different for infinite sets, as the following example illustrates.

Example 1.81 With N = {1, 2, 3, …} show that |N ∪ {0}| = ℵ0

Solution Consider a function f ∶ (N ∪ {0}) → N defined by

f (x) = x + 1

It is easy to see that f is a bijection.
Consequently, |N ∪ {0}| = ℵ0. ◾

The next theorem is almost trivial now. However, for its proof we need to
invoke the technique of mathematical induction (see Chapter 3).39

Theorem 1.29 For every k ∈ N, every subset A of Nk is finite.

Proof Let k ∈ N be any natural number and let A ⊆ Nk. If k = 1 then A = ∅ or
A = Nk and thus A is finite. Suppose that all the subsets of Nk are finite for some
number k. Now, let A ⊆ Nk+1, then A ⧵ {k + 1} ⊆ Nk which, by our induction
hypothesis, is finite. Thus, A is finite. Suppose not. Then, we could write

A = (A ⧵ {k + 1}) ∪ {k + 1}

which is finite by the previous theorem. We conclude that for every k ∈ N, every
subset of Nk is finite. ◾

Definition 1.39 We say that A is less than or equinumerous with B, if there is
a one-to-one function f ∶ A → B, and we write A ≼ B.

Definition 1.40 A set A is less than or equal to B in “size” if it is equinumerous
with at least one subset of B, that is

|A | ≤ |B | ↔ ( ∃C)(C ⊆ B & |A| = |C|)
Theorem 1.30 For any sets A and B if A ⊆ B, then A ≼ B.

39You can skip this proof until you have read Section 3.4.
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Proof Let C ⊆ B be a set, such that |A| = |C|. Then, there has to be a bijection
f ∶ A → C, which means that f is an injection from A to B. On the other hand, if
there exists an injection f ∶ A → B, then the image f [A] is a subset of B, that is,
f [A] ⊆ B. However, |A| = |f [A]|, and thus, A ≼ B. ◾

Now we return to our sets N, Z, and Q.

Definition 1.41 A set is called countably infinite or denumerable (some-
times, just countable)40 iff it has the same cardinality as the set of natural num-
bers N. If that is not the case, we say that a set is uncountable.

Example 1.82 Let Neven be the set of all even natural numbers

Neven = {2, 4, 6, 8, …} ◾

Obviously, Neven ⊆ N, so what is the cardinal number of Neven? In order to
make the answer rather obvious let’s take N = {1, 2, 3, …} and then establish a
one-to-one correspondence between N and Neven in the following way:

N = {1, 2, 3, 4, …}

↕ ↕ ↕ ↕ …

Neven = {2, 4, 6, 8, …}

that is, we have obtained the following correspondence: 1↔2, 2↔4, 3↔6, 4↔8,
and so on.

In other words, we are considering a function f ∶ N → Neven defined by

f (n) = 2n, ∀n ∈ N

Obviously, the described function is one-to-one and onto, therefore,

|N| = |Neven|
We came to the surprising and unexpected conclusion that, regardless of the fact
that Neven is a proper subset of N, indeed just a “half” of N, they still have the
same cardinality, that is, they are equivalent.

This shocking result, discovered by Cantor, disputed one of Euclid’s famous
axioms that seemed so “self-evident” for centuries: “The whole is greater than
its part.” Euclid also stated “[t]hings that coincide with one another are equal to

40Sometimes, it is said that a set is countable, if it is either finite or denumerable.
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one another.” Obviously, “things” had to be reconsidered.
Reminding yourself of Definition 1.39, you may now try

Example/Exercise 1.83 Decide whether the following statements are true:

(i) 2Z ≼ Z
(ii) 2Z ∼ Z

With the concept of equivalence, and Cantor’s aforementioned discovery, we
are now in a position to define an infinite set yet another way:

Definition 1.42 A set X is infinite if there exists at least one proper subset of X
with the same cardinality as X, that is, a set is infinite if it is equivalent to at least
one of its proper subsets.

Example/Exercise 1.84 Convince yourself that a set of all natural numbers and
a set of all squares of natural numbers have the same cardinality.

Theorem 1.31 (Cantor) Let X be any set. Then, |X| < |(x)|.
Proof Let f ∶ X → (X) be a function defined by f (x) = {x}, that is, to every
x ∈ X we associate a singleton {x}. It is easy to see that f is an injection. Indeed,
if f (x1) = f (x2) that is, {x1} = {x2}, then x1 = x2. Suppose that there also exists
a bijection g ∶ X → (X). Define

Y = {x ∈ X|x ∉ g(x)}

Since g is a bijection, there exists a unique x ∈ X, such that Y = g(x), and we ask:
Is x ∈ g(x) or not? Suppose x ∈ g(x), then by definition of Y, x ∉ Y; conversely,
if x ∉ g(x) then x ∈ Y . But that contradicts our request that Y = g(x). Thus the
proof. Needless to say, the similarity with Russell’s paradox is evident. You may
want to compare this theorem with Theorem 1.12. ◾

Corollary Set (N) is uncountable.

Example/Exercise 1.85 Convince yourself that

(i) ℵ0 + ℵ0 = ℵ0

(ii) 2ℵ0 = ℵ0
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Example 1.86 Show that Z is countable.

Solution As the definition of countability requires, we need to find a function
f ∶ N → Z that is one-to-one and onto. Let’s rearrange the elements of the set
Z this way:

Z = {0, 1,−1, 2,−2, 3,−3, 4,−4, …}

The pattern is self-evident, and we are sure that all integers have been “collected.”
Now, as before, we establish a correspondence

N =
{
1, 2, 3, 4, 5, 6, 7, …

}
↕ ↕ ↕ ↕ ↕ ↕ ↕ …

Z =
{
0, 1,−1, 2, −2, 3, −3, …

}
It is clear from the aforementioned scheme that no integer has been missed or
counted twice in the process of matching it with a corresponding natural number.
The “function” defined by the aforementioned pattern is obviously the function
f ∶ N → Z given by

f (n) =

{
n
2

if n is an even natural number

− n−1
2

if n is an odd natural number

The function is one-to-one and onto, telling us that |Z| = |N| = ℵ0. ◾

Example/Exercise 1.87 Find another rearrangement of the elements of Z and
N to establish a bijection between these two sets and prove that |Z| = ℵ0

Example/Exercise 1.88 Try to find another explicit formula for the function
f ∶ N → Z that would produce the result obtained in the previous example.

For the next exercise, we will need the following:

Theorem 1.32 Given three sets A,B, and C, such that |A| = |B| and |B| = |C|,
then |A| = |C|.
Proof Suppose that there exist two bijections

f ∶ A → B and g ∶ B → C

telling us that |A| = |B| and |B| = |C|. Consider the composition of f and g

g ∘ f ∶ A → C

By Theorem 1.24, g ∘ f is a bijection too, thus |A| = |C|. ◾
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Exercise 1.89 Suppose that A ∼ B and C ∼ D. Show that (A × C) ∼ (B × D).

Solution Since A ∼ B and C ∼ D, there exist respective bijections f ∶ A → B
and g ∶ C → D. Define the function h ∶ (A × C) → (B × D) by

h(a, c) = (f (a), g(c)), a ∈ A, c ∈ C

As constructed above, h is evidently a bijection, hence (A × C) ∼ (B × D).

Example/Exercise 1.90 Show that |2Z| = ℵ0.

From all that has been said so far, it becomes evident why we define a set as
infinite if it could be made equivalent to a proper subset of itself. And vice versa:
a set is said to be finite, if it could not be made equivalent to at least one of its
subsets.

A natural question one could ask at this point is: What about the cardinality
of the set of rational numbers? Recall that N ⊆ Z ⊆ Q. It is conceivable, then,
that Q is much “bigger” than N. Also, remember we proved in Theorem 1.22
that the set Q is dense. We can rephrase this by saying that in the ordering of
rational numbers in terms of size, there is no next-larger rational number to any
given number. So, it is definitely nontrivial to ask about larger infinities. In other
words, all the sets we discussed so far have been countably infinite, that is, all
of them have been of the “size” of ℵ0. Now, considering the density of set Q,
one could expect the “size” of Q to be much larger than ℵ0. However, the next
theorem points to a different conclusion.

Theorem 1.33 The set of all positive rational numbers Q+ is countable.

Proof We would like to construct a “reasonable” function from N to Q+,
and, hopefully, make it a bijection. Consider the following diagram suggested by
Cantor:

𝟏 ∕ 𝟏 𝟏 ∕ 𝟐 𝟏 ∕ 𝟑 𝟏 ∕ 𝟒 𝟏 ∕ 𝟓 𝟏 ∕ 𝟔 𝟏 ∕ 𝟕 …

𝟐 ∕ 𝟏 2∕2 𝟐 ∕ 𝟑 2∕4 𝟐 ∕ 𝟓 2∕6 2∕7 …

𝟑 ∕ 𝟏 𝟑 ∕ 𝟐 3∕3 𝟑 ∕ 𝟒 𝟑 ∕ 𝟓 3∕6 𝟑 ∕ 𝟕 …

𝟒 ∕ 𝟏 4∕2 𝟒 ∕ 𝟑 4∕4 𝟒 ∕ 𝟓 4∕6 𝟒 ∕ 𝟕 …

. . . . . . .

. . . . . . .

If we reduce each fraction to its lowest form and remove any repetition (i.e.,
we keep only the bold-faced numbers), we indeed obtain the set of all positive
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rational numbersQ+.We can now establish a one-to-one correspondence between
the natural numbers and the positive rational numbers in the following way:

1 ↔ 1∕1, 2 ↔ 1∕2, 3 ↔ 2∕1, 4 ↔ 3∕1, 5 ↔ 1∕3, 6 ↔ 1∕4,

7 ↔ 2∕3, 8 ↔ 3∕2, 9 ↔ 4∕1, 10 ↔ 5∕1, …

Note that all the elements of Q+ have been “accounted for” exactly once, and
each one of them has been matched to one and only one natural number. Such
a one-to-one correspondence is indeed well defined, and, consequently, we con-
clude that |N| = |Q+|. ◾

Now try to prove

Theorem 1.34 The set of all rational numbers is countable, that is, |Q| = |N|.
Hint: Consider the fact that |Q+| = |Q−|, and that for any set A, A ∪ A = A.

More generally, we have

Theorem 1.35 Any subset of a countable set is countable.

Proof Let X be a set such that |X| = |N|, that is, X is countable. Let Y ⊆
X. Y could be finite or infinite. If it is finite, there is nothing to prove – Y is
countable by definition. So, let Y be an infinite set. We would like to find a
one-to-one correspondence betweenN and Y, that is, we are looking for a function
f ∶ N → Y , such that f is one-to-one and onto.

Now, considering that X is countable, we can arrange the elements of X as a
sequence

x1, x2, x3, …

Since Y ⊆ X, this sequence must contain all the elements of Y . We search among
all the xi’s for the elements of Y , and arrange them in the order of occurrence as

f (1), f (2), f (3), …

In other words, ∀ xi ∈ X, ∃ f (i) ∈ Y . Since all the elements x1, x2, x3, … are dis-
tinct, the function f is one-to-one. Now, since every f (i) is found by sequentially
searching through all of x1, x2, x3, … , and is constructed as an image of a natural
number, f is also onto. Therefore, f is a bijection from N to Y , which proves that
Y is countable. ◾

Theorem 1.36 Let A0,A1,A2, … be a sequence of countable sets. Then the
union

A =
∞
∪

i=1
Ai = A0 ∪ A1 ∪ A2 ∪ · · ·

is also a countable set.
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Proof Assuming that every Ai = {ai
0, a

i
1, a

i
2, … , ai

n, …} ≠ ∅, we can find an
onto function

𝜋i ∶ N → Ai

such that for every i
𝜋i(n) = ai

n

Again, following Cantor, we can construct a table:

A0

A1

A2 a0
2

a0
1

a0
0 

a2
2

a2
1

a2
0 

a1
2

a1
1

a1
0 :

:

:

… … … …

... ...

... ...

... ...

... ...

Collecting the elements on the diagonals, we obtain the elements of the union
fully enumerated:

A = {a00, a
1
0, a

0
1, a

2
0, a

1
1, a

0
2, a

2
0, …}

and the one-to-one correspondence 𝜋i(n) between A and N is evident:

A = { a00, a10, a01, a20, a11, a02, …}

↕ ↕ ↕ ↕ ↕ ↕ ↕ …

N = { 1, 2, 3, 4, 5, 6, …} ◾

Corollary The set of all finite subsets of a countable set is countable.

Example 1.91 Let A and B be two countable sets. Show that A ∪ B is count-
able.

Solution Since A and B are countable, we can express them as

A = {a1, a2, a3, … } and B = {b1, b2, b3, … }

Let’s now define a function f ∶ N → A ∪ B by the following diagram:

1
↓
a1

2
↓
b1

3
↓
a2

4
↓
b2

…

Obviously, the function is one-to-one and onto, thus, A ∪ B is countable. ◾
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Example 1.92 Another way to prove that a set of rational numbers is countable
goes as follows: Let

Ai =
{

q
||||q = z

i
, z ∈ Z, i ∈ N

}

Since Ai is obviously countable and Q = ∪∞
i Ai, by Theorems 1.35 and 1.36, the

set Q is countable too. ◾

As a good exercise, you should now prove Theorems 1.37–1.39.

Theorem1.37 If Y is a countable set, and if there exists an injection f ∶ X → Y ,
then X is also countable.

Theorem 1.38 If X is a countable set, and there exists a surjection f ∶ X → Y ,
then Y is also countable.

Theorem 1.39 Every two countably infinite sets are equivalent.

Theorem 1.40 N × N is countable.

Proof It suffices to show that |N × N| = |N|, that is, to construct a bijection
(N × N) → N.

One way to visualize it would be to count by following the arrows:

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1)

(n, 1) (n, 4)(n, 3)(n, 2)

(3, 2) (3, 3) (3, 4)

…

…

…………

…………

…



�

� �

�

70 SET THEORY

The other way to do it would be to arrange N × N as an infinite rectangular array
of ordered pairs of natural numbers:

(1, 1) (1, 2) (1, 3) (1, 4) …

(2, 1) (2, 2) (2, 3) (2, 4) …

(3, 1) (3, 2) (3, 3) (3, 4) …

⋮ ⋮ ⋮ ⋮

(n, 1) (n, 2) (n, 3) (n, 4) …

⋮ ⋮ ⋮ ⋮

Thus, we have constructed a countable set of countable sets, that is

A1 = {(1, 1) (1, 2) (1, 3) (1, 4) …}

A2 = {(2, 1) (2, 2) (2, 3) (2, 4) …}

A3 = {(3, 1) (3, 2) (3, 3) (3, 4) …}

⋮

An = {(n, 1) (n, 2) (n, 3) (n, 4) …}

⋮

This is exactly the structure we have encountered in Theorem 1.36, so we con-
clude that N × N is a countable set.

Alternatively, we could have said: since (n,m) from our aforementioned list is
clearly the mth element of An, why not consider a function

f ∶ N × N → N

defined by f (n,m) = 2n 3m ⋅ f is obviously an injection, hence, by Theorem 1.37,
we conclude again that N × N is countable. ◾

Consequently, the following theorems hold:

Theorem 1.41 If A and B are countable sets, then A × B is countable.

Theorem 1.42 Q ×Q is a countable set.

Theorem 1.43 N × N × N is a countable set.

More generally,

Theorem 1.44 The Cartesian product of a finite number of countable sets is
countable.
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1.8 THE SET R – REAL NUMBERS I

A natural question one may ask at this point is: Does there exist any “larger” set
of numbers after the set Q? After all, we did say that N ⊆ Z ⊆ Q, and we did
talk about how “big” and dense the set Q is. But again, how big is “big?” If a set
is infinite, can one construct a set with greater cardinality? We start this section,
predictably, with Cantor’s answer:

Now that we have established the fact that, regardless of how “big” Q is
(and, remember, still equinumerous to N), we can always find a bigger one. The
inevitable question is whether Q is axiomatically rich enough to accommodate
everything we want to do mathematically. The answer, of course, is no, it is not.
As many a reader may well remember the classic example from high school
algebra courses, the solutions of a simple quadratic equation x2 = 2, x1,2 = ±

√
2

cannot be found in Q, that is,
√
2 is not a rational number; it is irrational. So

in order to adhere to the spirit of Plato41 and elude his harsh judgment: He is
unworthy of the name of man who does not know that the diagonal of a square
is incommensurable with its sides – we prove the following, well-known

Theorem 1.45
√
2 is not a rational number.

Proof First, recall Definition 1.26, where we defined rational numbers as

Q =
{

x
||||x =

p

q
, p, q ∈ Z, q ≠ 0

}
Without loss of generality, let’s take p and q to be relatively prime.

Suppose that, contrary to the statement of the theorem,
√
2 is a rational num-

ber, that is, suppose √
2 ∈ Q

Then, there exist p, q ∈ Z with q ≠ 0, such that√
2 =

p

q
(1.8)

Squaring both sides of (1.8) we get

2 =
p2

q2
(1.9)

Or, after multiplying both sides by q2

2q2 = p2 (1.10)

41Plato (427–347 bc).
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Equation (1.10) implies that p2 is an even integer, so p has to be even too! (Why?)
Let’s express this fact by writing

p = 2k, k ∈ Z (1.11)

Substituting (1.11) into (1.10), we get

2q2 = 4k2 (1.12)

or
q2 = 2k2 (1.12′)

which tells us that q2 is even, and therefore q is even too. As in the case of p, we
express the fact that q is an even integer by writing it as

q = 2l, l ∈ Z (1.13)

Substituting (1.11) and (1.13) into (1.8) gives√
2 =

p

q
= 2k

2l

which contradicts our assumption that p and q are relatively prime. Hence, our
assumption was wrong; therefore, the theorem is true. ◾

Example/Exercise 1.93 Show that
√
3 ∉ Q

(Hint: Start, as usual, assuming that√
3 =

p

q
∈ Q, q, p ∈ Z, q ≠ 0

and from 3q2 = p2, consider the cases when q is an even number and when q is
an odd number.)

Evidently, in addition to the numbers that we have encountered so far (natural
numbers, integers, and rational numbers), there exists another set of numbers
called irrational numbers I, that is, the numbers that cannot be found in any of
the previously studied sets N, Z, and Q. The set that contains all of them we call
the set of real numbers R. We have the following structure:

I|
N ⊆ Z ⊆ Q ⊆ R
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or
Q ∪ I = R

An astute reader would now expect a formal definition of the set R, with all the
axioms precisely laid down in order to fully understand all the intricacies of R.
However, because of the complexities of such a formalism, some additional, more
advanced concepts are needed for a full and rigorous definition of the structure.
So, we will postpone the full formal definition for later and will now introduce
a rather “heuristic” definition and some properties of R, which, we hope, will
suffice for at least an intuitive appreciation of the richness and importance R.

We are about to venture deeper into the land of Cantor, “a paradise from which
no one shall drive us.”

Without proof, we state

Theorem 1.46 There is a one-to-one correspondence between the setR and the
points on the number line.

Theorem 1.47 The set R and the set of points in the open interval (0, 1) are
equivalent.

Proof All we need to do is to find an appropriate bijection f ∶ (0, 1) → R and
we have the proof. Any bijection (0, 1) → R that is not defined at 0 and 1 will do.
Let’s try a function defined by

f (x) = 1 − 2x
x2 − x

(*)

f is certainly not defined at 0 and 1. Is it a bijection? Let’s see. Take x1, x2 ∈ (0, 1)
and suppose that f (x1) = f (x2), that is

1 − 2x1
x21 − x1

=
1 − 2x2
x22 − x2

Then,
(1 − 2x1)(x22 − x2) = (1 − 2x2)(x21 − x1)

or
(x1 − x2)(x1 + x2 − 2x1x2 − 1) = 0

If we could prove that x1 = x2, then our function is one-to-one. x1 = x2 if

x1 + x2 − 2x1x2 − 1 ≠ 0

Suppose that is not the case, that is, suppose

x1 + x2 − 2x1x2 − 1 = 0
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then, with little algebraic reshuffling, we get

−x1 − x2 + x1x2 + 1 = −x1x2

or
(x1 − 1)(x2 − 1) = −x1x2 (**)

Since x1, x2 ∈ (0, 1), that is, 0 < x1 < 1 and 0 < x2 < 1, it would follow that
the LHS of (**) implies

(x1 − 1)(x2 − 1) > 0

while the RHS implies
−x1x2 < 0

which, of course, is impossible.We conclude that x1 + x2 − 2x1x2 − 1 ≠ 0 indeed.
Therefore, x1 = x2 and our function f is one-to-one. Next, we need to show that
f is also onto, that is, that for every y ∈ R, there exists an x ∈ (0, 1), such that
f (x) = y. From (∗) it follows that one possible x ∈ (0, 1) is

x =
y − 2 +

√
y2 + 4

2y

with y ∈ R, y ≠ 0.
Hence,

f (x) = 1 − 2x
x2 − x

=
1 − 2

(
y−2+

√
y2+4

2y

)
(

y−2+
√

y2+4
2y

)2

−
(

y−2+
√

y2+4
2y

)
=

y(8 − 4
√

y2 + 4)

8 − 4
√

y2 + 4
= y

Hence, our function is one-to-one and onto, that is, f ∶ (0, 1) → R is a bijection
and therefore |(0, 1)| = |R|. ◾

Example 1.94 If you find the aforementioned theorem too technical, or too
complicated to be convincing, consider the statement: “There is the same number
of points on a line segment 1 cm long as on one that is 1 km long.” Here is the
“proof”:
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A B

C D

O

Figure 1.19

As you can see, to every point on segment AB there corresponds one and only
one point on segment CD, regardless of the difference in their lengths. So, a bijec-
tion between the points of segment AB and segment CD is evident. ◾

If you are at least somewhat familiar with trigonometric functions, the follow-
ing example is also a good “visual” proof of the equivalence of “short” and “long”
segments.

Example 1.95 The mapping (−𝜋
2
, 𝜋
2
) → R defined by

f (x) = tan x

is clearly a bijection (Figure 1.20).

π/2−π/2

Figure 1.20 ◾
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Example/Exercise 1.96 Prove that |[0, 1]| = |[0, 1)|.
Example/Exercise 1.97 Prove that |(0, 1)| = |(a, b)|, ∀ a, b ∈ R (see Theorem
1.47).

Theorem 1.48 The setR is dense, that is, between any two real numbers there is
another one; therefore, there are infinitely many. You ought to recall that a similar
statement has been made regarding rational numbers (cf. Theorem 1.22). Here,
however, we are talking about an even “higher” density. Nevertheless, proof of
this theorem should not be difficult for you.

Theorem 1.49 (Cantor) The set R is uncountable.

Proof Consider a set of all real numbers between 0 and 1. Is this set count-
able or not? Suppose it is countable. In that case, these numbers have a decimal
representation and we can list them all as follows:

0. a11a12a13 … a1n …
0. a21a22a23 … a2n …
0. a31a32a33 … a3n …

⋮
0. an1an2an3 … ann …

⋮

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(*)

Note that every decimal digit in (*) has two indices; the first one indicating which
member of the sequence it belongs to (i.e., which row in the aforementioned
sequence), and the second indicating which decimal place the digit is in (e.g.,
let’s say that 0.4758… is the number in the third row, then 4 = a31, 7 = a32,
5 = a33, 8 = a34, and so on).

With a construction like this, we should be able to associate to every number
in (*) one and only one element from N, that is, we should be able to “count”
them. For example,

1 ↔ 0. a11a12a13 … a1n …

2 ↔ 0. a21a22a23 … a2n …

3 ↔ 0. a31a32a33 … a3n …

⋮

n ↔ 0. an1an2an3 … ann …

⋮
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Well, no. We cannot. Regardless of the construction of the sequence (*) of real
numbers between 0 and 1, there are still numbers in this interval that are not
contained in the list (*). Consider this: suppose we choose a decimal number

d = 0. a11a22a33 …

such that aii ≠ aii, that is, a11 ≠ a11, a22 ≠ a22, a33 ≠ a33, and so on.
We can do this very easily. Say we first check a11 in (*). If it is different from

1 we put a11 = 1, but if it is equal to 1 we put a11 = 2. Then we check a22 and
do the same: if a22 ≠ 1, then we write a22 = 1, and if a22 = 1, we write a22 = 2.
We continue this process for all aii in our sequence (*). Of course, this is not the
only way one can construct

d = 0. a11a22a33 …

In general, we can reason the following way: in the case that ann = 0, we have
nine choices to make ann different. In the case that ann ≠ 0, we still have eight
choices for ann. Hence, for every decimal digit, we have at least eight choices
and, therefore, we have infinitely many choices for the number d. But whatever
“technique” we use, note that the number d cannot be found in our sequence
(*), since it differs from the first number of (*) in the first decimal place. With
the second number of (*), it differs in the second decimal place, and so on. We
conclude that since the real number d is different from all the numbers in our
sequence (*), the sequence does not contain all the numbers between 0 and 1,
contrary to our starting assumption. Hence, the set of numbers between 0 and 1
is uncountable. Since (0, 1) ⊆ R, it follows that the set R is uncountable. ◾

This proof is known as Cantor’s diagonal argument. It turned out to be very
important in mathematics and logic. There have been various versions of diagonal
arguments, and the gist of it led to a number of very important results in mathe-
matics. We have already encountered some of them in Section 1.7. You can find
references to Cantor’s argument over and over again in many discourses in math-
ematics, physics, computer science, philosophy, and so on. The next ingenious
and witty example by Smullyan and Fitting42 goes something like this:

Example 1.98 Suppose there is a book with infinitely many pages: page 1,
page 2, page 3, and so on. Obviously, the set of pages is countable. Furthermore,
suppose that on each page there is a list, a set, of some natural numbers: on page
1 there is a set N1, on page 2 there is a set N2, on page 3 there is a set N3, …
on page n there is a set Nn, and so on. The question is : Is every natural number
listed in the book? The answer is no. There must be at least one set of natural

42R. M. Smullyan, M. Fitting, Set Theory and the Continuum Problem, Clarendon Press – Oxford, 1996.
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numbers that is not listed in the book. In other words, there exists a set N, which
is different from every one of the sets: N1, … , Nn, … . Let’s see why.

First consider the number 1 – either 1 belongs to setN1 or it doesn’t.We include
it in N, only if it does not belong to N1. Thus, whatever future decisions we
make concerning the numbers 2, 3, … , n, … , we know that N ≠ N1 because,
only one of the two sets N and N1, contains 1 and the other doesn’t. Next, we
consider the number 2. We put it into N only if it does not belong to N2, and that
makes N ≠ N2 (since one of them contains 2 and the other doesn’t). We continue
the process for every natural number n. This way, we constructed N such that
for every n, N ≠ Nn. What we have shown is that, given any countably infinite
sequence N1,N2, … ,Nn, … of sets of natural numbers, there exists a set N of
natural numbers (namely, the set of all n such that n doesn’t belong to Nn) such
that N is different from each of the sets N1,N2, … ,Nn, … . This means that no
countable set of sets of natural numbers contains every set of natural numbers,
that is, the set of all sets of natural numbers is uncountable. ◾

You may find the following two examples also engaging.

Example 1.99 Let r1, r2, r3, … be any sequence of real numbers, and let
[a1, b1], [a2, b2], [a3, b3], … be a sequence of closed intervals where ai, bi ∈ R,
satisfying the following:

(i) ai < bi, ∀i

(ii) [ai, bi] ⊆ [aj, bj], ∀i > j

(iii) ri ∉ [ai, bi]

Because of (ii), [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · · ≠ ∅. So suppose

r ∈ [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · ·

Now, r cannot be one of r1, r2, r3, … because of (iii) and therefore

r ∉ [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · ·

Since the sequence r1, r2, r3, … was arbitrarily chosen, it follows that no count-
able set of real numbers contains all real numbers. ◾

Example/Exercise 1.100 Give another example of a real number not in the
list (*) on page 77, that is, construct another proof of the uncountability of real
numbers.

Example/Exercise 1.101 Prove that there are infinitely many possibilities to
choose from along the original diagonal in (*) to construct another real number.
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Although, generally, it is not easy to prove that a set is uncountable, fortunately,
the following theorem is not difficult.

Theorem 1.50 The set of all irrational numbers is uncountable.

Proof Recall the set R ⧵Q = I is the set of irrational numbers.
Suppose now that the set I is countable. In that case, we could list all irrational

numbers in a sequence i1, i2, i3, … . On the other hand, since rational numbers are
countable, we can certainly list them as q1, q2, q3, … . Consequently, we could
construct the following list:

i1, q1, i2, q2, i3, q3, … (*)

Since R = Q ∪ I, the list (*) by construction should contain all real numbers and
be countable. But that is impossible sinceR is uncountable. On the other hand, as
we have established before, Q is countable. Hence, contrary to our supposition,
the set I of all irrational numbers must be uncountable. ◾

Theorem 1.51 Let A and B be two sets such that A ⊆ B. If A is uncountable,
then B is uncountable too.

Proof Suppose not, that is, suppose B is countable. A being uncountable, and
also a subset of the countable B, contradicts Theorem 1.35 thus B has to be
uncountable too. ◾

Example 1.102 If a set A is uncountable, is it equivalent to R?

Solution Of course not! Suppose we take A = (R). A is definitely uncount-
able, but at the same time |(R)| > |R|. ◾

Theorem 1.52 Let  = {f |f ∶ N → {0, 1}} be the set of all functions from N
to {0, 1}. Then, | | = |(N)|
Proof Let Φ ∶  → (N) be a function defined as follows:

∀f ∈  ,Φ(f ) = {x ∈ N | f (x) = 1}

We would like to show that Φ is a bijection. So, let’s take f1, f2 ∈  such that
f1 ≠ f2. It follows that there exists n ∈ N such that f1(n) ≠ f2(n). Suppose f1, f2
are such that f1(n) = 1 and f2(n) = 0. Then,

n ∈ {x ∈ N |f1(x) = 1} = Φ(f1)

and similarly
n ∉ {x ∈ N|f2(x) = 1} = Φ(f2)
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Thus,Φ(f1) ≠ Φ(f2), that is,Φ is a one-to-one function. Is it onto?Well, consider
a set A ∈ (N). Then A ⊆ N, and the characteristic function (see Chapter 4)

𝜒A ∶ N → {0, 1}

is obviously an element of  . Furthermore,

Φ(𝜒A) = {x ∈ N | 𝜒A(x) = 1} = A

Thus, Φ is onto. Consequently, | | = |(N)|. ◾

The following is also true.

Theorem 1.53 A set F = {f |f ∶ N → N} of all functions from N to N is
uncountable.

The mind of thee upon these lines of ours,
Till thou see through the nature of all things,
And how exists the interwoven frame

It has no bounds, no end, no limit,
And it matters not what part of the universe you are in;
Wherever you are, from the spot you take up,
It stretches to infinity in all directions. …

Titus Lucretius Carus43

What is that thing which does not give itself, and which if it were to give itself
would not exist? It is infinite!

Leonardo da Vinci44

1.9 A SHORT MUSING ON TRANSFINITE ARITHMETIC

The Hilbert Hotel

Let’s imagine an Infinity Hotel, also (appropriately) known as the Hilbert Hotel,
with infinitely many rooms (numbered 1, 2, 3, … and so on forever). As an infinite

43Titus Lucretius Carus (ca. 99–55 bc), De Rerum Natura.
44Leonardo da Vinci (1452–1519), Notebooks.



�

� �

�

A SHORT MUSING ON TRANSFINITE ARITHMETIC 81

number of guests (mathematicians [sic!] attending a mathematics convention)
occupy all rooms, the receptionist is convinced there are no vacancies and all
latecomers should be turned away. “Not so,” the manager exclaimed. When the
next VIP arrives, move the person from room 1 to room 2, the person from room
2 to room 3, the person from room 3 to room 4, etc. This leaves room 1 vacant
while everyone else is properly accommodated. In case more latecomers arrive the
manager repeats the process. So infinitely many newcomers are accommodated.
It turned out that infinitely many physicists came to the conference too, but the
manager is not worried at all. He keeps guest from room 1 in room 1 but moves
the guest from room 2 to room 4, the guest from room 3 to room 9, … , the guest
from room n to room n2 and so on forever. Obviously infinitely many rooms are
now ready to accommodate all the physicists. And, as you might have anticipated,
when in addition to all previous guests, infinitely many philosophers and infinitely
many rock concert fans arrive, all of them are accommodated by similar methods.
But this is not the end of the story. As is often in life, things turn unexpectedly odd.
The Infinity Hotel became so profitable and soon enough infinitely many infinity
hotels opened up: Hotel 1, Hotel 2, Hotel 3, … and so on forever. However,
one day all the guests from those hotels, for some strange reason decided they
wanted to move to the original Infinity Hotel. Our ingenious manager now has
to accommodate infinitely many guests from each of infinitely many hotels. Here
is what he does. Consider all prime numbers (there are infinitely many of them):
2, 3, 5, 7, 11, 13, … , and then do the following: put infinitely many guests from
Hotel 1 into rooms 2, 4, 8, 16, … 2, 4, 8, 16, … (i.e., 21, 22, 23, 24 ,…); those
from Hotel 2 into rooms 3, 9, 27, 81, … (i.e., 31, 32, 33, … etc.); those arriving
from Hotel 3 into rooms 5, 25, 125, 625, … (i.e., 51, 52, 53,… etc.). Continuing
this process manager is sure that while accommodating all the guests from all the
hotels no two persons will occupy the same room.

At the beginning of Section 1.8, we asked: How big is “big.” How do we
determine whether one set is “larger” than the other? Let’s think about this for
a moment. We have already established that any infinite subset of a set of natu-
ral numbers is countable. Can we prove that any infinite set contains a countable
subset? Let’s see. Take any infinite set X. We can always pick a nonempty (infi-
nite) countable subset A ⊆ X the following way: remove one element, say, a1
from X. Certainly, X ⧵ {a1} is still an infinite set. Let’s remove another element,
a2, which keeps X ⧵ {a1, a2} still infinite. We continue this process choosing
a3, a4, a4, … to be removed from X. Thus, we have extracted from X a count-
able set A = {a1, a2, a3, … , an, …} and X nevertheless remains to be an infinite
set. As you might have anticipated by now, we could continue with these argu-
ments further and, for instance, remove from A the set of all elements with even
indices, B = {a2, a4, a6, …} and A ⧵ B remains countably infinite. We conclude
that the cardinality of an infinite set does not change if we adjoin a countable set
to it. And certainly cardinality of an uncountable set won’t change if we extract
a countable subset from it. It is reasonable to wonder how come that all infinities
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are not the same? Also, recall that the sets we may want to study could have as
elements whole families of countable or uncountable elements. The following
few examples will make this more transparent.

Example 1.103 Consider the following set  = {N,Z,Q,R }. Observe that 
is a finite (thus countable) family of sets. No matter that all of its elements are
infinite sets themselves. ◾

Example 1.104 For each i ∈ N, let’s construct a family of sets Ni, where each
Ni is the set of all natural numbers divisible by i, that is, starting with N1 = N we
have

N2 = {2, 4, 6, … , 2n, …}

N3 = {3, 6, 9, … , 3n, …}

⋮

Ni = {i, 2i, 3i, … , ni, …}

⋮

Thus, we have obtained an infinite family of infinite countable sets

 = {N1,N2,N3, … ,Ni, …} ◾

Next is the example that we have encountered in a slightly different context
earlier. Recall that the set Q+ is a countable set (Theorem 1.33), and this time
let’s look at Cantor’s proof from the perspective of an infinite family of sets:

Example 1.105 Define

Q+
1 =

{1
1
,
1
2
,
1
3
, … ,

1
n
, …

}
Q+

2 =
{2
1
,
2
2
,
2
3
, … ,

2
n
, …

}
Q+

3 =
{3
1
,
3
2
,
3
3
, … ,

3
n
, …

}
⋮

Q+
m =

{m
1
,

m
2
,

m
3
, … ,

m
n
, …

}
⋮
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So we have obtained an infinite, countable family

 = {Q+
1 ,Q

+
2 ,Q

+
3 , … ,Q+

m, …}

whose elements are exactly the rows in Cantor’s diagram. ◾

Thus, questions about the “nature” of infinities, and indeed, howmany “infini-
ties” there are, are inevitable.

Here is Cantor again:

Definition 1.43 (Cantor) A set A is greater than a set B if and only if B is
equivalent to some subset of A, but A is not equivalent to any subset of B.

Cantor also showed thatℵ0 is the smallest infinite cardinal number, and follow-
ing Cantor we have shown thatℵ > ℵ0.We have established the fact that there are
at least two different sorts of infinite sets, two different “kinds” of infinities, that
is, two different kinds of cardinal numbers. Let’s remind ourselves what Cantor
meant by the cardinal number of a set X:

… the general concept which by means of our active faculty of thought, arises from
the aggregate X when we make abstraction of the nature of its various elements x
and of the order in which they are given.

Nowwe ask: Is there a cardinal number greater thanℵ? Cantor’s answer is this:
For any set X, there exist sets larger than X, in particular (X). So, for instance|N| < |(N)|, thus we are prompted to consider the following:

ℵ0 = |N|
2ℵ0 = |(N)|
22

ℵ0 = |((N))|
⋮

Consequently, we can naturally proceed and construct a hierarchy of transfinite
cardinals:

ℵ0 , 2ℵ0 , 22
ℵ0 , 22

2ℵ0

, … (*)

Hence

Theorem 1.54 There is an infinite sequence of infinite cardinals

ℵ0 < ℵ1 < ℵ2 · · ·

where ℵ0 = |N|, ℵ1 = |(N)|, ℵ2 = |((N))|, and so on.
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Proof We have learned from Theorem 1.8.1 thatℵ0 < ℵ1. Next, considerℵ2. It
is obviously a cardinal number of the power set of the set (N). Thus, according
to Theorem 1.31, ℵ1 < ℵ2. So, we have established that

ℵ0 < ℵ1 < ℵ2 · · ·

There is no reason to stop at ℵ2, so in general for any n we have

ℵn−1 < ℵn = |(((… ((N)))) … )|
Hence, there is indeed a sequence of infinite cardinals

ℵ0 < ℵ1 < ℵ2 < · · · < ℵn < · · ·

which we recognize as our sequence (*). If you wish to “visualize” the aforemen-
tioned sequence, you may consider the following picture, but keep in mind, the
line pictured is not a real line (Figure 1.21).

0 1 2

Figure 1.21

◾

Where is the cardinal number of R in this sequence? It can be shown (cf.
Theorem 1.12) that the cardinal number of the reals

|R| = |(N)| = 2ℵ0

We conclude that the set of all real numbersR is equivalent to the set of all subsets
of natural numbers (N).

So, our sequence (*) is as expected

ℵ0, ℵ1, ℵ2, ℵ3, … (**)

assuming that there is no cardinal number between ℵ0 and 2ℵ0 , that is, no car-
dinal number greater than ℵ0 and less than 2ℵ0 . Well, can we assume this? And
why? Cantor said yes, 2ℵ0 = ℵ1 = c,45that is, we take |R| = ℵ1. However, he was
unsuccessful in proving it. This is what is known as the Continuum Hypothesis
(CH).

45Remember, we are assuming the Continuum Hypothesis, that is, c = ℵ1
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Let’s have some fun and reflect on the issue some more. It is important to keep
in mind that in the following lines, as in this whole section, we are just musing,
and by no means do we expect to give the proof of the hypothesis, or anything
even close to a definite answer. Some would suggest that the question of CH is
subjective, and the whole issue has to do with how strong a Platonist you (the
mathematician) are.

First, recall that the sets N and Q are countable and the set R is not. Also,
remember N ⊆ Q ⊆ R. Cantor conjectured that there is no set X such that it has
more elements than N and fewer elements than R, that is

∄X s.t. |N| < X < |R|
Remember (cf. Chapter 1.5), given a set A such that |A| = n, then|(A)| = 2|A| = 2n. Hence, there are more elements in (A) than in A.
Consequently, for given n = |A| there are 2n − (n + 1) sets having the number of
elements greater than n and less than 2n. In general, for any sets A and B if

|B| ≤ |A| ≤ |(B)|
then either A ∼ B or A ∼ (B). Translating this to alephs, we get to the general-
ized continuum hypothesis:

2ℵn = ℵn+1

Once we have “convinced” ourselves of this fact, it is natural to contemplate the
extension of this to sets N and R. Suppose there is a set X with more elements
than N and fewer than R. Then X should be such that

|N| < |X| < 2|N|
Now, 2|N| > |N| and (cf. Theorems 1.12, 1.31, and Definition 1.43) 2|N| is the
number of elements ofR. Hence, 2|N| cannot be the cardinality of any set between
N andR. Everything said earlier is correct (except the last sentence – “Hence… ”
is kind of a stretch), but somehow your instinct might be telling you that some-
thing is still missing – our “proof” is not satisfying. No wonder many mathe-
maticians have unsuccessfully struggled with the problem for years. In 1931,
Kurt Gödel used the techniques of mathematical logic to show that Continuum
Hypothesis could not be disproved on the basis of available axioms.46 That, of
course, does not mean that it could be proved either. In 1963, Paul Cohen took it
one step further and showed that it was also impossible to prove the Continuum
Hypothesis. All efforts were unfruitful, because the assumptions of set theory,

46Zermelo–Fraenkel axioms.
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which Cantor and others used, were independent of the Hypothesis. Being aware
of Gödel’s work, Cohen concluded:

Set Theory with the assumption of the Continuum Hypothesis is consistent; Set The-
ory with the denial of Continuum Hypothesis is consistent.

So, what are we to make of all this? Obviously, we are venturing into the
territories beyond everyday experiences. In standard mathematics, saying that
you cannot prove that A = B but that you can prove that A ≠ B would sound
pretty odd. Here, however, we are talking “the other” mathematics. Simply put,
alephs are definitely different kinds of numbers (for lack of a better word), or
at least “numbers” that many of us have never thought about before, and conse-
quently every statement regarding them has to be pondered over with special care.
Before we continue with our “regular” mathematics, I cannot resist the tempta-
tion of showing you something I find extremely fascinating.What follows is again
mostly due to Cantor. The concepts that we will briefly touch upon are generally
uncontroversial nowadays. However, although the logical consistency of the the-
ory is indisputable, one might occasionally hear some dissonant voices regarding
the existence and the “reality” of infinities. I’ll let you make up your own mind.

Alfred North Whitehead, however, would say: “Our minds are finite, and yet even
in the circumstances of finitude we are surrounded by possibilities that are infinite,
and the purpose of life is to grasp as much as we can of that infinitude.”

With this encouragement in mind, we may continue a bit further. Mathemat-
ics – any mathematics – is about thinking, wouldn’t you agree? And thinking is
“due” to our mind (whatever that may be). So, let’s also agree, for starters at least,
that admitting that mathematics (as well as science and philosophy) has its limi-
tations does not imply that there are limitations of the universality of reason. (All
right, I concede that this is a rather big assumption, but let’s not dwell on it for the
time being.) Accordingly, here are some new realms that our mind can explore.

Recall what Cantor meant by the cardinal number: the cardinal number of a
set X is what X has in common with all the sets equivalent to X. We get cardi-
nal number(s) by simply counting: 1, 2, 3, … , ℵ0. In other words, the cardinal
number indicates how many members there are in a given set. Nothing is said
as to how they are ordered. That’s why, you may recall, he denoted the cardinal

number of a set X as X.47 It is worth repeating that the double bar indicates dou-
ble abstraction, first from the nature of the elements and second from their order.
Now, consider the sequence (**) on page 84. We start with 1 and then 2, and so

47This should not cause confusion with our notation |X|. See Definition 1.9.
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on until we reach the first transfinite cardinal, the second transfinite cardinal, and
so on. In other words, we have the sequence

1, 2, 3, … , ℵ0, ℵ1, ℵ2, ℵ3, … (***)

in which subscripts indicate the ordering by the size of transfinite cardinals.
We can lump them all in some set, the set of cardinals, but now we also dis-

tinguish which one is the first element, which one is the second, and so on. With
such ordering, we obtained the set of ordinal numbers. What are those? Strictly
speaking, every time when we count and use the expressions “first,” “second,”
“third,” and so on, we talk about ordering the elements in a set. Think about it
this way: We can use natural numbers to count (and that’s why some call them
“counting numbers”), and so on to answer the question of “how many” of a cer-
tain object we have: one, two, three, and so on, and in this case, we call them
cardinals. But if we want to answer the question “in which order” the objects are
arranged, and so on, which object is first, second, third, and so on, we call them
ordinals. Now comes the important part. Suppose we list the elements of the set
N in the following way:

1, 3, 5, 7, … , 2, 4, 6, …

that is, we first list all odd natural numbers and then we list all even natural num-
bers. We could picture this as in Figure 1.22.

1 3 5 7 9 2 4 6 8 10
(1)

Figure 1.22

Suppose now that we want to enumerate them. How could we do that? As you
already know, we would “exhaust” the whole of setN just to enumerate the odds,
and we would still be left with infinity many evens (i.e., ℵ0 of them) without
any means of counting them. The same problem would arise if we wanted to
first list all numbers, say, divisible by 3, and then those which leave remainder 1
after division by 3, and those that leave remainder 2 after division by 3, that is,
3, 6, 9, … , 1, 4, 7, … , 2, 5, 8, …

This would look something like in Figure 1.23.

3   6   9   1   4   7   2   5    8
(2)

Figure 1.23
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Obviously, we need some other symbol to take care of this “problem.” Cantor
introduced the symbol 𝜔 to account for the problem of emerging transfinites.
Let’s superimpose a “picture” of {1, 2, 3, 4, 5, … , n, …} on (1) in Figure 1.22:

The first transfinite ordinal 𝜔 corresponds to 2, 𝜔 + 1 to 4, and so on. So, how
many transfinite numbers are there? Let’s look at (2) again, but this time taking
into account the just acquired concept of the transfinite 𝜔. We get something like
Figure 1.24.

1 3 5 9 2n + 1 647 2

(3)

1 2 3 4 5 n ω ω + 1 ω + 2

Figure 1.24

Yet another way to look at this.
Consider “Zeno-like” running on the real line such that every “step” (every

number) is at half the distance of the previous one. That will look something
like this:

1 2 3 ω+1ω+2 2ω+3 ω ω · 2 + 1 ω · 2 + 2

3 6 9 1 4 7 2 5 8 

Figure 1.25

0 1 2 3 4...ω

Figure 1.26

Now, “superimpose” a copy of Figure 1.25 onto each of the spaces between
the points 0 and 1, 1 and 2, 2, and 3, and so on. That will look something like
Figure 1.27.
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0 1 2 3 4 … ω

1 2   3… ω
0 1 2 3 … ω

0   …      ω
0 … ω   ....

Figure 1.27

Repeating the process again we come to:

0 1 ω …  ω+1 … ω · 2 … ω · 3 … ω · 4 … ω2

Figure 1.28

Doing it one more time gives: Figure 1.29

0 ω ω+2 … ωω2 ω2 ω3

ω2 + 1 ω2 · 4

… ...  

1     2 …                                  … …

+

Figure 1.29

Repeating the process over and over again, we get the “final result” that would
look something like Figure 1.30:

1 2 30 ω ω+1 ω 2 ω2 ω3 ωωω 3 ω2 2

Figure 1.30

Of course, there is no reason to stop there, so the answer to the question of
how many ordinal numbers there are is: There are infinitely many of them! Well,
said Cantor, let’s collect them “all,” according to the following recipe: If 𝛼 is
an ordinal number, then we can always find the next ordinal 𝛼 + 1, and once
we obtain a definite sequence of increasing ordinals, then we can find the last
ordinal, called lim(𝛼), which is greater than all the 𝛼’s. Thus, the following series
of ordinals (which we tried to “visualize” earlier) is

1, 2, … , 𝜔
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𝜔 + 1, 𝜔 + 2, …

𝜔 ⋅ 2, 𝜔 ⋅ 2 + 1, 𝜔 ⋅ 2 + 2, …

𝜔 ⋅ 3, 𝜔 ⋅ 3 + 1, 𝜔 ⋅ 2 + 2, …

⋮

𝜔2, 𝜔2 + 1, 𝜔2 + 2, 𝜔2, …

𝜔2 + 𝜔, 𝜔2 + (𝜔 + 1), 𝜔2 + (𝜔 + 2), …

⋮

𝜔3, 𝜔3 + 1, 𝜔3 + 2, …

⋮

An important note is in order. Unlike finite ordinals, the infinite ordinals demand a
particular “order of operation,” namely, commutativity no longer holds. Observe
that 1 + 𝜔 = 𝜔, but 𝜔 + 1 is the next “number” after 𝜔. In other words,

1 + 𝜔 = 𝜔 ≠ 𝜔 + 1

Similarly, 2 ⋅ 𝜔 = 𝜔, but 𝜔 ⋅ 2 = 𝜔 + 𝜔.
We continue this way until we reach

𝜔𝜔, 𝜔𝜔 + 1, 𝜔𝜔 + 2, …

⋮

And on and on until we reach

𝜔𝜔𝜔

, 𝜔𝜔𝜔 + 1, 𝜔𝜔𝜔 + 2, …

⋮

Continuing this way (and now it really gets complicated), we come to a new
sequence

𝜀0, 𝜀1, 𝜀2, …

where 𝜀0 = 𝜔𝜔𝜔𝜔
̇

.
We can go on like this forever, right? Why not? Well, we “have been going”

forever already while “counting” to 𝜔, so “going” to 𝜀0 means – what?
Do you see where “this” is going? Do you see where our mind is taking us?

Do you feel the richness of the underlining theory? Talking about “big,” really,
really “big,” infinitely big, infinitely, infinitely big. The Absolute???
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We know that the infinite exists without knowing its nature, just as we know that it
is untrue that numbers are finite. Thus it is true that there is an infinite number, but
we don’t know what it is.48

So Cantor said:

The Absolute can only be acknowledged and admitted, never known, not even
approximately.

Before I offer you another paradox, let’s sum upwhat we know about ordinals:

(i) There is a first ordinal.
(ii) For each ordinal, there is an immediate successor ordinal.
(iii) For each set of ordinals, there is an ordinal which is the first succeeding

them all.

So, we get the familiar sequence (cf. Example 1.61)

0 = ∅

1 = {∅}

2 = {0, 1} = {∅, {∅}}

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

⋮

𝜔 = {0, 1, 2, 3, …}

= {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, …}

𝜔 + 1 = {0, 1, 2, 3, … , 𝜔}

𝜔 + 2 = {0, 1, 2, 3, … , 𝜔, 𝜔 + 1}

⋮

⋮

𝜔 ⋅ 2 = {0, 1, 2, 3, … , 𝜔, 𝜔 + 1, …}

𝜔 ⋅ 2 + 1 = {0, 1, 2, 3, … , 𝜔, 𝜔 + 1, … , 𝜔 ⋅ 2}

⋮

⋮

Now consider

48Blaise Pascal, Penseés.
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The Burali-Forti49 Paradox

Suppose we are tempted to form a set Ω of all (infinitely many) ordinals. Can
we do that? After all, we have a set of all natural numbers, rational numbers, real
numbers, and so on, so why not do the same with ordinals? Well, if the set Ω
exists, then it is the set (of ordinals) like any other. But then, by condition (iii),
there must be another ordinal, Ω + 1, the first to succeed it, that is, the first to
succeed all the members of Ω. In other words, Ω < Ω + 1. But that contradicts
the assumption that Ω contains all ordinals. We conclude: The ordinal numbers
do not form a set.

In the same way by which we can always find more ordinals, we can always
“find” more cardinals. Consider this sequence:

ℵ0, ℵ1, ℵ2, … , ℵ𝜔, ℵ𝜔+1, … ℵ𝜔𝜔

, …

As youmight have anticipated by now, we do not stop here. Awhole new universe
of more and more complex structures opens up and the mathematics of transfinite
turns out to be an exceptionally rich and philosophically exciting theory.

The assiduous reader may feel a little uneasy by now. After all the discussion
of the transfinite, the author, with all of his fascination with alephs, so far has still
not satisfactorily defined the very culprit of all of this – the real number(s). We
will do that in a moment, but let’s see briefly some of the remarkable features of
arithmetic of transfinites. We start with

Theorem 1.55 Let ℵ be any infinite cardinal then

(i) 0 + ℵ = ℵ

(ii) n + ℵ = ℵ, ∀n ∈ N(n is finite)

Proof

(i) Let X be a set s.t. |X| = ℵ. We know that 0 = |∅|, thus we have
0 + ℵ = |∅ ∪ X| = |X| = ℵ

(ii) Since X is an infinite set, there exists a set A = {a1, a2, … , an } ⊆ X, then

n + ℵ= |A ∪ X| = |X| = ℵ ◾

49Cesare Burali-Forti (1861–1931), Italian mathematician.
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Example 1.106 Let n be a finite cardinal number. Then

n + ℵ0 = |{1, 2, 3, … , n} ∪ {n + 1, n + 2, …}| = ℵ0 ◾

Example 1.107 From Theorem 1.55, it follows that

ℵ0 + 0 = ℵ0 + 1 = ℵ0 + 1010
1010

(*)

You might immediately object that equation (*) cannot be true since, by elemen-
tary school algebra, (*) implies that 1= 0, which is obviously an absurdity. But
remember, we are not doing ordinary algebra! Although the addition of trans-
finites is (well?) defined, interestingly enough, subtraction is not. Why not? Well,
consider

ℵ0 + 1 = ℵ0

This one we can believe (we have proved even more: ℵ0 + ℵ0 = ℵ0). Using ordi-
nary algebra, we could go a step further and argue that

1 + 0 = 1 + ℵ0 − ℵ0

= (1 + ℵ0) − ℵ0

= ℵ0 − ℵ0

= 0

concluding that
1 = 0

which, of course, is nonsense. Therefore, we are forced to accept that ℵ0 − ℵ0
simply is not defined. ◾

However, things are quite different for addition. Consider the following:

Example 1.108

ℵ0 + ℵ0 = |{2, 4, 6, …} ∪ {1, 3, 5, …}| = |{1, 2, 3, 4, 5, …}| = ℵ0
◾

Actually, this can be generalized even further.

Theorem 1.56 Letℵ𝛼 andℵ𝛽 be two infinite cardinals such thatℵ𝛼 < ℵ𝛽 . Then,

ℵ𝛼 + ℵ𝛽 = ℵ𝛽
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Proof Let A and B be two sets s.t. |A| = ℵ𝛼 and |B| = ℵ𝛽 . If ℵ𝛼 < ℵ𝛽 , then
there exists a one-to-one function

f ∶ A → B

We need to show that A and f (A) are equivalent sets. Consider the function

g ∶ A → f (A)

defined by the same rule as f , except that it is restricted to map A into f (A) ⊆ B.
Since we choose f as one-to-one, g is also one-to-one by construction. Note that
although f may not be onto, we would like g to be onto. To see that g is onto, let’s
take some y ∈ f (A). By definition of f (A) there has to be an x ∈ A, such that

y = f (x) = g(x)

We conclude that g is onto, and therefore a bijection. Thus A and f (A) are equiv-
alent, that is, |A| = |f (A)|.

Since f (A) ⊆ B, f (A) ∪ B = B, we get the following:

ℵ𝛼 + ℵ𝛽 = |f (A)| + |B|
= |f (A) ∪ B|
= |B|
= ℵ𝛽

which was to be proved. ◾

Example 1.109
ℵ0 + 2ℵ0 = ℵ0 + ℵ1 = ℵ0 + c = c ◾

Example 1.110 Let’s examine the “sum” c + c on the interval [0, 1]:

c + c =
||||[0, 1

2

]
∪
(1
2
, 1
]|||| = c ◾

Example 1.111
ℵ + 2ℵ = 2ℵ

Since ℵ0 is the first infinite cardinal, it follows that ℵ0 ≤ ℵ for any other infi-
nite cardinal. Hence, as a consequence of Theorem 1.56, ℵ0 behaves as a neutral
element with respect to addition of infinite cardinals, that is, it always holds that

ℵ + ℵ0 = ℵ0 + ℵ = ℵ
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Since cardinals can be added, we conclude that

ℵ + ℵ + · · · + ℵ = n ⋅ ℵ = ℵ, ∀ ∈ N (*)
◾

However, we also have

Theorem 1.57 Let ℵ be an infinite cardinal. Then,

0 ⋅ ℵ = 0

Proof In Example/Exercise 1.64, you were asked to prove that for any set
A, A × ∅ = ∅ × A = ∅. If you haven’t done it, let’s do it now so we can use
that to prove our theorem.

Suppose A × ∅ ≠ ∅. Then, there exists an n ∈ A × ∅ such that n = (x, y), with
x ∈ A and y ∈ ∅. But this contradicts the fact that∅ has no elements. Thus, our
supposition was wrong and we conclude that

A × ∅ = ∅ × A = ∅

as claimed. Since we didn’t specify A to be any particular set, we take that our
assertion also holds for any set; therefore,N × ∅ = ∅ as well asR × ∅ = ∅. Now
the proof of the theorem follows immediately: Consider a set A such that |A| = ℵ.

0 ⋅ ℵ = |∅ × A| = |∅| = 0 ◾

So far so good. But now the next natural question arises: if we accept the
statement (*) from Example 1.111, how far can we push the multiplication of
alephs? In other words, what is ℵ0 ⋅ ℵ0? Or, in general, ℵ ⋅ ℵ0?

Recalling our discussion of the Cartesian product from Chapter 1.6, you can
easily convince yourself that if we are given k finite sets A1,A2, … ,Ak such that

A1 = n1, |A2| = n2, … , |Ak| = nk

then |A1 × A2 × … × Ak| = n1 ⋅ n2 ⋅ … ⋅ nk

Indeed, each element in A1 × A2 × … × Ak is a k-tuple of the form
(a1, a2, … , ak), where ai ∈ Ai. Thus, there are n1 ways to choose the first
element in a k-tuple, n2 ways to choose the second one, and so on. Therefore,
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there are n1 ⋅ n2 ⋅ … ⋅ nk elements in A1 × A2 × … × Ak. We extend this
formalism to calculate the product of infinite cardinals by

Definition 1.44 Let A and B be two sets such that |A| = ℵ𝛼 and |B| = ℵ𝛽 are
respective infinite cardinals. Then, we define

ℵ𝛼 ⋅ ℵ𝛽 = |A × B|
Example 1.112

ℵ0 ⋅ ℵ0 = |N × N|
= |N|
= ℵ0

Note that we utilize Theorem 1.37 in the second step. ◾

This rule is valid for any other aleph, that is

ℵ ⋅ ℵ = ℵ

Here is another good example:

Theorem 1.58 R ∼ R × R. That is to say |R × R| = |R|.
Proof Consider a function

f ∶ R → R × R

defined by f (x) = (x, 0), ∀x ∈ R. f is clearly a one-to-one function. In order to
complete the proof, we also need another one-to-one function

g ∶ R × R → R

Since the cardinality of the interval (0, 1) is the same as the cardinality ofR, rather
than working with the whole R we prefer to work with

g ∶ (0, 1) × (0, 1) → (0, 1)

defined by

g(0. a1a2a3 … , 0. b1b2b3 …) = 0. a1b1a2b2a3b3 …
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with the only restriction that the a′i s and b′i s not be repeating nines. Thus, g
is a well-defined function and it is clearly one-to-one. The Schröder–Bernstein
theorem immediately leads to the desired proof. ◾

Example/Exercise 1.113 Show that R × R × R ∼ R.

Theorem 1.59 Let A and B be two sets such that |A| = ℵ𝛼 and |B| = ℵ𝛽 are
respective infinite cardinals. Then,

ℵ𝛼 ⋅ ℵ𝛽 = ℵ𝛽 ⋅ ℵ𝛼

Proof Consider a function

f ∶ A × B → B × A

defined by
f (a, b) = (b, a)

The function f is obviously a bijection. That implies

ℵ𝛼 ⋅ ℵ𝛽 = |A × B| = |B × A| = ℵ𝛽 ⋅ ℵ𝛼

which was to be proved. ◾

Without proof, we state

Theorem 1.60 If ℵ𝛼 and ℵ𝛽 are two infinite cardinals such that ℵ𝛼 ≤ ℵ𝛽 , then

ℵ𝛼 ⋅ ℵ𝛽 = ℵ𝛽

that is, the larger of the two cardinals.

The following examples illustrate another “unusual” consequence of multipli-
cation of alephs.

Example 1.114
ℵ ⋅ ℵ = ℵ2

but also
ℵ ⋅ ℵ = ℵ

Thus, √
ℵ = ℵ ◾



�

� �

�

98 SET THEORY

A few more peculiar properties of infinite cardinals are listed without proof in
the following theorem.

Theorem 1.61 If n ∈ N is any finite cardinal, then

(i) nℵ0 = ℵ
ℵ0

0 = 𝔠ℵ0 = 𝔠
(ii) 2𝔠 = nc = ℵ𝔠

0 = 𝔠𝔠

Example 1.115

(i) c ⋅ c = c50

(ii) ℵ0 ⋅ c = c

(iii) ℵ0 ⋅ ℵ = ℵ

(iv) ℵ ⋅ ℵ ⋅ ℵ = ℵ ◾

Example 1.116

(i) cℵ0 = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 = c

(ii) cc = (2ℵ0)c = 2ℵ0c = 2c = c ◾

Example/Exercise 1.117 Prove that cℵ0 = c.

It is very important to stress again that, regardless of the fact that we “know”
how to multiply cardinals, the division is not defined. Our inherent intuition is
worthless when dealing with alephs. Here is a simple example: Suppose we can
divide cardinals. Then, it would be natural to infer the following:

ℵ0 ⋅
1
ℵ0

= 1

From expression (*) on page 95, it would in particular follow that 2ℵ0 = ℵ0, so
by ordinary algebra, we could write

2 ⋅ ℵ0
1
ℵ0

= ℵ0 ⋅
1
ℵ0

which would entail
2 = 1

50Remember, we are assuming the Continuum Hypothesis, that is, c = ℵ1
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Obviously, we cannot accept something this absurd. Thus, our assumption of the
possibility of division was wrong.We conclude that, the same as with subtraction,
division is also not defined! Again, we realize that mathematics has a life of its
own – we just have to discover the beautiful new world hidden under the surface.

Before concluding this section, I need to tell you about an axiom that may
seem fairly obvious to you. Indeed, we have done much of our set theory tacitly
assuming its validity. As a matter of fact, it has not been recognized by math-
ematicians for a long time. And even today, regardless of the many beautiful
results one can prove with it, many mathematicians are rather skirmish about
it. The discomfort that they feel is mostly due to its nonconstructive nature and
some very unexpected and counterintuitive implications that follow. Let’s devote
a short subsection to the (in)famous Axiom of Choice.

Axiom of Choice

In mathematics, there are arguably very few so “simple” and “self-evident” and
still so controversial axioms as The Axiom of Choice (AC). As B. Russell said: At
first it seems obvious, but the more you think about it the stranger the deductions
from this axiom seem to become; in the end you cease to understand what is meant
by it. Many crucial concepts in different branches of mathematics, as well as the
(proofs of) theorems therein, are based on it. However, do note that I put “simple”
and “self-evident” in quotation marks. Being “simple” and “self-evident” can
be misleading indeed! For instance, on page 46, after introducing the Cartesian
product, we asked whether one could extend the conclusion (evidently valid for
finite sets) to infinite ones (see Example 1.64) as well. Similarly, when discussing
the Continuum Hypothesis, we have encountered the sequence of alephs

ℵ0, ℵ1, ℵ2, ℵ3, … , ℵ𝜔, …

and we ask: Suppose an infinite set of infinite sets is given, is it possible to choose
one element from each set without giving a rule of choice in advance?

It turns out that the issues involved are very profound and we will end this
chapter with just a rudimentary exposition of the subject.

A very well-known and witty formulation of this question, which I like to
call “On Socks and Shoes,” is due to (who else but) Bertrand Russell who said:
Suppose there are infinitely many pairs of socks and shoes. To choose one sock
from each pair of identical socks requires the Axiom of Choice, but for shoes
the Axiom is not needed, it suffices to simply impose a rule “always chose the
left shoe” and we are done. Once again, the phrase “infinitely many” is crucial,
for with finite sets of socks we wouldn’t have the problem. (Can you figure out
why?) Let’s start with a few simpler examples.

Example 1.118 Consider a set S = {A,B,C}, where A,B, and C are disjoint
sets such that
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A = {a1, a2},B = {b1, b2}, and C = {c1, c2}

Suppose we want to construct a set by choosing for its elements one and only
one element from each of the sets A,B,C. For instance, one possible “choice set”
could be

= {a1, b1, c1}

where the “choice function” was: “take the ‘first’ element from each set” (what-
ever “the first” means – in this case, obviously, an element with index 1). ◾

However, how would you do

Example/Exercise 1.119

(i) If ∅ ∈ S what would be the choice set?
(ii) If S = ∅ what would be the choice set?

Example 1.120 Let
S = {A|A ⊆ N,A ≠ ∅}

be a collection of all nonempty subsets of N, then we can simply define the
“choice function” by saying f (A) = smallest member of A. ◾

Example 1.121 Let

S = {I = [a, b]|a, b ∈ R, d(a, b) < ∞}

that is, a collection of all intervals of real numbers with finite length. Then, we
can define f (I) to be the midpoint of the interval I. ◾

Now comes a problem: Consider Example 1.118, again assuming this time
that the sets A,B,C ∈ S are open intervals, that is

A = (a, b),B = (c, d) and C = (e, f ); a, b, c, d, e, f ∈ R

How would you choose an element from each of the sets to construct the set ?
(Say, you first consider our familiar interval (0, 1), how would you take the least
element from it?) To make it even more intriguing, take the set S to be the set of
all nonempty subsets of R. How would we find a suitable function f to collect an
element from all of those subsets? So we ask: If an infinite set of infinite sets is
given, is it possible to choose one element from each set without giving the rule of
choice in advance? Yes, it is possible, said Zermelo.51 In 1904, he introduced the

51Ernst Zermelo (1871–1953), German mathematician.
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Axiom of Choice (AC)

Let S be a collection of mutually disjoint nonempty sets; then, there exists a set
 consisting of exactly one member chosen from each set in the collection S. In
other words, given any family of nonempty sets,

S = {Ai|i ∈ I, I = index set}

there exists a function – the choice function

f ∶ I → ∪
i∈I

Ai

such that f (i) = ai ∈ Ai.
Equivalently, we can approach AC as follows:
Let S = ∪i∈IAi be a nonempty family of nonempty sets. Then, the Cartesian

product
∏

i∈IAi of the sets Ai is the set of all choice functions f ∶ I → ∪i∈IAi
where f (i) = ai ∈ Ai, for all i ∈ I. In other words, for every i ∈ I, f chooses a
point ai from each set Ai.

Hence, we can restate the Axiom of Choice as follows: The Cartesian product
of a nonempty family of nonempty sets is nonempty.

Note that the axiom only claims the existence of the choice function. It doesn’t
say anything about its construction.

As an example, let’s prove

Theorem 1.62 Every infinite set has a countably infinite subset.

Proof Let S be an infinite set. Consider a set A1 = S∖{a1}, where a1 ∈ S. A1
is certainly not empty since S is not empty. Furthermore, A1 is infinite, for if A1
were finite S would be finite too, contradicting our original assumption. Next, we
can consider a set.

A2 = A1∖{a2} = S∖{a1, a2}, a2 ∈ S. A2 is also infinite, and in particular it
contains an element a3. Can we continue these arguments ad infinitum? Well,
to continue with this argumentation we need AC, and we construct Ai for any
1 ≤ i ≤ n, i ∈ N according to the aforementioned prescription.We claim thatAi is
infinite. But then, there is an+1 ∈ An, such that An+1 = An∖{an+1} is also infinite.
Note that if i < j, then ai ∈ Ai+1, but aj ∉ Ai+1. Now, if we let B = {ai|i ∈ N},
then B is infinite and |B| = |N|. ◾

Going back to our list of cardinals, it is reasonable to ask: Can we form a set
C of all cardinal numbers? Well, let’s try that. Suppose C is a set of all cardinals.
Then, for every c ∈ C, there exists a set Ac such that c = |Ac|. Furthermore, let

A = ∪
c∈G

Ac
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Consider now (A) and let |(A)| = 𝛼. Then, since

|(A)| = 𝛼

we have |(A)| ≤ |A|
On the other hand, by Cantor’s theorem

|(A)| > |A|
so we have a contradiction. We see that, the same as with the ordinals, the axioms
of set theory fail to accommodate the cardinals also.

Finally, without proof, we list three crucial theorems of mathematics:

Theorem 1.63 (Zorn lemma) Let X be a nonempty partially ordered set,
whose every linearly ordered subset has an upper bound in X. Then X contains
at least one maximal element.

Theorem 1.64 (Zermelo’s well-ordering theorem) Every nonempty set X
can be well ordered.

Theorem 1.65 The following are equivalent:

(i) Axiom of choice
(ii) Zorn lemma
(iii) Well-ordering theorem.

It might be appropriate to conclude this subsection with a quote you may
philosophically disagree with but, nevertheless, you have to admit it is rather
captivating:

… For me, and I suppose for most mathematicians, there is another reality, which I
will call “mathematical reality” … I believe that mathematical reality lies outside
us, that our function is to discover or observe it, and that the theorems which we
prove, and which we describe grandiloquently as our “creations” are simply our
notes of our observations.52

1.10 THE SET R – REAL NUMBERS II

So far, we have dealt with real numbers more or less heuristically. We assumed
their existence for a simple reason: set Q obviously was not sufficiently rich

52Hardy, G. H., A Mathematician’s Apology, Cambridge University Press, 1967.
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enough to accommodate everything we wanted to do mathematically. Also, as
the reader is obviously aware of by now, the importance of set R, and therefore
its proper definition, can hardly be overstated. We need to introduce a few more
concepts in order to adequately address real numbers.

Definition 1.45 (A ring) A ring is a setRwith two binary operations on it: “+”
and “⋅” called “addition” and “multiplication,”53 respectively, such that

1. addition is commutative: a + b = b + a, ∀a, b ∈ R;
2. addition is associative: a + (b + c) = (a + b) + c, ∀a, b, c ∈ R;
3. addition has a neutral element with respect to addition: ∃ 0 ∈ X, s.t. a +

0 = 0 + a = a;
4. addition has an inverse: ∀a ∈ R,∃(−a) ∈ R, s.t. a + (−a) = (−a) + a = 0;
5. multiplication is associative: a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c, ∀a, b, c ∈ R;
6. multiplication is distributive with respect to addition:

a ⋅ (b + c) = a ⋅ b + a ⋅ c, ∀a, b, c ∈ R

Definition 1.46 (A field) A field Φ is a set with two binary operations on it,
such that Φ is a commutative ring with the identity with respect to “multipli-
cation,” that is, in addition to (1)–(6) from Definition 1.44, there are three more
properties that have to be satisfied:

1. a ⋅ b = b ⋅ a, ∀a, b ∈ Φ
2. There exists a unique element 1 ∈ Φ, which we call the identity (sometimes

unity) with respect to multiplication, s.t. 1 ⋅ a = a ⋅ 1 = a, ∀a ∈ Φ, and
3. for every element a ∈ Φ, there exists amultiplicative inverse a−1 ∈ Φ, s.t.

a ⋅ a−1 = a−1 ⋅ a = 1

Example 1.122 The sets Z,Q, andR, with the usual addition andmultiplication,
are rings. Q and R are also fields. ◾

Example/Exercise 1.123 Convince yourself that the set R is a field.

Example 1.124 The set 2Z of even integers with the usual addition and
multiplication is a ring. Note that it doesn’t have an identity with respect to
multiplication. ◾

Example 1.125 I hope that you are familiar with the concept of a polynomial
of n th degree in one variable, that is, a function of the form

53“Addition” and “Multiplication” are names that we conveniently associate with “+” and “⋅” These oper-
ations do not necessarily have to be our ordinary addition and multiplication.
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f (x) = Pn(x) = anxn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0

where n, n − 1, n − 2, … ∈ Z+, that is, nonnegative integers,54 and an, an−1, …
a0 ∈ R. You can easily convince yourself that a set of all polynomials is a ring.
On the other hand, a set of polynomials is not a field for obvious reasons: there
is no multiplicative inverse that is also a polynomial. ◾

Example 1.126 If you are familiar with matrices, you can immediately recog-
nize that the set of all square (n × n) – matrices form a noncommutative ring. ◾

Definition 1.47 We say that a field Φ is an ordered field if the following is
satisfied:

1. If a, b ∈ Φ, then one and only one of the following holds:

a < b, a = b, or a > b

2. If a, b, c ∈ Φ, s.t. a > b, and b > c, then a > c

3. If a, b, c ∈ Φ, and if a > b, then a + c > b + c.
4. If a, b, c ∈ Φ and if a > b, with c > 0, then ac > bc.

Example 1.127 Prove that a > 0 iff −a < 0. ◾

Proof

(i) If a > 0, then a + (−a) > 0 + (−a) ⇒ 0 > −a

(ii) If −a < 0, then − a + a < 0 + a ⇒ 0 < a ◾

Example 1.128 Prove that if a > 0 and b < 0, then a ⋅ b < 0. ◾

Proof Suppose a > 0 and b < 0. Then,

−b > 0

therefore,
a ⋅ (−b) = −(a ⋅ b) > 0

Hence,
a ⋅ b < 0 ◾

54Z+ = N ∪ {0} = N+.
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Example/Exercise 1.129 Prove that if a > 0 and b > 0, then a ⋅ b > 0.

Example/Exercise 1.130 Prove that if a ≠ 0, then a2 > 0.

Example/Exercise 1.131 Prove that if a < 0 and b < 0, then a ⋅ b > 0.
Now, we are ready for some important definitions that will safely lead us to a

better insight into real numbers.

Definition 1.48 Let Φ be an ordered field, and let A be a nonempty subset of
Φ. We say that A is bounded above, if there exists an element a ∈ Φ, such that
x ≤ a, ∀x ∈ A. We call a an upper bound of A.

Similarly, we say that A is bounded below, if there exists a b ∈ Φ, such that
x ≥ b, ∀x ∈ A. We call b a lower bound of A.

We say that A is bounded if it is bounded above and below.

Definition 1.49 Let A be a nonempty subset of Φ. We say that a ∈ Φ is the
least upper bound or a supremum of A iff a is an upper bound of A, and for
every other upper bound x of A, a ≤ x. We write a = supA.

Definition 1.50 Let A be a nonempty subset of Φ. We say that b ∈ Φ is the
greatest lower bound or infimum of A iff b is a lower bound of A, and for every
other lower bound x of A, b ≥ x. We write b = inf A.

Definition 1.51 A field Φ is said to be completely ordered if the complete-
ness property is satisfied, that is, if every nonempty bounded set S ⊆ Φ has a
supremum in the field.

Theorem 1.66 If a nonempty set A has a supremum, then supA is unique.

Proof Suppose there are two elements x1 and x2, both supremums of a setA. By
definition, both x1 and x2 are upper bounds of A, and since x1 is a supremum, x1 is
less or equal to any other upper bound, in particular, x1 ≤ x2. On the other hand,
x2, being a supremum, is less or equal to any other upper bound, in particular,
x2 ≤ x1. Hence x1 = x2. ◾

Now you should be able to prove

Theorem 1.67 If a nonempty set A has an infimum, then inf A is unique.

Finally, we have

Definition 1.52 The set of real numbers R is a completely ordered field.
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As an additional exercise you may want to revisit Theorems 1.66 and 1.67 and
simply replace the words “nonempty set A” by “nonempty subset A of R.”

Let’s pause for a moment and reflect on all of this. Suppose we are famil-
iar only with rational numbers and take a subset of all rational numbers such that
(p∕q)2 < 2. This subset does not have a supremum, because if it did have a supre-
mum, say a, we could eventually get a2 = 2. But we have proved (see Theorem
1.45) that this is impossible. So, indeed, we want a set of numbers, call it R, with
a property that any nonempty subset A ⊆ R, which is bounded above, has a supre-
mum. Well, said Dedekind,55 suppose we knew only the infinite set Q. Here is
what we could do. Let’s partition – cut – setQ into two subsets L and R, such that
(1) every element of L is smaller than every element of R, and (2) R has no least
element. The idea being that every rational number is either an element of L or
an element of R. Thus, we have

L = {x ∈ Q|x < r} and R = {x ∈ Q|x > r}

For instance, our (in)famous
√
2 would be represented by the cut [L,R] such that

L =

{
p

q

|||||
(

p

q

)2

< 2, p, q ∈ Z

}
and

R =

{
p

q

|||||
(

p

q

)2

> 2, p, q ∈ Z

}
It may be worth mentioning at this point that in 1872, when Dedekind intro-
duced his “cut,” topology did not exist. Today’s treatment of the “Dedekind cut,”
as a topological space in open interval topology, had to wait for better times.
Dedekind’s idea still holds today: real numbers cannot be represented in terms of
discrete mathematical objects. The only way to consistently represent arbitrary
real numbers is by infinite sets. (Remember the statement of Cantorism at the
beginning of this chapter: Everything is a set.)

We conclude this discussion with

Definition 1.53 A real number is a pair [R, L] of infinite sets.
For the sake of completeness, let’s put together everything we have said about

the field of real numbers and state it explicitly: Let R be a set with two binary
operations on it, called addition, “+,” andmultiplication, “⋅” These operations
satisfy the following properties:

55Richard Dedekind (1831–1916).
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1. ∀a, b ∈ R, a + b = b + a ∈ R
2. ∀a, b ∈ R, a ⋅ b = b ⋅ a ∈ R
3. ∀a, b, c ∈ R, a + (b + c) = (a + b) + c

4. ∀a, b, c ∈ R, a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

5. ∀a, b, c ∈ R, a ⋅ (b + c) = a ⋅ b + a ⋅ c

6. ∃ 0 ∈ R, s.t. 0 + a = a + 0 = a, ∀a ∈ R
7. ∃ 1 ∈ R, s.t. 1 ⋅ a = a ⋅ 1 = a, ∀a ∈ R
8. ∀a ∈ R, ∃(−a) ∈ R, s.t. a + (−a) = (−a) + a = 0
9. ∀a ∈ R, ∃a−1 ∈ R, s.t. a ⋅ a−1 = a−1 ⋅ a = 1

We call the fieldR the field of real numbers. Consequently, we have a theorem
that summarizes the most important algebraic properties of the field R.

Theorem 1.68 For any real numbers a, b, c, d ∈ R, the following holds:

(i) Cancellation Law for Addition: If a + b = a + c, then b = c

(ii) Possibility of Subtraction: Given a and b, there is exactly one x such that

a + x = b

(iii) a − b = a + (−b)
(iv) a ⋅ (b − c) = a ⋅ b − a ⋅ c

(v) 0 ⋅ a = a ⋅ 0 = 0
(vi) Cancellation Law for Multiplication: If ab = ac and a ≠ 0, then b = c

(vii) If b ≠ 0, then a∕b = ab−1

(viii) If a ≠ 0, then (a−1)−1 = a

(ix) Zero Product Property: If a ⋅ b = 0, then a = 0 or b = 0
(x) (−a) ⋅ b = a ⋅ (−b) = −(a ⋅ b)
(xi) (−a) ⋅ (−b) = a ⋅ b

(xii) Rule of addition of fractions:

a
b
+ c

d
= ad + bc

bd
, b ≠ 0, d ≠ 0

(xiii) Rule of multiplication of fractions:

a
b
⋅

c
d
= a ⋅ c

b ⋅ d
, b ≠ 0, d ≠ 0

(xiv) Rule of division of Fractions:

a∕b

c∕d
= a ⋅ d

b ⋅ c
, b ≠ 0, c ≠ 0, d ≠ 0
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(xv) Trichotomy Law: Given any two real numbers a, b, only one of the three
relations holds:

a < b, b < a, or a = b

(xvi) Transitive Law: If a < b and b < c, then a < c
(xvii) If a < b, then a + b < b + c
(xviii) If a < b and c > 0, then ac < bc
(xix) If a ≠ 0, then a2 > 0

We have already proved many of the statements in the aforementioned
theorem in a different context. The reader shouldn’t have any problems proving
the remaining parts.

Definition 1.54 Suppose a ∈ R, we define the absolute value of a by

|a| = {
a if a ≥ 0

−a if a < 0

Theorem 1.69

(i) For any a, b ∈ R, |ab| = |a||b|.
(ii) For any a, b ∈ R, |a + b| ≤ |a| + |b| (Triangle inequality).

Proof

(i) Suppose a > 0 and b > 0. Then, by definition, |a| = a and |b| = b. Thus,|a||b| = ab. On the other hand, |ab| = ab. We conclude that |ab| = |a||b|.
If a < 0 and b < 0, then |a| = −a and |b| = −b, so we again have

|ab| = ab = (−a)(−b) = |a||b|
(ii) Consider the following obvious inequalities:

−|a| ≤ a ≤ |a| (1.14)

−|b| ≤ b ≤ |b| (1.15)

Adding (1.14) and (1.15), we get

−(|a| + |b|) ≤ a + b ≤ |a| + |b|
which implies |a + b| ≤ |a| + |b| ◾
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Example/Exercise 1.132 Prove that

||||ab |||| = |a||b| , b ≠ 0

1.11 SUPPLEMENTARY PROBLEMS

1. Given four sets A = {a, b, c, d},B = {a, a, c, b, d, d},C = {d, b, a, c, 0}, and
D = {d, b, a, c}, determine which sets are equal.

2. Is a = {a}? Why? Why not?

3. Is 0 = {}? Why? Why not?

4. Let A = {a, b, c{a}, {{a}}, {a, d}, d}
(i) Is a ∈ A?
(ii) Is {a} ⊆ A?
(iii) Is {{a}} ∈ A?
(iv) Is {{a}} ⊆ A?
(v) Is {a, b, c} ⊆ A?

5. Let  = {a, b, c, d, e, f , g} be a universal set, and let A = {b, c, d, f }, B =
{a, b, c}, and C = {d, e, f , g}. Find
(i) A ∩ B

(ii) A ∪ B

(iii) A ∩ C

(iv) B⧵A

(v) A⧵(B ∩ C)

6. Let A be a set. Show that

(i) A ∪ ∅ = A

(ii) A ∩ ∅ = ∅
(iii) A ∪ A = A

(iv) A ∩ A = A

(v) A⧵∅ = A

7. Let the universal set be the set of all natural numbers, that is, let = N and
A = {x|x = 2n, n ∈ N}, find
(i) A ∩ N
(ii) A ∪ N
(iii) Ac
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8. Let the universal set  be the set of all real numbers R, and let A = {x ∈
R|0 ≤ x ≤ 1}, and B = {x ∈ R|−3 < x ≤ 3}. Find
(i) A ∪ B

(ii) A ∩ B

(iii) Ac

(iv) Bc

(v) (A ∩ B)c

9. What is the cardinality of each of the following sets?
(i) {a}
(ii) {{a}}
(iii) {∅}
(iv) {∅, {∅}}
(v) {a, {{∅}}}

10. Show that for all sets A,B, and C

(i) If A ⊆ B and A ⊆ C then A ⊆ B ∩ C

(ii) If A ⊆ C and B ⊆ C then A ∪ B ⊆ C

11. Show that if A ⊆ B, then B = A ∪ (B⧵A).

12. Show that for all sets A,B, and C

(A ∪ B)⧵C = (A⧵C) ∪ (B⧵C)

13. Show that for any sets A and B

A⧵B = A⧵(A ∩ B)

14. Let A ⊆ C and B ⊆ C. Prove the following assertions:
(i) C ⧵(C ⧵A) = A

(ii) C⧵(A ∩ B) = (C⧵A) ∪ (C⧵B)
(iii) C⧵(A ∪ B) = (C⧵A) ∩ (C⧵B)

15. Show that for all sets A,B, and C

(A⧵B)⧵C = (A⧵C)⧵(B⧵C)

16. Prove: (A ∪ B) ∩ Bc = A iff A ∩ B = ∅.
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17. Let A and B be subsets of X. Prove that

(A ⊆ B) ⇔ [(x⧵B) ⊆ (x⧵A)]

18. Show that (i) and (ii) are logically equivalent:
(i) A and B are disjoint sets.
(ii) A ⊆  ⧵B, B ⊆  ⧵A.

19. Show that for all A ≠ B ≠ ∅, A × B ≠ B × A.

20. Prove that for all sets A,B,C, and D

(A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D)

21. Suppose A = {a, b} and B = {c, b}. Find
(i) (A ∩ B)
(ii) (A ∪ B)

22. Let A,B ⊆  . Show that

(A ∪ B) ∩ (Ac ∪ Bc) = AΔB

23. Let A,B ⊆  . Show that
(i) AΔB = (A ∪ B)⧵(A ∩ B)
(ii) AΔ(BΔC) = (AΔB)ΔC

24. Show that for all sets A,B, and C

(i) (A ∩ B) × C = (A × C) ∩ (B × C)
(ii) (A ∪ B) × C = (A × C) ∪ (B × C)

25. Show that for all sets, B and C

(A⧵B) × C = (A × C)⧵(B × C)

26. Verify that Definition 1.23 is a good definition, that is, prove that if X is an
infinitely countable set, then it has a proper subset with the same cardinality.

27. Which of the following is true:
(i) N ⊆ Z
(ii) Q ⊆ Z
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(iii) R ∩Q = Q
(iv) Z ∪Q = Q
(v) Q ∩ Z ∩ N = N

28. Prove that if X ⊆ N, then X is either countably infinite or finite.

29. Prove that if
(a) X is countable and Y ⊆ X is finite, then X⧵Y is countable.
(b) X is uncountable and Y ⊆ X is countable, then X⧵Y is uncountable.

30. Prove that A = [0, 1] and B = [0, 2] have the same number of elements.

31. Prove that A = (0, 1) and B = (0, 2) have the same number of elements.

32. Determine the cardinality of the following sets:
(i) N ∩ [1, 𝜋]
(ii) N ∪ [1, 𝜋]

33. Determine the cardinality of the following sets:
(i) Q3

(ii) QR

34. Define Nk = N ⋅ N ⋅ · · · ⋅ N
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

k times

. Prove that N3 ∼ N that is |N3| = |N|
35. Let Sn be the set of all subsets ofNwhose size is n. Prove that Sn is countable

for all n ∈ N.

36. Show that Q ∩ [0, 1] is countable.

37. Show that (R⧵Q) ∼ R.

38. Show that for all n = N, |Rn| = c.

39. Determine the cardinality of the following sets:
(i) (Z) × (Z)
(ii) ((Z))

40. Prove that if A ≠ ∅ is a finite set and if B = {f |f ∶ N → A}, then B is
uncountable. (Hint: recall Cantor’s proof for the uncountability of the set
(0, 1).)

41. Let (A → B) = {f |f ∶ A → B}
Show that if |A1| = |A2| and |B1| = |B2|, then|(A1 → B1)| = |(A2 → B2)|

42. Prove that the countable union of sets of cardinality c = 2ℵ0 (continuum)
again has cardinality c.
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43. Here is Cantor’s Paradox: Consider the set of all sets. The set of all its subsets,
according to Cantor’s own theorem, has a cardinal number larger than the
cardinal number of the original set. Yet our original set by definition includes
all sets. Thus, we constructed a set larger than the set of all sets. Can you
resolve this paradox?

44. Here again is Russell’s famous paradox: Let S be the set that contains a set
X. If the set X doesn’t belong to itself, so S = {X|X ∉ X},
Show that
(i) the assumption that S is a member of S leads to a contradiction;
(ii) the assumption that S is not a member of S leads to a contradiction too.

45. Explain why there are no “holes” in R.
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