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CHAPTER 1

INTRODUCTION

1.1 FROM RL TO RADP

1.1.1 Introduction to RL

Reinforcement learning (RL) is originally observed from the learning behavior in
humans and other mammals. The definition of RL varies in different literature. Indeed,
learning a certain task through trial-and-error can be considered as an example of
RL. In general, an RL problem requires the existence of an agent, that can interact
with some unknown environment by taking actions, and receiving a reward from it.
Sutton and Barto referred to RL as how to map situations to actions so as to maximize
a numerical reward signal [47]. Apparently, maximizing a reward is equivalent to
minimizing a cost, which is used more frequently in the context of optimal control
[32]. In this book, a mapping between situations and actions is called a policy, and
the goal of RL is to learn an optimal policy such that a predefined cost is minimized.

As a unique learning approach, RL does not require a supervisor to teach an agent
to take the optimal action. Instead, it focuses on how the agent, through interactions
with the unknown environment, should modify its own actions toward the optimal
one (Figure 1.1). An RL iteration generally contains two major steps. First, the agent
evaluates the cost under the current policy, through interacting with the environment.
This step is known as policy evaluation. Second, based on the evaluated cost, the
agent adopts a new policy aiming at further reducing the cost. This is the step of
policy improvement.

Robust Adaptive Dynamic Programming, First Edition. Yu Jiang and Zhong-Ping Jiang.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



JWBS211-c01 JWBS211-Jiang April 7, 2017 18:43 Printer Name: Trim: 6.125in × 9.25in

2 INTRODUCTION
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FIGURE 1.1 Illustration of RL. The agent takes an action to interact with the unknown
environment, and evaluates the resulting cost, based on which the agent can further improve
the action to reduce the cost.

As an important branch in machine learning theory, RL has been brought to the
computer science and control science literature as a way to study artificial intelli-
gence in the 1960s [37, 38, 54]. Since then, numerous contributions to RL, from a
control perspective, have been made (see, e.g., [2, 29, 33, 34, 46, 53, 56]). Recently,
AlphaGo, a computer program developed by Google DeepMind, is able to improve
itself through reinforcement learning and has beaten professional human Go players
[44]. It is believed that significant attention will continuously be paid to the study
of reinforcement learning, since it is a promising tool for us to better understand the
true intelligence in human brains.

1.1.2 Introduction to DP

On the other hand, dynamic programming (DP) [4] offers a theoretical way to solve
multistage decision-making problems. However, it suffers from the inherent com-
putational complexity, also known as the curse of dimensionality [41]. Therefore,
the need for approximative methods has been recognized as early as in the late
1950s [3]. In [15], an iterative technique called policy iteration (PI) was devised
by Howard for Markov decision processes (MDPs). Also, Howard referred to the
iterative method developed by Bellman [3, 4] as value iteration (VI). Computing the
optimal solution through successive approximations, PI is closely related to learning
methods. In 1968, Werbos pointed out that PI can be employed to perform RL [58].
Starting from then, many real-time RL methods for finding online optimal control
policies have emerged and they are broadly called approximate/adaptive dynamic
programming (ADP) [31, 33, 41, 43, 55, 60–65, 68], or neurodynamic programming
[5]. The main feature of ADP [59, 61] is that it employs ideas from RL to achieve
online approximation of the value function, without using the knowledge of the
system dynamics.

1.1.3 The Development of ADP

The development of ADP theory consists of three phases. In the first phase, ADP
was extensively investigated within the communities of computer science and
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operations research. PI and VI are usually employed as two basic algorithms. In
[46], Sutton introduced the temporal difference method. In 1989, Watkins proposed
the well-known Q-learning method in his PhD thesis [56]. Q-learning shares sim-
ilar features with the action-dependent heuristic dynamic programming (ADHDP)
scheme proposed by Werbos in [62]. Other related research work under a discrete time
and discrete state-space Markov decision process framework can be found in [5, 6, 8,
9, 41, 42, 48, 47] and references therein. In the second phase, stability is brought into
the context of ADP while real-time control problems are studied for dynamic systems.
To the best of our knowledge, Lewis and his co-workers are the first who contributed
to the integration of stability theory and ADP theory [33]. An essential advantage of
ADP theory is that an optimal control policy can be obtained via a recursive numeri-
cal algorithm using online information without solving the Hamilton-Jacobi-Bellman
(HJB) equation (for nonlinear systems) and the algebraic Riccati equation (ARE) (for
linear systems), even when the system dynamics are not precisely known. Related
optimal feedback control designs for linear and nonlinear dynamic systems have been
proposed by several researchers over the past few years; see, for example, [7, 10, 39,
40, 50, 52, 66, 69]. While most of the previous work on ADP theory was devoted to
discrete-time (DT) systems (see [31] and references therein), there has been relatively
less research for the continuous-time (CT) counterpart. This is mainly because ADP is
considerably more difficult for CT systems than for DT systems. Indeed, many results
developed for DT systems [35] cannot be extended straightforwardly to CT systems.
As a result, early attempts were made to apply Q-learning for CT systems via dis-
cretization technique [1, 11]. However, the convergence and stability analysis of these
schemes are challenging. In [40], Murray et. al proposed an implementation method
which requires the measurements of the derivatives of the state variables. As said
previously, Lewis and his co-workers proposed the first solution to stability analysis
and convergence proofs for ADP-based control systems by means of linear quadratic
regulator (LQR) theory [52]. A synchronous policy iteration scheme was also pre-
sented in [49]. For CT linear systems, the partial knowledge of the system dynamics
(i.e., the input matrix) must be precisely known. This restriction has been completely
removed in [18]. A nonlinear variant of this method can be found in [22] and [23].

The third phase in the development of ADP theory is related to extensions of
previous ADP results to nonlinear uncertain systems. Neural networks and game
theory are utilized to address the presence of uncertainty and nonlinearity in control
systems. See, for example, [14, 31, 50, 51, 57, 67, 69, 70]. An implicit assumption in
these papers is that the system order is known and that the uncertainty is static, not
dynamic. The presence of dynamic uncertainty has not been systematically addressed
in the literature of ADP. By dynamic uncertainty, we refer to the mismatch between the
nominal model (also referred to as the reduced-order system) and the real plant when
the order of the nominal model is lower than the order of the real system. A closely
related topic of research is how to account for the effect of unseen variables [60]. It
is quite common that the full-state information is often missing in many engineering
applications and only the output measurement or partial-state measurements are
available. Adaptation of the existing ADP theory to this practical scenario is important
yet non-trivial. Neural networks are sought for addressing the state estimation problem
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FIGURE 1.2 Illustration of the ADP scheme.

[12, 28]. However, the stability analysis of the estimator/controller augmented system
is by no means easy, because the total system is highly interconnected and often
strongly nonlinear. The configuration of a standard ADP-based control system is
shown in Figure 1.2.

Our recent work [17, 19, 20, 21] on the development of robust ADP (for short,
RADP) theory is exactly targeted at addressing these challenges.

1.1.4 What Is RADP?

RADP is developed to address the presence of dynamic uncertainty in linear and
nonlinear dynamical systems. See Figure 1.3 for an illustration. There are several
reasons for which we pursue a new framework for RADP. First and foremost, it is
well known that building an exact mathematical model for physical systems often is
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FIGURE 1.3 In the RADP learning scheme, a new component, known as dynamic uncer-
tainty, is taken into consideration.
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a hard task. Also, even if the exact mathematical model can be obtained for some
particular engineering and biological applications, simplified nominal models are
often more preferable for system analysis and control synthesis than the original
complex system model. While we refer to the mismatch between the simplified
nominal model and the original system as dynamic uncertainty here, the engineering
literature often uses the term of unmodeled dynamics instead. Second, the observation
errors may often be captured by dynamic uncertainty. From the literature of modern
nonlinear control [25, 26, 30], it is known that the presence of dynamic uncertainty
makes the feedback control problem extremely challenging in the context of nonlinear
systems. In order to broaden the application scope of ADP theory in the presence
of dynamic uncertainty, our strategy is to integrate tools from nonlinear control
theory, such as Lyapunov designs, input-to-state stability theory [45], and nonlinear
small-gain techniques [27]. This way RADP becomes applicable to wide classes of
uncertain dynamic systems with incomplete state information and unknown system
order/dynamics.

Additionally, RADP can be applied to large-scale dynamic systems as shown in our
recent paper [20]. By integrating a simple version of the cyclic-small-gain theorem
[36], asymptotic stability can be achieved by assigning appropriate weighting matrices
for each subsystem. Further, certain suboptimality property can be obtained. Because
of several emerging applications of practical importance such as smart electric grid,
intelligent transportation systems, and groups of mobile autonomous agents, this
topic deserves further investigations from an RADP point of view. The existence of
unknown parameters and/or dynamic uncertainties and the limited information of
state variables give rise to challenges for the decentralized or distributed controller
design of large-scale systems.

1.2 SUMMARY OF EACH CHAPTER

This book is organized as follows. Chapter 2 studies ADP for uncertain linear systems,
of which the only a priori knowledge is an initial, stabilizing static state-feedback
control policy. Then, via policy iteration, the optimal control policy is approximated.
Two ADP methods, on-policy learning and off-policy learning, are introduced to
achieve online implementation of conventional policy iteration. As a result, the opti-
mal control policy can be approximated using online measurements, instead of the
knowledge of the system dynamics.

Chapter 3 further extends the ADP methods for uncertain affine nonlinear systems.
To guarantee proper approximation of the value function and the control policy, neural
networks are applied. Convergence and stability properties of the nonlinear ADP
method are rigorously proved. It is shown that semi-global stabilization is attainable
for a general class of continuous-time nonlinear systems, under the approximate
optimal control policy.

Chapter 4 focuses on the theory of global adaptive dynamic programming (GADP).
It aims at simultaneously improving the closed-loop system performance and achiev-
ing global asymptotic stability of the overall system at the origin. It is shown that
the equality constraint used in policy evaluation can be relaxed to a sum-of-squares
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(SOS) constraint. Hence, an SOS-based policy iteration is formulated, by relaxing
the conventional policy iteration. In this new policy iteration algorithm, the control
policy obtained at each iteration step is globally stabilizing. Similarly, the SOS-based
policy iteration can be implemented online, without the need to identify the exact
system dynamics.

Chapter 5 presents the new framework of RADP. In contrast to the ADP theory
introduced in Chapters 2–4, RADP does not require all the state variables to be
available, nor the system order assumed known. Instead, it incorporates a subsystem
known as the dynamic uncertainty that interacts with a simplified reduced-order
model. While ADP methods are performed on the reduced model, the interactions
between the dynamic uncertainty and the simplified model are studied using tools
borrowed from modern nonlinear system analysis and controller design. The learning
objective in RADP is to achieve optimal performance of the reduced-order model
in the absence of dynamic uncertainties, and maintain robustness of stability in the
presence of the dynamic uncertainty.

Chapter 6 applies the RADP framework to solve the decentralized optimal control
problem for a class of large-scale uncertain systems. In recent years, considerable
attention has been paid to the stabilization of large-scale complex systems, as well
as related consensus and synchronization problems. Examples of large-scale systems
arise from ecosystems, transportation networks, and power systems. Often, in real-
world applications, precise mathematical models are hard to build, and the model
mismatch, caused by parametric and dynamic uncertainties, is thus unavoidable.
This, together with the exchange of only local system information, makes the design
problem challenging in the context of complex networks. In this chapter, the controller
design for each subsystem only needs to utilize local state measurements without
knowing the system dynamics. By integrating a simple version of the cyclic-small-
gain theorem, asymptotic stability can be achieved by assigning appropriate nonlinear
gains for each subsystem.

Chapter 7 studies sensorimotor control with static and dynamic uncertainties under
the framework of RADP [18, 19, 21, 24]. The linear version of RADP is extended
for stochastic systems by taking into account signal-dependent noise [13], and the
proposed method is applied to study the sensorimotor control problem with both
static and dynamic uncertainties. Results presented in this chapter suggest that the
central nervous system (CNS) may use RADP-like learning strategy to coordinate
movements and to achieve successful adaptation in the presence of static and/or
dynamic uncertainties. In the absence of the dynamic uncertainties, the learning
strategy reduces to an ADP-like mechanism.

All the numerical simulations in this book are developed using MATLAB®

R2015a. Source code is available on the webpage of the book [16].
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