
Chapter 1

SQA – Definitions
and Concepts

1.1 Software quality and software quality
assurance – definitions

We shall Start by delving into our target topic of software quality and discuss
the following basic definitions:

• Software quality

• Software quality assurance (SQA)

• Software quality assurance – an expanded definition

• The objectives of SQA activities

The definition of software quality is shown in Frame 1.1.

Frame 1.1: Software quality – a definition

Source: IEEE Std. 730-2014 (IEEE, 2014)

Software quality is

The degree to which a software product meets established requirements; however,
quality depends upon the degree to which established requirements accurately repre-
sent stakeholder needs, wants, and expectations.

Two aspects of software quality are presented in the above definition: one is
meeting the requirements, while the other is generating customer/stakeholder sat-
isfaction. A high quality software product is expected to meet all written devel-
opment requirements – whether defined fully before the development began, or
later in the course of the development process – and to meet the relevant regula-
tions and professional conventions. Quality is also achieved through fulfillment
of stakeholder needs and wants.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

3

CO
PYRIG

HTED
 M

ATERIA
L

Software quality assurance – definition

One of the most commonly used definitions of SQA is proposed by the IEEE,
cited in Frame 1.2.

Frame 1.2: Software quality assurance – a definition

Source: IEEE Std. 730-2014

Software quality assurance is

A set of activities that define and assess the adequacy of software process to pro-
vide evidence that establishes confidence that the software processes are appropri-
ate for and produce software products of suitable quality for their intended
processes. A key attribute of SQA is the objectivity of the SQA function with
respect to the project. The SQA function may also be organizationally indepen-
dent of the project, that is, free from technical, managerial, and financial pressures
from the project.

This definition may be characterized by the following:

• Plan and implement systematically. SQA is based on the planning and
implementation of a series of activities that are integrated into all stages of
the software development process. These activities are performed in order
to substantiate the client’s confidence that the software product will
meet all the technical requirements.

• Refer to the software development products keeping the specified techni-
cal requirements and suitability for stake holder’s intended use. However,
it does not include quality of the operation services.

• Refer to the technical appropriateness of the development process. How-
ever, important attributes of the development process, namely schedule
and budget keeping, are not included. It is noteworthy that:
a. The appropriateness of project schedule and budget is a major issue in

SQA as can be seen by requirement for performing contract reviews
and project planning.

b. The major part of project progress control procedures, given to the
issues of schedule and budget.

c. The close relationships that exist between software product quality,
project schedule, and project budget, where schedule and budget fail-
ures result, almost always, in unavoidable software quality failure.

An extended SQA definition was created considering the importance of the
quality of the software operation and the important effect of schedule and budget
keeping on the software quality product.

The resulting expanded SQA definition is shown in Frame 1.3.

4 Chapter 1 SQA – Definitions and Concepts

Frame 1.3: Software quality assurance – an expanded definition

Software quality assurance

A set of activities that define and assess the adequacy of software process to provide
evidence that establishes confidence that the software processes are appropriate for pro-
ducing software products of suitable quality, for their intended processes, or for their
intended operation services and fulfils the requirements of schedule and budget keeping

The objectives of SQA activities

The objectives of SQA activities refer to the functional and managerial aspects
of software development and software maintenance. These objectives are listed
in Frame 1.4.

Frame 1.4: The objectives of SQA activities

The objectives of SQA activities are

• Ensuring an acceptable level of confidence that the software product and software
operation services will conform to functional technical requirements and be suitable
quality for its intended use.

• According to the extended SQA definition – ensuring an acceptable level of confi-
dence that the software development and software operation process will conform
to scheduling and budgetary requirements.

• Initiating and managing activities to improve and increase the efficiency of software
development, software operation, and SQA activities. These activities yield
improvements to the prospects’ achieving of functional and managerial require-
ments while reducing costs.

The other sections of the chapter deal with the following issues:

• What is a software product?

• The principles of SQA

• Software errors, faults, and failures

• The causes of software errors

• Software quality assurance versus software quality control (SQC)

• Software quality engineering and software engineering

1.2 What is a software product?

Intuitively, when we think about software, we imagine an accumulation of pro-
gramming language instructions and statements, usually referred to as “code.”

1.2 What Is a Software Product? 5

However, when referring to a professional software product, “code” by itself is
not sufficient. Software products need to undergo defect corrections, and other
maintenance services, which typically include user instruction, corrections, adap-
tations, and improvements of the software product during their life cycle.
Accordingly, software products also comprise components, required to ensure
operational success of the services provided by the product. The ISO/IEC/IEEE
definition shown in Frame 1.5 lists these components.

Frame 1.5: Software product definition

Source: ISO/IEC/IEEE Std. 90003:2014 (ISO/IEC/IEEE, 2014)

Software product is

Set of computer programs, procedures, and possibly associated documentation and data.

The software product components are:

Computer programs “the code”. The computer programs activate the com-
puter system to perform the required applications. The computer pro-
grams include several types of code, such as source code, executable
code, test code, and so on.

Procedures. Procedures define the order and schedule within which the soft-
ware or project programs are performed, the method for handling com-
mon malfunctioning of software products, and so on.

Documentation. The purpose of the documentation is to instruct or support
new software product version developers, maintenance staff, and end
users of the software product. It includes the various design reports, test
reports, and user and software manuals, and so on.

Data necessary for operating the software system. The required data
include lists of codes and parameters, and also standard test data. The
purpose of the standard test data is to ascertain that no undesirable
changes in the code or software data have occurred during bug correc-
tions and other software maintenance activities, and to support the detec-
tion of causes for any malfunctioning.

To summarize the above discussion, the definition of a software product is
presented in Frame 1.6.

Frame 1.6: Software product definition

Software product is

A collection of components necessary to ensure proper operation, and efficient main-
tenance during its life cycle. The components include (1) computer programs
(“code”), (2) documentation, (3) data necessary for its operation and maintenance
(including standard test), and (4) procedures.

6 Chapter 1 SQA – Definitions and Concepts

It should be noted that software quality assurance refers to the quality of all
components of the software product, namely, the code, documentation, neces-
sary operating and standard test data, and procedures. Moreover, the composi-
tion of software product components varies significantly according to the
software development tools and methodology.

1.3 The principles of SQA

Source: after ISO 9000:2000 (ISO, 2000)
The following principles guide organizations in their process to ensure the

software quality of their software products and services satisfies the needs and
wants of stakeholders.

• Customer focus. Organizations depend on their customers, and thus need
to understand their current and future needs, fulfill their requirements, and
achieve their satisfaction.

• Leadership. An organization’s leaders should create an internal envi-
ronment in which employees are involved in achieving the quality
targets.

• Involvement of people-employees. The involvement of employees at all
levels enables benefiting from their capabilities to promote software qual-
ity issues.

• Process approach. Managing activities and resources as processes results
in their improved efficiency.

• System approach to management. Process management achieves higher
effectiveness and efficiency through identification, analysis, and under-
standing of interrelated processes.

• Continual improvement. Continual combined improvement of quality
and processes’ effectiveness and efficiency performance are a permanent
objective of the organization.

• Factual approach of decision-making. Decisions should be based on
data and information.

• Mutually beneficial supplier relationships. Understanding that an orga-
nization’s supplier relationships based on mutual benefits contributes to
improved performance of the organization with regard to quality, effi-
ciency, and effectiveness.

1.4 Software errors, faults, and failures

To better understand the essence of software errors, faults, and failures, let us
take a look at the performance of a deployed software system, as perceived by
customers.

1.4 Software Errors, Faults, and Failures 7

Example: The Simplex HR is a software system that has been on the market
for 7 years. Its software package currently serves about 1200 customers.

One of the staff from the Simplex HR Support Centre reported a number of
quotes from typical customer complaints:

1. “We have been using the Simplex HR software in our Human Resources
Department for about four years, and have never experienced a software
failure. We have recommended the Simplex HR to our colleagues.”

2. Immediately following this positive testimony, the same employee com-
plained that he could not prepare a simple monthly report.

3. “I started to use the Simplex HR two months ago; we have experienced
so many failures that we are considering replacing the Simplex-HR soft-
ware package.”

4. “We have been using the software package for almost five years, and
were very satisfied with its performance, until recently. During the last
few months, we suddenly found ourselves having to contend with sev-
eral severe failures.”

Is such a variation in user experience relating to failures possible for the
very same software package?

Can a software package that successfully served an organization for a long
period of time “suddenly” change its nature (quality) and be full of bugs?

The answer to both these questions is YES, and the reason for this is rooted
in the very characteristics of software errors.

The origin of software failures lies in a software error made by a software
designer or programmer. An error may refer to a grammatical error in one or
more of the code lines, or a logical error in carrying out one or more of the
specification requirements.

A software fault is a software error that causes improper functioning of the
software in a specific application, and in rare cases, of the software in general.
However, not all software errors become software faults. In many other cases,
erroneous code lines will not affect the functionality of the software (software
faults are not caused). It should be noted that in some software fault cases, the
fault is corrected or “neutralized” by subsequent code lines.

Naturally, our interest lies mainly in software failures that disrupt the use of
the software. A software failure is a result of a software fault, hence our next
question.

Do all software faults inevitably cause software failures? Not necessarily: A
software fault becomes a software failure only when it is “activated” – that is
when the software user tries to apply the specific, faulty application. In many
cases, a software fault is in fact never activated. This is either due to the user’s
lack of interest in the specific application, or to the fact that the combination of
conditions necessary to activate the software fault never occurs. The following
two examples demonstrate the software fault – software failure relationships.

8 Chapter 1 SQA – Definitions and Concepts

Example 1 The Simplex HR software package

Let us return to the Simplex HR software package mentioned above.
The software package includes the following fault:

1. Overtime compensation – This function was defined to allow two levels of
daily overtime, where the user can specify the details and compensation per
each level. For instance, the first 2 hours’ overtime (level 1) should be paid
at a rate that is 25% more than the regular hourly rates, while each follow-
ing additional hour (level 2) should be paid at a rate that is 50% more than
the regular hourly rates.

The programmer’s mistake caused the following fault: In cases when
two levels of overtime were reported, the higher compensation was paid for
overtime hours reported for both the levels.

Let us now examine the software failures experienced by two of Simplex
HR users:

a. A chain of pharmacies
Overtime pay – The policy of the chain was to implement overtime

for no more than 2 hours on top. The first level of overtime compen-
sation was defined at 3 hours.

Thanks to its policy, the chain did not experience software failures
relating to the overtime features?

b. A regional school
Overtime pay – The school has lately introduced the Simplex HR

software package to support the management of its teacher staff. Cases
of overtime happen quite frequently, and are due to the replacement of
teachers on sick leave, personal leave of absence, and so on. The teach-
ers’ compensation was 30% above their hourly regular rate for the first 2
hours (level 1), and 75% above their hourly rate per each additional hour
overtime (level 2). The failure related to overtime calculations was evi-
dent from the first salary calculations. Teachers who worked relatively
long hours’ overtime (over 2 hours per time) in the past months were
both astonished and delighted to discover significantly higher overtime
compensation than anticipated.

It should be noted that once software failures are identified, Simplex HR
maintenance team is expected to correct them.

Example 2 The “Meteoro-X” meteorological equipment firmware

Meteoro-X is a computerized recording and transmission equipment unit
designed for meteorological stations that perform temperature and precipitation
measurements. The Meteoro-X is also equipped with three wind vanes for wind

1.4 Software Errors, Faults, and Failures 9

velocity measurements. Meteorological measurements are defined to be transmit-
ted every 5 minutes to a meteorological center.

“Meteoro-X” firmware (software embedded in the product) includes the fol-
lowing software fault:

Temperature threshold – The safety control specifications require shutting
down the equipment if its temperature rises above 50 degrees centigrade.

The programmer error that resulted in a software fault – he registered the
threshold as 150 degrees centigrade. This fault could only be noted, and conse-
quently cause damage, when the equipment was subjected to temperatures meas-
uring higher than 50 degrees.

Let us now examine the failure experienced by some of the Meteoro-X users:

a. Meteorological authorities of a southern European country
Temperature threshold – The Meteoro-X performed with no failures

for about 3 years, due to the fact that temperatures higher than 50 degrees
centigrade had not been recorded. It was only in the month of August of
the fourth year when temperatures reached 57 degrees centigrade that an
equipment disaster in one of the meteorological stations occurred.

b. North European Meteorological Board
Temperature threshold – The Meteoro-X had no failures due to the

fact that temperatures higher than 50 degrees centigrade were not recorded.

A review of the specification document and the relevant code modules
revealed the causes of the software faults, and enabled their correction.

These examples clearly demonstrate that at some time during the software
service, some software faults will become software failures. Other software faults,
and in some cases even a major portion of them, will remain hidden, invisible to
software users, only to be activated when specific conditions are in place.

Figure 1.1 illustrates the relationships between software errors, faults, and
failures; of the 17 software errors yielded in the development process, 8 become

Software development process

Software error

Software fault

Software failure

Customer’s
usage “filter”

Figure 1.1 Software errors, software faults, and software failures

10 Chapter 1 SQA – Definitions and Concepts

software faults, while only 3 of these faults become software failures. The cus-
tomer’s software usage characteristics determine which software applications are
used, and thereby which faults become failures. In other words, the character-
istics serve as a “failure filter.”

1.5 The causes of software errors

As software errors are the cause of poor software quality, it is important to
investigate their causes, in order to prevent them. It should be noted that these
errors are all human errors, made by system analysts, programmers, software
testers, documentation experts, managers, and sometimes clients and their repre-
sentatives. Even in rare cases where software errors may be caused by the devel-
opment environment: interpreters, wizards, automatic software generators, and
so on, it is reasonable to claim that these too are human errors, as someone is
responsible for the failure of the development. The causes of software errors can
be classified according to the stages of the software development process in
which they occur. A classification of error causes into nine classes is presented:

a. Faulty definition of requirements
A faulty definition of a requirement, usually prepared by the client,

is one of the main causes of software errors. The most common errors of
this type are:
• Erroneous definition of requirements
• Lack of essential requirements
• Incomplete requirements definition

For instance, one of the requirements of a municipality’s local tax
software system refers to discounts granted to various segments of the
population: senior citizens, parents of large families, and so on.
Unfortunately, a discount granted to students was not included in the
requirements document.

• Inclusion of unnecessary requirements, functions that are not expected
to be applied.

b. Client–developer communication failures
Misunderstandings resulting from defective client–developer com-

munication are additional causes for errors that prevail in the early stages
of the development process:
• Misunderstanding of the client’s instructions in the requirement
document.

• Misunderstanding of the client’s requirement changes presented to the
developer in written form or verbally during the development period.

• Misunderstanding of the client’s responses to design issues presented
by the developer.

• Lack of attention to client messages relating to requirement changes,
and client responses to questions raised by the developer.

1.5 The Causes of Software Errors 11

c. Deliberate deviations from software requirements
In several circumstances, developers may deliberately deviate from

the documented requirements – an action that often causes software
errors. The most common situations of deliberate deviations are:
• Developer reuses software modules from previous project without suf-
ficient analysis of the changes and adaptations needed to correctly ful-
fill all relevant customer requirements.

• Developer decides to omit part of the required functions in an attempt
to better handle time or budget pressures.

• Developer-initiated improvements to the software introduced without
managerial or client approval. Improvements of this type frequently
disregard project requirements deemed minor by the developer. Such
“minor” requirements when ignored create changes that may eventu-
ally cause software errors.

d. Logical design errors
Software errors can enter the system when professionals designing

the system; system architects, software engineers, system analysts, and
so on formulate the software requirements into design definitions. Typi-
cal logical errors include:
• Definitions that represent software requirements by means of errone-
ous algorithms.

• Process definitions that contain sequencing errors.
Example: The software requirements for a firm’s debt collection

system define a debt collection process that includes the following
requirement: Once a client, after receiving three successive notification
letters, does not pay his debt; the client details are to be reported to the
Sales Department Manager, who will decide whether to proceed to
the next stage, which is referral of the client to the Legal Department.
The system analyst defined the process incorrectly by stating that if no
receipt of payment is noted after sending three successive letters, the
client personal and debt details will be included on a list of clients
delivered to the Legal Department. The logical error was caused by
the analyst’s erroneous omission of the Sales Department phase from
the debt collection process.

• Erroneous definition of boundary conditions.
Example: The client requirements stated that a special discount

will be granted to customers who make more than three purchase
transactions in the same month. The analyst erroneously defined the
software process to state that the discount would be granted to those
who make three or more transactions in the same year.

• Omission of required software system states.
Example: Real-time computerized apparatus is required to respond

in a specific way to a combination of temperatures and pressures. The

12 Chapter 1 SQA – Definitions and Concepts

analyst did not define the required response when the temperature is
over 120 degrees centigrade, and the pressure between 6 and 8
atmospheres.

• Omission of definitions concerning reactions to illegal operation of the
software system.

Example: A computerized theatre ticketing system operated by the
customer has no human operator interface. The software system is
required to limit sales to 10 tickets per customer. Accordingly, any
request for the purchase of more than 10 tickets is “illegal.” In the
design, the analyst included a message stating that sales are limited to
10 tickets per customer, but did not define the system response to cases
when customers (who might not have properly understood the mes-
sage) key in a number higher than 10. When performing this illegal
request, a system “crash” may be expected, as no computerized
response was defined for this illegal operation.

e. Coding errors
A wide range of reasons cause programmers to make coding

errors. These include misunderstanding the design documentation,
linguistic errors in programming languages, errors in the application
of CASE and other development tools, errors in data selection, and
so on.

f. Noncompliance with documentation and coding instructions
Almost every development unit has its own documentation and

coding standards that define the content, order and format of the doc-
uments, and code developed by team members. For this purpose, the
unit develops and publicizes templates and coding instructions. Mem-
bers of the development team or unit are required to comply with
these directions.

As it may be assumed that errors of noncompliance with instructions
do not usually become software faults, one may ask why cases of non-
compliance with these instructions should be considered as software
errors. Even if the quality of the “noncomplying” software is acceptable,
difficulties will inevitably be presented when trying to understand it. In
other words, future handling of this software (by development and/or
maintenance teams) is expected to substantially increase the rate of errors
in the following situations:
• Team members, who need to coordinate their own code with code
modules developed by “noncomplying” team members, can be
expected to encounter more difficulties than usual when trying to
understand the software.

• Individuals replacing the “noncomplying” team member (who retired
or was promoted) will find it difficult to fully understand the “noncom-
plying” code.

1.5 The Causes of Software Errors 13

• The design review team will find it more difficult to study a design
document prepared by a “noncomplying” team, and as a result will
probably misunderstand part of the design details.

• The test team will find it more difficult to test the “noncomplying”
module; consequently, their effectiveness is expected to be decreased,
leaving more errors undetected. Moreover, team members required to
correct the detected errors can be expected to encounter greater diffi-
culties when doing so. They may leave some errors only partially cor-
rected, and even introduce new errors as a result of their incomplete
grasp of the other team member’s work.

• Maintenance teams required to contend with “bugs” detected by users,
and to change or add to the existing software will face extra difficulties
when trying to understand the “noncomplying” software and its docu-
mentation. This is expected to result in an excessive number of errors,
along with increased maintenance expenditures.

g. Shortcomings of the testing process
Shortcomings of the testing process affect the error rate by leaving a

greater number of errors undetected or uncorrected. These shortcomings
result from:
• Incomplete test plans failing to test all or some parts of the software,
application functions, and operational states of the system.

• Failure to document and report detected errors and faults.
• Failure to promptly correct detected software faults, as a result of
inappropriate indications of the reasons for the fault.

• Incomplete testing of software error corrections
• Incomplete corrections of detected errors due to negligence or time
pressures.

h. User interface and procedure errors
User interfaces direct users in areas such as the performance of input

and output activities, and data collection and processing. Procedures
direct users with respect to the sequence of activities required at each
step of the process. Procedures are of special importance in complex
software systems, where processing is conducted in several steps, each
of which may feed a variety of types of data and enable examination of
intermediate results. User interface and procedure errors may cause proc-
essing failures even in cases of error-free design and coding. The follow-
ing example presents a procedure error.

Example
“Eiffel,” a construction material store, has decided to grant a 5%

discount to major customers, who are billed monthly. The discount is
offered to customers whose total net purchases in the store in the preced-
ing 12 months exceeded $1 million. The discount is effective for the last

14 Chapter 1 SQA – Definitions and Concepts

month’s account. Furthermore, the management decided to withdraw the
discount from customers who returned goods valued in excess of 10% of
their net purchases during the last 12 months.

Table 1.1 presents a comparison of correct and incorrect procedures
regarding application of the discount.

It is clear that under the incorrect procedure, customers, whose net
purchases (A�B) are equal or below $1 million and/or their percentage
of returned goods (B/A�B) is equal or exceeds 10%, may be mistakenly
found to be eligible for the 5% discount

i. Documentation errors
The documentation errors of concern to the development and main-

tenance teams are those found in the design, software manuals, docu-
ments, and in the documentation integrated into the body of the
software. These errors can cause additional errors in further stages of
development and during the maintenance period.

Another type of documentation errors that affect mainly users are errors in
the user manuals and in the “help” displays incorporated in the software. Typical
errors of this type are:

• Omission of software functions.

• Errors in the explanations and instructions given to users, resulting in
“dead ends” or incorrect applications.

• Listings of nonexisting software functions, usually functions planned in
the early stages of development but later dropped, but also functions that

Table 1.1 “Eiffel” billing procedures – correct and incorrect discount procedures

Correct procedure Incorrect procedure

At the beginning of each month, Eiffel’s
information processing department:

1. Calculates the cumulative purchases for
the last 12 months (A) and the cumulative
returns for the last 12 months (B) for each
of its major customers.

2. Calculates the net cumulative purchases
(A�B) for each major customer for the
last 12 months in the store.

3. For major customers, whose (A�B) >
$1 million and B/(A�B) <10%, calculate
5% discount on their last month’s account.

At the end of each month, Eiffel’s
information processing department:

1. Calculates the cumulative purchases for
the last 12 months (A) and the cumula-
tive returns for the last 12 months (B)
for each of its major customers.

2. For major customers, whose A >
$1 million, and (B/A) <10%, calculate
5% discount on their last month’s
account.

1.5 The Causes of Software Errors 15

were active in previous versions of the software but cancelled in the cur-
rent version.

Frame 1.7 summarizes the causes of software errors.

Frame 1.7: The nine causes of software errors

The nine causes of software errors are:

a. Faulty requirements definition

b. Client–developer communication failures

c. Deliberate deviations from software requirements

d. Logical design errors

e. Coding errors

f. Noncompliance with documentation and coding instructions

g. Shortcomings of the testing process

h. User interface and procedure errors

i. Documentation errors

Additional approaches to classification of software defects and their causes are
presented by Ko and Myers (2005) and Thung et al. (2012).

1.6 Software quality assurance versus software
quality control

Two terms are constantly repeated within the context of software quality: “soft-
ware quality control” and “software quality assurance.” Are they synonymous?
How are they related?

Definitions of software quality assurance are already presented in Frames
1.2 and 1.3. In order to compare the two terms, definitions for SQC are pre-
sented in Frame 1.8.

Frame 1.8: Software quality control – the IEEE definitions

Source: IEEE Std. 610.12-1990 (IEEE, 1990)

Software quality control is

1. A set of activities designed to evaluate the quality of a developed or manufactured
product. Contrast with software quality assurance.

2. The process of verifying one’s own work or that of coworker.

SQA and SQC represent two distinct concepts.

16 Chapter 1 SQA – Definitions and Concepts

Software quality control relates to the activities needed to evaluate the
quality of a final software product, with the main objective of withholding any
product that does not qualify. In contrast, the main objective of software quality
assurance is to minimize the cost of ensuring the quality of a software product
with a variety of infrastructure activities and additional activities performed
throughout the software development and maintenance processes/stages. These
activities are aimed at preventing the causes of errors, and at detecting and cor-
recting errors that may have occurred at the earliest possible stage, thus bringing
the quality of the software product to an acceptable level. As a result, quality
assurance activities reduce substantially the probability that software products
will not qualify and, at the same time, in most cases, reduce the costs of ensuring
quality.

In summary,

1. SQC and SQA activities serve different objectives.

2. SQC activities are only a part of the total range of SQA activities.

1.7 Software quality engineering and
software engineering

The definition of software engineering, according to the IEEE, is presented in
Frame 1.9.

Frame 1.9: Software engineering – the IEEE definition

Source: IEEE Std. 610.12-1990

Software engineering is

The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software, that is, the application of engineering to
software.

The characteristics of software engineering, especially those of the system-
atic, disciplined, and quantitative approach at its core, make it a good infra-
structure for achieving effective and efficient software development and
maintenance objectives. The methodologies and tools applied by software engi-
neering determine the process of transforming a software requirement document
into a software product, and also include the performance of quality assurance
activities. Software quality engineering employs the development of quality
assurance methodologies, procedures, and tools together with methods for fol-
low-up of quality assurance activities performed by software development and
maintenance teams.

1.7 Software Quality Engineering and Software Engineering 17

Software quality engineering and software engineering have a great number
of topics in common. Albeit the two groups view these topics from different
standpoints – respective to their profession, their shared knowledge and coopera-
tion are the basis for successful software development.

An indication of the extent of shared topics may be perceived when compar-
ing the software engineering body of knowledge (SWEBOK) (Bourque and
Fairley, 2014) and the certified software quality engineer body of knowledge
(CSQEBOK) (ASQ, 2016). A detailed discussion of an earlier version of the
CSQEBOK was compiled by Westfall (2009).

Summary

1. Definitions of software, software quality, and software quality
assurance
Software, from the SQA perspective, is the combination of computer

programs (“code”), procedures, documentation, and data necessary
for operating the software system. The combination of all four com-
ponents is needed to ensure the quality of the development process, as
well to ensure quality during extended maintenance periods.

Software quality, according to Pressman’s definition, is the degree
of conformance to specific functional requirements, specified soft-
ware quality standards, and Good Software Engineering Practices
(GSEP).

Software quality assurance. This book adopts an expanded defini-
tion of the widely accepted IEEE definition of software quality
assurance. Accordingly, software quality assurance is the systemat-
ically planned set of actions necessary to provide adequate confi-
dence that a software development, or maintenance process,
conforms to established functional technical requirements, and also
to the managerial requirements of keeping to schedule and operat-
ing within budget.

2. The distinction between software errors, software faults, and soft-
ware failures
Software errors are sections of the code that are partially or totally

incorrect as a result of a grammatical, logical, or other type of mistake
made by a system analyst, programmer, or other member of the soft-
ware development team.

Software faults are software errors that cause the incorrect functioning
of the software during one of its specific applications.

Software faults become software failures only when they are “acti-
vated,” that is, when a user tries to apply the specific software section
that is faulty. Thus, the root of any software failure is a software error.

18 Chapter 1 SQA – Definitions and Concepts

3. The various causes of software errors
There are nine causes of software errors: (1) faulty requirements

definition, (2) client–developer communication failures, (3) deliberate
deviations from software requirements, (4) logical design errors,
(5) coding errors, (6) noncompliance with documentation or coding
instructions, (7) shortcomings of the testing process, (8) procedure
errors, and (9) documentation errors. It should be emphasized that all
errors are human errors, and are made by system analysts, program-
mers, software testers, documentation experts, and even clients and
their representatives.

4. The objectives of software quality assurance activities
The objectives of SQA activities for software development and

maintenance are:
1. Ensuring, with acceptable levels of confidence, conformance to func-

tional technical requirements.
2. Ensuring, with acceptable levels of confidence, conformance to mana-

gerial requirements of scheduling and budgets.
3. Initiating and managing activities for the improvement and greater

efficiency of software development and SQA activities.

5. The differences between software quality assurance and software
quality control

Software quality control is a set of activities carried out with the
main objective of withholding software products from delivery to the
client if they do not qualify. In contrast, the objective of software
quality assurance is to minimize the costs of software quality by
introducing a variety of infrastructure activities and other activities
throughout the development and maintenance processes. These activi-
ties are performed in all stages of development to eliminate causes of
errors, and detect and correct errors in the early stages of software
development. As a result, quality assurance substantially reduces the
rate of nonqualifying products.

6. The relationship between software quality assurance and software
engineering
Software engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance
of software.

Software quality assurance practices are intertwined with the soft-
ware engineering process in several ways: (1) SQA considera-
tions affect the choice of software development tools and
procedures. (2) SQA activities, such as design reviews and soft-
ware tests, are incorporated in the software development activi-
ties. (3) SQA participation in the development of the software

Summary 19

development infrastructure of procedures, staff training, configu-
ration management, and so on.

Selected bibliography

ASQ (2016) The Certified Software Quality Engineering Body of Knowledge (CSQE BoK), American
Society for Quality.

Bourque P. and Fairley R. (Eds.) (2014) Guide to the Software Engineering Body of Knowledge
SWEBOK, Ver. 3.0, IEEE and IEEE Computer Society Press, Piscataway, NJ.

IEEE (1990) IEEE Std. 610.12-1990-IEEE Standard Glossary of Software Engineering Terminology,
Corrected Edition, in IEEE, IEEE Standards Collection, The Institute of Electrical and Electronics
Engineering, New York.

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO (2000) ISO Std. 9000:2000 – Quality Management Systems – Fundamental and Vocabulary,
International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC/IEEE (2014) ISO/IEC 90003:2014 – Software Engineering – Guidelines for the Applica-
tion of ISO 9001:2008 to Computer Software, International Organization for Standardization
(ISO), Geneva, Switzerland.

Ko, A. J. and Myers, B. A. (2005) A framework and methodology for studying the causes of
software errors in programming systems, Journal of Visual Languages and Computing,
Vol. 16, pp. 41–84.

Thung F., Lo, D., Jiang, L. (2012) Automatic defect categorization, in Proceedings of the 19th Work-
ing Conference on Reverse Engineering, pp. 205–214.

Westfall L. (2009) The Certified Software Quality Engineer Handbook, ASQ Quality Press,
Milwaukee, WI.

Review questions

1.1 A software product comprises four main components.

a. List the four components of a software system.

b. How does the quality of each component contribute to the quality of the devel-
oped software?

c. How does the quality of each component contribute to the quality of the software
maintenance?

1.2 Refer to the following terms: software error, software fault, and software failure.

a. Define the terms.

b. Explain the differences between these undesirable software issues.

c. Suggest a case where in a software package serving 300 clients, a new software
failure (“bug”) appears for the first time 6 years after the software package was
first sold to the public.

20 Chapter 1 SQA – Definitions and Concepts

1.3 Consider the principles of SQA

a. Explain in your own words the importance of the 6th principle.

b. How can the implementation of the 8th principle contribute to the quality of soft-
ware product?

1.4 a. List and briefly describe the various causes of software errors.

b. Classify the causes of errors according to the group/s responsible for the error –
the client staff, the system analysts, the programmers, the testing staff – or is the
responsibility a shared one, belonging to more than one group?

1.5 What are the differences between the IEEE definition of SQA and the expanded defi-
nition discussed in this book?

1.6 According to the IEEE definition of SQC, SQC is in contrast with SQA.

a. In what respect does SQC vary from SQA?

b. In what way can SQC be considered part of SQA?

Topics for discussion

1.1 A programmer claims that as only a small proportion of software errors turn into
software failures, it is unnecessary to make substantial investments in the prevention
and elimination of software errors.

a. Do you agree with this view?

b. Discuss the outcome of accepting this view.

1.2 George Wise is an exceptional programmer. Testing his software modules reveals
very few errors, much less than the team’s average. He is very rarely late in
completing a task. George always finds original ways to solve programming
challenges, and uses an original, individual version of the coding style. He dis-
likes preparing the required documentation, and rarely does so according to the
team’s templates.

A day after completing a challenging task, on time, he was called to the office
of the department’s chief software engineer. Instead of being praised for his accom-
plishments (as he expected), he was warned by the company’s chief software engi-
neer that he would be fired, unless he began to fully comply with the team’s coding
and documentation instructions.

a. Do you agree with the position taken by the department’s chief software engineer?

b. If you agree, could you suggest why his/her position was so decisive?

c. Explain how George’s behavior could cause software errors.

Topics for Discussion 21

1.3 The claim, according to the expanded definition of SQA, that a development team
should invest its efforts equally for complying with project requirements as they
invest in keeping project schedule and budget supports client satisfaction.

a. Do you agree with this claim?

b. If yes, provide arguments to substantiate your position.

1.4 Five reasons for shortcomings of the testing process are mentioned in Section 1.5.

a. Explain these five reasons in your own words.

b. Could you suggest circumstances of a testing process which could cause these
shortcomings?

22 Chapter 1 SQA – Definitions and Concepts

	Chapter 1: SQA - Definitions and Concepts
	1.1 Software Quality and Software Quality Assurance-Definitions
	Outline placeholder
	Software quality assurance - definition
	The objectives of SQA activities

	1.2 What Is a Software Product?
	1.3 The Principles of Sqa
	1.4 Software Errors, Faults, and Failures
	1.5 The Causes of Software Errors
	1.6 Software Quality Assurance Versus Software QualityControl
	1.7 Software Quality Engineering and SoftwareEngineering
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

