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Rotor Aerodynamic Theory

1.1 Introduction

Theoretical background in energy extraction generalities and, more specifically, rotor
aerodynamics of horizontal axis wind turbines (HAWTs) is developed in this chapter.
Some prior knowledge of fluid dynamics in general and as applied to the analysis of
wind turbine systems is assumed, in particular basic expressions for energy in a fluid
flow, Bernoulli’s equation, definitions of lift and drag, some appreciation of stall as an
aerodynamic phenomenon and blade element momentum (BEM) theory in its conven-
tional form as applied to HAWTs. Nevertheless, some of this basic knowledge is also
reviewed, more or less from first principles. The aim is to express particular insights
that will assist the further discussion of issues in optimisation of rotor design and also
aid evaluation of various types of innovative systems, for example, those that exploit
flow concentration.

Why focus much at all on theory in a book about innovative technology? Theory
is often buried in more or less opaque computer code, which may generate loads of
information that engineers can use in design. However, as is amplified in the following
chapters, theory is in itself:

• Food for innovation and suggestive of methods of performance enhancement or alter-
native concepts;

• A basis for understanding what is possible and providing an overview appraisal of
innovative concepts;

• A source of analytic relationships that can guide early design at a stage where many
key parameters remain to be determined and there are too many options to subject
each to detailed evaluation.

Prior to discussions of actuator disc theory and the BEM theory that has underpinned
most practical engineering calculations for rotor aerodynamic design and determination
of wind turbine loads, some discussion of aerodynamic lift is presented. This is intended
particularly to highlight a few specific insights which can guide design and evaluation
of wind energy systems. In general, a much more detailed understanding of basic aero-
dynamics is required in wind turbine design. This must cover a wide range of topics,
2D and 3D flow effects in relation to aerofoil performance, stall behaviour, aeroelastic
behaviour, unsteady effects including stall hysteresis and induction lag, determination
of suitable aerofoil data for wide ranges in angle of attack, and so on. References [1–10]
are a sample from extensive published work covering some of these issues.
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14 Innovation in Wind Turbine Design

1.2 Aerodynamic Lift

The earliest wind turbines tended to use the more obvious drag forces [11] experienced
by anyone exposed to wind on a windy day, and use of the potentially more powerful lift
forces was almost accidental. Exploitation of the aerodynamic lift force is at the heart of
efficient modern wind turbines, but surprisingly the explanation of lift has been quite
contentious. Before entering that territory, consider first Bernoulli’s equation which is
derived in many standard sources on fluid mechanics. Ignoring gravitational, thermal
and other energy sources and considering only pressure and kinetic energy, this equation
becomes: p + 1/2𝜌U2 = p0, where p is static pressure in a fluid element moving with a
velocity of magnitude U , 𝜌 is fluid density and p0 is the total pressure which, in the
absence of energy extraction, is constant along any streamline in the flow field.

Bernoulli’s equation is essentially an energy equation expressed dimensionally in units
of pressure and can be viewed as conservation of energy per unit volume of the fluid.
In that connection, pressure can be regarded as the source potential energy (per unit
volume) that drives fluid flow. This interpretation is discussed subsequently and is seen
to be crucial to a clear understanding of how a wind turbine rotor works.

Returning to the issue of aerodynamic lift, one view of the explanation of the lift force
has been that the fluid, should it have a longer path to traverse on one side of an aerofoil,
will travel faster in order to meet the fluid flowing past the other side at the trailing edge
of the aerofoil. With increase in velocity, the associated static pressure in that region
will reduce in consequence of Bernoulli’s equation. The pressure deficit on the side of
the plate with the longer flow path is then considered the source of the lift force.

There are various problems with this as an explanation of the lift force. Firstly, a thin
plate set at an angle in a uniform flow field will generate significant lift when, consider-
ing its shape, there is negligible difference between the upper surface and lower surface
paths. Secondly, if an aerofoil with a shape with a noticeably longer flow path on one
side is considered and the assumption that the flow on each side will traverse the length
of the aerofoil in equal times (something that in itself can be challenged) is made, the
difference in static pressure calculated on the basis of the implied velocities on each side
of the aerofoil will be found quite insufficient to account for the observed lift force.

An apparently authenticated story relates to the efforts of the famous physicist Albert
Einstein in aerofoil development. Einstein’s effort, inspired by the path-length-related
concept, was a miserable failure1 and he later commented ‘That is what can happen to
a man who thinks a lot but reads little.’

1 According to Carl Seelig (Albert Einstein: A Documentary Biography by Carl Seelig, 1960, pp. 251–252;
Translated by Mervyn Savill, London: Staples Press, Bib ID 2263034), an accredited biographer of Einstein:
‘It is not well known that … Einstein … undertook a new aerofoil design intended for serial production.
Eberhard, the chief test pilot, treated the fruit of the famous theoretician’s efforts with suspicion.’ ‘Ehrhardt’s
letter continues (EA 59–556, as quoted in Folly 1955): A few weeks later, the “cat’s back aerofoil” had been
fitted to the normal fuselage of a LVG biplane, and I was confronted with the task of testing it in flight. … I
… expressed the fear that the machine would react to the lack of angle of incidence in the wing by dropping
its tail and would thus presumably be obliged to take off in an extremely unstable attitude. Unfortunately the
sceptic in one proved to be right, for I hung in the air like a “pregnant duck” after take-off and could only
rejoice when, after flying painfully down the airfield, I felt solid ground under my wheels again just short of
the airfield at Aldershof. The second pilot had no greater success, not until the cat’s back aerofoil was
modified to give it an angle of incidence could we venture to fly a turn, but even now the pregnant duck had
merely become a lame duck’.
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Considering the basic definition of lift as the force created on an object at right angles
to the incident flow, it is evident that such a force, like all forces according to Newton’s
Second Law, will be associated with a rate of change of momentum in that direction.
Thus, the magnitude of the lift force will, in principle, be unambiguously determined by
integrating all the components of momentum in the flow field normal to the incident
flow that result from the object causing deviation of the flow.

Whilst this explanation is pure and fundamental, it does not immediately shed light
on why lift forces can be so large.

The explanation relating to Bernoulli’s equation has some relevance here. Where flow
is accelerated around a curved surface, the reduction in static pressure assists in main-
taining attachment of the flow and contributes to large suction forces. As nature prover-
bially abhors a vacuum, strong suction on the boundary layer near a curved surface will
induce a large deviation in the general fluid flow some distance from the surface, thereby
giving a large overall change in fluid momentum and producing a strong lift force. Aero-
foil design is very much about the extent to which such forces can be sustained as the
curvature is increased and more severe changes of flow direction are attempted in order
to increase lift.

An associated consequence of the Bernoulli equation is the so-called Coanda
effect. Aerofoils with elliptical section were developed and used on the X-wing
plane/helicopter design [12]. Such aerofoils will have only moderate lifting capability
attributable to their shape alone. However, the discharge of a thin jet of air tangential
to the surface near the trailing edge will attract the general flow to the jet and cause a
much larger deviation in flow direction and consequently much enhanced lift.

The ‘attraction’ of the jet to the surface arises as the jet brings increased momentum
into the boundary layer where the jet flow is next to the body surface. This overcomes
the natural tendency of the (reduced momentum) boundary layer to separate under the
adverse (rising) streamwise pressure gradient due to the aerofoil curvature. Due to the
large curvatures involved, there is a noticeable pressure change across the jet, which can
be calculated from the mass flow rate in the jet and the radius of curvature of the flow.
The jet tries to entrain any fluid between itself and the wall (very efficiently because it
is normally turbulent) and this entrainment keeps it attached to the wall. Then, because
the streamlines are now curved, the wall pressure falls below the external ambient value.
In fact, in the absence of external flow incident on the aerofoil, such a jet will almost
completely encircle the aerofoil.

This phenomenon is often called the Coanda effect in recognition of Henri-Marie
Coanda, who discovered it apparently through rather hazardous personal experience.2
Controlling lift on an aerofoil section by blowing a jet tangential to the surface is often
referred to as circulation control. It is a form of boundary layer control which has been
considered for regulation of loads and control or performance enhancement of wind
turbine blades [13].

Lift is intimately related to vorticity [14]. Associated with this is the Magnus effect,
whereby a rotating cylinder (or sphere) can generate lift. This affects the flight of balls in
many sports, has been employed in the form of the Flettner rotor [15] to power ships and

2 Henri Coanda was asked to devise a system to divert the hot jet discharges from an aircraft’s engines away
from the cockpit and fuselage. In blowing air to this end, the jet did exactly the opposite and attracted the
hot gases to the fuselage surface with dangerous consequences.
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16 Innovation in Wind Turbine Design

has been exploited in at least two innovative wind turbine designs [16, 17]. Wikipedia
[18] is quite informative on lift, vorticity and the Magnus effect and also provides a com-
mentary on some popular incomplete views such as have been discussed. Finally, in the
context of wind turbine systems, lift may also be involved in the performance of wind
devices that have been casually categorised as ‘drag’ devices (see Section 13.2).

1.3 Power in the Wind

In ideal modelling of wind flow, it is usual to start with a wind field that is of uniform
constant velocity everywhere, introduce an energy extraction system such as a rotor and
examine the resultant flow field that is established in steady state. For subsequent clarity,
the basic conservation laws of a particle as compared with steady-state flow are recalled
in Table 1.1. Generally, in discussion of steady-state flows, it has been common to use
the particle-related terminology rather loosely (e.g. talking about momentum theories
where it is really momentum rate or force that is being considered or energy balances
that are really power).

Referring to an axisymmetric enclosed surface bounding the flow volume that is
continually passing through the rotor disc as the bounding streamtube, power flowing
through the far upstream area at the source of that streamtube comprises kinetic power
and, most importantly, also pressure power. The fundamental expression for power in
the air is illustrated in Figure 1.1. In the notation adopted, m, U0, V , p, A and 𝜌 are
respectively mass, air velocity, volume, pressure, area and air density.

The expression for source power in the wind is widely disseminated as 0.5𝜌U3
0 A0.

However, this is incomplete being only the kinetic power and has led to many misunder-
standings,3 especially in the context of systems that aim to exploit flow augmentation
and also in analysis of the rotating wake. Any volume, V , of gas at pressure, p, stores
an amount of energy E = pV , which becomes a power P = pV̇ = pAU , if there is steady

Table 1.1 Conservation laws.

Particle Steady flow process

Mass Mass flow rate
Energy Energy rate Power
Linear momentum Linear momentum rate Force
Angular momentum Angular momentum rate Torque

3 The almost universal teaching that the power in the wind is proportional to the cube of velocity, without
mention or inclusion of the pressure power, has led to terrible misunderstandings, especially with regard to
systems that augment flow. The author is aware of a system (never actually manufactured) that enhanced
flow by a factor of ∼1.2 (eventually verified by computational fluid dynamic (CFD) modelling) but was
marketed via business plans based on the assumption of (1.2)3 power augmentation as opposed to ∼1.2. This
fundamental error was maintained in financial calculations with ownership of the technology changing
hands over a period of ∼30 years.
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Figure 1.1 Power in the air.
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flow at velocity, U , through a surface area, A, of the volume, V . The correct expression
for source power must therefore include both kinetic and pressure power and is:

Source power in the wind, P0 = 0.5𝜌U3
0 A0 + p0A0U0 (1.1)

The subscript, 0, denotes values far upstream prior to any energy extraction. The
second equation of Figure 1.1 is Bernoulli’s equation in the usual form for many wind
energy analyses, where only energy associated with fluid pressure and velocity is
considered. Clearly, there would be a fundamental inconsistency if the pressure-related
term in the first equation of Figure 1.1 or in Equation 1.1 were missing. Relative to
vacuum pressure, the pressure power term is huge,4 but very small differences in
it create the atmospheric wind resource and play a critical role in all wind power
conversion systems. A quick perspective on the relevant pressure differences may
be gained considering an extreme storm gust of U = 70 m/s which corresponds to a
dynamic pressure of 0.5𝜌U2 ≅ 3000 Pa ≅ 3% of atmospheric pressure, while operation
of any size of wind turbine at optimum aerodynamic performance in a wind of 10 m/s
corresponds to a rotor plane pressure difference of <1% of atmospheric pressure. All
forces on a wind turbine rotor and its capability to extract energy arise in consequence
of such small pressure differences.

Further it must be emphasised, as appears in the discussion in Section 1.5.4, that
kinetic energy is never directly extracted in any physical process. It is always converted
to another form such as pressure energy or heat. All aerodynamic machines exploit pres-
sure energy changes to provide the forces that do work.

1.4 The Actuator Disc Concept

The actuator disc is a valuable concept that arose early on in the development of anal-
yses of rotors and propellers. Without any specific knowledge of or assumptions about

4 Otto Von Guericke’s famous experiment of 1654 demonstrated that two teams of eight horses could not
pull apart a large pair of touching copper hemispheres from which most of the air had been evacuated.
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the system that may extract energy flowing through an arbitrary area in a uniform flow
field, consideration of energy and momentum conservation allow some basic informa-
tion about the consequent flow and limits on maximum possible energy extraction to
be established.

A simple analysis of a rotor (or other energy extraction device) in open flow
(Figure 1.2) leads to Froude’s theorem5 and the well-known Betz limit. In addition,
actuator disc theory is further presented in a recently developed, more generalised
form that will also deal with a rotor in constrained flow (Figure 1.3). Constrained flow
is defined as the situation in which the following happens:
• An object is introduced into a flow field which modifies at least locally an otherwise

uniform flow field of constant velocity.
• No energy is introduced or extracted by that object (conservative system).

An energy extraction device may then be introduced into the constrained flow field,
in principle anywhere but most usually in a region of flow concentration where there is
a higher local velocity and hence higher mass flow through unit area normal to the flow
than in the far upstream flow. Typical examples of constrained flow are where there is a
hill, a duct or a diffuser.

In the context of evaluating innovation, the point of considering this more general sit-
uation is twofold. Understanding the limitations on power performance of wind farms
in complex terrain (hills) is a mainstream concern. Although there are no mainstream
large-scale commercial wind energy systems that exploit flow concentration systems,
nevertheless such systems have long been considered, some developed to prototype
stage and others are under development at present. So they continue to receive increas-
ing attention among innovative wind turbine designs.

Figure 1.2 represents a rotor in open flow. The flow field in the absence of the rotor
would be of constant velocity everywhere and parallel to the axis of the rotor. Figure 1.3
represents a rotor in a diffuser (toroid with aerofoil cross section, as indicated). This
is an example of constrained flow. Even in the absence of the rotor and of any energy
extraction, the flow in a region around the diffuser is altered6 by its presence and is
substantially non-uniform.

Wind direction Expanding wake

Rotor plane

Figure 1.2 Open flow.

5 This is the result (for open flow) that the velocity at the rotor (energy extraction) plane is the average of the
far upstream velocity and far wake velocity.
6 It may also be noted that the ground itself, even if completely level, constrains the flow. Although the
ground effect extends in all directions to infinity, its constraint effect on the streamlines does exist locally
near the wind turbine as if there is a mirror image of the turbine in the ground. It is not normally taken into
account, but the effect is quite noticeable, for example, on the wake which because of its swirl lies at a small
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Figure 1.3 Constrained flow example (diffuser).

1.5 Open Flow Actuator Disc

1.5.1 Power Balance

The axial induction at the rotor plane is defined as the fractional reduction in far
upstream wind speed local to the rotor. Thus (see Figure 1.4), the velocity through the
rotor plane is;

U1 = U0(1 − a) (1.2)

A key assumption in the actuator disc model of a wind turbine system (without wake
rotation) that atmospheric pressure is restored in the far wake (p2 = p0). Conservation
of mass in the steady-state process requires that there is the same constant mass flow
rate 𝜌A0U0 = 𝜌A1U1 = 𝜌A2U2 everywhere within the streamtube bounding the rotor
plane. Thus, the pressure power, p0A0U0 = p2A2U2, is unchanged in the overall pro-
cess, although it necessarily changes across the rotor plane (see Figure 1.6). Considering
change in kinetic energy between far upstream and far wake, the power (rate of change

U0 U1 = U0(1 − a)

A0 A1 = A0/(1 − a)

U2

A2

Figure 1.4 Open flow actuator disc model.

angle to the free stream. In contrast, the wind shear effect associated with the ground boundary layer is not
due to the normal velocity constraint and extends everywhere independent of the presence of the turbine.
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of kinetic energy) extracted P is

P = 1
2
𝜌A0U3

0 − 1
2
𝜌A2U3

2 (1.3)

Since, 𝜌A0U0 = 𝜌A2U2:

P = 1
2
𝜌A0U0(U2

0 − U2
2 ) (1.4)

1.5.2 Axial Force Balance

The mass flow rate through the rotor plane is 𝜌A1U1. The change in fluid velocity
between upstream far wake is (U0 − U2). Hence, rotor thrust as rate of change of
momentum through the rotor plane is

T = 𝜌A1U1(U0 − U2) (1.5)

and power, P is

P = TU1 (1.6)
= 𝜌A0U2

0 (1 − a)(U0 − U2) (1.7)

1.5.3 Froude’s Theorem and the Betz Limit

From Equations 1.4 and 1.7

U2 = U0(1 − 2a) (1.8)

It can be seen that the far wake induction is thus twice the value at the rotor plane.
This result was first derived by Froude [19]. Defining power coefficient Cp as the ratio
of fraction of power extracted by the rotor to the amount of kinetic power that would
pass through the rotor swept area with the rotor absent, then:

P = 1
2
𝜌 A1U3

0 Cp (1.9)

Using Equation 1.8 to substitute for U2 in Equation 1.7 and also noting that
A0 = A1(1 − a)

Cp = 4a(1 − a)2 (1.10)

Differentiating Equation 1.10 to determine a maximum leads to a= 1/3 and to the
Betz limit:

Cp = 16/27 (1.11)

Investigations by Bergey [20] and van Kuik [21] indicated that Lanchester (1915), Betz
(1920) and Joukowski (1920) suggested that all, probably independently and certainly
by methods differing in detail, have determined the maximum efficiency of an energy
extraction device in open flow. Later, Okulov and van Kuik [22] concluded that the attri-
bution to Lanchester by Bergey was inappropriate. Thus, the Betz limit may apparently
most properly be called the Betz–Joukowski limit, although for convenience the short
reference as Betz limit is retained.
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Although open flow actuator disc theory is over a century old, it is by no means done
and dusted. The Betz limit and the ideal actuator disc have been the subject of exten-
sive and continuing discussions. In real flow, external flow that does not pass through
the rotor plane may assist in transport of the wake and therefore contribute additional
energy to the system. However, this goes beyond the ideal actuator disc in inviscid flow,
which cannot be expected to reflect behaviour at the tip of a real rotor with discrete
blades or address gains and losses associated with viscous flow effects.

Although it is now confirmed both theoretically (in the following analysis, for
example) and by numerical analyses based on vortex theory [23, 24], the validity of the
Betz limit for ideal inviscid flow through an actuator disc had been questioned. Greet
[25], considering a one-dimensional analysis, and Rauh and Seelert [26], considering
3D axisymmetric potential flow, arrived at the same conclusion that Froude’s theorem
and the Betz limit could not be rigorously be proved. They considered the problem to
be a failure to account fully for streamtube forces. There were no analytical errors in
their analyses, but they reached an impasse and formed false conclusions on failing to
conduct a complete momentum balance considering external as well as internal forces
on the streamtube. Energy extraction relates only to the magnitude of the streamtube
areas far upstream, at the plane of the disc and far downstream, but the shape, pressure
distribution and axial force on the streamtube boundary arises intrinsically from a
balance of static pressure between internal and external flows. Thus, total streamtube
forces will be indeterminate if an analysis does not consider a control volume as in
Figure 1.5 that includes some external flow.

The streamtube is of course a virtual entity like a line or geometric figure. It has specific
properties that no fluid and hence energy or momentum flows across its boundaries.
However, for any chosen volume within a steady-state flow field, such as the volume, V ,
in Figure 1.5, it must be possible to demonstrate equilibrium of forces, mass flow, and so
on. Otherwise, steady-state flow would not be maintained. The sum of axial streamtube
forces is expressed by the integral over the whole surface enclosing the volume of the
streamtube.

Fx = ∮ pd̂A.̂x = p0 A0 − p2 A2 + ∫
A2

A0

pdA (1.12)

In Equation 1.12, dA is an element of area normal to the axial direction with the vector
direction of x̂, a unit vector in the axial direction. The integral is then split into end forces

10

V

p0

A0

A1

A2

p2 ≤ p0

2

Figure 1.5 Axisymmetric control volumes for an actuator disc at plane 1.
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at planes 0 (far upstream) and 2 (far downstream) plus the axial force on the curved sur-
face. In the simple actuator disc model of Betz, the wake expands but is not rotating. The
far downstream static pressure is then p0, although the analysis presented considers the
more general case where, if the wake is rotating, suction pressure is required to bal-
ance centrifugal force and hence the far downstream pressure, p2, and indeed pressure
anywhere inside the wake, will be less than p0.

The momentum (axial force balance) equation for the ideal actuator disc, considered
within the streamtube that bounds the disc, involves rate of change of fluid momentum,
rotor plane thrust, T , and axial forces on the streamtube:

0 = ṁ(U0 − U2) − T + Fx (1.13)

The sum of streamtube axial forces, Fx, is zero for the ideal actuator disc without wake
rotation when p2 = p0. Sharpe [27] reasons that it can be deduced immediately observ-
ing that (in spite of local pressure variations on the curved surface) the whole streamtube
that bounds the disc is ultimately immersed in fluid at atmospheric pressure. An explicit
proof that Fx = 0 is now presented.

Consider the control volume, V , enclosed by the streamtube curved surfaces and the
dotted lines. Mass flow enters axially through the annulus defined by the vertical dot-
ted line and exits obliquely through the cylinder wall defined by the horizontal dotted
line. Regarding the streamtube boundary as a ‘wall’, radial momentum is temporarily
imparted to the flow (and later absorbed outside the control volume V when the stream-
tube curvature reverses). However, there is no energy extraction and hence no change
in axial momentum of the external flow. Thus, the force associated with the fluid axial
momentum rate at entry to the control volume, V , namely, 𝜌(A2 − A0)U2

0 , is exactly bal-
anced by a similar term involving the integral of components of axial velocity over the
exit area. The end force at plane 0 on the annulus represented by the vertical dotted line
is then clearly p0 (A2 − A0). There cannot be any axial force on the parallel surface. Thus,
the curved surface axial force, Fc is given as:

Fc = ∫
2

0
pdA = p0 (A2 − A0) (1.14)

Considering Equation 1.12, this proves that Fx = 0 when p2 = p0 and so reduces
Equation 1.13 to a balance of rate of change of fluid momentum with the thrust force
as assumed by Betz.

1.5.4 The Power Extraction Process

The power balance for the ideal actuator disc is illustrated in Figure 1.6. A key assump-
tion for the simplest case where the wake is not rotating is that general atmospheric
pressure is recovered in the far wake so that p2 = p0. The actuator disc model requires
continuity of the fluid axial velocity through the rotor plane. This is essential as the wind
turbine removes energy from the air flow passing through it but does not remove any
of the air itself! Locally at the rotor plane, with no change in axial velocity, there is no
change in the associated kinetic power in the flow and only pressure power is extracted.
Overall, considering source power far upstream and residual power far downstream,
the assumption that the air pressure returns to ambient far downstream determines
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1
2

𝜌A0U
0
3+ p0A0U0

1
2

𝜌A1{U0(1 – a)}3 + p1A1U0(1 – a)

1
2

𝜌A2{U0(1 – 2a)}3 + p0A2U2

1
2

𝜌A1{U0(1 – a)}3 + (p1 – Δp)A1U0(1 – a)

Figure 1.6 Power balance for ideal actuator disc (no wake rotation).

that there is no net change in pressure power (p2 = p0 and A2U2 = A0U0) and hence the
overall process appears as an extraction of source kinetic power.

If locally the wind turbine rotor is not extracting kinetic energy and yet the system
is producing power and therefore extracting energy from the fluid, what is the energy
source? The answer is potential energy, which in this case is pressure energy. This is
true of all fluid machines, fans, propellers, wind turbines and even gas turbines where
thermal energy changes must be accounted but can only contribute to forces through
creating or modifying pressure differences.

A wind turbine rotor produces power from the torque generated by the rotor blades.
This torque arises from forces on blade elements, which in turn are the consequence of
pressure differences on each side of the aerofoils. The wind turbine works by offering
an appropriate resistance to the fluid flow slowing the fluid approaching the rotor. The
reduction in fluid velocity occurs conservatively ahead of the rotor plane. Hence, con-
sidering Bernoulli’s equation, a rise in static pressure occurs to provide conservation of
energy per unit volume. The pressure difference across the rotor plane in conjunction
with the through flow velocity is then the determinant of the energy extraction and, as
was discussed previously, pressure is effectively potential energy per unit volume of fluid.

The basic equation for power at the rotor plane is then;

P = Δp A1U1 (1.15)

This defines power in the air flow through the actuator disc. Equation 1.15 is valid
under all circumstances (open or augmented flow). Some of this power is not available to
a rotary type of energy converter and remains in the air as the rotational kinetic power in
the wake. In addition, some of the total power available to the rotor may not be converted
usefully due to aerodynamic and drive train loss mechanisms.

1.5.5 Relativity in a Fluid Flow Field

According to basic physical laws established since the time of Galileo, who first
described this principle in 1632 in his ‘Dialogue Concerning the Two Chief World
Systems’, velocity is relative and there is no preferred inertial frame. Thus, provided
there is no significant interaction with a ground boundary layer, driving a rotor at



�

� �

�

24 Innovation in Wind Turbine Design

Wake power

Rotor power

Source power

P(1 – a)

Rotor + wake power = P(1 – a){4a(1 – a) + (1 – 2a)2} = P(1 – a) = source power

Rotor + wake power = P 4a(1 – a){(1 – a) + a} = P 4a(1 – a) = source power

Source power

TU0 = PCt = P 4a(1 – a)

Rotor power

Pr = P 4a(1 – a)2

Case B Wind turbine system travelling(no ambient wind)

Case A Wind flowing through stationary wind turbine system

U = U0 U = U0(1 – a) U = U0(1 – 2a)

U = 0 U = –aU0 U = –2aU0

Wake power

Pw = 0.5m(– 2aU0)2     
.

Pr = PCp = P 4a(1 – a)2 Pw = P(1 – a) = (1 – 2a)2

= P × 4a2(1– a)

Figure 1.7 Power balance in reference frames of Cases A and B.

constant velocity U0 through still air relative to a ground reference frame (Case A in
Figure 1.7) must, for the rotor, be exactly equivalent to the rotor being mounted on a
stationary support in a wind field of constant velocity U0.

This has some practical significance. In a low wind region, it may take a long time to
collect adequate data to characterise a power curve and driving a rotor through still air
offers a valid, if not ideal, means of measuring rotor performance at least of small rotors.
See Chapter 18 where this method is used in testing the Katru system. The analysis of
this case shows that in different reference frames, velocities, momentum, energy and
power measures change; but naturally energy and momentum are conserved and thus
power also in a steady-state flow process. Also, with airborne systems (Chapter 8), it is
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often only in the reference frame of the moving airborne rotor that steady-state flow can
be considered to exist and this may become a preferred frame for analysis.

Let P = 0.5𝜌𝜋R2U3
0 , where R is rotor radius. Let .m be the mass flow rate of air in the

streamtube bounding the rotor plane, as measured in the rest frame of the streamtube
and wind turbine system.

Case A (Figure 1.7) is the normal situation where the wind turbine system is stationary
relative to the ground and the upstream wind speed is U0. In Case B (Figure 1.7), the
upstream air is calm (no wind) and the wind turbine system is driven at speed U0. If any
effects related to ground proximity are ignored, then Galilean (also called Newtonian)
relativity demands that the local velocity of air relative to the rotor plane is the same
in each case, namely, U0(1 − a), that the physical process (power extracted by the rotor
and shape of streamtube) is the same and that conservation laws are upheld.

There is superficially a paradox in that the work done by the rotor thrust, T , is TU0(1 −
a) in Case A but TU0 in Case B. This arises because the source power is different in
each case. However, the rotor power is the same and energy conservation (power in
steady-state flow) is satisfied as in both cases. The sum of rotor power and wake power
is equal to source power.

1.6 Why a Rotor?

The actuator disc idea considers an arbitrary energy extraction system which need not
be a rotor. Yet all present mainstream wind energy conversion systems rely on the rotor
concept. Why? A wind energy system is not only, as is axiomatic, an energy conversion
system turning fluid mechanical energy in the wind into electrical energy but is also an
energy concentration system.

For example, a typical modern 1.5 MW wind turbine may have parameters as in
Table 1.2. In a case when the wind turbine is producing its rated output (1500 kW in the
generator output electrical cables) at 11.5 m/s rated wind speed, it has received wind
energy over the swept area at a power density∼1 kW/m2 and is transporting output after
losses at a power density of around 1.6 GW/m2. As the power passes through the sys-
tem, it is concentrated first in the composite of the blades, then in the steel of the shaft,
subsequently in the field of the generator and finally in the copper of the electrical cables.

It is vital to effect this massive concentration with as little cost as possible and the
first major gain is made in the rotor itself. The rotor typically has a solidity of ∼5% and
hence blade frontal area is less than the swept area by a factor ∼20. This is evident in the
highlighted concentration factor (19.1, in Table 1.2).

This is the key factor in favour of the rotor concept. The rotor can confront all the
extractable energy in the swept area with blades that may occupy only about 5% of the
swept area. This is in direct contrast to a translating aerofoil or, say, an oscillatory wave
energy device where, although the source energy density is usually much greater than
for wind, a metre length of wave energy converter must confront each metre of wave
front from which energy is to be extracted.

Thus, an efficient rotor is typically concentrating the extractable energy in the rotor
disc by a factor of about 20 and thereby reducing the size and cost of the primary collec-
tors (blades) compared with alternative systems such as an oscillating aerofoil that do
not have this benefit. The answer to ‘why a rotor?’ is therefore not only the legitimate
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Table 1.2 Power concentrations in a 1.5 MW wind turbine.

D (m)
Area
(m2) Efficiency

Power
(kW)

Power
density
(kW/m2)

Concentration
factor

Cumulative
concentration
factor

Wind over swept area 70.5 3 900 1 3 640 0.93 1 1
Rotor blade input 70.5 204 0.44 3 640 17.83 19.1 19
Low speed shaft input 0.564 0.25 1 1 600 6 400 359.6 6 900
Gearbox input 0.564 0.25 0.98 1 600 6 280 1 6 900
Generator input 0.12 0.01 0.95 1 570 131 700 21.6 150 000
Electrical cables — 0.001 1 1 490 1 490 000 10.7 1 600 000

common observation that mechanical energy in rotational form best suits conventional
electricity generating systems but also that, in sweeping an area of the source energy flux
that is much greater than the physical surface area of the rotor blades, the rotor effects
a significant primary increase in energy density.

This is the main reason why the rotor concept is very hard to beat and why many
of the alternatives such as oscillating or translating aerofoils that are perfectly feasible
technically may struggle to be cost competitive.

1.7 Actuator Disc in Augmented Flow and Ducted Rotor
Systems

1.7.1 Fundamentals

The ducted rotor system comprises a bare turbine rotor with an added surrounding
structure intended to alter the inflow to the turbine in magnitude and or direction
(diffusers and other types). It is commonplace in aeronautical and marine applications
including ships and also tidal turbines.

The following statements are valid, but contrary views have been long standing.

a) The available (potentially extractable) power from any system with augmented flow
(or not) is linearly proportional to the mass flow and to rotor plane pressure drop. In
an augmented flow system, this is not as the cube of the velocity augmentation factor,
although kinetic power through the rotor plane is augmented by this factor.

b) The maximum section diameter of a duct (exit area of a diffuser type) is a very obvious
geometric parameter to consider, but it has no unique relation to duct performance.
In particular, the view that ducted rotor performance is limited by the Betz limit
as applied to the maximum duct diameter7 is erroneous and misleading about the
potential performance of ducts.

Regarding statement (a), ducted rotors in real flows may suffer adverse effects from
friction losses and flow separation. However, they can also gain from viscous interaction

7 Sørensen [28] (pp. 22–23) provides an apparent derivation that Betz related to area ratio is a limit, but
acknowledges that this relies on unverified assumptions.
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with external flows. Thus, some energy that does not flow through the rotor may assist
rotor performance by entraining the wake or in creating vortices that reduce pressure
on the downstream side of the rotor plane. In some cases, essentially through increasing
the pressure drop across the rotor (implying an ideal optimum Ct > 8/9), this can give a
power gain that is somewhat better than linear with velocity augmentation. Such benefit
has been observed in experimental testing by Phillips et al. [29] and Ohya and Kara-
sudani [30], for example. In addition, much more elaborate systems can be developed
to constructively involve the external flow involving boundary layer injection through
slots, mixing and entrainment as developed by Werle and Presz [31] following practice
in aircraft engine design.

Figure 1.8 shows three diffuser-type duct shapes among many more similarly analysed
by McLaren–Gow [32] using a vortex ring model. Each duct has exactly the same area
ratio (ratio of maximum to minimum duct diameter). The ducts were modelled as line
ducts with no wall thickness and the Cp max for each design was determined by varying
the rotor plane pressure drop. The inset table shows the ratio of (Cp max/1.161), the Betz
limit factored by area ratio being (16/27) × (7/5)2 = 1.161. As an ideal inviscid analysis,
this supports statement (b) showing that the area ratio is not a unique parameter. Evi-
dently, the performance varies with duct shape and the performance is neither limited by
nor related to the Betz limit as applied to the exit area. This refutes a common assertion
that the ducted rotor can perform no better than a larger bare rotor with diameter equal
to maximum duct diameter which, inappropriately, has led some parties to summarily
dismiss ducted rotors as a concept. It will be shown (Chapter 18) that this is not simply
the case for highly idealised inviscid flow conditions and that the limiting performance
of some real systems probably exceeds the Betz limit as applied to the maximum duct
diameter. While Figure 1.8 refutes the idea that Betz factored by area ratio is a valid limit,
it is entirely consistent with the limit, ‘Cp limit’ in Figure 1.8, based on Equation 1.34. In
the discussion around Equation 1.29, it is shown that Cp limit is in effect the Betz value
applied to an area of streamtube section at a so-called reference plane. That area gen-
erally exceeds the maximum section area of the duct unless the duct is producing little
augmentation and the wake does not expand beyond the duct exit. Seven duct shapes of
the same exit area ratio (see later discussion of Figure 1.11) were analysed including the

Figure 1.8 Area ratio fallacy.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

D
u
c
t 

d
ia

m
e
te

r 
(m

)

Duct length (m)

1

2
3

Shape Cp limit

1 1.23 1.90

2 0.77 1.35

3 1.02 1.63

Cp max/Cp Betz



�

� �

�

28 Innovation in Wind Turbine Design

three of Figure 1.8. Those that were of a more concave shape than duct 2 of Figure 1.8
(as viewed from the axis of symmetry) had a maximum ideal power coefficient less than
Betz factored by the area ratio and those more convex than duct 1 exceeded Betz so
factored. This is further clarified in Section 1.7.2. For any duct design where the flow
expands downstream to an area greater than the exit area, the reference plane is also
downstream of the duct, of greater diameter than the exit diameter and consequently
defines a limit greater than Betz factored by area ratio.

In the early 1980s, Oman et al. [33] conducted experimental work on the diffuser-
augmented wind turbine (DAWT) concept, showing that power coefficients exceeding
the Betz limit could be obtained. In 1999, Hansen et al. [34] published CFD results
confirming that the Betz limit could be exceeded. Hansen noted that the increase in Cp
was in proportion to the augmentation of mass flow achieved by the diffuser (as in the
discussion of Figure 1.13), but that this did not explicitly define a limit for Cp.

1.7.2 Generalised Actuator Disc

Although the open flow actuator disc theory, which determines the Betz limit, has evi-
dently been established for over 90 years and van Bussel [35] in a comprehensive review
notes that diffuser research has been in progress over 50 years, the generalisation of actu-
ator disc theory arises from analysis by Jamieson [36]. This work includes new relation-
ships for limiting values of Cp and a preliminary validation has shown close quantitative
agreement with Hansen’s CFD results [34]. In many previous analyses of turbines in
ducts and diffusers, speedup factors are introduced and definitions of Cp and Ct other
than the standard ones have been employed. This is understandable in the historical
context, but there is no longer need for it and there is some potential for confusion. The
following analysis maintains standard definitions of axial induction, power and thrust
coefficients.

Axial induction, a, at the rotor plane is defined exactly as before (Equation 1.2). Thus,
if the flow is augmented at the rotor plane, a is negative. As in open flow, the power
coefficient and thrust coefficient are defined with respect to the far upstream wind speed
and referenced to the rotor swept area. They are, respectively:

Cp = P
1
2
𝜌AU3

0

(1.16)

and

Ct =
T

1
2
𝜌AU2

0

(1.17)

From these basic definitions of the power coefficient, Cp, and the thrust coefficient,
Ct , the power to thrust ratio can be expressed as in Equation 1.18.

P
T

= U0
Cp

Ct
(1.18)

However, considering also the basic definition of power as a product of force and
velocity as applied at the rotor plane:

P = T U0(1 − a) (1.19)
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Hence,
P
T

= U0(1 − a) (1.20)

Hence, from Equations 1.18 and 1.20,
Cp

Ct
= (1 − a) (1.21)

Equation 1.21 applies to an ideal rotor in open or augmented flow, where the local
inflow is a fraction (1 − a) of the remote undisturbed external wind speed. A system is
defined as the region in which axial induction is influenced between the freestream and
the far wake. Energy extraction is considered to take place across a planar area normal
to the flow and at a definite location within the system.

Let f (a) be the axial induction in the far wake (Figure 1.9). At any plane of area, A
within the system where there is a pressure difference,Δp associated with energy extrac-
tion, the thrust, T is given as;

T = ΔpA = 1
2
𝜌U2

0 ACt (1.22)

Hence

Ct =
2Δp
𝜌U2

0
(1.23)

Considering Bernoulli’s equation, applied upwind of the extraction plane,

p0 +
1
2
𝜌U2

0 = p1 +
1
2
𝜌U2

0 (1 − a)2 (1.24)

and on the downstream side of the extraction plane.

p1 − Δp + 1
2
𝜌U2

0 (1 − a)2 = p0 +
1
2
𝜌U2

0{1 − f (a)}2 (1.25)

From Equations 1.23–1.25,
Ct = 1 − {1 − f (a)}2 (1.26)
Ct = 2f (a) − f (a)2 (1.27)

p0 p0
p1 p1 – ∆p

Energy extraction

plane

Freestream Far wakeSystem

U0 U0 (1 – a) U0 {1 – f(a)}

2
0p0 + ρU

2
1 2

1  (1–a)2= p1 + ρU
2
1 2 {1–f (a)}2

0p0 + U
2
12

1
p1 – Δp + ρU 

2
1 (1–a)2 = ρ

Figure 1.9 General flow diagram.
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Now consider that:

a) For energy extraction to take place, the velocity in the far wake must be less than
ambient, that is, f (a) > 0

b) If the flow is augmented above ambient at the rotor plane, then purely from consid-
erations of continuity, there must exist a reference plane of area Aref downstream of
the rotor plane where the induction is half that of the far wake, that is, = f (a)/2

Considering conservation of mass in the flow, then at the rotor plane (area Ar),

𝜌ArU0(1 − a) = 𝜌Aref U0

(
1 −

f (a)
2

)
(1.28)

The factor of 2 in Equation 1.28 may initially seem arbitrary. However, the idea is
to view the augmentation system as a disturbance ahead of the reference plane, which
itself is in open flow at a location where Froude’s theorem and the established formu-
lae for Ct and Cp can apply if related to the axial induction there. Now for Froude’s
theorem to apply, the induction is required to be specifically 1/2 of f (a) as distinct from
any other fraction. This also implies that the Betz limit applied to the reference plane
area (as opposed to the duct maximum diameter) must be the valid ideal inviscid per-
formance limit for the duct under consideration. In the absence of energy extraction,
note that f (a) = 0.

Let the axial induction at the energy extraction plane be a0. Then,

𝜌ArU0(1 − a0) = 𝜌Aref U0 (1.29)

In Figure 1.10, streamtube sections bounding the diffuser are illustrated for differing
levels of rotor disc pressure drop. From Equation 1.29, the reference plane has invariant
area Ar(1 − a0) and ‘moves’ from far downstream at zero disc loading towards the rotor
plane as disc loading is increased.

Seven duct shapes, as in Figure 1.11, were analysed as axisymmetric line ducts by
MacLaren–Gow et al. [32] using a vortex ring model (three of these appear in Figure 1.8).

Δp = 0

Δp = 0

Δp = Opt

Δp = Opt

Δp large

Δp large Reference

plane

Rotor

plane

Figure 1.10 The reference plane in relation to disc loading.
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Figure 1.11 Seven shapes of line duct analysed as in inviscid flow.

Table 1.3 Limiting performance of ducts.

A B C D E F G

Reference plane radius 6.116 6.204 6.383 7.187 8.033 8.778 9.433
Cp/Betz at reference plane 0.922 0.931 0.943 0.968 0.977 0.977 0.970
Cp/Betz at exit plane 0.707 0.734 0.787 1.025 1.292 1.542 1.768

The inlet radius (also the rotor plane radius) is always 5 units and the exit 7 units. As
Cp increases from poorest duct A, to best G, the reference plane moves downstream
from within the duct (with radius less than exit radius of 7 units) to values substan-
tially exceeding the exit radius. In other words, flow expansion takes place beyond the
duct exit.

The Cp values at the reference plane (Table 1.3) are all close to the Betz limit by
amounts that can be related to Ct at maximum Cp. The Cp performance can, more-
over, be seen to be quite unrelated to exit area ratio with values ranging from 29% less
to 77% greater.

Returning to Figure 1.10, a detail reflects behaviour also observed in numerical mod-
elling. Especially with higher loading on the disc, the inflow streamtubes, ‘sensing’ flow
resistance ahead, start to expand (see ‘Δp large’ in Figure 1.10) as would happen for an
open flow rotor before they contract due to the suction of the diffuser.

From Equations 1.28 and 1.29,

f (a) = 2
{a − a0

1 − a0

}
(1.30)
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Now substituting for f (a) in Equation 1.27, gives

Ct =
4(a − a0)(1 − a)

(1 − a0)2 (1.31)

And hence from Equation 1.21:

Cp =
4(a − a0)(1 − a)2

(1 − a0)2 (1.32)

Differentiating Equation 1.32 with respect to a determines a maximum at a = am of

am =
1 + 2a0

3
(1.33)

The associated maximum Cp is then:

Cpm = 16
27

(1 − a0) (1.34)

For the open flow rotor with a0 = 0, Equations 1.31–1.34 correspond, as they must,
to the established equations for open flow. The familiar results that the open flow rotor
operates optimally when am = 1/3 and has an associated maximum power coefficient
Cpm = 16/27 (the Betz limit) are evident.

A more striking result emerges out of the limit Equation 1.32. On substituting am from
Equation 1.33 in Equation 1.32, it is found that

Ct =
8
9

(1.35)

whereas am and Cpm have specific values for each system configuration, this result is
now independent of a0. Equation 1.35 is therefore a general truth for optimum energy
extraction in an ideal system. This result was mentioned to the author in 1995 by K.
Foreman, as an observed outcome (without theoretical explanation) of his extensive
experimental work within Grumman Aerospace in the 1980s with the DAWT concept.
It was proved more recently by van Bussel [35] and now directly as a consequence of
the generalised limit Equations 1.31 and 1.33. Considering Equation 1.23, a corollary
to Equation 1.35 is that the pressure drop across the rotor plane for optimum energy
extraction is always 4/9U2

0 .
Thus, in any flow field of uniform far upstream velocity, U0, regardless of what local

flow augmentations are created (conservatively) within the system and wherever a rotor is
located, the rotor will, in optimum operation to maximise power extraction, experience
the same loading in terms of thrust, T , thrust coefficient Ct and rotor plane pressure
drop Δp. This does not in the least contradict statements in many sources (e.g. Lawn
[37]) that a rotor in augmented flow must be ‘lightly loaded’. Loading it at the same level
of thrust as would be optimum in open flow, when the wind speed local to the rotor
may be several times greater than ambient, amounts to very ‘light’ loading. The level of
loading is independent of the level of flow augmentation achieved by the diffuser and
will therefore appear all the lighter, the greater the flow augmentation.

Results are summarised in Table 1.4. Consider now Figure 1.12 where, instead of fixing
the rotor swept area, the source flow area is fixed. With the same source flow area, the
source mass flow rate and source power are the same in all three cases, namely, the
general case with an arbitrary system, the particular case of a diffuser concentrator and
the standard case in open flow.
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Table 1.4 Summary results comparing open and constrained flow.

Betz open
flow

Generalised
constrained
flow

General operation

Upstream wind speed U0 U0

Wind speed at energy extraction plane U0(1 − a) U0(1 − a)

Far wake wind speed U0(1 − 2a) U0

(1 − 2a + a0

1 − a0

)
Performance coefficient, Cp 4a(1 − a)2 4(a − a0)(1 − a)2

(1 − a0)2

Thrust coefficient, CT 4a(1 − a)
4(a − a0)(1 − a)

(1 − a0)2

Pressure difference across rotor 1
2
𝜌U2

0 CT
1
2
𝜌U2

0 CT

Optimum performance

Maximum Cp
16
27

16
27

(1 − a0)

Associated axial induction factor 1
3

1 + 2a0

3

Far wake axial induction factor 2
3

2
3

Associated thrust coefficient 8
9

8
9

Pressure difference across rotor 4
9
𝜌U2

0
4
9
𝜌U2

0

From Equation 1.34

Cpm = 16
27

(1 − a0)

Energy extracted by the rotor is, by definition:

E1 = 1
2
𝜌U3

0 A1Cpm

From continuity of flow;

E1 = 1
2
𝜌U3

0
A0

(1 − am)
Cpm

Using Equation 1.35

E1 = 1
2
𝜌U3

0 A0
8
9

The power available to the rotor evidently is 8/9 of the kinetic power in the upstream
source area. Note that the thrust coefficient is identically equal to the fraction of source
kinetic power that is extracted. Note also that all of the preceding analyses relate to
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U1 = U0 (1–a)

A1 = A0 /(1–a)
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Figure 1.12 Comparison of cases with equal source flow areas.

ideal actuator discs as power extraction systems. This means that the wake does not
rotate as it would with any real rotor system and that the assumption of wake pressure
recovery to atmospheric pressure is valid. Wake rotation can, however, be extremely
important for the aerodynamic performance of ducts in real flows. With a high tangen-
tial velocity component in the wake flow, the angle to horizontal of the resultant flow
on its expanding spiral path is much less than the geometric expansion of the duct in
the axial direction. This enables short ducts with high geometric expansion angles to
perform effectively without premature flow separation.

In the open flow case, the ‘system’ is always ‘ideal’ in that the flow is unconstrained and
free to flow through or around the rotor in a way that can vary with rotor loading. In
all other cases, the system comprises some physical entity additional to the rotor which
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constrains the flow. In general, this system, whether hill, diffuser or other, because it
is of fixed geometry, will not be ideal in every flow state and may not be ideal in any.
Hence, even in terms of purely inviscid flow modelling, such systems, regardless of the
efficiency of the rotor or energy extraction device, may not extract energy as efficiently
as in open flow. Comparing an effective diffuser system with an open flow rotor that
optimally extracts the same amount of energy, the rotor in the diffuser system can be
much smaller in diameter and the critical design issue is whether this advantage can
justify the cost of the diffuser system.

In the limit state (ideal device in ideal system):

• The design of the device is completely decoupled from design of the system, which is
completely characterised by a0.

• The thrust and thrust coefficient that corresponds to optimum rotor loading are inde-
pendent of the system that includes the rotor and the thrust coefficient is always 8/9.

The conclusion from this is that for any system influencing the local flow through an
energy extraction device, the induction factor, a0, at the extraction plane with the device
absent provides a characteristic signature of the system. This statement is probably valid
for non-ideal energy extraction devices such as rotors with drag loss, tip loss and swirl
loss provided the system influencing the rotor plane induction is ideal.

Consider now the operation of a rotor in constrained flow. The Internet is littered with
websites where claims are made that some innovative system around a wind turbine
increases the air velocity locally by a factor k and therefore the power as k3.

In any area of flow augmentation prior to energy extraction, the flow concentrator
does not introduce extra energy into the flow field. Therefore, increased local velocity
and the associated increase in local kinetic energy are created conservatively. Hence,
according to Bernoulli’s theorem, increased kinetic energy is obtained at the expense of
static pressure (atmospheric potential energy). It is perfectly true that the kinetic energy
locally is increased by a factor k3. This must be the case by definition. However, as has
been strongly emphasised in Section 1.3, there is no extraction of kinetic energy at the
rotor plane. It is the pressure difference at the rotor plane that drives energy extraction,
and both the inlet and exit pressure of an energy extraction device in a region of con-
centrated flow are at sub-atmospheric pressure. This means that much less energy can
be extracted than might be supposed.

Perhaps the simplest way to appreciate this is as follows. Consider a fixed area, A0,
represented by the dotted lines of Figure 1.13, where a rotor may be placed, but for
the present in the absence of energy extraction. If the velocity is increased over the
prevailing upstream value, U0, by a factor, say, 3 in a flow augmentation device, the
streamtube passing through it, by conservation of mass flow, will have an upstream
source area that is three times greater than the extraction area, A0. It is then clear that
no more than three times the energy and certainly not 33 times can be extracted from
this streamtube.

In Equation 1.15, U1 = U0 (1 − a) as defined in Equation 1.2. If the rotor is in
a concentrator, a will be negative of a magnitude related to the flow augmentation
factor, k (which, it should be noted, will change with rotor loading). Noting the results
of Table 1.1, it can be seen that, for maximum energy extraction, in open flow or
constrained flow, Equation 1.15 is unchanged. Hence, the increase in power is only
linearly as the increase in local velocity in the region of flow concentration.
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Figure 1.13 Source area and energy gain with flow augmentation.

The generalised actuator disc theory implies that all rotors whether large or small,
whether in open flow or in well-optimised diffusers or other concentrators will operate
optimally in an optimal system with a similar pressure difference across the rotor plane.
This pressure difference under such ideal circumstances is 4/9ρU2

0 (see Table 1.1). How-
ever, in constrained flow fields, system inefficiencies (which importantly can arise from
purely geometric aspects in addition to frictional losses) will, in general, further reduce
the optimal pressure difference for maximum energy extraction.

1.7.3 The Force on a Diffuser

From Equation 1.28, the mass flow rate through the energy extraction plane (and else-
where) is 𝜌ArU0(1 − a); and from Equation 1.30, the change in fluid velocity between far
upstream and far downstream is f (a) = 2(a − a0)/(1 − a0). Hence, the rate of change of
momentum and total thrust force on the system is the product of these quantities.

Tnet = 𝜌ArU0(1 − a)
{2U0(a − a0)

(1 − a0)

}
= 1

2
𝜌Ar U2

0

{
4(1 − a)(a − a0)(

1 − a0
) }

(1.36)

Now, thrust on the rotor is, by definition:

T = 1
2
𝜌ArU2

0 Ct

And hence from Equation 1.31:

T = 1
2
𝜌ArU2

0

{4(1 − a)(a − a0)
(1 − a0)2

}
(1.37)

Comparing Equations 1.36 and 1.37 it is clear that the force on the diffuser is,

Td = 1
2
𝜌ArU2

0

{−4a0(1 − a)(a − a0)
(1 − a0)2

}
= −a0T (1.38)

This very simple result is important. The separation of total system thrust into the part
that acts on the rotor or energy extraction device and the part that acts on the diffuser or
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flow concentrator is vital for an appropriate implementation of BEM theory to deal with
modelling of system loads or optimisation of rotors in constrained flows. Note also that,
as far as inviscid flow is concerned, although thrust on the diffuser may be several times
that on the rotor, thrust on the diffuser only appears in association with rotor loading
and is zero on the empty duct.

The simple form of Equation 1.38 provides insight, but applies only to an ideal diffuser.
Sørensen [28] asserts, ‘In most theoretical analyses, the authors have introduced different
auxiliary variables, in order to derive general conclusions concerning maximum power
output, etc. However this is not necessary…’. His implication is that the variable a0 is
unnecessary. However, he instead introduces the auxiliary variable, which he calls Tdiff
the force of the diffuser. Equation 1.38 shows clearly that a0 is related and not additional
to Tdiff ≡ Td. The issue is simply that the level of augmentation and limiting performance
of a diffuser differs, in general, for each possible diffuser geometry, and the limiting per-
formance cannot be specified without introducing at least one integrated property of
the diffuser. The introduction of a0, in fact, provides a number of additional insights,
among them relating velocity induction to duct force as in Equation 1.38.

Considering the diffuser as an axisymmetric aerofoil body, suction on the leading edge
may, in general, produce a thrust component that is directed into the wind. The net force
on the diffuser is then the sum of suction forces and pressure drag forces. When the
diffuser is not ideal, the ratio of net force on diffuser to force on the rotor is increased
and exceeds the prediction of Equation 1.38.

1.7.4 Generalised Actuator Disc Theory and Realistic Diffuser Design

The analysis presented here of ducts or diffusers in inviscid flow is only the starting
point. Referring to this approach, which extends the open flow actuator disc theory to
deal with augmented flows as ‘generalised actuator disc (AD) theory’, note that it

1) is a limiting theory (as is the Betz theory in open flow) that considers only inviscid
flow,

2) shows clearly why flow concentration devices increase available energy linearly as
increase of mass flow and not as the cube of the augmented velocity,

3) describes ideal systems, whereas real diffusers may be far from the limiting perfor-
mance suggested; in general, their fixed geometry will only best suit one state of
loading,

4) as an inviscid model, does not capture effects of flows external to the diffuser and
rotor which can be used to augment performance through viscous interactions. Some
diffusers are very much designed to exploit such effects as in the FloDesign wind
turbine [38].

Generalised AD theory affords some new insights and provides energy limits for ideal
systems, but there is still quite a gap between such ideal limiting theory and real-world
design of flow augmentation systems.

The induction, a0, of the ideal empty duct to be associated with a particular real duct
can only crudely be estimated Jamieson [39] as ae 𝜂 where ae is the induction of the
empty duct and 𝜂 is the ratio of Ct associated with Cp max to 8/9. Moreover, determi-
nation of these parameters relies on detailed modelling of specific ducts. However, the
generalised AD model refutes some fallacies about duct performance and does give a



�

� �

�

38 Innovation in Wind Turbine Design

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2

Cp

Ct

Vortex numerical model

Generalised AD theory

Duct 1

Duct 0

Duct 2

Figure 1.14 Performance characteristics of ducts.

reasonably self-consistent view of duct designs in inviscid flow (Figure 1.14) with some
insights that are transferable to real duct design (Chapter 18). In Figure 1.14, results
from the vortex ring model of McLaren–Gow [32] are compared with the generalised
AD model based on Equation 23 of Jamieson [39].

1.8 Blade Element Momentum Theory

1.8.1 Introduction

BEM theory is the most widely used theory in practical design methods and computer
codes for predicting loads and performance of wind turbines. In any balanced overview
of wind turbine modelling reflecting current research directions, much attention would
be devoted to vortex theories and CFD. These and numerical methods, in general, are
not discussed. They may offer more accurate analysis of specific configurations, but they
do not yield analytical relationships that can provide physical insight to guide parametric
evaluations and concept design.

In BEM, the swept area of the rotor is considered as a set of annular areas (Figure 1.15)
swept by each blade element. The blade is divided spanwise into a set of elements which
are assumed to be independent of each other, so that balance of rate of change of fluid
momentum with blade element forces can be separately established for each annular
area. The basic theory is from Glauert [40], with the modern forms for numerical
implementation in BEM codes having developed following the adaptation of Glauert’s
theory by Wilson et al. [41]. BEM theory is summarised here in order to preserve a
self-contained account of some new equations that are developed from it.

1.8.2 Momentum Equations

Considering thrust as rate of change of linear momentum of the flow (overall axial veloc-
ity change, 2aU ×mass flow rate) passing through an annulus at radius r of width dr and
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Wind direction

Figure 1.15 Actuator annulus.

denoting a tip effect factor (to be discussed) as F ,

Thrust dT = 4𝜋𝜌rU2 a(1 − a)F dr (1.39)

and similarly considering torque and rate of change of angular momentum:

Torque dQ = 4𝜋𝜌r3U a′𝜔(1 − a)F dr (1.40)

In Equation 1.40, the tangential induction factor, á is introduced. The development
of tangential velocity in the air occurs at the rotor plane and is considered to be from
zero as the air is non-rotating immediately upstream of the rotor rising immediately
downstream to a value of 2á𝜔, which is the rotational angular velocity imparted to the
wake by the torque reaction on the rotor. The torque reaction on the air grows from zero
to maximum across the rotor plane and an average value of induction, á, rather than 2á,
is used in the flow triangle (Figure 1.16).

W/Uωr (1 + aʹ ) λx (1 + aʹ )W

α

U(1 – a)

Lift ∝ CL 

Drag ∝ CD

(1 – a)

φ
θ

φ

Figure 1.16 Local flow geometry at a blade element.
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1.8.3 Blade Element Equations

Considering blade element forces on a blade element at radius r of width dr,

Thrust dT = 1
2
𝜌W 2Bc(Cl cos𝜑 + CD sin𝜑)dr (1.41)

Torque dQ = 1
2
𝜌W 2Bc(CL sin𝜑 − CD cos𝜑)rdr (1.42)

Equations 1.39–1.42 allow dT and dQ to be eliminated, yielding two equations in the
three unknowns, a, a′ and 𝜑. A third equation is given by considering the flow geometry
local to each blade element at radius, r, that is at radius fraction, x= r/R.

From the flow geometry (Figure 1.16),

tan𝜙 = U(1 − a)
𝜔r(1 + a′)

= (1 − a)
𝜆x(1 + a′)

(1.43)

Equating Equation 1.39 with Equation 1.41 and Equation 1.40 with Equation 1.42 to
solve for the induced velocities a and a′ (also making use of Equation 1.43) gives

a
1 − a

=
𝜎(CL + CD tan𝜑)

4F tan𝜑 sin𝜑
(1.44)

a′

1 + a′ =
𝜎(CL tan𝜑 − CD)

4F sin𝜑
(1.45)

where 𝜎, the local solidity, is defined as 𝜎 = Bc/2𝜋r.
Usually, an iterative procedure is used to solve Equations 1.43–1.45 for each local blade

element of width Δr. Hence, using Equations 1.41 and 1.42, the thrust and torque can
be found on the whole rotor by integration.

The BEM analysis of Equations 1.39–1.45 has followed the widely used formulation
of Wilson et al. [41], who suggested that drag should be neglected in determining the
induction factors, a and a′. According to the PhD thesis of Walker [42]:

… it has been the assumption that the drag terms should be omitted in calcula-
tions of a and a′… on the basis that the retarded air due to drag is confined to
thin helical sheets in the wake and (will) have negligible effect on these factors.

Although drag must be accounted for in determining the torque and power developed
by a rotor, opinion is divided8 about whether the drag terms should be included in evalu-
ation of the induction factors. Neglecting drag leads to simpler forms for Equations 1.44
and 1.45 and can enable a closed-form solution (Section 1.8.7). It also simplifies the
following analyses.

1.8.4 Non-dimensional Lift Distribution

From Equation 1.43,
a

1 − a
=
( Bc

2𝜋r

) CL cos𝜑 + CD sin𝜑

4Fsin2𝜑
(1.46)

= B
8𝜋

(cCL

R

)(R
r

) (cos𝜑 + CD/CL sin𝜑)
Fsin2𝜑

(1.47)

8 DNV GL use the formulation including drag as presented in Equations 1.44 and 1.45 in their commercial
BEM code, Bladed.
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The term (cCL/R) represents a non-dimensional lift distribution where the chord
distribution c≡ c(𝜆, x) is, in general, a function of radius fraction, x= r/R, and design
tip speed ratio, 𝜆.

Let Λ(𝜆, x) = c(𝜆,x)CL

R
, and let k = CL

CD
:

Then
a

1 − a
= ΛB

8𝜋xF
[1 + (1/k) tan𝜑]

sin𝜑 tan𝜑
(1.48)

And

sin𝜑 = (1 − a)√
(1 − a)2 + 𝜆2x2(1 + a′)2

(1.49)

Hence, after some manipulation:

Λ(𝜆, x) = 8𝜋a(1 − a)
B𝜆(1 + a′)

√
(1 − a)2 + 𝜆2x2(1 + a′)2

F[
1 + (1 − a)

k𝜆x(1 + a′)

] (1.50)

The tangential induction factor, a′, can be solved as in Equation 1.51 in terms of a
using Equations 1.43–1.45 to eliminate 𝜑.

a′ = {𝜆2k2x2 + 2𝜆kx − 4ak[𝜆x − k(1 − a)] + 1}0.5 − (𝜆kx + 1)
2𝜆kx

(1.51)

Note that the elimination of 𝜑 in Equations 1.50 and 1.51 is only apparent as the
lift-to-drag ratio, k, depends in general on the angle of attack, 𝛼, and 𝛼 = 𝜑(x) − 𝜃(x) − 𝜓

where 𝜃(x) is the blade twist distribution and𝜓 is the pitch angle of the blade. In the limit
of zero drag when k →∞:

a′ = (4a − 4a2 + 𝜆2x2)0.5 − 𝜆x
2𝜆x

(1.52)

Equation 1.52 also appears in Manwell et al. [43].
With further approximation:

a′ = a(1 − a)
𝜆2x2 (1.53)

1.8.5 General Momentum Theory

When a rotating wake is considered in ideal inviscid flow, the angular momentum
imparted to the air by torque reaction at the rotor plane is conserved and wake rotation
is preserved through the whole of the wake. To balance the external pressure, the inter-
nal static pressure on the streamtube boundary of the far wake must be atmospheric.
However, in order to maintain wake rotation by balancing centrifugal forces, the static
pressure within the wake must reduce below ambient atmospheric. The power balance
diagram is then similar to Figure 1.6; except that in the far wake, for any single stream
tube annulus or for the average over the whole disc, the residual pressure power is
now p2A2U2 = p2A0U0 where p2 < p0. Hence, unlike the ideal actuator disc with a
non-rotating wake, there is a change in pressure power as well as kinetic power between
far upstream and far downstream. The theory which considers this is usually referred



�

� �

�

42 Innovation in Wind Turbine Design

to as ‘general momentum theory’ and has been the subject of extensive discussion [28,
40–42, 44]. Standard BEM models, such as those developed in Sections 1.8.1–1.8.4,
consider wake rotation to the extent of relating the tangential velocity developed at
the rotor plane and its associated induction factor to the rotor torque, but they ignore
power terms associated with rotational kinetic energy and suction potential energy of
the wake. An extensive review comparing BEM models including general momentum
theory is available in Sørensen [28].

1.8.6 BEM in Augmented Flow

The generalised actuator disc results of Section 1.7 can be used to derive a generalised
BEM that will assist in the optimisation of rotors in ducts or diffusers. In order to revise
the BEM equations for generalised flow conditions, consider first the elemental thrust
and axial momentum balance:

The mass flow rate through the rotor plane is 𝜌(2𝜋rdr) {U(1− a)F}. The total change
in flow velocity between far upstream and far wake (see Table 1.4) is:

dU = U
{

1 −
(1 − 2a + a0

1 − a0

)}
=

2U(a − a0)
(1 − a0)

(1.54)

However, considering the thrust force on the rotor alone (see Equation 1.41):

dT = 4𝜋𝜌rU2 (a − a0)(1 − a)
(1 − a0)2 F dr (1.55)

Equation 1.42 is unchanged and hence

dQ = 4𝜋𝜌r3Ua′𝜔(1 − a)F dr (1.56)

Equations 1.41, 1.42 and 1.45 are also unchanged. The tangential induction factor a′

may be approximated by neglecting drag and generalised as

a′(1 + a′) =
(1 − a)(a − a0)
(1 − a0)𝜆2x2 =

Ct(1 − a0)
4𝜆2x2 (1.57)

The further development of the generalised BEM model is simplest if a0 is assumed
to be a suitably averaged constant value over the rotor disc and that is tacitly assumed
in the following analyses. However, there is no requirement for this and a variation of
a0 ≡ a0 (r, 𝜃) may be defined over the rotor disc. The equation system in the generalised
flow case may be solved by iterative numerical methods in the same way as in standard
BEM. The associated non-dimensional lift distribution is

Λ(𝜆, x) =
2𝜋Ct

B𝜆(1 + a′)
√
(1 − a)2 + 𝜆2x2(1 + a′)2

F[
1 + (1 − a)

k𝜆x(1 + a′)

] (1.58)

For an optimum rotor, a = am = (1 + 2a0)/3 and Ct = 8/9.
If the maximum lift-to-drag ratio of a chosen aerofoil section occurs at an angle of

incidence 𝛼 = 𝛼0, then the optimum twist distribution is given as:

𝜓(x) = tan−1
{ 2(1 − a0)

3𝜆x(1 + a′)

}
− 𝛼0 (1.59)
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The optimum twist distribution will evidently vary with a0 and hence may vary
significantly according to the nature of the system affecting the rotor plane induction.
Suppose there is substantial flow augmentation at the rotor plane. As Ct = 8/9 univer-
sally, the rotor is optimally loaded at exactly the same value of thrust coefficient and
thrust as in open flow with no augmentation system present. This implies that the blade
elements must be pitched much further into the flow direction so that a reduction in
the lift component producing thrust exactly compensates for the potential increase in
thrust due to the augmented local flow velocity. However, in this situation there is then
a much larger lift contribution to rotor torque than in open flow. This corresponds
to the increased power performance coefficient, which may exceed the Betz limit in
proportion to the flow augmentation achieved.

The usual actuator disc theory, whether standard or generalised, considers only
inviscid flow. In order to be more realistic and useful for design calculations, empirical
modelling is introduced to represent the thrust coefficient in the turbulent wake state.
Experimental validation for systems with concentrators is not yet available, and so the
results derived represent no more than a consistent extension from the standard open
flow model to the generalised actuator disc theory.

If a is the induction at the rotor plane in open flow, then the transformation,
a → (a − a0)/(1 − a0) determines the value of axial induction at a plane (not the rotor
plane) in constrained flow where the induction is half of that in the far wake. However,
as is explained in Jamieson [36], the value of thrust coefficient, Ct, is independent of
location in the system. Therefore, this transformation may be employed to determine
an expression for thrust coefficient that is applicable at the rotor plane.

In open flow, various formulations are employed to modify the thrust coefficient
equation of the inviscid flow actuator disc as the rotor approaches the turbulent wake
state. DNV GL’s commercial BEM software package, Bladed, defines thrust coefficient,
Ct, as:

Ct = 4a(1 − a) for 0 ≤ a ≤ 0.3539 (1.60)
Ct = 0.6 + 0.61a + 0.79a2 for 0.3539 < a ≤ 1 (1.61)

In generalised flow states, applying again the transformation of Equation 1.90 results
in the equations:

Ct =
4(a − a0)(1 − a)

(1 − a0)2 for 0 ≤ a ≤ a0 + 0.3539(1 − a0) (1.62)

Ct = 0.6 + 0.61
{a − a0

1 − a0

}
+ 0.79

{a − a0

1 − a0

}2

for a0 + 0.3539(1 − a0) < a ≤ 1

(1.63)

Equation 1.81 does not accurately accord with BEM theory as reflected in
Equation 1.85, where the tip effect modifies the thrust coefficient. Thus, the method of
application is to factor the Ct in the BEM solutions as a ratio of Equation 1.61 or 1.63
to the corresponding actuator disc Equations 1.60 and 1.62.

In open (unconstrained) flow, the thrust coefficient is essentially unique and optimum
at 8/9 at least in the ideal inviscid flow case. However, as is elaborated in Jamieson [36],
in constrained flow, the thrust coefficient is a system property. Irrespective of rotor effi-
ciency, Ct in an ideal system is optimally 8/9 and maximises Cp at that value. If the
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system is not ideal in the optimal rotor loading state (which for a diffuser would mean
that the diffuser is not fully optimised for the flow field that will develop in operation
at a rotor thrust coefficient of 8/9), then the Ct that maximises Cp will be <8/9 and the
associated maximum Cp will be less than it would be in an ideal system. On the other
hand, any external mass flow (i.e. flow not passing through the rotor) that influences
the overall energy exchange, for example, by assisting wake transport, may increase the
optimum Ct at the rotor plane to above 8/9. Results of Phillips et al. [29] suggest that in
a well-designed diffuser, an optimum Ct of around unity may be achieved.

Great care is required in applying generalised BEM to real systems, but the new theory
offers a rationalised approach and parametric insight for the optimisation of rotor design
in flow concentrators that has not been previously available. The general approach as
in Jamieson [39] will be to replace a0 with 𝜂(a) a0, where 𝜂(a) is a system efficiency
function to be defined from empirical information, CFD analyses or otherwise. Also,
the estimation of a0 is not straightforward, as is discussed in Jamieson [39].

Nevertheless, the introduction of the variable a0 characterising flow augmentation
in conjunction with the indicated generalisation of the thrust coefficient indicates an
extension of the BEM theory, which is simple to implement and can address the design
of rotors in flow concentrators.

It is also important to be aware of systems where ducted rotors may be used, and the
generalised BEM theory developed here will not be applicable as in the case of a tidal
turbine where distances from the free water surface and sea bed are not large compared
to the rotor dimensions. In such a case, Bernoulli’s equation with only pressure and
velocity terms (the usual basis of wind turbine actuator disc models) is insufficient and
an adequate model [45] must account for buoyancy terms as the pressure drop behind
the turbine will induce a local drop in sea surface level.

The analytical relationships developed in the foregoing discussion of BEM theory can
be bypassed in the use of the usual numerical methods for BEM solutions. However,
identification of explicit formulae is considered to be of great value in design develop-
ment, facilitating preliminary parametric studies that provide insight into how some of
the key variables in rotor design may influence performance. This will be revisited later
in the context of specific case studies.

1.8.7 Closed-Form BEM Solutions

With the assumption advocated by Wilson et al. [41] that drag should be neglected
in evaluating the induction factors, a closed-form solution to the BEM equations can
be obtained. This has been previously established [43], but the following presentation
provides a form that, with piecewise representation of aerofoil characteristics, could be
adapted to represent aerofoils with nonlinear lift characteristics (stall). Neglecting the
tip loss, F , the term with lift-to-drag ratio k on the assumption that k𝜆 is very large and,
initially at least, also neglecting the tangential induction factor which is very small in
effective operating states, Equation 1.50 reduces to

Λ(𝜆, x) = 8𝜋a(1 − a)
B𝜆

√
(1 − a)2 + 𝜆2x2(1 + á)2

which is equivalent to;
c(𝜆, x)Cl

R
= 8𝜋a sin(𝜙)

B𝜆
(1.64)
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Let us now represent the lift coefficient, Cl(𝛼), as

Cl(𝛼) = Cl0 sin(𝛼 + 𝛼0) (1.65)

This representation of lift coefficient provided by Equation 1.65 is effectively linear
over the usual range of attached flow and the constant, 𝛼0, can represent the effect
of camber in providing positive lift at zero flow incidence. The lift slope Cl0 may be
represented as 2𝜋k0, where k0 is a correction factor to the ideal lift slope value of 2𝜋.
For example, k0 = 1.062 for a NACA 63421 section that may typically be used on a
large HAWT.

Relative to the rotor plane, a total equivalent pitch angle may be defined as;

𝜃(x) = 𝜃t(x) + 𝜃s + 𝜃p − 𝛼0 (1.66)

In its most general form, 𝜃s is a set angle of the blade relative to the rotor plane at
zero degrees pitch and 𝜃p is the applied pitch angle (relative to the set angle). From
Equation 1.65, noting from Figure 1.16 that 𝛼(x) + 𝛼0 = 𝜙(x) − 𝜃(x)where𝜙 is the inflow
angle, the axial induction, a, may be expressed as

a(x) =
(B Cl0𝜆c(x)

8𝜋R

)
sin(𝜙(x) − 𝜃(x))

sin(𝜙(x))

a =
k1𝜆 sin(𝜙 − 𝜃)

sin(𝜙)
where k1(x) =

B Cl0 c(x)
8𝜋R

(1.67)

In Equation 1.67, for convenience, the explicit dependence of variables has been
removed. Now the flow triangles of Figure 1.16 provide a second equation for the axial
induction factor, a.

a = 1 − 𝜆x tan(𝜙) (1.68)

In eliminating a from Equations 1.67 and 1.68, a quadratic equation in sin(2𝜙) is
obtained with the solution:

sin(2𝜙) =
⎧⎪⎨⎪⎩
√

(−c2
0 + c2

1 + 1) − c0c1

c2
1 + 1

⎫⎪⎬⎪⎭ (1.69)

where c0 =
(k1 sin(𝜃) − x)
(k1 sin(𝜃) + x)

and c1 =
(1 − k1𝜆 cos(𝜃))
(k1 sin(𝜃) + x)𝜆

Hence, the inflow angle, angle of attack, axial induction factor and lift coefficient can
be calculated at any radius fraction, x. To complete a BEM analysis, aerofoil drag may
be represented as a function of angle of attack, as, for example, in Equation 1.70 (which
is a curve fit representative of data for a NACA 63421 aerofoil).

Cd(𝛼) = 0.4147 𝛼2 − 9.775 × 10−4𝛼 + 5.388 × 10−3 (1.70)

The lift-to-drag ratio can then be computed for any given 𝛼 and the tangential induc-
tion factor, á, from Equation 1.52. Accepting some further approximation in results, the
tip loss factor (such as in the Prandtl form of Equation 1.71 may also be added. In esti-
mating the induction factors, drag is in effect set to zero in Equations 1.44 and 1.45. It
must naturally be accounted for in later calculations of rotor torque, power and loads.
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This ‘closed-form’ BEM analysis, at least for operating states not too far off design,
gives only slightly different results from iterative solutions that include drag in estimat-
ing the induction factors such as DNV GL code Bladed. For use as computer code, it is
probably no more efficient than the arguably more exact iterative solutions which can
usually converge very rapidly. It is occasionally useful for parametric analysis in enabling
analytic rather than numerical investigations.

1.9 Optimum Rotor Design

1.9.1 Optimisation to Maximise Cp

Optimum states are simpler to describe than general conditions. An analogy is that only
three coordinates will define the summit of a hill whilst infinitely many may be required
to characterise the whole surface. A natural assumption, having chosen a particular
wind turbine system scale and rotor diameter, is to consider as optimum an aerody-
namic design that will maximise power performance by maximising the rotor power
coefficient, Cp.

In the optimum state, for typical rotors designed for electricity production with design
tip speed ratios above 6, the tangential induction factor, a′, should be small over the
significant parts of span (x> 0.2). It may be neglected with little loss of accuracy in
Λ(𝜆, x) or calculated from Equations 1.51, 1.52, or 1.53.

The actuator disc result of Betz [46] establishes an optimum rotor thrust loading cor-
responding to a value of the thrust coefficient, Ct = 8/9. This implies an optimum lift
force on each blade element, which in effect specifies the product, cCL, in Equation 1.41.
Referring to Equation 1.42, it is plausible that with cCL fixed, performance is maximised
if CD is minimum and hence k is maximum. Thus, in the optimum operational state of
a wind turbine rotor, each blade element operates at maximum lift-to-drag ratio and
the only aerofoil data required to define this state therefore is the maximum lift-to-drag
ratio, k, and the lift coefficient, CL, associated with this maximum lift-to-drag ratio for
each element over the span of a blade. Optimum performance at maximum lift-to-drag
ratio is not exactly true (see later discussion around Equation 1.84), but is a satisfactory
approximation for mainstream designs with design tip speed ratio above 6.

For a lift-to-drag ratio, k = 100, design tip speed ratio, 𝜆= 9 and considering an opti-
mum rotor with a= 0.3333 at mid span where x= 0.5, Equations 1.51 and 1.53 give
values for a′ of 0.01010 and 0.01097 a difference in the optimum rotor state of around
10% albeit in a rather small quantity compared to the axial induction, a.

The square bracketed term in the denominator of Equation 1.50 which contains the
lift-to-drag ratio k is effectively unity over the significant region of span for typical mod-
ern large rotors with design tip speed ratio >6 and k ≥ 100.

The lift produced by an aerofoil section can be associated with a bound circulation
which is virtual over the span of the blade but becomes a real vortex at the end of the
blade where there is no material to support a pressure difference. The strength of this
vortex depends on blade number and blade solidity, and it is through models of this ‘tip
effect’ that the effect of the blade number on rotor performance is expressed in BEM
theory. Various tip effect models have been developed (see Section 1.10.3), the most rig-
orous by Goldstein [47]. The most commonly used model in BEM theory is from Prandtl
(see Wilson [41] for example) and that model is adopted in the following analyses.
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Adopting the Prandtl tip factor, F = (2/𝜋)cos−1(e−𝜋s/d)where d = 2𝜋R(1 − a)/(B𝜆) and
s = (1 − x)R:

F = 2
𝜋

cos−1
[

exp
{
−(1 − x)B𝜆

2(1 − a)

}]
(1.71)

With the assumptions that a= 1/3 in optimum operation, that a is constant over the
span and knowing the value of lift coefficient at maximum lift-to-drag ratio for the
aerofoil section selected at each radial station, Equation 1.50 then defines the chord
distribution of an optimum rotor as a function of radius fraction, x and design tip speed
ratio, 𝜆. If the approximations of neglecting a′, neglecting the very minor effect of drag
and neglecting tip effect are combined with the further approximation of neglecting
(1 − a)2 in comparison to 𝜆2x2, Equation 1.50 then reduces to

Λ(𝜆, x) = 8𝜋a(1 − a)
B𝜆2x

= 16𝜋
9B𝜆2x

(1.72)

Equations similar to Equation 1.72 have appeared in various forms, in Gasch and
Twele [48], Burton and Sharpe [49], and are easily understood intuitively. Lift per blade
element is proportional to dynamic pressure and chord width. Dynamic pressure on a
blade element is proportional to the square of the inflow velocity, which is predomi-
nantly the in-plane velocity when 𝜆> 6. Thus, to maintain total rotor lift at the appro-
priate fixed optimum value, Λ (𝜆, x) must approximately vary inversely as B𝜆2 x.

Equation 1.50 (or its simplified forms such as Equation 1.72) allows the optimum
chord distribution of a blade to be developed given a selection of aerofoil types that
will then define at each radial station, x, the maximum lift-to-drag ratio, k, the associ-
ated design lift coefficient, CL and the corresponding angle of incidence, 𝛼0. An opti-
mum blade twist distribution is then determined referring to Equation 1.43 and setting
a= 1/3 as:

𝜃(x) = tan−1
{

2
3𝜆x(1 + a′)

}
− 𝛼0(x) ≅

2
3𝜆x

− 𝛼0(x) (1.73)

As far as optimal blade shape is concerned, the simplified Equation 1.72 predicts
the chord distribution very well over the extent of span that most matters. It would
be usual in real designs to round the tip in a way that may be guided by practical
experience or CFD analyses and, for practical reasons associated with manufacture
and/or transportation, to limit the chord to much less than ideal values inboard of say
20–25% span. With the chord being so limited, and the sections normally transitioning
to a cylindrical blade root end, there is then no point to continue the twist distribution
near the blade root to the very high angles that would be predicted by Equation 1.73.
In that case, the approximate form of Equation 1.73 is a good estimate over the
aerodynamically active part of the rotor.

As was discussed, the optimum lift force on each blade element specifies the prod-
uct, cCL, in Equation 1.42. This means that the chord width can be optimised struc-
turally if aerofoils are available or can be designed with suitable values of design lift
coefficient CL. Thus, as is discussed further in Chapter 2, for the same blade design tip
speed ratio, aerofoils with high or low design CL can enable slender or wide optimum
blades.

There is however constraint on having rapid changes in the spanwise variation of CL.
A basic principle is that it is generally undesirable to have rapid changes in section lift
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(specifically lift and not lift coefficient) along the span of the blade. The trailing vortices
which generate induced drag (or the induction factor for a rotor) are proportional to
the spanwise gradient of lift (actually circulation but effectively the same). A sudden
change in blade chord is undesirable structurally and aerodynamically; this implies that
CL should not change abruptly since the relative inflow velocity varies only gradually
with radial position. It is therefore usually assumed9 that a constant CL is desirable over
most of span with a smooth reduction to zero at the tip.

Having characterised the optimum lift distribution as in Equation 1.50, expressions
generally useful for parametric studies are now derived for the power coefficient, thrust
coefficient and out-of-plane bending moment coefficient (to be defined). The torque
coefficient, Cq = Q

0.5𝜌U2𝜋R3 , where Q is the rotor torque, is sometimes useful in evalu-
ating the self-starting capability of wind turbines and is trivially related to the power
coefficient as Cq = Cp

𝜆
.

1.9.2 The Power Coefficient, Cp

Returning to Equation 1.42:

dQ = 1
2
𝜌W 2Bcr(CL sin𝜑 − CD cos𝜑)dr (1.74)

Hence elemental power is

dP = 1
2
𝜌W 2Bcr(CL sin𝜑 − CD cos𝜑)𝜔dr (1.75)

= 1
2
𝜌
(W

U

)2
R2V 3Λ(𝜆, x)B

(
sin𝜙 − cos𝜙

k

)
𝜆xdx (1.76)

and the rotor power coefficient is

Cp = B
𝜋∫

1

0
Λ(𝜆, x)

(W
U

)2 (
sin𝜙 − cos𝜙

k

)
𝜆xdx (1.77)

Substituting for W /U , sin 𝜑 and cos 𝜑 from Figure 1.16 and for Λ(𝜆, x) from
Equation 1.50:

CP = B
𝜋∫

1

0

8𝜋a(1 − a)F
B𝜆(1 + a′)

𝜆

{
(1 − a) − 𝜆x(1 + a′)

k

}
xdx{

1 + (1 − a)
k𝜆x(1 + a′)

} . (1.78)

Considering a rotor without tip effect, assuming a constant over the rotor span,
neglecting a′ and neglecting also (1−a)

k𝜆x(1+a′)
:

Cp = 8a(1 − a)∫
1

0

{
(1 − a) − 𝜆x

k

}
xdx (1.79)

9 The optimum spanwise distribution of circulation or lift on a fixed wing is a smooth elliptic variation
(which was provided uniquely at all angles of attack by the Spitfire wing), but there may not be any simple
theory to define the optimum shape for a rotor.
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and hence:

Cp = 4a(1 − a)2
[

1 − 2𝜆
3k(1 − a)

]
(1.80)

Equation 1.80, as it must, tends to the actuator disc result of Betz as k →∞. With k
finite, it is similar to a limiting case derived by De Vries [50] which arose from a quite
different beginning in the context of BEM theory for vertical axis wind turbines. De
Vries’ equation is

Cp = 4a(1 − a)2 −
BcCD𝜆

3

2R
(1.81)

Noting that BcCD𝜆
3

2R
= B

(
cCL

R

)
𝜆3

2k
and also considering Equation 1.72, the Equations 1.80

and 1.81 have a similar form.
Returning to Equation 1.78, the general expression for Cp can be expressed as:

Cp(𝜆) = ∫
1

0

8a(1 − a)F[k(1 − a) − 𝜆x(1 + a′)]𝜆x2

[k𝜆x(1 + a′) + (1 − a) )]
dx (1.82)

Equation 1.82 is a rigorous BEM relationship defining Cp first published, Jamieson
[51], without derivation. As was mentioned in connection with Equation 1.51, the
lift-to-drag ratio, k, is a function of angle of attack 𝛼(x)=𝜑(x)− 𝜃(x)−𝜓 and the flow
angle 𝜑 (x) is therefore implicitly present in Equation 1.82.

However, in the optimum rotor state, for typical design tip speed ratios above, say,
about 6 and with typical aerofoil selections for large HAWTs, it is a very good approx-
imation to assume that all the blade elements operate at their maximum lift-to-drag
ratio, k ≡ k(x) and, using Equation 1.51 or 1.52 to determine a′, Equation 1.82 can then
be directly integrated. Hence, maximum Cp may be expressed as a function of tip speed
ratio and lift-to-drag ratio as in Figure 1.17. Although for convenience in the calcula-
tions presented in Figure 1.17, the lift-to-drag ratio is treated as constant over the blade
span, there is no requirement for this to be the case. If k is defined as a function of x,
Equation 1.82 can be used for a rotor with differing aerofoil characteristics over the span,
as is usually the case on account of thickness-to-chord ratio decreasing from root to tip.

A chart such as Figure 1.17 has been published previously [52], but the results
were determined by numerical solution of the BEM equations and not from an
explicit formula. After such an exercise, Wilson et al. [41] fitted data with the formula
(Equation 1.83) which was claimed valid for 4≤ 𝜆≤ 25, and k = Cl/Cd ≥ 25 but
restricted to three blades maximum.

Cp max =
(16

27

)
𝜆

⎡⎢⎢⎢⎣𝜆 +
1.32 +

(
𝜆 − 8

20

)2

B2/3

⎤⎥⎥⎥⎦
−1

− (0.57)𝜆2

Cl

Cd

(
𝜆 + 1

2B

) (1.83)

Some general similarity between this empirical relation Equations 1.81 and 1.78 may
be noted with the additional complexity in Equation 1.81 taking account of tip effects
over the range of applicability.

It will be evident (Figure 1.17) that for any given blade number, B, and maximum
lift-to-drag ratio, k, there is a unique optimum value of tip speed ratio, 𝜆 to maximise Cp.
Figure 1.18 shows Cp max as a function of design tip speed ratio for a range of lift-to-drag
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Figure 1.17 Cp max versus tip speed ratio for various lift-to-drag ratios.

ratios and blade numbers. As is confirmed in Figure 1.18 (and also in Figure 1.17), a
typical state-of-the-art blade for a large wind turbine designed for a tip speed ratio
of around 9 and with average equivalent maximum lift-to-drag ratio around 100 will
achieve Cp max of ∼0.5. While Figure 1.17 shows appropriate trends, without a full
solution of the BEM equations, Equation 1.82 using the assumption of k constant at
a maximum value for the chosen aerofoils will only predict Cp curves accurately in the
region of Cp max.

Figure 1.18 clarifies an important point that to maximise the benefit from aerofoils that
may achieve higher lift-to-drag ratios, it is important to design new (higher) optimum
tip speed ratios. Figure 1.18 also provides a clear and immediate indication of how opti-
mum one-, two-, three- or multi-bladed rotors will compare in power performance for
any given choice of aerofoils, whilst Figure 1.17 clarifies the penalties that may apply in
operating at non-optimum combinations of lift-to-drag ratio and design tip speed ratio.

Equation 1.82 shows that Cp is a complex function of the axial induction, a. The result
that a= 1/3 results in maximum rotor Cp was based on simple actuator disc theory
(Equation 1.11) and this clearly cannot be exactly true for Equation 1.82. It may also
be noted that from Equation 1.74, it is only plausible and not rigorous that maximis-
ing k = Cl/Cd will maximise the torque on each blade element as the elemental torque
clearly also depends on flow angle, 𝜑 and how it may vary with k in the course of a full
solution of the BEM equations. Considering Equation 1.76, a power coefficient can be
defined local to each blade element as:

Cp(r, a, k) =
dP(r, a, k)

0.5𝜌U3(2𝜋r dr)
(1.84)

A strict optimisation according to the BEM theory presented will maximise Cp (r, a, k)
separately on each blade element. This results in a varying spanwise and k near to
maximum but not absolutely maximum on each aerofoil section. For typical large
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Figure 1.18 Influence of blade number and lift-to-drag ratio on maximum Cp.

electricity producing wind turbines with design 𝜆≥ 6 and k ≥ 100, in an ideal optimum
blade design, a is a little different from 1/3 over most of the span and k is very close to the
maximum for each aerofoil section. These effects are rather more significant, however,
for a rotor based on aerofoils with low lift-to-drag ratio, for example, sailcloth blades or
plate blades. The non-uniformity of an optimum distribution of axial induction is not
of practical importance for optimum rotor design because of the limitations of BEM
theory in its present form. Other issues appear in more accurate optimisation methods
(see Section 1.10.4). However, based on the BEM equation system in a standard form,
the non-uniformity of axial induction (i.e. not exactly constant at a value of 1/3 over
the whole span) of an optimum rotor is a consistent outcome and is mentioned for that
reason.

1.9.3 Thrust Coefficient

In a similar way to the derivation of maximum Cp from Equations 1.74–1.82, the asso-
ciated thrust coefficient can be determined as

CT = ∫
1

0
8a(1 − a)Fxdx (1.85)

In the limit of no tip loss (F = 1), the familiar actuator disc formula, CT = 4a(1 − a),
is recovered with CT = 8/9 for an optimum rotor. Equation 1.85 has a much simpler
form than Equation 1.82. The thrust coefficient is a system property dependent on rotor
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loading but independent of the efficiency of the rotor in power conversion. It is therefore
unaffected by lift-to-drag ratio or the tangential induction factor and dependent only on
the state of rotor loading characterised by the axial induction over the rotor plane which
is naturally influenced by the tip effect.

1.9.4 Out-of-Plane Bending Moment Coefficient

The steady-state out-of-plane bending moment of an optimised blade in operation at its
design tip speed ratio below rated wind speed and the introduction of pitch action may
be derived from any standard BEM code and has a characteristic shape as in Figure 1.19.
For typical large-scale electricity generating wind turbines, which are well optimised
rotor designs with design tip speed ratios above 6, the shape is largely independent of
design specifics and can usually be very well approximated by a cubic curve. Such repre-
sentations have been convenient in studies developing blade designs embodying passive
aeroelastic control (e.g. with flap-twist coupling as in Maheri [53]), where a simplified
representation of blade loading is useful. BEM theory provides a simple derivation of
the result as follows.

Defining a dimensionless bending moment coefficient at arbitrary radial dis-
tance, r, as CM(r) = M(r)

(0.5𝜌U2𝜋R3)
and following similar methods of analysis as for Cp in

Equations 1.74–1.82 lead to:

CM(r) = 8a(1 − a)
B ∫

1

x

F(y){
(1 + a′)𝜆y + (1 − a)

k

} {
𝜆y + (1 − a)

k

}
(y − x)ydy

(1.86)

Neglecting a′ in comparison to unity gives

CM(x) = 8a(1 − a)
B ∫

1

x
F(y)(y − x)ydy (1.87)
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Considering the case with no tip effect, where F(y)= 1:

CM(x) = 4a(1 − a)
{ 1

3B
(2 − 3x + x3)

}
(1.88)

And for an optimum rotor, taking a= 1/3:

CM(x) = 16
27B

{
(x − 1)2(x + 2)

2

}
(1.89)

For a typical conventional three-bladed wind turbine, Equation 1.89 has the appro-
priate cubic shape but, because the bending moment is most heavily weighted by the
loading which is farthest outboard, the tip effect is very significant in relief of blade root
bending moment.

Wilson (see Spera [52], Chapter 5, p. 261) and Milborrow [54] (a paper offering
a variety of useful simplified parametric equations for blade loads) have previously
derived an equation similar to Equation 1.89. Wilson noted that this relationship
predicted values significantly greater than measured blade bending moment data [55]
from the Mod-2 HAWT. He further observed that the Mod-2 blade design was far
from an optimised configuration and described Equation 1.89 as ‘an upper bound’
which it is for an optimum rotor without tip loss. However, noting the more general
form of Equation 1.88, the bending moment coefficient is unsurprisingly related to the
thrust coefficient which is not maximised at a= 1/3 even in the ideal inviscid model
without considering higher loadings that may result in the turbulent wake state. Thus,
suboptimal rotors may have bending moment characteristics that exceed (or are within)
the predictions of Equation 1.89.

A direct application of Equation 1.89 will overestimate the moment at shaft centreline
of an optimum three-bladed rotor with a design tip speed ratio of 𝜆= 7 by about 13%.
Equation 1.87 is therefore not immediately appropriate for use in parametric studies
without some adjustment to account for the tip effect.

Equation 1.90 is a useful approximation to Equation 1.83, which can represent the
blade root moment quite accurately when (as is the case for mainstream electricity gen-
erating wind turbines) the product of blade number and design tip speed ratio, B𝜆> 10.

CM(x) = 16
27B

G(B𝜆)f (x) (1.90)

where
G(B𝜆) = 5.5744 × 10−7B3𝜆3 − 8.2871 × 10−5B2𝜆2

+ 4.4085 × 10−3B𝜆 + 2.3245 × 10−1 (1.91)

and

f (x) = (x − 1)2(x + 2)
2

(1.92)

In retaining the simple cubic function, f (x), and providing an accurate match to
the blade root bending moment, Equation 1.90 is somewhat conservative in blade
out-of-plane bending moment estimates on the outboard blade. Accuracy in estimation
of blade root bending moment is probably of greatest interest in parametric studies and,
for a three-bladed wind turbine with 𝜆= 7, Equation 1.90 gives CM (0) as 0.8809, whilst
integration of Equation 1.86 using the Prandtl tip loss factor gives a corresponding
value of 0.8827.
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1.9.5 Optimisation to a Loading Constraint

As is discussed in Chapter 9, the most prevalent system optimisation criterion is to min-
imise cost of energy (COE). Maximising rotor aerodynamic performance is certainly
a natural design objective but may not be overall optimum in minimising COE. Snel
[56] noted that at peak Cp (corresponding in the ideal case to an axial induction factor,
a = 1/3) the thrust coefficient, Ct is rising rapidly so that it may be beneficial to back
off maximum Cp a little, sacrificing a little power in order to reduce loads rather more
substantially. This idea has been implemented in many past rotor designs but not to the
extent of having aerodynamic designs targeting a very much lower induction, a concept
more recently explored by Chaviaropoulos and Voutsinas [57]; and this idea was taken
further including specialised aerofoil design for such a rotor in the Innwind.EU project
[58]. The possibility of a COE benefit in a design for low axial induction and reduced
Cp max was investigated. The aim is to have a larger and more productive rotor able to
operate at similar load levels to one designed for Cp max at a = 1/3.

The essence of this can be derived very simply considering the ideal actuator disc
equations for Cp and Ct . From Equation 1.88, the steady-state out-of-plane bending
moment, M, at fixed wind speed U is seen to be proportional to the cube of radius,
R, and to the thrust coefficient, Ct. Thus,

M ∝ CtR3 ∝ a(1 − a)R3

Suppose an optimum rotor design is developed to maximise power on the basis that
a and R may vary while M is kept constant. Thus,

M ∝ CtR3 ∝ a(1 − a)R3 = km (constant) (1.93)

Equation 1.93 holds true for the out-of-plane bending moment at any blade radius
when a is the associated local induction but, for the present analysis, consider M to be
evaluated at the blade root. The power at the same wind speed, P, is given as

P ∝ CpR2 ∝ a(1 − a)2R2 (1.94)

And thrust, T , is given as

T ∝ CtR2 ∝ a(1 − a)R2 (1.95)

The variation of power and thrust with a and R may be considered. As a and R are
now related through M being constant, P(a), R(a) and T(a) may be determined. From
Equations 1.93 and 1.94; P = k a1/3(1 − a)4/3 (with k, another constant) and

dP
da

= k
3

a−2/3(1 − a)1/3(1 − 5a) (1.96)

Hence, for P to be maximum,

a = 1
5

Applying the subscript s to values associated with a standard rotor design (a = as =
1/3), when P is maximum:

R
Rs

=
{as(1 − as)

a(1 − a)

}1/3

= 1.116
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P
Ps

= a(1 − a)2

as(1 − as)2

(
R
Rs

)2

= 1.076

T
Ts

= a(1 − a)
as(1 − as)

(
R
Rs

)2

= 0.896

General trends of R, P, M and T relative to unit values of the standard rotor are pre-
sented in Figure 1.20.

The analysis indicates that a rotor designed for an axial induction factor of 0.2 that
may be 11.6% larger in rotor diameter can operate with 7.6% increased power and 10%
less thrust at the same level of blade rotor out-of-plane bending moment as the baseline
design. The rotor diameter is larger by 11.6%, but this does not produce additional power
proportional to the 25 % swept area increase because a lower optimum induction of
a = 0.2 is intrinsic in the trade-off and the limiting rotor power coefficient is reduced
from the Betz limit of 0.593 to a value Cp = 4a(1 − a)2 = 0.512.

A somewhat more detailed and realistic analysis will modify these numbers, but
Figure 1.20 captures the essence of the low-induction rotor design concept. Designing
for the same blade steady-state out-of-plane bending load level, say, at rated power
is not necessarily the overall optimum solution for minimum system COE but it is
a clear basis to investigate more deeply whether designs that target a significantly
lower induction than 1/3 may reduce COE. There is reduced rotor thrust associated
with maximum power (compared to a purely aerodynamic optimisation with a = 1/3)
and, in consequence, wind farm wake losses may be reduced. A key issue for the
low-induction design concept is whether the larger rotor can always defend against
critical load increases over the full spectrum of operating conditions and hence avoid
related cost increases.
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1.9.6 Optimisation of Rotor Design and Hub Flow

Refinements to BEM have been considered [59, 60] in the light of analyses suggesting
reduced inboard axial induction associated with reduced pressure near the wake
core. These may include viscous effects supported by CFD analysis and are targeted
at improving design methods to determine aerodynamically optimum platforms. The
following very simplified analysis suggests, however, that such refinements may be
pointless unless combined with a model of the flow around some specific hub shape.
Flow augmentation benefit from effective design in the hub area may exceed any effects
due to wake core suction, while losses in standard design arrangements may conflict
with wake suction benefits.

Consider as a reference level an ideal rotor capable of achieving a local Cp on every
blade element of 16/27 and hence a complete rotor Cp of 16/27. Now the central region
of real rotors varies considerably. There is invariably at least a small nose cone over the
hub region. Often, there is an exposed section of blade near the root which is cylindrical
having negative aerodynamic performance and creating some drag but no lift. Often,
the blade has no positive aerodynamic contribution until beyond 15% span and aero-
dynamic function is generally reduced inboard of maximum chord which is typically
around 25% span.

Let us suppose then that there is a central region of the ideal rotor up to a radius ra
which contributes no aerodynamic power. Then the limiting Cp for the whole rotor is

Cp(ra) =
16
27

(R2 − r2
a

R2

)
(1.97)

Consider instead having a large aerodynamically shaped nose cone of radius rh cover-
ing all aerodynamically inactive hub and blade parts and which deflects the central flow
constructively over the remainder of the aerodynamically active blade. The whole rotor
Cp may now be represented as

Cp(rh, k) =
2

R2 ∫
R

rh

16
27

(
1 + k

rh
3

2r3

)
rdr (1.98)

The explanation for Equation 1.98 defining Cp(rh, k) is as follows. If potential flow over
a 2D object, say a cylinder, is considered, the flow concentration at right angles to the
flow direction varies inversely as square of distance r. For a 3D object, say a sphere,
the flow concentration varies as inverse cube of distance. The formula bracketed in
Equation 1.98 is the standard potential flow solution for a sphere when the coefficient,
k, is unity. Thus, a smooth displacement of the central flow outwards with the added
mass flow varying as inversely as cube of the radial distance is represented with a coeffi-
cient, k, modelling the specific shape of cone as distinct from a spherical cone. According
to Section 1.7 and generally accepted wisdom about flow concentration, local Cp will
increase directly in proportion to the mass flow increase as is modelled in Equation 1.98.

Losing performance from an area within 20% span incurs ∼4% reduction in rotor
Cp, whilst deflecting the central flow over working parts of the blades is predicted to
give a 1.7% gain for a hub cone of 20% span (assuming k arbitrarily as 0.5). Such a large
hub cone seems quite extreme, but note that GE Wind has recently conducted experi-
ments with very large hub cones (Figure 1.21) and with claims for a performance gain
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Figure 1.21 GE Wind experimental hub flow system on a 1.7 MW wind turbine. Reproduced with
permission of General Electric.

of ∼3% [61]. They describe this system as ECO ROTR (Energy Capture Optimization by
Revolutionary Onboard Turbine Reshape). The idea that the central flow may be more
productively displaced radially outward also appears in studies of downwind turbines by
ETH Zurich [62], supported by the Japanese downwind turbine manufacturer, Hitachi.
Nacelle blockage preventing flow through the central region of the rotor is found to give
small increases in performance.

1.10 Limitations of Actuator Disc and BEM Theory

1.10.1 Actuator Disc Limitations

In spite of the great practical value of his actuator disc concept, Froude was aware of
unresolved issues especially in regard to what happens at the edge of the disc. In classical
inviscid models, a singularity exists at the edge of the disc because a constant pressure
difference across the disc is assumed to exist all the way from the centre to the edge.
However, at the edge point, as viewed from outside the disc, the static pressure must
in reality have a single unique value. Van Kuik and Lignarolo [23] shows that the iso-
bars converge on the disc edge so that, in the inviscid mathematical model at least, the
pressure is infinitely multiple-valued. As far as numerical modelling is concerned, this
presents no fundamental problem in getting accurate results near the edge of the disc if
the numerical resolution is high enough. It is a quite separate issue how best to model
flow at the edge of a real rotor with discrete, finite blade number.
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1.10.2 Inviscid Modelling and Real Flows

The actuator disc concept is not in itself limited to inviscid modelling and has been
employed in many CFD studies [63], but BEM theory is basically inviscid except that
some boundary layer effects are implicit in using aerofoil data accounting for drag and
empirical add-ons may be incorporated to approximate modelling of unsteady effects
like stall hysteresis. It is rather interesting that a full wake expansion is never observed
in real flows due to entrainment and mixing of the external flow through viscous effects.
Yet, the inviscid model as represented by standard BEM appears to predict power per-
formance, for example, very well at least for aligned flow conditions in operating states
avoiding stall. This BEM model is underpinned by the Betz actuator disc analysis; and
after accounting for tip losses and finite aerofoil drag based on 2D wind tunnel data,
the Betz limit remains as a very credible upper bound for performance of an open flow
rotor.

1.10.3 Wake Rotation and Tip Effect

The so-called tip effect essentially differentiates rotors of similar solidity, aerofoil selec-
tion and design speed in terms of blade number. In the limit of an infinite number of
infinitely slender blades travelling at infinite rotation speed, all the power is produced
without a torque reaction or wake rotation.

Assuming a uniform wind field upstream of the rotor with no intrinsic rotating struc-
tures or initial angular momentum, the creation of angular momentum in the wake of
the rotor is predicted for all real rotors with a finite number of blades and finite speed,
which in turn implies a non-zero torque reaction.

This is not in question, but De Vries [50] and later Sharpe [27] have made the case
for the view that wake angular momentum is associated with a reduction in wake core
static pressure that arises conservatively from the blade circulation. In reviewing gen-
eral momentum theory, it is apparent that the wake vortex is conservative as must be
any vortex in steady state and in inviscid flow. However, this does not mean that it has no
influence on available rotor power. The purely axial flow incident on the rotor provides
available power to the rotor through the rotor plane pressure difference and also rota-
tional kinetic power to the wake sharing the rotor plane pressure difference pressure dif-
ference and associated power in the ratio (1 : á) between rotor and wake. Conventional
BEM modelling as, for example, presented in Section 1.8 does not consider the effect of
wake rotational kinetic power or wake suction power in the overall power balance. In
CFD modelling, Madsen et al. [59, 60] has supported the De Vries interpretation. This is
significant for the physical interpretations underlying BEM theory and for the accuracy
of detailed design calculations on rotor aerodynamics. It little affects the top-level para-
metric analyses and formulae developed in Section 1.9 as applied to rotors with design
tip speed ratios above about 6. It will matter especially in detailed aerodynamic design
of rotors around the hub and tip areas especially and have substantial implications for
rotors with very low design tip speed ratio.

There are a number of tip effect models (e.g. see Shen et al. [64]). The Prandtl model
has been employed as the simplest available, purely for convenience, having in mind that
differentiating these models or getting into accurate correspondence with real tip flows
moves into territory where the simple BEM theory is generally inadequate. It should also
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be noted that there are also a number of different approaches in the application of the
tip factors that differ in detail from Equations 1.39 and 1.40 including an elegant model
from Anderson [65] which accounts for cyclic variation in the induction factors.

1.10.4 Optimum Rotor Theory

Optimum rotors produced by BEM theory differ a little from those developed with the
ideal actuator disc assumption that the axial induction is 1/3 everywhere over the rotor
span. These differences are considered unimportant because BEM theory is not accurate
enough for them to be really meaningful. Work of Johansen et al. [66] on optimum rotor
design following from the previous work [59, 60] also suggests that classical BEM solu-
tions for optimum rotors will not be very accurately optimal. This is important both at a
fundamental level and for practical detailed design of optimum rotors, but does not par-
ticularly undermine the value of equations such as Equation 1.72 for guiding parametric
design investigations. As mentioned, using the ideal actuator disc model to optimise a
rotor of fixed diameter in order to maximise power leads to the simple result that the
axial induction should be 1/3. It is interesting to see that the corresponding optimisa-
tion at fixed blade bending moment without constraint on rotor diameter also leads to
a simple, elegant but different result that the axial induction should be 1/5.

1.10.5 Skewed Flow

A major weakness of BEM theory is in modelling wind turbines in yawed flow. When the
flow is oblique to the rotor plane, there are cyclic variations in angle of attack which can
be important especially when flow angles approach stall. The strip theory assumption
that the rotor can be analysed as annular elements that are independent of each other
is less justifiable. Dynamic stall behaviour and stall hysteresis can have greater effect on
rotor performance. Also, in yawed flow there are additional issues about the wake. Does
it remain symmetric about the rotor axis or is it skewed in the wind direction? Experi-
mental evidence and CFD analyses indicate the latter and skewed wake correction as, for
example, based on Glauert [67] have been applied in using BEM to model yawed flow.
BEM theory can adopt simplifying assumptions (such as taking account of the angle of
the wind vector in the inflow calculations), can incorporate dynamic stall models and
yield useful results. However, in yawed flow, there is much less certainty in basic calcu-
lations (even such as the determination of average rotor power) than in cases where the
wind direction is normal to the rotor plane. In general, more sophisticated aerodynamic
modelling using vortex wake models [9, 68], or CFD is desirable.

1.10.6 Summary of BEM Limitations

The limitations of BEM have been highlighted. CFD- and vortex-theory-based analyses
may be more accurate in many circumstances. Nevertheless, although huge advances
have been made in recent years and progress will continue, current CFD techniques do
not yet solve the Navier–Stokes equations with the same objectivity as Mother Nature.
Turbulence, transition and boundary layer modelling remain problematic. Some vor-
tex wake models assume Froude’s theorem and some CFD analyses are calibrated to
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reproduce actuator disc results. It is through a mixture of techniques and convergence
of insights coupled with experimental feedback that progress is made.
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