
�

� �

�

1

1

Introduction

The ongoing development of the fractional calculus and the related development of fractional
differential equations have created new opportunities and new challenges.Theneed for a gener-
alized exponential function applicable to fractional-order differential equations has given rise
to new functions. In the traditional integer-order calculus, the role of the exponential func-
tion and the trigonometric functions is central to the solution of linear ordinary differential
equations. Such a supporting structure is also needed for the fractional calculus and fractional
differential equations.
The purpose of this book is the development of the fractional trigonometries and hyper-

boletries that generalize the traditional trigonometric and hyperbolic functions based on
generalizations of the common exponential function. The fundamental idea is that through
the development of the fractional calculus, which generalizes the integer-order calculus,
generalizations of the exponential function have been developed. The exponential function in
the integer-order calculus provides the basis for the solution of linear fractional differential
equations. Also, it may be thought of as the basis of the trigonometry.
A high-level summary of the flow of the development of the book is given in Figure 1.1. The

generalized exponential functions that we use, the F-function and the R-function, are fractional
eigenfunctions; that is, they return themselves on fractional differintegration. The F-function
is the solution to the fundamental fractional differential equation

0dq
t x(t) + ax(t) = 𝛿(t)

when driven by a unit impulse. The R-function, Rq,v(a, t), generalizes the F-function by
including its integrals and derivatives as well. First, we show that these functions provide
solutions to the fundamental fractional-order differential equation. Then, we explore the
properties of the generalized exponential functions and develop some properties of the
functions that will aid in the development and understanding of the fractional trigonometries
and hyperboletries. This development follows a few mathematical preliminaries.
TheR1,R2, andR3 trigonometries alongwith theR1 hyperboletry are developed by replacing a

and t in the R-function with various combinations of real and purely imaginary variables. Based
on the newly defined functions, a variety of basic properties and identities are determined. Fur-
thermore, the Laplace transforms of the functions are determined and the fractional derivatives
and fractional integrals of the functions elucidated.
The following chapters develop an overarching fractional trigonometry called the fractional

meta-trigonometry that contains all of the fractional trigonometries shown in Figure 1.1 and
infinitely many more. This is accomplished by replacing a and t in the R-function with general
complex variables. We find that the fractional trigonometric functions lead to a generalization
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Figure 1.1 Overview of the development of the fractional trigonometry and its applications.

of the circular functions, which we have called the fractional spiral functions. These functions
appear tomodel various natural phenomena, and preliminary applications of these functions to
the properties of fractional oscillators, sea shells, galaxies, andmore are explored. An important
aspect of this modeling is that we can infer from the spiral functions the underlying fractional
differential equations describing the phenomena, which is demonstrated. More importantly,
the new fractional functions provide the solutions to classes of linear fractional differential
equations.

1.1 Background

Because of the close association of the fractional calculus and the fractional trigonometry to be
developed, we present here a brief introduction to the concepts of the fractional calculus for
the reader who is unfamiliar with the area.
Several important textbooks have been written that are extremely helpful to someone enter-

ing the field. Perhaps the most useful from the engineering and scientific viewpoint, are the
textbooks byOldham and Spanier, “The Fractional Calculus” [104], and by Igor Podluby entitled
“Fractional Differential Equations” [109]. A more mathematically oriented treatment is given
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in the book by Miller and Ross [95]. An encyclopedic reference volume written by Samko et al.
[114] has also been published. Furthermore, a very good engineering book has been written by
Oustaloup [105] and is available in French and Bush [19].
There are a growing number of physical systems whose behavior can be compactly described

using fractional differential equations theory. Areas include long lines, electrochemical
processes, diffusion, dielectric polarization, noise, viscoelasticity, chaos, creep, rheology,
capacitors, batteries, heat conduction, percolation, cylindrical waves, cylindrical diffusion,
water through a weir notch, Boussinesq shallow water waves, financial systems, biological
systems, semiconductors, control systems, electrical machinery, and more.

1.2 The Fractional Integral and Derivative

The first question we need to address is “just what is a fractional derivative?” There are two
separate but equivalent definitions of the fractional differintegral (Oldham and Spanier [104]),
known as theGrünwald definition and theRiemann–Liouville definition.Wepresent theGrün-
wald definition first, as it most recognizably generalizes the standard calculus. We then follow
with the Riemann–Liouville definition as it is most easily used in practice.

1.2.1 Grünwald Definition

The Grünwald definition of the fractional-order differintegral is essentially a generalization of
the derivative definition that most of us learned in introductory calculus, namely

dqf (t)
[d(t − a)]q

||||GRUN
≡ lim

N→∞

(
t−a
N

)−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f
(

t − j
( t − a

N

))
, (1.1)

or in a slightly more familiar form

dqf (t)
[d(t − a)]q

||||GRUN
≡ lim

N→∞

N−1∑
j=0

bj(q)
f (t − jΔtN )
(ΔtN )q , (1.2)

where
ΔtN = t − a

N
, bj(q) =

Γ(j − q)
Γ(−q)Γ(j + 1)

.

In this definition, q is not limited to the integers andmay be any real or complex number, and a
is the starting time of the fractional differintegration, not to be confusedwitha in the differential
equation in the introduction. Also, q> 0 defines differentiation, and q< 0 integration. Further-
more, Γ(∘) is the gamma function, or the generalized factorial function. It basically acts as a
calibration constant here to properly interpolate the operators for values of q between the inte-
gers. In terms of notation, Oldham and Spanier [104] provide a development of equation (1.2)
and generalize the fractional differintegral as

dq x(t)
[d(t − a)] q , (1.3)

where it should be noticed that the differential in the denominator starts at some time a, and
ends at a final time t. Thus, we see that the fractional derivative is defined on an interval and is
no longer a local operator except for integer orders. Interestingly, the gamma functions force
the series to terminate with a finite number of terms whenever q is any integer greater than or
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equal to zero, which represent the usual integer-order derivatives. When q is a negative inte-
ger, this series also contains the single and multiple integrals as well (which have always had
infinite memory). The important aspect to be recognized is that there exists an uncountable
infinity of fractional derivatives and integrals between the integers. The Grünwald definition is
also equivalent to the more often used Riemann–Liouville definition, which is discussed in the
following section.

1.2.2 Riemann–Liouville Definition

The Riemann–Liouville definition is easiest to present for fractional integrals first, and then
generalize that to the fractional derivatives. The qth-order integral is defined as (see, e.g.,
Oldham and Spanier [104], Podlubny [109])

ad−q
t x(t) ≡ d−q x(t)

[d(t − a)]−q ≡
t

∫
a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏, t ≥ a, (1.4)

It is important to note that this is the key definition of the fractional integral and is used by
most investigators. Miller and Ross [95] provide four separate developments of this important
equation. It can be shown thatwhenever q is a positive integer, this equation becomes a standard
integer-order multiple integral. The Riemann–Liouville fractional derivative is defined as the
integer-order derivative of a fractional integral

adq
t x(t) ≡ dm

dtm (adq−m
t x(t)), t ≥ a, (1.5)

where m is typically chosen as the smallest integer such that q−m is negative, and the
integer-order derivatives are those as defined in the traditional calculus. These equations
define the uninitialized fractional integral and derivative.
For most engineering problems, system components, by virtue of their histories, are placed

into some initial configuration or are initialized. Using mechanical systems as an example, the
initial conditions are often mass positions and velocities at time zero. Fractional-order com-
ponents, however, require a time-varying initialization Lorenzo [77] and Hartley [85], as they
inherently have a fading infinite memory. Considering the aforementioned fractional-order
integral, we assume that the fractional-order integration was started in the past, beginning
at some time a, while the given problem begins at time c> a, where c is usually taken to be
zero. Consider two fractional integrals of the same order acting on x(t), where x(t) and all of its
derivatives are zero for all t< a. If the integral starting at c is to continue the integral starting at
a, we must add an initialization 𝜓 , thus

ad−q
t x(t) = cd−q

t x(t) + 𝜓 ⇒

t

∫
a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏

=

t

∫
c

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 + 𝜓, t ≥ c, q > 0, (1.6)

therefore

𝜓 =

t

∫
a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 − ∫

t

c

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 =∫

c

a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏, t ≥ c, q > 0,

(1.7)
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clearly a time-varying function.This term represents the historical effect (Lorenzo and Hartley
[68, 71]) or the initialization required for the fractional integral.The initialized fractional-order
integration operator then is defined as

cD−q
t x(t) ≡ cd−q

t x(t) + 𝜓(xi,−q, a, c, t), t ≥ c, (1.8)

where
𝜓(xi,−q, a, c, t) ≡ ∫

c

a

(t − 𝜏)q−1

Γ(q)
xi(𝜏)d𝜏, t ≥ c. (1.9)

𝜓(xi,−q, a, c, t) is called the initialization function and is generally a time-varying function that
must be added to the fractional-order operator to account for the effects of the past. This is
a generalization of the constant of integration that is usually added to the normal order-one
integral. The subscript i is appended to x to indicate that xi is not necessarily the same as x.
Clearly then, cD−q

t x(t) = ad−q
t x(t), t ≥ c.The initialization function is a time-varying function

and is required to properly bring the historical effects of the fractional-order integral into the
future. Similar considerations also apply for fractional-order derivatives [68, 71], that is, for any
real value of q. Again, for convenience, c= 0 is typically chosen.

1.2.3 The Nature of the Fractional-Order Operator

The important properties of integer-order integration and differentiation have been shown to
hold for initialized fractional-order operators (Lorenzo and Hartley [68] and [71]), including
linearity and the index law. Physical insight into the nature of the fractional operators may be
found in Hartley and Lorenzo [44, 47]. The fractional differintegral operator is a linear opera-
tor, and all the properties associated with linear operators hold for them. Also of considerable
importance is the index law; that is, adu+v

t x(t) = adu
t adv

t x(t). The index law essentially allows us
to state, for example, that the half-derivative of the half-derivative of a function is the same as
the first-derivative of that function.
Laplace transforms are standard tools for integer-order operators and can still be readily

used for fractional-order operators. In this regard, the Laplace transform of the initialized
fractional-order differintegral is shown in Lorenzo and Hartley [68, 71] to be

L
{
0Dq

t x(t)
}
= L

{
0dq

t x(t) + 𝜓(x, q, a, 0, t)
}
= sqX(s) + L {𝜓(x, q, a, 0, t)} for all real q.

(1.10)
It is important to note that L{0dq

t x(t)} = sqX(s), for all q, as this is the generalization of the
derivative rule for the integer-order situation. Also, note that L−1{s−q} = tq−1∕Γ(q), q> 0, which
leads directly to the Riemann–Liouville definition via convolution

0d−q
t x(t) ⇔ s−qX(s) ⇔

t

∫
0

(t)q−1

Γ(q)
x(t − 𝜏)d𝜏 =

t

∫
0

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 . (1.11)

The Laplace transform for the fractional integral is given [78] as

L
{
0D−q

t h(t)
}
= L

{
0d−q

t f (t)
}
+ L

{
𝜓 (fi,−q,−a, 0, t)

}
= 1

sq L{f (t)} + 1
sqΓ(q)

0

∫
−a

e−𝜏 sΓ(q + 1,−𝜏 s) fi(𝜏)d𝜏. q ≥ 0, (1.12)

where q ≥ 0 and

h(t) =

{
fi(t) − a < t ≤ 0,
f (t) 0 < t ,
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and where fi may differ from f during the initialization period. More detailed forms are pre-
sented in Ref. [78].
The transform for the fractional derivative of order u, where u = n − q, is given by

L
{
0Du

t f (t)
}
= sn−qL

{
f (t)

}
−

n−1∑
j=0

sn−1−j𝜓 (j)(fi,−q,−a, 0, t)|t=0+ + snL
{
𝜓(fi,−q,−a, 0, t)

}
,

(1.13)
where u = n − q ≥ 0, n = 1, 2, 3,…, q ≥ 0, fi(t) = 0,∀t < −a, and

snL{𝜓 (fi,−q,−a, 0, t)} = sn−q−1

Γ(q + 1)
[
easΓ(q + 1, as) fi(−a) − Γ(q + 1)fi(0)

+

0

∫
−a

e−𝜏 s Γ(q + 1,−𝜏 s)f ′i (𝜏)d𝜏
]
. (1.14)

In this relationship, 𝜓 (fi,−q,−a, 0, t) is the initialization function for the fractional integral
part of the operator. An alternative form of equation (1.14) where the integration is based on
fi(t) rather than fi

′(t) is given by

L
{
0Du

t f (t)
}
= sn−qL{f (t)} −

n−1∑
j=0

sn−1−j𝜓 (j)(fi,−q,−a, 0, t)|t=0+ + sn−q

Γ(q)

0

∫
−a

e−𝜏 sΓ(q,−𝜏 s) fi(𝜏)d𝜏 ,

(1.15)
where u = n − q ≥ 0, n = 1, 2, 3,… , q ≥ 0, fi(t) = 0, ∀t < −a.
These forms simplify for constant initialization [78], that is, when fi = constant = b,

L{0Du
t f (t)} = sn−qL{f (t)} + b sn−q−1

[
easΓ(q − n + 1, as)

Γ(q − n + 1)
− 1

]
,

q not integer, 0 ≤ u = (n − q) ≤ n , n = 1, 2, 3,… . (1.16)

1.3 The Traditional Trigonometry

The application of the traditional integer-order trigonometry to analysis as well as engineering
and science goes well beyond the calculation of triangles and triangulation. The applications
include Fourier analysis, spectral analysis, solutions to ordinary and partial differential
equations, and more. The trigonometric functions are found in nearly every branch of
mathematics. The traditional trigonometry was originated for the solution of plane triangles.
However, an additional way of interpreting the integer-order trigonometry is based on its
relationship to the exponential function.The connections between the trigonometric functions
and the exponential functions are very close. These relationships center on the Euler equation;
that is, for z = x + iy

ez = exei y = ex(cos y + i sin y), (1.17)

as well as the definitions

cos(t) ≡ eit + e−it

2
=

∞∑
n=0

(−1)nt2n

(2n) !
(1.18)

and

sin(t) ≡ eit − e−it

2i
=

∞∑
n=0

(−1)nt2n+1

(2n + 1) !
(1.19)
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for the sine and cosine functions. In fact, the exponential and trigonometric functions are
fundamental to complex numbers and complex computation.
The hyperbolic functions are also based on the exponential function; these are given in the

following relationships:

cosh(t) ≡ et + e−t

2
=

∞∑
n=0

t2n

(2n) !
, (1.20)

and

sinh(t) ≡ et − e−t

2
=

∞∑
n=0

t2n+1

(2n + 1) !
. (1.21)

The development of the fractional calculus has involved new functions that generalized the
common exponential function. These functions allow the opportunity to generalize both the
hyperbolic functions and the trigonometric functions to “fractional” or “generalized” versions.
Two of these functions, to be detailed later in the book, are the F-function (Hartley and Lorenzo
[45]), which is the solution of the fundamental fractional differential equation

cDq
t x(t) = −ax(t) + bu(t) (1.22)

and its generalization, the R-function (Lorenzo and Hartley [69, 70]). They are defined as

Fq(a, t) ≡
∞∑

n=0

ant(n+1)q−1
Γ((n + 1)q)

, t > 0 (1.23)

and its vth differintegral

Rq,v(a, t) ≡
∞∑

n=0

ant(n+1)q−1−v

Γ((n + 1)q − v)
, t > 0. (1.24)

The Laplace transforms of these functions are determined in Ref. [69] as

L
{

Fq(a, t)
}
= 1

sq − a
and L

{
Rq,v(a, t)

}
= sv

sq − a
, Re(q − v) ≥ 0. (1.25)

It can be seen from the series definitions of these functions that they contain the exponential
function

eat = 1 + at + (at)2

2 !
+ (at)3

3 !
+ · · · =

∞∑
0

(at)n

Γ(n + 1)
(1.26)

as the q = 1, v = 0 special case. This result and the fact that the F- and R-functions are
eigenfunctions for the qth-order derivative are powerful drivers toward a new generalized
trigonometry based on the fractional (or generalized) exponential function, that is, the F- or
the R-function. The expectation and hope is that such a trigonometry will lead also to new
generalizations of all the products of the integer-order trigonometry, a situation that will
be broadly useful. These expectations and more derive from the usefulness of the ordinary
trigonometry.
It is well known, and follows from equation (1.26), that

eit = 1 + it + (it)2

2 !
+ (it)3

3 !
+ (it)4

4 !
+ · · · (1.27)

eit =
{
1 − t2

2 !
+ t4

4 !
− t6

6 !
+ · · ·

}
+ i

{
t − t3

3 !
+ t5

5 !
− · · ·

}
. (1.28)

These series are, of course, recognized as representing the circular functions giving the
well-known Euler equation

eit = cos(t) + i sin(t). (1.29)
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It is important to note that cos(t) is a summation of terms that are simultaneously both the
real part of eit and are even powers of t. Also, that sin(t) is a summation of terms that are simul-
taneously both the imaginary part of eit and are odd powers of t. This observation will prove
important in the development to follow. Not all of the new fractional trigonometric functions
will share this property.
The R-function, since it includes within it the fractional differintegrals of the F-function, and

is a representation of the fractional eigenfunction, is used as the generalizing basis of the expo-
nential function. Based on the R-function, parallels with the integer-order trigonometry are
used to generate related fractional trigonometries. The properties of these new trigonometries
and identities flowing from the definitions are then developed.
The trigonometries derived from these generalizations will be jointly termed “The Fractional

Trigonometry.”The definitions for the fractional trigonometries can be based on several differ-
ent parallels between various properties of the integer-order trigonometry and the proposed
fractional-order trigonometries. For example, parallels based on equations (1.17)–(1.19) each
provide a basis for definitions. Laplace transforms of the new functions are determined. Frac-
tional differential equations for which the functions are solutions and various intra- and inter-
relationships of the new trigonometric functions are studied.

1.4 Previous Efforts

There have been previous definitions offered for fractional trigonometric functions. These
efforts, each amounting to a page or so of definitions, have been based on the Mittag-Leffler
function and are discussed in Appendix A. In all cases, the definitions are subsets of those to
be presented here.

1.5 Expectations of a Generalized Trigonometry and Hyperboletry

There are some characteristics that a generalized trigonometry should have and additional char-
acteristics that may be desirable. We require that any fractional trigonometry should

contain the traditional, integer-order, plane trigonometry as a special case,
have an eigenfunction basis,
exhibit series compatibility between defined functions and generalized exponentials, and
form a basis for the solution of fractional-order linear differential equations.

These requirements are essentially self-explanatory.Thefirst requires backward compatibility
to the ordinary trigonometry. The second and fourth requirements are a way of saying that the
new generalized trigonometry should be closely coupled to the solution of fractional differential
equations and that the solutions should be expressible as linear combinations of the functions.
The expectation flowing from this is that we expect insight into the solutions of fractional dif-
ferential equations from the fractional trigonometry to be similar to that obtained from the
trigonometric solutions associated with the solutions of ordinary differential equations.
In general, our requirements and expectations for the generalized hyperbolic functions paral-

lel those listed for the fractional trigonometry. For example, we require backward compatibility
with the traditional hyperbolic functions, and so on. In addition, we expect to maintain or gen-
eralize the relationships between the traditional integer-order trigonometric functions and the
traditional integer-order hyperbolic functions when the fractional versions are defined.


