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Principles of Solid State

Luminescence

Adrian Kitai
McMaster University, Hamilton, Ontario, Canada

It is useful to understand the origin of luminescence. Solid state luminescent materials and
devices all rely on a common mechanism of luminescence whether they are semiconductor
light emitting diodes (LEDs) or phosphors or quantum dots, and whether they are organic
or inorganic materials. This is introduced in Sections 1.1–1.3 and then this chapter presents
a series of more specific luminescence processes.

1.1 Introduction to Radiation from an Accelerating Charge

Light is electromagnetic radiation which can be produced by an accelerating charge. Let
us first consider a stationary point charge q in a vacuum. Electric field lines are produced
from the point charge with electric field lines emanating radially out from the charge as
shown in Figure 1.1.

This stationary point charge does not produce electromagnetic radiation but since it does
produce an electric field there is electric field energy surrounding the point charge. This
energy is related to the electric field by:

E𝜀 =
𝜖0

2
2

where 𝜖0 is the permittivity of vacuum and E𝜀 is the electric field energy density.
If the charge q were to move with a constant velocity v an additional magnetic field B is

produced. Lines of this magnetic field form closed loops that lie in planes perpendicular to
the velocity vector of the moving change as shown in Figure 1.2.
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ε

q

Figure 1.1 Lines of electric field  produced by stationary point charge q

q

B

Figure 1.2 Closed lines of magnetic field B due to a point charge q moving with constant
velocity into the page

Both magnetic and electric fields exist surrounding the charge moving with uniform
velocity. The magnetic field also has an energy associated with it. The magnetic field energy
density EB is given by:

EB = 1
2𝜇0

B2

where 𝜇0 is the magnetic permeability of vacuum.
The total energy density due to both fields is now:

E = E𝜀 + EB =
𝜖0

2
2 + 1

2𝜇0
B2

The field strengths of both the electric and the magnetic fields fall off as we move further
away from the charge and therefore the energy density falls off rapidly with distance from
the charge. There is no radiation from the charge.
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acceleration of charge

Figure 1.3 Lines of electric field emanating from an accelerating charge

The situation changes dramatically if the charge q undergoes acceleration. Consider a
charge that rapidly accelerates as shown in Figure 1.3.

The electric field lines further away from the charge are still based on the original position
of the charge at position A before the acceleration occurred, however electric field lines
after acceleration will now emanate from the new location at position B of the charge.
The new electric field lines will expand outwards and replace the original field lines. The
speed at which this expansion occurs is the speed of light c because it is not possible for
information on the new location of the charge to arrive at any particular distance away from
the charge faster than the speed of light.

The kinks in the electric field lines in Figure 1.3 associated with this expansion must
contain an electric field component ⟂which is perpendicular to the radial field direction.
⟂ propagates outwards from the accelerating charge at velocity c. Notice that the biggest
kink and therefore the largest magnitudes of ⟂ propagate in directions perpendicular to
the acceleration of the charge. In the direction of the acceleration ⟂ = 0.

In addition, there is a magnetic field B⟂ that is perpendicular to both the direction of
acceleration as well as to ⟂. This field is shown in Figure 1.4. This magnetic field ⟂
propagates outwards and is also a maximum in a direction normal to the acceleration.

The combined electric and magnetic fields ⟂ andB⟂ form a propagating electromagnetic
wave that travels away from the accelerating charge.

acceleration of chargeA B

θ

B⊥

Figure 1.4 Direction of magnetic field B⟂ that is perpendicular to both the direction of accel-
eration as well as to ⟂ from Figure 1.3
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The magnitudes of ⟂ and B⟂ are given by:

⟂ =
qa

4𝜋𝜖0c2r
sin 𝜃

and
B⟂ =

𝜇0qa

4𝜋cr
sin 𝜃

The electromagnetic radiation formed by these two fields propagates away from the accel-
erating charge and this radiation has a directed power flow per unit area (Poynting vector)
given by:

−→
S = 1

𝜇0
⟂ × B⟂ =

q2a2

16𝜋2𝜖0c3r2
sin2𝜃 r̂

where r̂ is a unit radial vector.
The total radiated energy from the accelerated charge is calculated by integrating the

magnitude of the Poynting vector over a sphere surrounding the accelerating charge and
we obtain:

P = ∫sphere
SdA = ∫

2𝜋

0 ∫
𝜋

0
S(𝜃)r2 sin 𝜃d𝜃d𝜙 = ∫

𝜋

0
S(𝜃)2𝜋r2 sin 𝜃d𝜃

Substituting for S(𝜃),

P =
2q2a2

16𝜋𝜖0c3 ∫
𝜋

0
sin3𝜃d𝜃

Upon integration we obtain:

P =
2q2a2

12𝜋𝜖0c3
(1.1)

1.2 Radiation from an Oscillating Dipole

The manner in which a charge can accelerate can take many forms. For example, an elec-
tron orbiting in a cyclotron accelerates steadily towards the center of its orbit and radiation
according to Equation 1.1 will be emitted most strongly tangentially to the orbit in a direc-
tion perpendicular to the acceleration vector. If energetic electrons are directed towards an
atomic target, the rapid deceleration upon impact with atomic nuclei causes radiation called
bremsstrahlung (radiation due to deceleration).

The charge acceleration that is by far the most important in luminescent solids, however,
is generated by an oscillating dipole formed by an electron oscillating in the vicinity of
a positive atomic nucleus. This is known as an oscillating dipole and the radiation it pro-
duces is called dipole radiation. Dipole radiation can occur within, and be very effectively
released from, solids such as semiconductors or insulators that are substantially transparent
to the dipole radiation.

Consider a charge q that oscillates about the origin along the x-axis having position
given by:

x(t) = A sin𝜔t
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The electron has acceleration a = d2x(t)
dt2

or

a(t) = −A𝜔2 sin𝜔t

Substituting into Equation 1.1 we can write:

P(t) =
2q2A2𝜔4sin2𝜔t

12𝜋𝜖0c3

and averaging this power over one cycle we obtain average power

P = 𝜔

2𝜋
2q2A2𝜔4

12𝜋𝜖0c3 ∫
2𝜋
𝜔

0
sin2𝜔t dt

which yields:

P =
q2A2𝜔4

12𝜋𝜖0c3
(1.2)

In terms of the dipole moment p = qA this is written:

P =
p2𝜔4

12𝜋𝜖0c3

Dipole radiation may take place from atomic orbitals inside a crystal lattice or it may take
place as an electron and a hole recombine. We do not think of classical oscillating electron
motion because we describe electrons using quantum mechanics. We are now ready to
show that the quantum mechanical description of an electron can yield oscillations during
a radiation event.

1.3 Quantum Description of an Electron during a Radiation Event

Solving Schroedinger’s equation for a potential V(r) in which an electron may exist yields a
set of wavefunctions or stationary states that allow us to obtain the probability density func-
tion and energy levels of the electron. Examples of this include the set of electron orbitals
of a hydrogen atom or the electron states in a potential well. These are called stationary
states because the electron will remain in a specific quantum state unless perturbed by an
outside influence. There is no time dependence of measurable electron parameters such as
energy, momentum or expected position. As an example of this, consider an electron in a
stationary state 𝜓n which is a solution of Schroedinger’s equation. 𝜓n may be written in
terms of a spatial part of the wavefunction 𝜙n(r) as:

𝜓n = 𝜙n(r) exp
(−iEt

ℏ

)
(1.3)

We can calculate the expected value of the position of this electron as:

⟨r⟩ (t) = ⟨𝜓n|r|𝜓n⟩ = ∫V
V |𝜓n|2 r dV
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where V represents all space. Substituting the form of a stationary state we obtain:

⟨r⟩(t) = ∫V

[
𝜙(r) exp

(−iEt
ℏ

)
𝜙(r) exp

( iEt
ℏ

) ]
rdV =∫V

r𝜙2(r)dV

which is a time-independent quantity. This confirms the stationary nature of this state. A
stationary state does not radiate and there is no energy loss associated with the behavior of
an electron in such a state.

Note that electrons are not truly stationary in a quantum state from a classical viewpoint.
It is therefore the quantum state that is described as stationary and not the electron itself.
Quantum mechanics sanctions the existence of a charge that has a distributed spatial prob-
ability distribution function and yet that is in a stationary state. Classical physics fails to
describe or predict this.

Experience tells us, however, that radiation may be produced when a charge moves from
one stationary state to another and we can show that radiation is produced if an oscillating
dipole results from a charge moving from one stationary state to another. Consider a charge
q initially in normalized stationary state 𝜓n and eventually in normalized stationary state
𝜓n′ . During the transition, a superposition state is created which we shall call 𝜓s:

𝜓s = a𝜓n + b𝜓n′

where |a|2 + |b|2 = 1 to normalize the superposition state. Here, a and b are time-
dependent coefficients. Initially a = 1 and b = 0 and after the transition, a = 0 and b = 1.
If we now calculate the expectation value of the position of q for the superposition state
𝜓s we obtain:

⟨rs⟩ = ⟨a𝜓n + b𝜓n′ |r|a𝜓n + b𝜓n′⟩
= |a|2⟨𝜓n|r|𝜓n⟩ + |b|2⟨𝜓n′ |r|𝜓n′⟩ + a∗b⟨𝜓n|r|𝜓n′⟩ + b∗a⟨𝜓n|r|𝜓n′⟩

Of the four terms, the first two are stationary but the last two terms are not and therefore⟨r⟩s(t) may be written using Equation 1.3 as:

⟨r⟩s(t) = a∗b⟨𝜙n|r|𝜙n′⟩ exp

(
−i(En − En′ )t

ℏ

)
+ b∗a⟨𝜙n|r|𝜙n′⟩ exp

(
i(En − En′ )t

ℏ

)
Using the Euler formula eix + e−ix = 2 cos x

we have:

⟨r⟩s(t) = a∗b⟨𝜙n|r|𝜙n′⟩ exp

(
−i(En − En′ )t

ℏ

)
+ b∗a⟨𝜙n|r|𝜙n′⟩ exp

(
i(En − En′ )t

ℏ

)
= 2a∗b⟨𝜙n|r|𝜙n′⟩ cos

(
(En – En′ )t

ℏ

)
Defining |rnn′ | = a∗b⟨𝜙n|r|𝜙n′⟩ and 𝜔nn′ =

(En – En′ )
ℏ

we finally obtain:

⟨r⟩s(t) = 2|rnn′ | cos(𝜔nn′ t) (1.4)

Here, |rnn′ | is called the matrix element for the transition. It is seen that the expectation
value of the position of the electron is oscillating with frequency 𝜔nn′ =

(En – En′ )
ℏ

which is
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Time evolution

Wavefunction

amplitude

1.0

a

b

Figure 1.5 A time-dependent plot of coefficients a and b is consistent with the time evo-
lution of wavefunctions 𝜙n and 𝜙n′ . At t = 0, a = 1 and b = 0. Next a superposition state is
formed during the transition such that |a|2 + |b|2 = 1. Finally, after the transition is complete
a = 0 and b = 1

the required frequency to produce a photon having energyE = En – En′ . The term |rnn′ | also
varies with time, but does so very slowly compared with the cosine term. This is illustrated
in Figure 1.5.

We may also define a photon emission rate Rnn′ of a continuously oscillating charge q.
We use Equations 1.2 and 1.4 and E = ℏ𝜔 to obtain:

Rnn′ =
P
ℏ𝜔

=
q2𝜔3

3𝜋𝜖0c3ℏ
|rnn′ |2photons∕s

The photon emission rate is only an average rate. This is because of the Heizenberg Uncer-
tainty Principle which states that the position and the momentum of an electron cannot be
precisely measured simultaneously. It also means that we cannot predict the exact time of
photon creation while simultaneously knowing its exact energy. Since the energy of the
photon is defined without uncertainty there will be uncertainty about the precise time of
release of each photon.

1.4 The Exciton

A hole and an electron can exist as a valence band state and a conduction band state. In
this model the two particles are not localized and they are both represented using Bloch
functions in the periodic potential of the crystal lattice. If the mutual attraction between the
two becomes significant then a new description is required for their quantum states that is
valid before they recombine but after they experience some mutual attraction.

The hole and electron can exist in quantum states that are actually within the energy gap.
Just as a hydrogen atom consists of a series of energy levels associated with the allowed

quantum states of a proton and an electron, a series of energy levels associated with the
quantum states of a hole and an electron also exists. This hole–electron entity is called
an exciton, and the exciton behaves in a manner that is similar to a hydrogen atom with
one important exception: a hydrogen atom has a lowest energy state or ground state when
its quantum number n = 1, but a exciton, which also has a ground state at n = 1, has an
opportunity to be annihilated when the electron and hole eventually recombine.
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For an exciton we need to modify the electron mass m to become the reduced mass 𝜇 of
the hole–electron pair, which is given by:

1
𝜇

= 1
m∗

e
+ 1

m∗
h

For direct gap semiconductors such as GaAs this is about one order of magnitude smaller
than the free electron mass m. In addition the excition exists inside a semiconductor rather
than in a vacuum. The relative dielectric constant 𝜖r must be considered, and it is approx-
imately 10 for typical inorganic semiconductors. Adapting the hydrogen atom model, the
ground state energy for an exciton is:

Eexciton =
−𝜇q4

8𝜖2
o𝜖

2
r h2

≅
ERydberg

1000

This yields a typical exciton ionization energy or binding energy of under 0.1 eV.
The exciton radius in the ground state (n = 1) will be given by:

aexciton =
4𝜋𝜖0 𝜖rℏ

2

𝜇q2
≅ 100a0

which yields an exciton radius of the order of 50 Å. Since this radius is much larger than the
lattice constant of a semiconductor, we are justified in our use of the bulk semiconductor
parameters for effective mass and relative dielectric constant.

Our picture is now of a hydrogen atom-like entity drifting around within the semiconduc-
tor crystal and having a series of energy levels analogous to those in a hydrogen atom. Just
as a hydrogen atom has energy levels En = 13.6

n2 eV where quantum number n is an integer,
the exciton has similar energy levels but in a much smaller energy range, and a quantum
number nexciton is used.

The exciton must transfer energy to be annihilated. When an electron and a hole form
an exciton it is expected that they are initially in a high energy level with a large quantum
number nexciton. This forms a larger, less tightly bound exciton. Through thermalization
the exciton loses energy to lattice vibrations and approaches its ground state. Its radius
decreases as nexciton approaches 1. Once the exciton is more tightly bound and nexciton is
a small integer, the hole and electron can then form an effective dipole and radiation may
be produced to account for the remaining energy and to annihilate the exciton through the
process of dipole radiation. When energy is released as electromagnetic radiation, we can
determine whether or not a particular transition is allowed by calculating the term |rnn′ |
in Equation 1.4 and determining whether it is zero or non-zero. If |rnn′ | = 0 then this is
equivalent to saying that dipole radiation will not take place and a photon cannot be created.
Instead lattice vibrations remove the energy. If |rnn′ | > 0 then this is equivalent to saying
that dipole radiation can take place and a photon can be created. We can represent the
exciton energy levels in a semiconductor as shown in Figure 1.6.

At low temperatures the emission and absorption wavelengths of electron–hole pairs
must be understood in the context of excitons in all p-n junctions. The existence of
excitons, however, is generally hidden at room temperature and at higher temperatures in
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Exciton levels

Eminimum

Eg

n = 3

n = 2

n = 1

Figure 1.6 The exciton forms a. series of closely spaced hydrogen-Iike energy levels that
extend inside the energy gap of a semiconductor. If an electron falls into the lowest energy
state of the exciton corresponding to n = 1 then the remaining energy available for a photon
is Eminimum

inorganic semiconductors because of the temperature of operation of the device. The exci-
ton is not stable enough to form from the distributed band states and at room temperature
kT may be larger than the exciton energy levels. In this case the spectral features associated
with excitons will be masked and direct gap or indirect gap band-to-band transitions
occur. Nevertheless, photoluminescence or absorption measurements at low temperatures
conveniently provided in the laboratory using liquid nitrogen (77 K) or liquid helium
(4.2 K) clearly show exciton features, and excitons have become an important tool to
study inorganic semiconductor behavior. An example of the transmission as a function
of photon energy of a semiconductor at low temperature due to excitons is shown in
Figure 1.7.

In an indirect gap inorganic semiconductor at room temperature without the formation
of excitons, the electron–hole pair can lose energy to phonons and be annihilated but not
through dipole radiation. In a direct-gap semiconductor, however, dipole radiation can
occur. The calculation of |rnn′ | is also relevant to band-to-band transitions. Since a dipole
does not carry linear momentum it does not allow for the conservation of electron momen-
tum during electron–hole pair recombination in an indirect gap semiconductor crystal and
dipole radiation is forbidden. The requirement of a direct gap for a band-to-band transition
that conserves momentum is consistent with the requirements of dipole radiation. Dipole
radiation is effectively either allowed or forbidden in band-to-band transitions.

Not all excitons are free to move around in the semiconductor. Bound excitons are often
formed that associate themselves with defects in a semiconductor crystal such as vacan-
cies and impurities. In organic semiconductors molecular exictons form, which are very
important for an understanding of optical processes that occur in organic semiconductors.
This is because molecular excitons typically have high binding energies of approximately
0.4 eV. The reason for the higher binding energy is the confinement of the molecular exci-
ton to smaller spatial dimensions imposed by the size of the molecule. This keeps the hole
and electron closer and increases the binding energy compared with free excitons. In con-
trast to the situation in inorganic semiconductors, molecular excitons are thermally stable
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Figure 1.7 Low-temperature transmission as a function of photon energy tor Cu2O. The
absorption of photons is caused through excitons, which are excited into higher energy levels
as the absorption process takes place. Cu2O is a semiconductor with a bandgap of 2.17 eV.
Reprinted from Kittel, C., Introduction to Solid State Physics, 6e, ISBN 0-471-87474-4. Copy-
right (1986) John Wiley and Sons, Australia

at room temperature and they generally determine emission and absorption characteristics
of organic semiconductors in operation. The molecular exciton is fundamental to organic
light emitting diode (OLED) operation. We will first need to discuss in more detail the
physics required to understand excitons and optical processes in molecular materials.

1.5 Two-Electron Atoms

Until now we have focused on dipole radiators that are composed of two charges, one
positive and one negative. In Section 1.3 we introduced an oscillating dipole having one
positive charge and one negative charge. In Section 1.4 we discussed the exciton, which
also has one positive charge and one negative charge.

However, we also need to understand radiation from molecular systems with two or more
electrons, which form the basis of organic semiconductors. Once a system has two or more
identical particles (electrons) there are additional and very fundamental quantum effects
that we need to consider. In inorganic semiconductors, band theory gives us the tools
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to handle large numbers of electrons in a periodic potential. In organic semiconductors
electrons are confined to discrete organic molecules and “hop” from molecule to molecule.
Band theory is still relevant to electron behavior within a given molecule provided it con-
tains repeating structural units.

Nevertheless, we need to study the electronic properties of molecules more carefully
because molecules contain multiple electrons, and exciton properties in molecules are
rather different from the excitons we have discussed in inorganic semiconductors. The best
starting point is the helium atom, which has a nucleus with a charge of +2q as well as two
electrons each with a charge of −q. A straightforward solution to the helium atom using
Schrödinger’s equation is not possible since this is a three-body system; however, we can
understand the behavior of such a system by applying the Pauli exclusion principle and by
including the spin states of the two electrons.

When two electrons at least partly overlap spatially with one another their wavefunctions
must conform to the Pauli exclusion principle; however, there is an additional requirement
that must be satisfied. The two electrons must be carefully treated as indistinguishable
because once they have even a small spatial overlap there is no way to know which electron
is which. We can only determine a probability density |𝜓|2 = 𝜓∗𝜓 for each wavefunction
but we cannot determine the precise location of either electron at any instant in time and
therefore there is always a chance that the electrons exchange places. There is no way
to label or otherwise identify each electron and the wavefunctions must therefore not be
specific about the identity of each electron.

If we start with Schrödinger’s equation and write it by adding up the energy terms from
the two electrons we obtain:

− ℏ2

2m

(
𝜕2𝜓T

𝜕x2
1

+
𝜕2𝜓T

𝜕y2
1

+
𝜕2𝜓T

𝜕z2
1

)
− ℏ2

2m

(
𝜕2𝜓T

𝜕x2
2

+
𝜕2𝜓T

𝜕y2
2

+
𝜕2𝜓T

𝜕z2
2

)
+ VT𝜓T = ET𝜓T

(1.5)
Here 𝜓T(x1, y1, z1, x2, y2, z2) is the wavefunction of the two-electron system,
VT(x1, y1, z1, x2, y2, z2) is the potential energy for the two-electron system and ET
is the total energy of the two-electron system. The spatial coordinates of the two electrons
are (x1, y1, z1) and (x2, y2, z2).

To simplify our treatment of the two electrons we will start by assuming that the elec-
trons do not interact with each other. This means that we are neglecting coulomb repulsion
between the electrons. The potential energy of the total system is then simply the sum of
the potential energy of each electron under the influence of the helium nucleus. Now the
potential energy can be expressed as the sum of two identical potential energy functions
V(x1, y1, z1) for the two electrons and we can write:

VT(x1, y1, z1, x2, y2, z2) = V(x1, y1, z1) + V(x2, y2, z2)

Substituting this into Equation 1.5 we obtain:

− ℏ2

2m

(
𝜕2𝜓T

𝜕x2
1

+
𝜕2𝜓T

𝜕y2
1

+
𝜕2𝜓T

𝜕z2
1

)
− ℏ2

2m

(
𝜕2𝜓T

𝜕x2
2

+
𝜕2𝜓T

𝜕y2
2

+
𝜕2𝜓T

𝜕z2
2

)
+ V(x1, y1, z1)𝜓T + V(x2, y2, z2)𝜓T = ET𝜓T (1.6)
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If we look for solutions for 𝜓T of the form 𝜓T = 𝜓(x1, y1, z1)𝜓(x2, y2, z2) then
Equation 1.6 becomes

− ℏ2

2m
𝜓(x2, y2, z2)

(
𝜕2

𝜕x2
1

+ 𝜕2

𝜕y2
1

+ 𝜕2

𝜕z2
1

)
𝜓(x1, y1, z1)

− ℏ2

2m
𝜓(x1, y1, z1)

(
𝜕2

𝜕x2
2

+ 𝜕2

𝜕y2
2

+ 𝜕2

𝜕z2
2

)
𝜓(x2, y2, z2)

+ V(x1, y1, z1)𝜓(x1, y1, z1)𝜓(x2, y2, z2)

+ V(x2, y2, z2)𝜓(x1, y1, z1)𝜓(x2, y2, z2)

= ET𝜓(x1, y1, z1)𝜓(x2, y2, z2) (1.7)

Dividing Equation 1.7 by 𝜓(x1, y1, z1)𝜓(x2, y2, z2) we obtain:

− ℏ2

2m
1

𝜓(x1, y1, z1)

(
𝜕2

𝜕x2
1

+ 𝜕2

𝜕y2
1

+ 𝜕2

𝜕z2
1

)
𝜓(x1, y1, z1)

− ℏ2

2m
1

𝜓(x2, y2, z2)

(
𝜕2

𝜕x2
2

+ 𝜕2

𝜕y2
2

+ 𝜕2

𝜕z2
2

)
𝜓(x2, y2, z2)

+ V(x1, y1, z1) + V(x2, y2, z2) = ET

Since the first and third terms are only a function of (x1, y1, z1) and the second and fourth
terms are only a function of (x2, y2, z2), and furthermore since the equation must be satisfied
for independent choices of (x1, y1, z1) and (x2, y2, z2) it follows that we must independently
satisfy two equations, namely

− ℏ2

2m
1

𝜓(x1, y1, z1)

(
𝜕2

𝜕x2
1

+ 𝜕2

𝜕y2
1

+ 𝜕2

𝜕z2
1

)
𝜓(x1, y1, z1) + V(x1, y1, z1) = E1

and

− ℏ2

2m
1

𝜓(x2, y2, z2)

(
𝜕2

𝜕x2
2

+ 𝜕2

𝜕y2
2

+ 𝜕2

𝜕z2
2

)
𝜓(x2, y2, z2) + V(x2, y2, z2) = E2

These are both identical one-electron Schrödinger equations. We have used the technique
of separation of variables.

We have considered only the spatial parts of the wavefunctions of the electrons; however,
electrons also have spin. In order to include spin the wavefunctions must also define the
spin direction of the electron.

We will write a complete wavefunction [𝜓(x1, y1, z1)𝜓(S)]a, which is the wavefunction
for one electron where 𝜓(x1, y1, z1) describes the spatial part and the spin wavefunction
𝜓(S) describes the spin part, which can be spin up or spin down. There will be four quantum
numbers associated with each wavefunction of which the first three arise from the spatial
part. A fourth quantum number, which can be +1∕2 or −1∕2 for the spin part, defines the
direction of the spin part. Rather than writing the full set of quantum numbers for each
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wavefunction we will use the subscript a to denote the set of four quantum numbers. For
the other electron the analogous wavefunction is [𝜓(x2, y2, z2)𝜓(S)]b indicating that this
electron has its own set of four quantum numbers denoted by subscript b.

Now the wavefunction of the two-electron System including spin becomes:

𝜓T1
= [𝜓(x1, y1, z1)𝜓(S)]a[𝜓(x2, y2, z2)𝜓(S)]b (1.8a)

The probability distribution function, which describes the spatial probability density func-
tion of the two-electron system, is |𝜓T|2, which can be written as:

|𝜓T1
|2 = 𝜓

∗
T1
𝜓T1

= [𝜓(x1, y1, z1)𝜓(S)]∗a [𝜓(x2, y2, z2)𝜓(S)]∗b [𝜓(x1, y1, z1)𝜓(S)]a
[𝜓(x2, y2, z2)𝜓(S)]b (1.8b)

If the electrons were distinguishable then we would need also to consider the case where
the electrons were in the opposite states, and in this case

𝜓T2
= [𝜓(x1, y1, z1)𝜓(S)]b[𝜓(x2, y2, z2)𝜓(S)]a (1.9a)

Now the probability density of the two-electron system would be:

|𝜓T2
|2 = 𝜓

∗
T2
𝜓T2

= [𝜓(x1, y1, z1)𝜓(S)]∗b [𝜓(x2, y2, z2)𝜓(S)]∗a [𝜓(x1, y1, z1)𝜓(S)]b
[𝜓(x2, y2, z2)𝜓(S)]a (1.9b)

Clearly Equation 1.9b is not the same as Equation 1.8b and when the subscripts are switched
the form of |𝜓T|2 changes. This specifically contradicts the requirement, that measurable
quantities such as the spatial distribution function of the two-electron system remain the
same regardless of the interchange of the electrons.

In order to resolve this difficulty, it is possible to write wavefunctions of the two-electron
system that are linear combinations of the two possible electron wavefunctions.

We write a symmetric wavefunction 𝜓S for the two-electron system as:

𝜓S = 1√
2
[𝜓T1

+ 𝜓T2
] (1.10)

and an antisymmetric wavefunction 𝜓A for the two-electron system as:

𝜓A = 1√
2
[𝜓T1

− 𝜓T2
] (1.11)

If𝜓S is used in place of𝜓T to calculate the probability density function |𝜓S|2, the result will
be independent of the choice of the subscripts, In addition since both 𝜓T1

and 𝜓T2
are valid

solutions to Schrödinger’s equation (Equation 1.6) and since 𝜓S is a linear combination of
these solutions it follows that 𝜓S is also a valid solution. The same argument applies to 𝜓A.

We will now examine just the spin parts of the wavefunctions for each electron. We need
to consider all possible spin wavefunctions for the two electrons. The individual electron
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spin wavefunctions must be multiplied to obtain the spin part of the wavefunction for the
two-electron system as indicated in Equations 1.8 or 1.9, and we obtain four possibilities,
namely 𝜓 1

2
𝜓− 1

2
or𝜓− 1

2
𝜓 1

2
or𝜓 1

2
𝜓 1

2
or𝜓− 1

2
𝜓− 1

2
.

For the first two possibilities to satisfy the requirement that the spin part of the new two-
electron wavefunction does not depend on which electron is which, a symmetric or an anti-
symmetric spin function is required. In the symmetric case we can use a linear combination
of wavefunctions:

𝜓 = 1√
2

(
𝜓 1

2
𝜓− 1

2
+ 𝜓− 1

2
𝜓 1

2

)
(1.12)

This is a symmetric spin wavefunction since changing the labels does not affect the result.
The total spin for this symmetric system turns out to be s = 1, There is also an antisym-
metric case for which

𝜓 = 1√
2

(
𝜓 1

2
𝜓− 1

2
− 𝜓− 1

2
𝜓 1

2

)
(1.13)

Here, changing the sign of the labels changes the sign of the linear combination but does not
change any measurable properties and this is therefore also consistent with the requirements
for a proper description of indistinguishable particles. In this antisymmetric system the total
spin turns out to be s = 0.

The final two possibilities are symmetric cases since switching the labels makes no dif-
ference. These cases therefore do not require the use of linear combinations to be consistent
with indistinguishability and are simply

𝜓 = 𝜓 1
2
𝜓 1

2
(1.14)

and
𝜓 = 𝜓− 1

2
𝜓− 1

2
(1.15)

These symmetric cases both have spin s = 1.
In summary, there are four cases, three of which, given by Equations 1.12, 1.14, and

1.15, are symmetric spin states and have total spin s = 1, and one of which, given by
Equation 1.13, is antisymmetric and has total spin s = 0. Note that total spin is not always
simply the sum of the individual spins of the two electrons, but must take into account the
addition rules for quantum spin vectors. (See reference [1]) The three symmetric cases are
appropriately called triplet states and the one antisymmetric case is called a singlet state.
Table 1.1 lists the four possible states.

We must now return to the wavefunctions shown in Equations 1.10 and 1.11. The anti-
symmetric wavefunction 𝜓A may be written using Equations 1.11, 1.8a and 1.9a as:

𝜓A = 1√
2
[𝜓T1

− 𝜓T2
]

= 1√
2
{[𝜓(x1, y1, z1)𝜓(S)]a [𝜓(x2, y2, z2)𝜓(S)]b

−[𝜓(x1, y1, z1)𝜓(S)]b [𝜓(x2, y2, z2)𝜓(S)]a} (1.16)



�

� �

�

Principles of Solid State Luminescence 15

Table 1.1 Possible spin states for a two-electron system

State Prob-
ability

Total
Spin

Spin
arrangement

Spin
summetry

Spatial
symmetry

Spatial
attributes

Dipole-allowed
transition
to/from singlet
ground state

Singlet 25% 0 𝜓 1
2
𝜓− 1

2
− 𝜓− 1

2
𝜓 1

2
Antisym-
metric

Symmetric Electrons
close
to each
other

Yes

Triplet 75% 1 Symmetric Antisym-
metric

Electrons
far
apart

No𝜓 1
2
𝜓− 1

2
+ 𝜓− 1

2
𝜓 1

2

or
𝜓 1

2
𝜓 1

2

or
𝜓− 1

2
𝜓− 1

2

If, in violation of the Pauli exclusion principle, the two electrons were in the same
quantum state 𝜓T = 𝜓T1

= 𝜓T2
which includes both position and spin, then Equation 1.16

immediately yields 𝜓A = 0, which means that such a situation cannot occur. If the
symmetric wavefunction 𝜓S of Equation 1.10 was used instead of 𝜓A, the value of 𝜓S
would not be zero for two electrons in the same quantum state. For this reason, a more
complete statement of the Pauli exclusion principle is that the wavefunction of a system of
two or more indistinguishable electrons must be antisymmetric.

In order to obtain an antisymmetric wavefunction, from Equation 1.16 either the spin part
or the spatial part of the wavefunction may be antisymmetric. If the spin part is antisym-
metric, which is a singlet state, then the Pauli exclusion restriction on the spatial part of the
wavefunction may be lifted. The two electrons may occupy the same spatial wavefunction
and they may have a high probability of being close to each other.

If the spin part is symmetric this is a triplet state and the spatial part of the wavefunction
must be antisymmetric. The spatial density function of the antisymmetric wavefunction
causes the two electrons to have a higher probability of existing further apart, because they
are in distinct spatial wavefunctions.

If we now introduce the coloumb repulsion between the electrons it becomes evident that
if the spin state is a singlet state, the repulsion will be higher because the electrons spend
more time close to each other. If the spin state is a triplet state, the repulsion is weaker
because the electrons spend more time further apart.

Now let us return to the helium atom as an example of this. Assume one helium electron
is in the ground state of helium, which is the 1s state, and the second helium electron is in
an excited state. This corresponds to an excited helium atom, and we need to understand
this configuration because radiation always involves excited states.

The two helium electrons can be in a triplet state or in a singlet state. Strong dipole radi-
ation is observed from the singlet state only, and the triplet states do not radiate. We can
understand the lack of radiation from the triplet states by examining spin. The total spin
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of a triplet state is s = 1. The ground state of helium, however, has no net spin because if
the two electrons are in the same n = 1 energy level the spins must be in opposing direc-
tions to satisfy the Pauli exclusion principle, and there is no net spin. The ground state of
helium is therefore a singlet state. There can be no triplet states in the ground state of the
helium atom.

There is a net magnetic moment generated by an electron due to its spin. This fundamental
quantity of magnetism due to the spin of an electron is known as the Bohr magneton. If
the two helium electrons are in a triplet state there is a net magnetic moment, which can
be expressed in terms of the Bohr magneton since the total spin s = 1. This means that a
magnetic moment exists in the excited triplet state of helium. Photons have no charge and
hence no magnetic moment. Because of this a dipole transition from an excited triplet state
to the ground singlet state is forbidden because the triplet state has a magnetic moment but
the singlet state does not, and the net magnetic moment cannot be conserved. In contrast to
this the dipole transition from an excited singlet state to the ground singlet state is allowed
and strong dipole radiation is observed.

The triplet states of helium are slightly lower in energy than the singlet states. The triplet
states involve symmetric spin states, which means that the spin parts of the wavefunctions
are symmetric. This forces the spatial parts of the wavefunctions to be antisymmetric, as
illustrated in Figure 1.8 and the electrons are, on average, more separated. As a result, the
repulsion between the ground state electron and the excited state electron is weaker. The
excited state electron is therefore more strongly bound to the nucleus and it exists in a lower
energy state. The observed radiation is consistent with the energy difference between the
higher energy singlet state and the ground singlet state. Direct, dipole-allowed radiation
from the triplet excited state to the ground singlet state is forbidden. See Figure 1.9.

We have used helium atoms to illustrate the behavior of a two-electron system; however,
we now need to apply our understanding of these results to molecular electrons, which
are important for organic light emitting and absorbing materials. Molecules are the basis
for organic electronic materials and molecules always contain two or more electrons in a
molecular system.

1.6 Molecular Excitons

In inorganic semiconductors electrons and holes exist as distributed wavefunctions, which
prevents the formation of stable excitons at room temperature. In contrast to this, holes
and electrons are localized within a given molecule in organic semiconductors, and the
molecular exiton is thereby both stabilized and bound within a molecule of the organic
semiconductor. In organic semiconductors, which are composed of molecules, excitons
are clearly evident at room temperature and also at higher operational device temperatures.

An exciton in an organic semiconductor is an excited state of the molecule. A molecule
contains a series of electron energy levels associated with a series of molecular orbitals
that are complicated to calculate directly from Schrödinger’s equation because this is a
multi-body problem. These molecular orbitals may be occupied or unoccupied. When a
molecule absorbs a quantum of energy that corresponds to a transition from one molecular
orbital to another higher energy molecular orbital, the resulting electronic excited state of
the molecule is a molecular exciton comprising an electron and a hole within the molecule.
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(a)

(b)

spin

spin

ψ ψ

ψ ψ

ψA

ψs

x x

x

x x

x

Figure 1.8 A depiction of the symmetric and antisymmetric wavefunctions and spatial density
functions of a two-electron system. (a) Singlet state with electrons closer to each other on
average. (b) Triplet state with electrons further apart on average

An electron is said to be found in the lowest unoccupied molecular orbital and a hole in
the highest occupied molecular orbital, and since they are both contained within the same
molecule the electron-hole state is said to be bound. A bound exciton results, which is spa-
tially localized to a given molecule in an organic semiconductor. Organic molecule energy
levels are relevant to OLEDs.

These molecular excitons can be classified as in the case of excited states of the helium
atom, and either singlet or triplet excited states in molecules are possible. The results
from Section 1.5 are relevant to these molecular excitons and the same concepts involving
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Excited singlet state

Excited triplet state

Dipole allowed transition

Ground state

ES

ET

Eg

Figure 1.9 Energy level diagram showing a ground state and excited singlet and triplet states.
The excited triplet state is slightly lower in energy compared with the excited singlet state
because two triplet state electrons are, on average, further apart than two singlet state elec-
trons. Radiative emission from an electron in the excited singlet state to the ground singlet
state is dipole-allowed. Radiative emission between the excited triplet state and the ground
state requires an additional angular momentum exchange. See Section 1.6

electron spin, the Pauli exclusion principle, and indistinguishability are relevant because
the molecule contains two or more electrons.

If a molecule in its unexcited state absorbs a photon of light it may be excited form-
ing an exciton in a singlet state with spin s = 0. These excited molecules typically have
characteristic lifetimes on the order of nanoseconds, after which the excitation energy
may be released in the form of a photon and the molecule undergoes fluorescence by a
dipole-allowed process returning to its ground state.

It is also possible for the molecule to be excited to form an exciton by electrical means
rather than by the absorption of a photon which is the situation in OLEDs.

Under electrical excitation the exciton may be in a singlet or a triplet state since electrical
excitation, unlike photon absorption, does not require the total spin change to be zero.
There is a 75% probability of a triplet exciton and 25% probability of a singlet exciton, as
described in Table 1.1. The probability of fluorescence is therefore reduced under electrical
excitation to 25% because the decay of triplet excitons is not dipole-allowed.

Another process may take place, however. Triplet, excitons have a spin state with s = 1
and these spin states can frequently be coupled with the orbital angular momentum of
molecular electrons, which influences the effective magnetic moment of a molecular
exciton. The restriction on dipole radiation can be partly removed by this coupling,
and light emission over relatively long characteristic radiation lifetimes is observed in
specific molecules. These longer lifetimes from triplet states are generally on the order
of milliseconds and the process is called phosphorescence, in contrast with the shorter
lifetime fluorescence from singlet states. Since excited triplet states have slightly lower
energy levels than excited singlet states, triplet phosphorescence has a longer wavelength
than singlet fluorescence in a given molecule (see Chapters 4 and 5).
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In addition, there are other ways that a molecular exciton can lose energy. There are three
possible energy loss processes that involve energy transfer from one molecule to another
molecule. One important process is known as Förster resonance energy transfer. Here a
molecular exciton in one molecule is established but a neighboring molecule is not initially
excited. The excited molecule will establish an oscillating dipole moment as its exciton
starts to decay in energy as a superposition state. The radiation field from this dipole is
experienced by the neighboring molecule as an oscillating field and a superposition state in
the neighboring molecule is also established. The originally excited molecule loses energy
through this resonance energy transfer process to the neighboring molecule and finally
energy is conserved since the initial excitation energy is transferred to the neighboring
molecule without the formation of a photon. This is not the same process as photon genera-
tion and absorption since a complete photon is never created; however, only dipole-allowed
transitions from excited singlet states can participate in Förster resonance energy transfer.

Förster energy transfer depends strongly on the intermolecular spacing, and the rate
of energy transfer falls off as 1

R6 where R is the distance between the two molecules, A
simplified picture of this can be obtained using the result for the electric field of a static
dipole. This field falls off as 1

R3 Since the energy density in a field is proportional to the
square of the field strength it follows that the energy available to the neighboring molecule
falls of as 1

R6 . This then determines the rate of energy transfer.
Dexter electron transfer is a second energy transfer mechanism in which an excited elec-

tron state transfers from one molecule (the donor molecule) to a second molecule (the
acceptor molecule). This requires a wavefunction overlap between the donor and acceptor,
which can only occur at extremely short distances typically of the order 10–20 Å.

The Dexter process involves the transfer of the electron and hole from molecule
to molecule. The donor’s excited state may be exchanged in a single step, or in two
separate charge exchange steps. The driving force is the decrease in system energy due
to the transfer. This implies that the donor molecule and acceptor molecule are different
molecules. This is relevant to a range of important OLED devices. The Dexter energy
transfer rate is proportional to e−𝛼R where R is the intermolecular spacing. The exponential
form is due to the exponential decrease in the wavefunction density function with distance.

Finally, a third process is radiative energy transfer. In this case a photon emitted by the
host is absorbed by the guest molecule. The photon may be formed by dipole radiation
from the host molecule and absorbed by the converse process of dipole absorption in the
guest molecule.

1.7 Band-to-Band Transitions

In inorganic semiconductors the recombination between an electron and a hole occurs to
yield a photon, or conversely the absorption of a photon yields a hole–electron pair. The
electron is in the conduction band and the hole is in the valence band. It is very useful to
analyze these processes in the context of band theory for inorganic semiconductor LEDs.

Consider the direct-gap semiconductor having approximately parabolic conduction and
valence bands near the bottom and top of these bands, respectively, as in Figure 1.10. Two
possible transition energies, E1 and E2, are shown, which produce two photons having
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Figure 1.10 (a) Parabolic conduction and valence bands in a direct-gap semiconductor
showing two possible transitions. (b) Two ranges of energies ΔEv in the valence band and
ΔEc in the conduction band determine the photon emission rate in a small energy range about
a specific transition energy. Note that the two broken vertical lines in (b) show that the range
of transition energies at E2 is the sum of ΔEc and ΔEv

two different wavelengths. Due to the very small momentum of a photon, the recombination
of an electron and a hole occurs almost vertically in this diagram, to satisfy conservation of
momentum. The x-axis represents the wavenumber k, which is proportional to momentum.

Conduction band electrons have energy

Ee = Ec +
ℏ2k2

2m
∗
e

and for holes we have:

Eh = Ev −
ℏ2k2

2m
∗
h

In order to determine the emission/absorption spectrum of a direct-gap semiconductor we
need to find the probability of a recombination taking place as a function of energy E. This
transition probability depends on an appropriate density of states function multiplied by
probability functions that describe whether or not the states are occupied.
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We will first determine the appropriate density of states function. Any transition in
Figure 1.10 takes place at a fixed value of reciprocal space where k is constant. The same
set of points located in reciprocal space or k-space gives rise to states both in the valence
band and in the conduction band. In our picture of energy bands plotted as E versus k,
a given position on the k-axis intersects all the energy bands including the valence and
conduction bands. There is therefore a state in the conduction band corresponding to a
state in the valence band at a specific value of k.

Therefore, in order to determine the photon emission rate over a specific range of photon
energies we need to find the appropriate density of states function for a transition between a
group of states in the conduction band and the corresponding group of states in the valence
band. This means we need to determine the number of states in reciprocal space or k-space
that give rise to the corresponding set of transition, energies that can occur over a small
radiation energy range ΔE centred at some transition energy in Figure 1.10. For example,
the appropriate number of states can be found at E2 in Figure 1.10b by considering a small
range of k-states Δk that correspond to small differential energy ranges ΔEc and ΔEv and
then finding the total number of band states that fall within the range ΔE. The emission
energy from these states will be centred at E2 and will have an emission energy range
ΔE = ΔEc + ΔEv producing a portion of the observed emission spectrum. The density of
transitions is determined by the density of states in the joint dispersion relation, which will
now be introduced.

The available energy for any transition is given by:

E(k) = hv = Ee(k) − Eh(k)

and upon substitution we can obtain the joint dispersion relation, which adds the dispersion
relations from both the valence and conduction bands. We can express this transition energy
E and determine the joint dispersion relation from Figure 1.10a as:

E(k) = h𝜐 = Ec − Ev +
ℏ2k2

2m
∗
e

+ ℏ2k2

2m
∗
h

= Eg +
ℏ2k2

2𝜇
(1.17)

where
1
𝜇

= 1

m
∗
e

+ 1

m
∗
h

Note that a range of k-states Δk will result in an energy range ΔE = ΔEc + ΔEv in the
joint dispersion relation because the joint dispersion relation provides the sum of the rele-
vant ranges of energy in the two bands as required. The smallest possible value of transition
energy E in the joint dispersion relation occurs at k = 0 where E = Eg from Equation 1.17
which is consistent with Figure 1.10. If we can determine the density of states in the joint
dispersion relation, we will therefore have the density of possible photon emission transi-
tions available in a certain range of energies.

The density of states function for an energy conduction band is:

D(E) = 1
2
𝜋

(
2m

∗

𝜋2ℏ2

) 3
2 √

E

We can formulate a joint density of states function by substituting 𝜇 in place of m
∗
.
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Recognizing that the density of states function must be zero for E < Eg we obtain:

Djoint(E) =
1
2
𝜋

(
2𝜇

𝜋2ℏ2

) 3
2

(E − Eg)
1
2 (1.18)

This is known as the joint density of states function valid for E ≥ Eg.
To determine the probability of occupancy of states in the bands, we use Fermi–Dirac

statistics. The Boltzmann approximation for the probability of occupancy of carriers in a
conduction band is:

F(E) ≅ exp

[
−
(Ee − Ef)

kT

]
and for a valence band the probability of a hole is given by:

1 − F(E) ≅ exp

[
(Eh − Ef)

kT

]
Since a transition requires both an electron in the conduction band and a hole in the valence
band, the probability of a transition will be proportional to:

F(E)[1 − F(E)] = exp

(
−
(Ee − Eh)

kT

)
= exp

(
− E
kT

)
(1.19)

Including the density of states function, we conclude that the probability p(E) of an
electron–hole pair recombination applicable to an LED is proportional to the product of
the joint density of states function and the function F(E)[1 − F(E)], which yields:

p(E) ∝ D(E − Eg)F(E)[1 − F(E)] (1.20)

Now using Equations 1.18, 1.19, and 1.20, we obtain the photon emission rate R(E) as:

R(E) ∝ (E − Eg)1∕2 exp
(
− E
kT

)
(1.21)

The result is shown graphically in Figure 1.11.
If we differentiate Equation 1.21 with respect to E and set dR(E)

dE
= 0 the maximum is

found to occur at E = Eg +
kT
2

. From this, we can evaluate the full width at half maximum
to be 1.8kT.

If we were interested in optical absorption instead of emission for a direct gap semicon-
ductor, the absorption constant 𝛼 can be evaluated using Equation 1.18 and we obtain:

𝛼(hv) ∝ (hv − Eg)
1
2 (1.22)

We consider the valence band to be fully occupied by electrons and the conduction band
to be empty. In this case the absorption rate depends on the joint density of states function
only and is independent of Fermi–Dirac statistics. The absorption edge for a direct gap
semiconductor is illustrated in Figure 1.12.

This absorption edge is only valid for direct gap semiconductors, and only when parabolic
band-shapes are valid. If hv ≫ Eg this will not be the case and measured absorption coef-
ficients will differ from this theory.

In an indirect gap semiconductor, the absorption 𝛼 increases more gradually with photon
energy hv until a direct gap transition can occur.
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Figure 1.11 Photon emission rate as a function of energy for a direct gap transition of an
LED. Note that at low energies the emission drops off due to the decrease in the density of

states term (E − Eg)
1
2 and at high energies the emission drops off due to the Boltzmann term

exp(−E/kT)

Photon energy hv

Absorption

Eg

Figure 1.12 Absorption edge for a direct gap semiconductor

1.8 Photometric Units

The most important applications of LEDs and OLEDs are for visible illumination and dis-
plays. This requires the use of units to measure the brightness and color of light output.
The power in watts and wavelength of emission are often not adequate descriptors of light
emission. The human visual system has a variety of attributes that have given rise to more
appropriate units and ways of measuring light output. This human visual system includes
the eye, the optic nerve and the brain, which interpret light in a unique way. Watts, for
example, are considered radiometric units, and this section introduces photometric units
and relates them to radiometric units.
Luminous intensity is a photometric quantity that represents the perceived brightness of

an optical source by the human eye. The unit of luminous intensity is the candela (cd).
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One cd is the luminous intensity of a source that emits 1/683 watt of light at 555 nm into a
solid angle of one steradian. The candle was the inspiration for this unit, and a candle does
produce a luminous intensity of approximately 1 cd.
Luminous flux is another photometric unit that represents the light power of a source. The

unit of luminous flux is the lumen (lm). A candle that produces a luminous intensity of 1
cd produces 4𝜋 lumens of light power. If the source is spherically symmetrical then there
are 4𝜋 steradians in a sphere, and a luminous flux of 1 lm is emitted per steradian.

A third quantity, luminance, refers to the luminous intensity of a source divided by an
area through which the source light is being emitted; it has units of cd m−2. In the case
of an LED die or semiconductor chip light source the luminance depends on the size of
the die. The smaller the die that can achieve a specified luminous intensity, the higher the
luminance of this die.

The advantage of these units is that they directly relate to perceived brightnesses,
whereas radiation measured in watts may be visible, or invisible depending on the
emission spectrum. Photometric units of luminous intensity, luminous flux and luminance
take into account the relative sensitivity of the human vision system to the specific light
spectrum associated with a given light source.

The eye sensitivity function is well known for the average human eye. Figure 1.13 shows
the perceived brightness for the human visual system of a light source that emits a constant

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

683

615

546

478

410

342

273

205

137

68

0

350 400 450 500 550

Wavelength of Light in nm

L
u

m
in

o
u

s E
ffi

cacy
 lm

/WR
el

at
iv

e 
L

u
m

in
o

u
s 

E
ffi

ci
en

cy

600 650 700 750

Figure 1.13 The eye sensitivity function. The left scale is referenced to the peak of the human
eye response at 555 nm. The right scale is in units of luminous efficacy. International Commis-
sion on Illumination (Commission Internationale de l’Eclairage, or CIE), 1931 and 1978
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optical power that is independent of wavelength. The left scale has a maximum of 1 and
is referenced to the peak of the human eye response at 555 nm. The right scale is in
units of luminous efficacy (lm W−1), which reaches a maximum of 683 lm W−1 at 555
nm. Using Figure 1.13, luminous intensity can now be determined for other wavelengths
of light.

An important measure of the overall efficiency of a light source can be obtained using
luminous efficacy from Figure 1.13. A hypothetical monochromatic electroluminescent
light source emitting at 555 nm that consumes 1 W of electrical power and produces 683
lm has an electrical-to-optical conversion efficiency of 100%. A hypothetical monochro-
matic light source emitting at 450 nm that consumes 1 W of electrical power and produces
approximately 30 lm also has a conversion efficiency of 100%. The luminous flux of a blue
LED or a red LED that consumes 1 W of electric power may be lower than for a green
LED; however, this does not necessarily mean that they are less efficient.
Luminous efficiency values for a number of light sources may be described in units of

lm W−1, or light power divided by electrical input power. Luminous efficiency can never
exceed luminous efficacy for a light source having a given spectrum.

The perceived color of a light source is determined by its spectrum. The human visual
system and the brain create our perception of color. For example, we perceive a mixture
of red and green light as yellow even though none of the photons arriving at our eyes
is yellow.

The human eye contains light receptors on the retina that are sensitive in fairly broad
bands centred at the red, the green and the blue parts of the visible spectrum. Color is
determined by the relative stimulation of these receptors. For example, a light source
consisting of a combination of red and green light excites the red and green receptors, as
does a pure yellow light source, and we therefore perceive both light sources as yellow
in color.

Since the colors we observe are perceptions of the human visual system, a color space
has been developed and formalized that allows all the colors we recognize to be represented
on a two-dimensional graph called the colour space chromaticity diagram (Figure 1.14).
The diagram was created by the International Commission on Illumination (Commission
Internationale de l’Éclairage, or CIE) in 1931, and is therefore often referred to as the CIE
diagram. CIE x and y color coordinates are shown that can be used to specify the color
point of any light source. The outer boundary of this color space refers to monochromatic
light sources that emit light at a single wavelength. As we move to the center of the dia-
gram to approach white light the light source becomes increasingly less monochromatic.
Hence a source having a spectrum of a finite width will be situated some distance inside
the boundary of the color space.

If two light sources emit light at two distinct wavelengths anywhere on the CIE diagram
and these light sources are combined into a single light beam, the human eye will interpret
the color of the light beam as existing on a straight line connecting the locations of the two
sources on the CIE diagram. The position on the straight line of this new color will depend
on the relative radiation power from each of the two light sources.

If three light sources emit light at three distinct wavelengths that are anywhere on the
CIE diagram and these light sources are combined into a single light beam, the human eye
will interpret the color of the light beam as existing within a triangular region of the CIE
diagram having vertices at each of the three sources. The position within the triangle of this
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Figure 1.14 Color space chromaticity diagram showing colors perceptible to the human eye.
The center region of the diagram indicates a Planckian locus, which corresponds to the colors
of emission from a blackbody source having temperatures from 1000 to 10 000 K. This locus
includes the solar spectrum corresponding to a 5250 K blackbody. International Commission
on Illumination (Commission Internationale de l’Eclairage, or CIE), 1931

new color will depend on the relative radiation power from each of the three light sources.
This ability to produce a large number of colors of light from only three light sources forms
the basis for trichromatic illumination. Lamps and displays routinely take advantage of this
principle. It is clear that the biggest triangle will be available if red, green and blue light
sources are selected to define the vertices of the color triangle. This colour triangle is often
referred to as a color space that is enabled by a specific set of three light emitters.

The Planckian blackbody locus is also shown in Figure 1.14. All the color points on this
line represent a blackbody source of a specific given temperature. For example, a point at
approximately 5000 K represents the color of the sun. A tungsten filament lamp with a
filament temperature of 3000 K is also a point on this line.
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Name
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Figure 1.15 Eight standard color samples used to determine the colour rendering index

The colors on this Planckian locus are important since they are used as reference spectra
for non-blackbody light emitters such as LEDs. A measure used to quantify the closeness of
an LED spectrum to a blackbody radiator is the color rendering index or CRI. Appropriately
named, a CRI value indicates how well a given light source can substitute for a blackbody
source in terms of illuminating a wide range of colored or pigmented objects.

The highest CRI of a light source is 100 indicating a perfect blackbody spectrum. Lamps
achieving CRI values between 90 and 100 are considered “museum grade” lamps and may
be used to view art, color samples, and pigments with a high degree of accuracy. For more
general illumination tasks a CRI between 80 and 90 is often considered adequate.

The CRI is calculated by comparing the color rendering of the source in question to that
of a blackbody radiator for sources with correlated color temperatures under 5000 K, and a
phase of daylight otherwise (e.g., D65). The procedure makes use of a set of standard test
color samples shown in Figure 1.15.

A simplified summary of the steps used to determine the CRI are as follows:

1. Find the chromaticity coordinates of the test source in the CIE 1960 color space. The
CIE 1960 color space is a modified version of the color space in Figure 1.14.

2. Determine the correlated color temperature (CCT) of the test source by finding the clos-
est point to the Planckian locus on the chromaticity diagram.

3. If the test source has a CCT<5000 K, use a blackbody for reference, otherwise use CIE
standard illuminant D65 (daylight) shown in Figure 1.14. Both sources should have the
same CCT.

4. Illuminate the first eight standard samples shown in Figure 1.15.
5. Find the coordinates of the light reflected by each sample in the CIE 1964 color space

using the test source and again using the reference source.
6. For each sample, calculate the distance ΔE in CIE color space between the two sets of

color coordinates.
7. For each sample, calculate the special CRI using the formula R = 100 − 4.6ΔE.
8. Find the general CRI by calculating the arithmetic mean of the special CRIs.
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1.9 The Light Emitting Diode

The most important means of achieving electron–hole pair recombination producing radi-
ation is via a p-n junction diode. In this section the key concepts underlying p-n junction
operation are summarized and for reference, detailed quantitative treatments are avail-
able [1–4].

First we will consider the case of a diode in equilibrium without a current or voltage
applied to it. The band model of a p-n junction is shown in Figure 1.16. A built-in electric
field exits at the diode junction and this field gives rise to a potential difference V0 across
the junction.

In the conduction band, equal and opposite electron currents flow comprising an electron
drift current due to the built-in electric field and an opposing electron diffusion current
due to the large concentration gradient of electrons across the junction. Similarly, in the
valence band, equal and opposite hole currents flow comprising a hole drift current due to
the built-in electric field and an opposing hole diffusion current due to the large concentra-
tion gradient of holes across the junction. The net diode current is zero.

If a potentialV is now applied to the diode the built-in electric field is modified. A positive
value of V which is described as a forward bias decreases the built-in electric field as shown
in Figure 1.17. This results in an increase of diffusion current relative to drift current and
a rapid and approximately exponential increase in net diode current occurs as V increases.

If the applied voltage is negative, then the built-in electric field increases as shown in
Figure 1.18. This results in a larger potential barrier that favors drift current but not diffusion
current. A net drift current flows but the drift current is small since it is only supplied by
the small minority carrier concentration of electrons in the p-side and the small minority
concentration of holes in the n-side of the diode. This drift current, being supply limited,
saturates with increasingly negative applied voltage.

p-side

Ec

In diffusion

Ip diffusion

In drift

Ip drift

Ɛ

Ef

Ev

n-side

qV0

Figure 1.16 Band diagram of a p-n junction in equilibrium showing hole and electron cur-
rents. The net current is zero. V0 is the built-in potential of the junction
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Figure 1.17 Band diagram of p-n junction with positive bias voltage V applied. The junction
potential is decreased and a net diffusion current flows

n-sidep-side

Transition
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q(V0 – V)

Ec

Ev

Ɛ

Figure 1.18 Band diagram of p-n junction with negative bias voltage V applied. The junction
potential is increased and a net drift current flows

The resulting current–voltage characteristic of the diode is shown in Figure 1.19.
The relationship describing the curve in Figure 1.19 may be expressed using the diode

equation given by:

I = qA

(
Dn

Ln
np +

Dp

Lp
pn

)(
eqV∕kT − 1

)
where A is the junction area, Dn and Dp are the diffusion constants of electrons and holes,
respectively, Ln and Lp are the diffusion lengths of electrons and holes, respectively, and
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In equilibrium, V = 0, I = 0

V > 0 Net diffusion current flows

Forward bias

Reverse bias
         V < 0 Net drift current flows

V

I

Figure 1.19 Resulting current–voltage characteristic of a diode showing an approximately
exponentially increasing forward current and a saturated reverse bias current

np and pn are the minority carrier concentrations in the p-side and n-side of the diode,
respectively.

In an LED, a forward bias is applied which results in a net diffusion current. Once major-
ity carriers diffuse across the junction into the opposite side of the diode they become
minority carriers and are subject to recombination with majority carriers. This recombina-
tion process produces photons and since the 1960s, semiconductors and device structures
have been developed to optimize this process resulting in today’s high performance LEDs
(see Chapter 7).
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