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Some Basic Concepts

Objectives

At the end of this chapter you should be able to:

• Describe the reasons for conducting occupational and environmental health science (IH/EHS)
exposure measurements

• Distinguish between physical sampling and statistical sampling
• Discuss the importance of representative statistical sampling
• Define precision as it relates to IH/EHS measurements
• Calculate joint, marginal, and conditional probabilities and test for independence of events
• Recognize the characteristics of the binomial, normal, and chi-square probability distributions
• Perform calculations related to the binomial, normal, and chi-square probability distributions

1.1 Introduction

Industrial hygiene and environmental health sciences (IH/EHS) practitioners measure
things – it is what we do. The range of risks to health and the environment includes those due
to chemicals’ hazards (irritants, corrosives, carcinogens, reproductive toxins, central nervous
system depressants, asphyxiants, heavy metals, etc.), physical energy hazards (extreme heat
and cold, vibration, ionizing and nonionizing radiations, noise), biological hazards (airborne
infectious agents, bloodborne pathogens, contact infection transmission hazards, allergens,
opportunistic pathogens), and ergonomic hazards (cumulative trauma due to repetitive
motions, musculoskeletal soft tissue injury, stress-inducing positions). Toxic chemicals may be
encountered in indoor occupational environments, ambient outdoor environments, and the
water and food we consume. Quantifying these hazards is a crucial step in determining the
degree of risk and developing strategies for reducing it if necessary.
The what, when, where, who, and how of our measurements is driven by the why. Why do we

measure things? Obviously, it is to answer a question. Some common reasons for measuring
are as follows:

• To demonstrate regulatory compliance
a. Are worker exposures exceeding OSHA Permissible Exposure Limits (PELs) or other

occupational exposure guidelines such as the ACGIHThreshold Limit Values (TLV®)?
b. What are the chemical concentrations in air, water, soil, food, or other media?
c. Are environmental discharges exceeding emissions permit limits?
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2 1 Some Basic Concepts

• To establish baseline exposure information for specific exposure sources
a. What are the sources of worker or public exposures to occupational or environmental

insults?
b. At what rates are pollutants being released?
c. What is the spatial and temporal distribution of exposure levels around a source?

• To evaluate the effectiveness of control measures
a. Is there a difference in the effectiveness of alternative controls?
b. How effective is an intervention (engineering control, employee training, process change,

etc.), that is, is the exposure or emission different (hopefully reduced!) after its implemen-
tation?

c. Is an engineering control working as well now as it was previously?
• To characterize the frequency distribution of potential exposures or events

a. What is the range of potential exposures or emissions?
b. How frequently do different exposure levels occur?
c. What fraction of worker exposures or process emissions is likely to exceed allowable

levels?
d. Is my company’s rate of adverse events (overexposures, emissions exceedances, accidents,

etc.) typical of the industry?
e. Are adverse events occurring more frequently now than in the past?

• To explore associations between exposure variables
a. What are the process factors and environmental factors that contribute to exposures?
b. Which factors have the greatest influence on exposures?
c. Do interactions between different contributors influence exposures?

Other good reasons for conducting measurements are to document exposure levels or emis-
sions that are known to be within allowable limits to protect your employer against unfounded
liability claims or undeserved regulatory penalties, or to reassureworkers or the public.Thefirst
is just good business from an economic standpoint, but an additional benefit is that measure-
ments documenting lower level exposures contribute to the epidemiological data from which
improved dose–response relationships and associated exposure guidelines are developed.Mea-
suring to reassure workers or the public is similarly good business because it promotes good
public and labor-management relations.
Clearly, answering these very different questions requires different types and amounts of

information, so the measurement strategy must be crafted to provide enough data, of high
enough quality, to reliably answer the specific question. What “enough data,” “high enough
quality,” and “reliably answer” mean are explored as we proceed.

1.2 Physical versus Statistical Sampling

We should distinguish at the outset the difference between “sample” as usually used in IH/EHS
practice and “sample” as used in statistics. To the IH/EHS practitioner, “sample” usually means
a physical quantity of something, such as a volume of soil, air, water, or other environmental
media. In statistics, though, “sample” means a subset of all possible measurements that could
be made of a quantity, from which we draw inferences about the whole population. A census is
the special case where all possible values are in fact measured. It may seem trivial to point this
out, but we should be clear on this distinction from the beginning.
We employ statistical sampling because there are never enough resources – as in time, peo-

ple, and money – to measure all possible exposures of IH/EHS interest, where by exposure
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we mean any relevant physical, chemical, biological, or other measure of workplace or ambi-
ent environmental quality. For example, airborne contaminant concentrations due to industrial
processes will typically vary up and down and over awide range in the course of a workday, work
week, season, and so on, and will likely differ as well across workers performing what appears
to be the same task. To measure even one worker’s full range of exposures would be extremely
resource intensive, and the utility of the information would be limited because only one worker
was measured, thus our reliance on statistical sampling to minimize the amount of measure-
ment needed to draw inferences about the whole population of potential exposures. In this
case, we might use our professional judgment and experience to identify groups of workers we
believe likely to have similar exposures and conduct measurements on a subset of individuals
randomly selected from within the group. Results for members of each similar exposure group
(SEG) might then be used to draw inferences about the entire group’s exposures.

1.3 Representative Measures

Reliable inferences about a population of exposures hinge on the measurements being
representative of the population as a whole. Nonrepresentative sampling leads to inferential
bias, because we are not measuring what we expect. Representative sampling means we
have conducted our measurements such that no potential influences have been excluded or
weighted differently than they occur in the exposed population. A simplistic example would
be if we wanted to characterize sediment contaminant levels in a lake downstream from a
pollution source but onlymeasured sediment collected from readily accessible areas such as the
shoreline or off the end of a fishing dock. This would surely give an incomplete if not outright
misleading picture regarding the environmental impact of contaminant inflow to the lake.
Another example might be selecting subjects only from among the day shift when measuring
worker exposures at a multishift facility – there might very well be systematic differences
in exposure that are influenced by the shift time, such as the rate of work, tasks performed,
training and experience levels of the workers, or environmental conditions. Such differences
comprise systematic errors in our characterization, and systematic errors result in bias.
Systematic measurement errors and associated bias can also result even when the sampling

strategy is completely correct, through bias in the actual measurements themselves. When
using any type of measurement instrument, it is essential to verify that it is working properly
and that it is accurate, that is, the indicated result represents “truth.” Repeatedmeasurements of
an unchanging quantity using an improperly calibrated instrument may give the same answer
every time (plus or minus a bit of random variation), but the answer will be consistently off
in one direction. Such systematic measurement errors can be eliminated through good quality
control practices and procedures and, therefore, should not occur. If they do occur, it may be
difficult if not impossible to correct for the bias afterward or to even know that it has occurred.
In all further discussion, we assume thatmeasurements are performed using accuratemeasure-
ment techniques, so that the measurement results are unbiased.

1.4 Strategies for Representative Sampling

Inferences drawn from statistical samples can only be valid if the samples are representative
of the broader population of all possible measurements we could have made. We must choose
where or when or who to measure in such a way that we avoid introducing bias at the outset.
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Consider the situation in which we are interested in estimating the average body mass index
(BMI) of high school students (9th–12th grades) in our city. We might choose the nearest high
school, get a list of all of the student names, and randomly select n names from the list, that
is, we would collect a random sample from the student roster. We then measure each student’s
BMI and average them. Is this a good approach? Perhaps not. Random sampling is good, but
choosing the school because it is nearby, that is, conducting a convenience sample, may not
be. What if this school’s study body was predominantly of one race? Average BMI is known to
differ across ethnic groups, so our measurements would not be generalizable to the entire city
unless all high schools in the city had the same ethnic distribution. Or what if for some reason
this particular school had an unusually unbalanced distribution ofmale versus female students?
Average BMI certainly varies across gender, so our average BMI measure would only be valid
for this particular gender ratio and would not be representative of all high school students in
the city.
Another sampling approach to avoid is chain-referral or snowball sampling, in which new

subjects are referred by current subjects from among their circle of acquaintances or family
members. It should be obvious that such groups are likely to have more in common with each
other than with the general population. There are many types of sampling that do not involve
random selection, and they should generally all be avoided, though there are exceptions for
particular circumstances or study types.
It is tempting to think that the ideal approach would be to get a listing of all high school

students in the city, randomly select n names from the list, and conduct the measurements.
That would provide an unbiased estimate of the mean BMI for high school students in the
city but would provide no information on how BMI varied across gender, ethnicity, grade level,
socioeconomic status, or other demographics that might allowmoremeaningful interpretation
of the data, comparison of our city’s values with those of other cities, or comparison of future
measurements with the current data.
Sampling strategies that allow more representative and informative measurements include

cluster sampling and stratified sampling. Cluster sampling involves identifying relatively
homogenous naturally occurring groups so that random sampling can be conducted within
each group. Stratified sampling is slightly different in that the population is divided into groups
based on an important demographic (e.g., gender), and representative measurements are made
within each of the strata.
Thekey to obtaining representativemeasures is first to clearly define the question being asked,

decide what needs to be measured, carefully assess all of the known or suspected factors that
could influence the measurement, then develop a sampling strategy that measures the quanti-
ties of interest while allowing the influence of potential interferences to be “accounted for” in
the statistical analysis.

1.5 Measurement Precision

A fundamental concept to understand in applying statistical methods is that of precision, or
the similarity of replicate measures. An old joke maintains that “A man with one watch always
knows what time it is. A man with two watches is never quite sure.” The joke, of course, is that
the two watches will not show exactly the same time, so the owner cannot be certain which one
is “true” (assuming of course that one or the other is in fact correct).
A more relevant and illustrative example of precision in IH/EHS measurements might be

the bubble tube “frictionless piston” calibration of air flow through a sampling train. A typical
calibration setup is shown in Figure 1.1. With the pump set at a fixed speed, the amount of
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Figure 1.1 Typical bubble tube calibration apparatus for a sampling train comprised of a personal air sampling
pump and filter cassette.

time taken for a soap film to transit the distance between two volume marks on the bubble
tube, representing a known displaced air volume, is measured with a stopwatch. In this case,
the operator starts the watch as the film passes 0 and stops it as the film passes 1000mL, so
that the air flow during that time period is 1000mL or 1 L. Dividing the volume in liters by the
time in minutes gives the flow rate in liters per minute (L/min). However, even if the pump’s
flow rate does not vary the measured times will not all be exactly the same due to small random
variations in starting and stopping the watch twice in this manual process.The difference in any
two measures can be termed the discrepancy in the measures (Bevington and Robinson, 1992,
p. 5). By random we mean that the variation is not consistently higher or lower than the “true”
value and also that the magnitude of the variation is not constant.
The pattern of variation for 10 trials might look like that shown in the table and frequency

graph of Figure 1.2, which is roughly symmetric about the 30.0 seconds value (representing
2.0 L/min pump flow rate if a 1 L burette is used). Such random variations should in fact be
symmetrically distributed about the “true” value, which is the arithmetic average or “mean” of
the distribution. The differences of the individual measured values from the mean are termed
“deviations” and taken together they reflect the measurement technique’s precision. More on
these descriptive measures is provided later. Only 6 time values occur, with several occurring
more than once. The number of times a value occurs is its frequency. When the frequency of
occurrence is plotted versus the measured value as shown in Figure 1.2, we can visualize the
distribution of the measurements over their range.
The form of the frequency distribution, or the pattern of how often the different values occur,

becomes clearer as the number ofmeasures increases, so that the distribution for an experiment
with 1000 trials might look like the distribution in Figure 1.3.
Other types of measurements involving counts over a measurement interval may involve the

aforementioned types of random variation as well as statistical variation due to randomness
in the occurrence of events being counted. Bevington and Robinson term these instrumental
uncertainty and statistical uncertainty, respectively (Bevington andRobinson, 1992, pp. 38–40).
For example, a count detector such as a light-scattering aerosol photometermay detect particles
very reliably and have essentially no instrumental uncertainty for dilute aerosols, but due to
the spatial variation in the air’s particle concentration there may be discrepancies in repeated



�

� �

�

6 1 Some Basic Concepts

29.6
0

1

2

3

29.8 30.0 30.2 30.4 30.6

Bubble transit time (s)

Frequency
of

occurrence

n = 10

n = 10

Measurement data (s)

30.2

30.0

30.1

30.0

29.8

30.3

29.9

30.0

30.1

29.9

29.8

Value
(s)

Frequency of
occurrence

1

2

3

2

1

1

10

30.3

30.1

30.2

30.0

29.9

Figure 1.2 Frequency table and graph of soap
bubble film transit times for 10 trials.

300
n = 1000

200Frequency
of

occurrence
100

0
29.6 29.8 30.0

Bubble transit time (s)

30.2 30.4 30.6

Figure 1.3 Frequency graph of soap bubble
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measurements simply due to the stochastic nature of the number of particles passing through
the sensing zone during any given observation period.

1.6 Probability Concepts

Probability, or the likelihood of an event occurring, is a straightforward concept with which
everyone has had personal experience. The simple statement “I probably won’t run into any
major traffic delays today” reflects the experience of a commuter that on most days traffic is
smooth, that is, that it is more likely than not that there will be no traffic delays on any given day.
How likely it is that traffic will be smooth can be quantitatively expressed with probability. The
more definite statement that “90 percent of the time I don’t run into bad traffic” is an expression
of the probability of smooth traffic occurring on a given day.
Probability is the foundation of statistical analysis techniques, and probability theory is a field

of mathematics unto itself. We introduce some basic concepts and terminology as they relate
to statistics; for an in-depth exploration of probability, texts devoted to the subject should be
consulted.
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1.6.1 The Relative Frequency Approach

Someone who states “Nine days out of ten there is nothing or only junk mail in my mailbox”
is speaking from personal experience in which they have observed that on average they receive
useful mail only once in every 10 days of mail delivery. Intuition tells us that on any randomly
chosen day there is a 9 in 10 chance that there will be nothing or only junk mail in the mailbox,
that is, there is a 90% probability of nothing or only junkmail.This type of probability, estimated
from past observation, is termed the relative frequency of an event – the number of times it
occurs, x, expressed as a fraction of the total number of observations, n:

relative frequency =
number of times a particular outcome is observed

total number of observations
= x

n
. (1.1)

Relative frequency provides an estimate of the probability of finding only junk mail on any
given day. It is an estimate because these were observations for only a subset of all the mail
delivery days that might be observed, that is, it is a sample of the total population of all possible
mail delivery days. If nothing or only junk mail is found in the mailbox 9 out of 10 days, the
relative frequency of finding only junkmail is 9/10 or 0.90, and the probability of finding nothing
or only junkmail on any given day is estimated to be 90%.The probability of observing an event
A is expressed as P{A}.

1.6.2 The Classical Approach – Probability Based on Deductive Reasoning

The probability of an event occurring may also be deduced from an understanding of the pro-
cess involved, with the classic example being the roll of a six-sided die. There are only six
possible outcomes (1–6), so that the chance of rolling any particular number is 1/6 if the die
is “honest” (not biased in some way by uneven shape or weighting). Even if we had never
seen a six-sided die, we could use deductive reasoning to predict the probability. Four-sided,
eight-sided, ten-sided, twelve-sided, and even twenty-sided polyhedral dice can be purchased,
and we can easily deduce the probability of rolling a particular number (or symbol on some
dice) as 1 divided by the number of sides. In this case, we are not estimating the probability – we
know it exactly from first principles. This classical approach based on deductive reasoning is
the approach mathematicians used to develop early probability theory.

1.6.3 Subjective Probability

Probability estimated from relative frequency is based on measurements, and probability
known exactly is based on an understanding of the process and deductive reasoning. These
are objective probability assessments. However, the probability of an event occurring can also
be subjectively estimated based on one’s degree of belief about the likelihood of an occur-
rence. This is termed the personalistic approach to probability (Sheskin, 2011, pp. 372–375).
This belief may not be based solely or at all on measurements but on other knowledge or
experience. A prior belief, perhaps based on results of previous studies but perhaps only on
professional opinion, is updated with data to reach a modified, or updated, posterior belief.
Such probabilities are used in Bayesian methods, developed independently by Thomas Bayes
and Pierre-Simon Laplace in the mid-1700s and early 1800s, respectively. The application of
Bayesian methods in exposure assessment decision-making is discussed in Chapter 13.

1.6.4 Complement of a Probability

The total probability of all possible events is 1.0. If two black marbles, two green marbles, and
one whitemarble are placed in a hat and one is drawn out without looking, deductive reasoning
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tells us that the probability of drawing a black marble is p = P{black} = 2∕5 = 0.40. The prob-
ability of not drawing a black marble is the complement of this probability, q = P{not black} =
1 − p = 0.60, which deductive reasoning again tells us is the probability of drawing a greenmar-
ble (2∕5 = 0.40) plus the probability of drawing a white marble (1∕5 = 0.20). More formal rules
for determining probability are discussed in subsequent sections.

1.6.5 Mutually Exclusive Events

In the aforementioned examples, none of the x occurrences could happen at the same time.
In any roll of a die, only one number can come up, and on any given day “no mail or junk
mail only” will either occur or not – there cannot be useful mail and no mail/junk mail
only on the same day. That is, the events are mutually exclusive. For two mutually exclusive
events A and B, the probability of one or the other occurring is the sum of their individual
probabilities:

P(A ∩ B) = P(A) + P(B), (1.2)

where the ∪ symbol indicates “union” or “or,” that is, P(A ∪ B) = the probability of either
A or B occurring (but not both, since they are mutually exclusive). Equation 1.2 is the
Addition Rule for the probability of one or the other of two mutually exclusive events
occurring and is the applicable rule in the marble illustration in which only one marble was
drawn.

Example 1.1
On average, 15% of a cell phone owner’s incoming calls are from scammers, 10% are from legit-
imate marketers, 25% are from friends, 20% are from family members, 10% are from business
contacts, and 20% are from other sources. What is the probability that any given incoming call
will be from either a scammer or a legitimate marketer (neither of which will be a welcome
intrusion)?

Solution
Note that the probabilities sum to 1.0, as they must if all types of incoming phone calls are
represented.
These aremutually exclusive events, assuming friends and family are not also scammers,mar-

keters, or business contacts, so P(A ∪ B) = P(A) + P(B). The probability of a scammer call is
0.15, and of a legitimate marketing call is 0.10, so

P(A ∪ B) = P(A) + P(B) = 0.15 + 0.10 = 0.25or25%.

1.6.6 Independent Events

If the probability of one event A is not influenced by the occurrence of a second event B, the two
events are said to be independent. If a coin is flipped and a Head turns up, and then is flipped
again, the outcome of the second flip is not influenced by the fact that a Head turned up on the
first flip. The two flips are independent.
If two events are independent, then the probability of both events occurring is the product of

their individual probabilities:

P(A ∩ B) = P(A)P(B), (1.3)

where the ∩ symbol indicates “intersection” or “and,” that is, P(A ∩ B) = the probability of both
A and B occurring. This is termed the joint probability of A and B occurring together.
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Example 1.2
A delivery customer observes over time that on any given day in June there is a 10% probability
that a package will be left on his open porch. He also observes that during June there is a 15%
probability of having a thunderstormon any given day.What is the probability that the customer
will have a delivery rained on during any given day in June?

Solution
Having a package delivered and experiencing a rainstorm are independent events, so the prob-
ability of both events occurring on the same day is the joint probability:

P(A ∩ B) = P(A)P(B) = 0.10(0.15) = 0.015

or only about 1.5%, so it is highly unlikely that a package will get wet.

1.6.7 Events that Are Not Mutually Exclusive

The delivery and thunderstorm events in Example 1.2 are not mutually exclusive events since
they can occur at the same time. For two nonexclusive events, the Addition Rule includes a
third term. The probability of observing one, or the other, or both is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.4)

If the two events are independent, P(A ∩ B) = P(A)P(B) in the equation.

Example 1.3
For the situation in Example 1.2, what is the probability that on any given June day the customer
will receive a package or experience a thunderstorm or both receive a package and experience
a thunderstorm?

Solution
The probability of experiencing either or both of these independent events is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = P(A) + P(B) − P(A)P(B)
= 0.10 + 0.15 − 0.10(0.15) = 0.235 or 23.5%.

1.6.8 Marginal and Conditional Probabilities

Table 1.1 displays the typical number of hours permonth devoted to variouswoodworking tasks
during manufacture of custom dining room tables and chairs in a one-person Early American
furniture shop. Construction of both products involves the same basic tasks of sawing wood
planks to size and shape using a table saw or band saw, turning table and chair legs and chair
spindles on a lathe, assembling the parts using glue and clamps, and sanding and finishing.The
amount of time spent in each task area depends on which furniture item is being made. Only
one type of furniture is made at a time and only one type of task is performed at a time in this
small shop.
The probability that at any given time the shop will be engaged in sawing is P(sawing) =

42∕180 = 0.233, the total number of hours spent sawing divided by the total hours of observa-
tion. Similarly, the probability that at any given time the shopwill bemaking chairs isP(chairs) =
103∕180 = 0.572.These are termedmarginal probabilities because the frequencies are the sums
in the table margins.
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Table 1.1 Woodworking hours per month for various tasks during
chair and table manufacture in a small furniture shop.

Woodworking operation Chairs Tables Totals

Sawing 19 23 42
Turning legs and spindles 42 13 55
Assembly 38 14 52
Sanding/finishing 21 10 31
Totals 103 60 180

Conditional probability is the probability that an event will occur given that some other event
has already occurred, that is, given that some condition has been met. The probability that A
will occur given that B has occurred is

P(A|B) = P(A ∩ B)
P(B)

, (1.5)

where P(A ∩ B) is the joint probability of A and B occurring together and P(B) is the marginal
probability for B. The | symbol represents “given,” and P(A|B) is read “the probability of A
given B.”

Example 1.4
What is the probability that during a visit to the shop we would find them turning parts on the
lathe given that we know they are working on tables?

Solution
This is a conditional probability – the probability of observing turning given that tables are
being built. The probability would be the joint probability of being engaged in turning while
working on tables divided by the marginal probability of working on tables:

P(turning|tables) =
P(turning and tables)

P(tables)
=

13∕180
60∕180

= 0.217.

Note that this solution is equivalent to ignoring all of the hours associated with working on
chairs, so that the “population” of total hours under consideration is only those associated with
making tables, that is, 60 hours. Within those 60 hours there will be 13 hours devoted to turn-
ing, so the probability of observing turning while tables are being made is 13∕60 = 0.217 as
mentioned earlier.

Example 1.5
From the furniture shop data given in Table 1.1, if a glance into the shop indicates that wood
planks are being sawed, what is the probability that chairs are being built?

Solution
This conditional probability would be the probability of being engaged in sawing while making
chairs divided by the marginal probability of sawing:

P(chairs|sawing) =
P(chairs and sawing)

P(sawing)
= 19

42
= 0.452.
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Example 1.6
What would be the probability of observing either sawing or sanding/finishing during a visit to
the shop given that they are making tables?

Solution
Extending the aforementioned logic, we restrict our consideration to only the hours involved in
making tables. Then the probability of observing either sawing or sanding/finishing is the sum
(since they are mutually exclusive) of the two conditional probabilities of sawing given tables
and sanding/finishing given tables:

P = 23
60

+ 10
60

= 33
60

= 0.550.

1.6.9 Testing for Independence

Are the events in the furniture shop (furniture type and work task) independent? Intuition
should tell us that they are not, because the probability of being engaged in assembly, for
example, is different for chair work than for table work. We can state this more formally as a
test. There are actually three tests that must be met to show independence:

P(A|B) = P(A)P(B|A) = P(B)P(A ∩ B) = P(A)P(B). (1.6)
For the probabilities associated with A = chairs and B = sawing, it was shown earlier that

P{chairs|sawing} = 19
42

= 0.452. However, the marginal probability of working on chairs was
shown to be P(chairs) = 120

180
= 0.667. The two are not equal, so the test P(A|B) = P(A)

is not met. Similarly, P(sawing|chairs) = 19
120

= 0.158, while P(sawing) = 42
120

= 0.350,
so the test P(B|A) = P(B) is not met. Finally, P(chairs ∩ sawing) = 19

180
= 0.106 while

P(chairs)P(sawing) = 0.667(0.350) = 0.233, so the third test is not met. Any of the three
tests would show that the events are not independent.

Example 1.7
A survey of a bat species is conducted to determine whether gender influences whether the bat
carries a particular parasite. Test gender and parasite status for independence.

Parasite No parasite Totals

Male 12 48 60
Female 16 64 80
Totals 28 112 140

Solution
Any combination of the two parameters could be chosen. Using Parasite (yes) andMale gender:

P(Parasite|Male) = 12
60

= 0.200 and P(Parasite) = 28
140

= 0.200

P(Male|Parasite) = 12
28

= 0.429 and P(Male) = 60
140

= 0.429

P(Parasite ∩ Male) = P(Parasite|Male)P(Male) = 0.200(0.429) = 0.086 and
P(Parasite)P(Male) = 0.200(0.429) = 0.086.

All three tests of independence are met, so the gender of the bat has no influence on whether
it carries the parasite – they are independent events.
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1.7 Permutations and Combinations

Permutations and combinations are important probability-related concepts. “To permute”
means to rearrange the order or sequence of things, so permutations are the different ways
of ordering a group of objects. A combination is a selection of objects with no consideration
given to the order of the selection.

1.7.1 Permutations for Sampling without Replacement

Suppose we would like to measure some characteristic of 5 different processes and feel it would
be a good idea to randomize the order in which we do themeasures. Howmany different order-
ings are possible?Wemight write the name of each process on a slip of paper, put the 5 slips in a
jar and shake themup, close our eyes, and draw the slips out one at a time. A simple but effective
randomization technique! There are 5 possible outcomes for the first draw, only 4 for the sec-
ond, 3 for the third, and so on, so the total number of ways we could order the 5 trials would be
5(4)(3)(2)(1) = 120 permutations. Generally, the number of ways of ordering n distinct objects
is then

permutations = n(n − 1)(n − 2)… (1) = n! (1.7)

or “n factorial,” in which 0! ≡ 1.This is an example of sampling without replacement since once
a process is drawn from the jar it cannot be drawn again.
In some cases, we might not need all n of the n objects, that is, we might want to draw only a

subset of objects from the total. For example, let us say that for our 5 processmeasurements task
we can onlymeasure 2 of them in one day. Howmany possible orderings are there of 2 processes
drawn from the 5 (without replacement)? We could choose any of the 5 for the first one, then
any of the 4 remaining for the second one, or 5(4) = 20 permutations.Themore general form of
Equation 1.7 for the case of ordering only r of the n objects is then the number of permutations

nPr = n(n − 1)(n − 2)… (n − r + 1) = n!
(n − r)!

. (1.8)

Equation 1.7 corresponds to the special case of Equation 1.8 for r = n, that is, all of the objects
are ordered. On the second day, there would be only 3 processes left, so there would be 3(2) = 6
possible orderings of the two measurements that day. Obviously, on the third day there is only
one ordering for the single process left to measure. The total of these would be 20(6)(1) = 120.
Excel provides the PERMUT function for calculating permutations in sampling without

replacement. The function has the form PERMUT(n, k), so for the situation just described
the cell equation would read =PERMUT(5,2) for the first day and PERMUT(3,2) for the
second day.

Example 1.8
Our personal protective equipment manufacturing company is ready to begin marketing a new
line of noise-canceling hearing protective devices and plans to number each unit with a unique
8-digit number. How many unique numbers can be created, with the restrictions that the first
digit cannot be zero and no digit can be used more than once?

Solution
The first digit cannot be zero, so there are only 9 ways (1–9) to select the first number. For
the second digit, there are also 9 choices because 0 is now available but the previously chosen
number is not. For the third there are 8 choices, for the fourth 7 choices, and so on. The total
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of number of unique permutations is 9(9)(8)(7)(6)(5)(4)(3) = 1, 632,960 numbers. We can sell
quite a few devices without having to come up with a new system.

The number of permutations nPr of n objects made up of groups of which ni are alike is

nPr =
n!

n1!(n2!)(n3!)…
. (1.9)

Permutations in which the objects in a like group are switched are considered identical.

Example 1.9
How many possible arrangements are there of the letters in the word Mississippi?

Solution
The i appears 4 times, the s appears 4 times, the p appears 2 times, and m appears 1 time. The
number of possible permutations is

n!
n1!(n2!)(n3!)…

= 11!
4!4!2!1!

= 34,650possible arrangements.

1.7.2 Permutations for Sampling with Replacement

If objects were replaced and could be drawn again, there would be n choices for the first draw,
n for the second, n for the third, and so on, so that for r draws:

permutations = nr . (1.10)

This is an example of sampling with replacement.

Example 1.10
For the situation in Example 1.8, how many unique numbers could we produce, still with the
restriction that the first number cannot be 0, if we can reuse the digits?

Solution
Still with the restriction that the first number cannot be 0, we would have 9 ways (1–9) to
select the first number but then 10 choices for each of the next 7 numbers.The total number of
possible permutations would then be

9(107) = 9 × 107 possible numbers

We could sell a lot of devices before needing a new system!

1.7.3 Combinations

Consider a situation in which we would like to divide our class of 10 students into lab partner
pairs. How many ways are there of forming the first pair? That is, how many combinations of
n = 10 people taken r = 2 at a time are possible? This is abbreviated ( n

r ) or nCr and is calcu-
lated as

( n
r ) = nCr =

nPr

r!
= n!

r!(n − r)!
. (1.11)

Example 1.11
A particular wastewater discharge sampling task requires using integrating water samplers that
periodically draw volumes from the discharge stream over a 24-hour period and combine them
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into a single integrated sample. If you have 6 samplers in your inventory but need only 3 for the
task, how many ways are there to select 3 of the 6? The order of selection is irrelevant.

Solution
From Equation 1.11, there are (63) =

6!
3!(6−3)!

= 6!
3! 3!

= 6(5)(4)(3)(2)(1)
3(2)(3)(2)

= 20 possible combinations of
the 6 samplers taken 3 at a time.

Excel provides the COMBIN function for calculating combinations. The function has the
form COMBIN(n, k), so for the situation in Example 6.15, the cell equation would read
=COMBIN(6,3).

1.8 Introduction to Frequency Distributions

Figure 1.2 graphically shows the distribution of frequencies with which individual measure-
ment values occurred in the 10-measurement bubble tube experiment previously discussed.
Figure 1.3 shows what the distribution might look like if we had a lot more measurements. The
pump’s air flow rate was (in theory) constant, so the variation in measurements had to be due
to random differences in exactly when the stopwatch was started and stopped during each trial.
The highest frequency is in the middle of the measurement range, with frequencies symmet-
rically distributed to either side and decreasing with distance from the center. But why does it
have this “bell” shape?
In general, barring any systematic bias the difference in a measurement value and the true

value of the quantity being measured will be due to the combined effect of perhaps several
independent random influences. Each has the potential to randomly nudge the measure in a
negative or positive direction to varying degrees, and so they tend to offset one another to some
extent.The result is that small net differences aremore likely to occur than large net differences.
Why this occurs is a matter of probabilities, which we use to illustrate sources of imprecision.

1.8.1 The Binomial Distribution

Consider the situation of flipping a coin, and let a Head outcome be scored as +1 and a Tail
outcome as −1. For an “honest” coin flipped an infinite number of times, we would expect
the average of all the outcomes to be 0 since flipping a Head is equally as likely as flipping a
Tail – each has a probability of occurrence of 0.5 or 50%. For a more limited number of flips
(“trials,” in statistical terms), intuition might suggest that it is more likely than not that there
will be more Heads than Tails or vice versa, so that the average has a net positive or negative
value. Intuition might also suggest that in a series of 10 flips, for example, it is highly unlikely
that there will be either no Heads or 10 Heads.
Let the random variable X denote the total number of Heads observed in such an experiment.

The probability of observing exactly x Heads in n trials can be calculated from

P(X = x) = n!
x!(n − x)!

pxqn−x, (1.12)

where p is the probability of a Head (0.5) and q = 1 − p = 0.5 is the probability of a Tail since
these are mutually exclusive events with only these two possible outcomes. Recall that the “!”
symbol denotes “factorial,” for example, n! = n(n − 1)(n − 2)(n − 3)… (with 0! ≡ 1).
If Equation 1.12 is used to calculate the probabilities for x values from 0 to 10 in n = 10 trials

it will be found that 5 Heads is the most likely outcome at P{X = 5} = 0.2461, and that 0 or 10
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Figure 1.4 Probabilities of the binomial distribution for equal likelihood outcomes (p = q = 0.5), as applied to
the coin flip example. Small net differences in the number of heads and tails are more likely than large net
differences.

Heads is the least likely at P{X = 0} = P{X = 10} = 0.0010 (rounded to 4 decimal places), as
shown in Figure 1.4. Note that the probabilities are symmetric about the center and add up to
a total probability P = 1.0 since these 11 outcomes are the only ones possible for 10 flips (we
assume that the coin never lands on its edge!).
The equation and figure represent the binomial probability distribution for dichotomous out-

come events, that is, trials with only two possible outcomes. The binomial is a discrete data
distribution because its measures can take on only specific values (integer counts in this case).
The outcome of the flip is therefore a discrete random variable. The shape of the distribution
depends on the values of p and q, and is only symmetricwhen p = q = 0.5.More detailed discus-
sion of probability theory underlying the binomial distribution can be found in basic statistics
texts such as Zar (2010) and Daniel and Cross (2013).

Example 1.12
You are preparing dilutions of a colorimetric stock solution prior to calibrating a spectropho-
tometer. You need to pipette 10mL into a vial but have only a 1mL volume pipette to work
with. If it takes 10 pipettings to make up the 10mL, and each pipetting has a potential random
error of ±0.05mL (for the purposes of this illustration, we assume that you never get exactly
1.0mL volume, and that the random error is exactly +0.05mL or −0.05mL each time), what is
the probability that you will end up with exactly 10mL?

Solution
In order to end up with exactly 10mL, there would have to be 5 over-pipettings and
5 under-pipettings, that is, x = 5 for n = 10 trials. The probability of this happening (P(x = 5))
is 0.246 as shown in Figure 1.4, or only about 25%.

Example 1.13
For the situation in Example 1.12, how likely would it be to end up with a volume that is off by
0.1mL or more in either direction (i.e., 9.9mL or less, or 10.1mL or more)?
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Figure 1.5 The normal distribution for mean 𝜇 = 0 and various standard deviations 𝜎. The curve for 𝜇 = 0 and
𝜎 = 1 is the standard normal distribution.

Solution
The probability of being off by 0.1mL or more in 10 pipettings is equivalent to there being
4 or more under-pipettings to get 9.9mL or less or 6 or more over-pipettings to get 10.1mL
or more. From Figure 1.4 for all values of x ≤ 4 (or of x ≥ 6), P(x ≤ 4) = P(x ≥ 6) = 0.001 +
0.010 + 0.044 + 0.117 + 0.205 = 0.377 from the Addition Rule.

A more convenient approach to obtaining the probability in Example 1.9 would be to obtain
the cumulative probability for x ≤ 4 from Excel’s BINOM.DIST function. This is the sum
of all of the discrete probabilities for values ≤ x in Figure 1.4. The cell equation would be
=BINOM.DIST(x, n, p, 1) = BINOM.DIST(4, 10, 0.5, 1), where x is the number of “successes”
in n trails, p is the probability of a success, and the 1 is a logical operator telling Excel we want
the cumulative (summed) probability, not the probability for exactly x. Excel will return the
value 0.37659. If we had used the 0 logical operator the function would return the same value
as Equation 1.12.
Here, we have used the binomial distribution to illustrate why the net result of a number

of random influences acting together tend to offset one another to some extent, so that the net
random error in ameasurement is more likely to be smaller than larger.The outcome of any one
component of the error occurring in either the positive direction or in the negative direction
is an example of a binomial process in which there are only two possible outcomes. We revisit
such binomial processes in later chapters.

1.8.2 The Normal Distribution

In the bubble tube example, the minimum difference in measurement times was 0.1 seconds –
the limit of resolution of the stopwatch – so that net errors could only take on discrete values. In
the more general case, random errors can take on any value over some range, and so are contin-
uous variables. The resulting net error is therefore also a continuous random variable, as is its
probability distribution. That distribution is the bell-shaped normal or Gaussian distribution,
examples of which are shown in Figure 1.5. The normal distribution is a continuous probability
distribution because the x values are continuous.
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The entire normal distribution is described by only two parameters, the population mean
𝜇 and the population standard deviation 𝜎, whose square is the population variance 𝜎2.
The mean is a measure of central tendency in the measurements and standard deviation is
a measure of dispersion (deviations) of measurements about the central value. Figure 1.5
illustrates three normal distributions with the same mean (0) but different standard deviations
(0.5, 1, 2, and 3).
If the mean 𝜇 and standard deviation 𝜎 parameters of a normal data distribution are not

known exactly but are estimated from measurement data, they are represented by the sample
mean x and sample standard deviation s (and sample variance s2) statistics. The sample mean
x is simply the arithmetic average of the individual measurement values:

x = 1
n
∑

xi =
∑
(fixi)∑

fi
, (1.13)

where xi is any one of the n measured values and fi is the number of times that value occurs,
that is, its frequency. The sample standard deviation is calculated as

s =
√

1
n − 1

∑
fi(xi − x)2. (1.14)

The square of the sample standard deviation is the sample variance, s2.
The n − 1 in Equation (1.14) is termed the degrees of freedom (df ), an important concept

that we will encounter frequently as we proceed. In this application, it should be evident that
the deviations of the measurement values from the mean, xi − x, must sum to zero, so that if we
know all but one, that is, n − 1, of the deviations we can calculate the last one. This is termed
a linear constraint on the deviations (Box et al., 2005, pp. 26–27). Equation 1.8 uses one esti-
mate of a population parameter (the sample mean estimates the population mean) to estimate
another population parameter (the sample standard deviation estimates the population stan-
dard deviation), so there is one linear constraint on the estimate. In later applications, we will
see more than one estimated population component being used in a calculation, so that there
will be p linear constraints and therefore n − p degrees of freedom.

Example 1.14
ANebraska stream’s dissolved oxygen concentration (mg/L) is measured daily for 3 weeks dur-
ing the winter with the results shown.What are the mean and standard deviation of the oxygen
concentrations?

O2 conc. (mg/L)

Week 1 Week 2 Week 3

Monday 9.7 11.6 6.4
Tuesday 9.0 10.5 9.2
Wednesday 12.6 7.7 9.0
Thursday 10.9 8.1 12.2
Friday 12.4 12.0 10.3
Saturday 10.2 8.5 11.6
Sunday 19.8 6.6 12.2
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Solution

x = 1
n
∑

xi =
1
21

(9.7 + 9.0 + 12.6 +…+ 11.5 + 12.2) = 220.5
21

= 10.5mg∕L

s =
√

1
n − 1

∑
fi(xi − x)2

=
√

1
21 − 1

[
(9.7 − 10.5)2 + (9.0 − 10.5)2 +…+ (12.2 − 10.5)2

]
= 2.84mg∕L.

A random variable X that follows the normal distribution with mean 𝜇 and variance 𝜎2 is often
represented as X ∼ N(𝜇, 𝜎2).

The height of the normal distribution curve y at any point x is given by

y = 1
𝜎

√
2𝜋

e−(x−𝜇)2∕2𝜎2 . (1.15)

Equation (1.15) is called the probability density function (pdf ) of the normal distribution. The
value of the probability density (the height of the curve) at any x-value can be obtained from
the NORM.DIST function (NORMDIST in older versions of Excel), where the cell equation is
NORMDIST(x, 𝜇, 𝜎) with the x-value of interest and𝜇 and 𝜎 for the distribution.
For the special case of the mean 𝜇 = 0 and variance 𝜎2 = 1 (so that the standard deviation

𝜎 = 1 aswell), we have the standard normal distribution, often designated byN(0, 1). Relative to
the standard normal distribution, normal distributions with other values of 𝜇 are simply shifted
left or right of 0 on the number line, whereas other values of 𝜎 change the height and breadth
of the curve as shown in Figure 1.5. The value of the probability density at any x-value of the
standard normal distribution can be obtained from the NORM.S.DIST function (NORMSDIST
in older versions of Excel) as NORM.S.DIST(z, 0), where 0 a logical operator that tells Excel
we want the probability density (the height of the curve) and not the cumulative probability
(the area under the curve) as described later. The same value is provided by the NORM.DIST
function if NORM.DIST(x, 0, 1) is specified.
The area under the normal distribution curve between two values x and x + Δx is the prob-

ability that a measured value will fall within that range. For a given x value, the area under the
curve to the left of that point is the probability that a measured value will be less than or equal
to x, and the area to the right of the point is the probability that a measured value will be greater
than x. For a given point exactly equal to x (i.e., Δx = 0), there is no area under the curve and
the probability is 0; this can be a difficult concept to grasp. The total area under any normal
distribution curve between −∞ and +∞ is 1.0, that is, 100% total probability since it includes
all possible values of x.
For the N(0, 1) distribution, the horizontal distance from zero to any point on the line is the

standard normal deviation, z, also called the z-score or z-value. z can range from 0 to −∞ on
the left side and from 0 to +∞ on the right side. An x-value in any normal distribution N(𝜇, 𝜎)
can be transformed to a standard normal deviation by

z = x − 𝜇

𝜎
. (1.16)

From examination of Equation (1.16), it will be seen that z is just the number of standard devi-
ations the x value is from the distribution mean.
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Figure 1.6 For any normal distribution, 95% of the probability (area under the curve) is within the range +1.96
standard deviations of the mean. For the standard normal curve with 𝜎 = 1, this is equivalent to z = ±1.96.

Tables of probability under the standard normal curve are given in Tables A1 and A2. Table
A1 is a table of the cumulative probability from z = −∞ to x, where x is non-negative. The
first value in this table is P = 0.5000 for z = 0.00, indicating that half of the total probability,
for −∞ < z ≤ 0 on the left side of the distribution, has already been accounted for. Table A2
provides the probability under the normal curve in the range −z to +z. The first value in this
table is therefore 0.0000 when z = 0.
For any normal distribution, 95% of the area under the curve, that is, of the probability, is

contained in the interval from x = 𝜇 − 1.96𝜎 to x = 𝜇 + 1.96𝜎. For standard normal distribution
in which 𝜇 = 0 and 𝜎 = 1, this is equivalent to z = −1.96 to z = +1.96 as shown in Figure 1.6
(see also Table A2). One could observe as well that 95% of the probability is also contained in
the interval from −∞ to z = +1.645 (see Table A1).
The z-value associated with a given cumulative probability from −∞ to z can be calcu-

lated in Excel using the NORM.S.INV function (or NORMSINV in older versions of Excel),
and the cumulative probability associated with a given z-value can be calculated from the
NORM.S.DIST using z and the logical operator 1 to obtain the cumulative probability
as noted earlier. These functions can be typed directly into a cell or inserted using the
Formulas/Insert Function tab. For example, NORM.S.INV(0.975) would return 1.96 and
NORM.S.DIST(1.96, 1) would return 0.9750, reflecting all of the probability to the left of the
z = +1.96 point in Figure 1.6. Other statistical utilities that performmore complex analyses are
available in the Analysis ToolPak add-in1. A glossary of some particularly useful Excel utilities
and cell functions is included in the addendum to this chapter.

1 The statistical functions in Analysis ToolPak are accessed by clicking on the Data tab in the header bar. If a Data
Analysis tab does not appear in the Data page toolbar it just means the ToolPak utility has not been added. This can
be quickly done by going to the File/Options/Add-ins page and clicking on the Manage button with Excel Add-Ins
selected. Analysis ToolPak and several other options will appear in a dialog box – just mark the Analysis ToolPak
option (not Analysis ToolPak VBA – which is for business statistics), and click OK. When you go back to the Data
page you should see Data Analysis as the last tab in the toolbar. Clicking on Data Analysis tab will bring up the
statistical utility options.
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Example 1.15
For a normal distribution of values with 𝜇 = 1.5 and 𝜎 = 0.55, what is the value x that is larger
than 90% of all the values, that is, what is the 90th percentile value?

Solution
Wehave a table of standard normal z-values and their cumulative probabilities (TableA1), sowe
can readily find the z-value for the 90th percentile. Then, given the sample mean and standard
deviationwe can transform this to a corresponding x-value in the sample data distribution using
Equation (1.16).
FromTable A1, the 90th percentile point in the standard normal distribution occurs between

z = 1.28 (p = 0.8997) and = 1.29 (p = 0.9015).

z P

1.28 0.8997
? 0.9000
1.29 0.9015

By linear interpolation

z90% = 1.28 + (1.29 − 1.28) (0.9000 − 0.8997)
(0.9015 − 0.8997)

= 1.2817.

To complete the transformation, we rearrange z = x−𝜇
𝜎

to get x = 𝜇 + z𝜎 = 1.5 +
1.2817(0.55) = 2.205.
In Excel, NORM.S.INV(0.90) returns 1.281552 for z, for which the corresponding x = 2.207.

The difference in results is due to applying linear interpolation to a difference in probabilities
between z = 1.28 and z = 1.29 that is actually not linear. This is clear from inspection of the
probability density curve.

The normal probability distribution is an extremely useful tool having many applications in
measurement data analysis. Beginning in Chapter 3, we describe how the properties of the
normal distribution are applied in parametric analytical techniques.

1.8.3 The Chi-Square Distribution

Another important probability distribution that underlies several statistical techniques used
in this text is the chi-square distribution (also designated by 𝜒2) (read “kye square”). It can
be shown that the sum of the squares of values of a standard normal random variable (such
as z-scores) follows the chi-square distribution, whose shape is determined by its degrees of
freedom. The degrees of freedom k for this application are equal to the number of squared
measures.
The probability density function of the chi-square distribution with k degrees of freedom is

described by (Daniel and Cross, 2013, p. 602)

fX(x|k) = x[k∕2]−1e−x∕2

Γ
(

k
2
− 1

)
2k∕2

, (1.17)
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Figure 1.7 The shape of the chi-square distribution for various degrees of freedom, k. The distribution
approximates the normal distribution when k is large.

for x > 0, where k is the number of degrees of freedom and Γ is the gamma function.When k is
an even numbered integer ≥ 2, Γ

(
k
2

)
=
(

k
2
− 1

)
! If k is an odd numbered integer or < 2 then

the value of the Γ function must be taken from a table of its values, which can be found via the
Internet or in a book ofmathematical tables. Recall that the symbol | in Equation 1.17 represents
“given,” so that fX(x|k) is the probability density of the chi-square distributed variable x given
that there are k df .The shape of the distribution changes dramatically as the number of degrees
of freedom increases, from highly skewed at k = 2 to something approaching the normal dis-
tribution as k exceeds 10 or so (Figure 1.7). Thus, the chi-square distribution is “asymptotically
normal” – its shape approaches that of the normal distribution as the degrees of freedom grows
large.
The cumulative probability, that is, P(X ≤ x), of the chi-square distribution can be calculated

using the CHISQ.DIST function in Excel as CHISQ.DIST(x, k, 1).The CHISQ.DIST(x, k,TRUE
or FALSE) function returns either the value of the probability density function at x for k df if
FALSE (0) or the cumulative (left-tailed) probability up to x if TRUE (1). Figure 1.7 was created
using pdf values calculatedwith the former.The area under the curve to the right of x is returned
by the CHISQ.DIST.RT function, that is, CHISQ.DIST.RT(x, k). This right-tail probability is
equivalent to 1−CHISQ.DIST(x, k, 1).
Given a set of k measures drawn from a normal distribution of all possible measures that

could have been made, for which the sample mean is x and the sample standard deviation is s,
we can transform the measured values to z-scores using Equation (1.16) as zi =

xi−x
s
. The sum

of the squares of the zi values will then be chi-square distributed with k df .

Example 1.16
Four measurements of contaminant concentration in a body of water are 55, 50, 51, and
53mg/L.Themean 𝜇 and standard deviation 𝜎 of the population of all previous measurements
are 48 and 3, respectively. What is the probability associated with the X2 value for these
measures?

Solution
Each of themeasures is transformed to a z-score using Equation (1.16), the z-scores are squared
and summed, and this value is used to find the probability.
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x z-Score z-Squared

55 2.33 5.44
50 0.67 0.44
51 1.00 1.00
53 1.67 2.78
𝜇 48 9.67 =X2

𝜎 3

From Appendix B, the probability associated with X2 = 9.67 for k = 4df may be estimated
as 0.9055 by linear interpolation, so that the probability of exceeding the 9.67 value (the prob-
ability in the tail of the distribution to the right of 9.67) is 1 − 0.9528 = 0.0472 or about 4.7%.
However, using the CHISQ.DIST.RT function, CHISQ.DIST.RT(9.67, 4) = 0.046 or about 5%.
This difference is due to linear interpolation of a nonlinear curve of values, and demonstrates
that using the Excel function is more accurate as well as more convenient than interpolating
between table values.

We use the chi-square distribution in a number of applications in the following chapters.

1.9 Confidence Intervals and Hypothesis Testing

We have discussed how random variation will cause replicate measures of a fixed parameter to
span a range of values. For a great many trials, the measurement values will exhibit a frequency
distribution – typically a normal distribution described by its mean and standard deviation. For
normally distributed measures, we can identify x-values of the distribution between which we
would expect some fraction of many replicate measurements to fall. The range between these
two x-values, within which we would expect the true (population) parameter value to fall, is
termed the confidence interval. The width of the confidence interval is determined by the frac-
tion we choose, typically 95%, and is termed the confidence level or confidence coefficient. The
confidence level is the probability, over repeated sampling, that any given confidence interval
will contain the true parameter value. For example, if wewere to take 100 samples and construct
a confidence interval on each result, for a confidence level of 95% we would expect 95 out of
the 100 intervals to contain the true parameter value being measured. Thus, when comparing
our measured value to some hypothesized parameter value, if the parameter value does not
fall in the confidence interval around the measured value we conclude that it is unlikely that
we were measuring that parameter value. This is an example of hypothesis testing, in which we
have hypothesized that we were measuring the specified parameter value and tested – with a
confidence interval – whether it appears likely that hypothesis is correct. Statistical analyses to
answer questions often take the form of hypothesis tests.
An IH/EHS example of this type of test, in which we compare a measured value to some

known value, might be in comparing a company’s incidence of worker injuries to an indus-
try average. We would form a null hypothesis Ho such as “There is no difference between the
company’s injury incidence and the industry average.” The statistical test then makes a proba-
bilistic assessment of whether the null hypothesis is likely to be correct. If the test rejects the
null hypothesis as being unlikely to be correct, we accept an alternate hypothesis HA that in
this example might be “The company’s injury incidence is different from the industry average.”
Exactly how this is done is discussed in Chapter 4.
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An understanding of what we mean by “unlikely to be correct” is essential. We expect to have
some random variability among individual measurements of a quantity, so that there is some
uncertainty as to what the “true” value is that we are measuring. Each measurement provides
an estimate of the true value, which we understand to be the true value of what we are mea-
suring plus or minus some amount of random variation. Statistical tests basically answer this
question: “Given the assumed null hypothesis, how probable is it that we would have gotten the
measurement that we did?”
In the following chapters, we explore the use of confidence intervals and learn a variety of

parametric and nonparametric hypothesis testing techniques. Each is illustrated with examples
from the IH/EHS field.

1.10 Summary

IH/EHS measurements are made for a variety of reasons, and the who, what, when, where, and
how of measurements is driven by the why, that is, the question one is trying to answer. There
is always variability in measurements, and statistics provides tools that allow us to account
for this variability when making inferences, that is, to distinguish the “truth” obscured by the
fog of imprecision. Many of these tools are based on the properties of the normal distribution
or the chi-square distribution. An important question is: how much of the right kind of high
quality data is needed to address a specific question? The answer of course is: “it depends.”
It depends on the question being asked, the characteristic being measured, and the statistical
method used to conduct the data analysis.Theremust be enough data to overcome the inherent
variability in the measured characteristic and to satisfy the minimum data requirements of the
statistical technique. Failure to satisfy either of these requirements will result in insufficient sta-
tistical power in the analysis, which may be expressed as the ability to statistically demonstrate
a difference when a real difference exists.

1.11 Addendum: Glossary of Some Useful Excel Functions

Statistical functions related to data distributions

BINOM.DIST(x, n, p, 0) Returns the binomial probability of observing exactly x successes in
n trials, where the probability of success in any one trial is p.

BINOM.DIST(x, n, p, 1) Returns the cumulative binomial probability of observing x or fewer
successes in n trials, where the probability of success in any one trial is p.

CHISQ.DIST(X2, df , 0) Returns the value of the chi-square probability density function (the
height of the curve) at X2 for a function with df degrees of freedom.

CHISQ.DIST(X2, df , 1) Returns the cumulative probability of the chi-square distribution at
X2 for a function with df degrees of freedom.

CHISQ.INV(p, df ) Returns the inverse (the value of X2) of the left-tailed probability p of the
chi-squared function with df degrees of freedom, that is, the X2 value for probability p to
the left of X2.

CHISQ.INV.RT(p, df ) Returns the inverse (the value of X2) of the right-tailed probability p of
the chi-squared function with df degrees of freedom, that is, the X2 value for probability p
to the right of X2.

F.DIST(F , df1, df2, 0) Returns the value of the F-distribution probability density function (the
height of the curve) at F for a function with df1 and df2 degrees of freedom.
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F.DIST(F , df1, df2, 1) Returns the cumulative probability to the left of F for the F-distribution
with df1 and df2 degrees of freedom.

F.DIST.RT(F , df1, df2) Returns the probability to the right of F for the F-distribution with df1
and df2 degrees of freedom.

F.INV(p, df1, df2) Replaces FINV. Returns the inverse of the F-distribution (the value of F) for
a probability p for a distribution that has df1 and df2 degrees of freedom.

NORM.DIST(z, 𝜇, 𝜎, 0) Replaces NORMDIST. Returns the value of the normal probability
density function (the height of the curve) at position z from the mean for a normal
distribution with mean 𝜇 and standard deviation 𝜎. Provides the same return as
NORM.S.DIST if 𝜇 = 0 and 𝜎 = 1 are specified.

NORM.DIST(z, 𝜇, 𝜎, 1) Replaces NORMDIST. Returns the cumulative probability to the left
of position z from the mean for a normal distribution with mean 𝜇 and standard deviation
𝜎. Provides the same return as NORM.S.DIST if 𝜇 = 0 and 𝜎 = 1 are specified.

NORM.S.DIST(z, 0) Replaces NORMSDIST. Returns the value of the standard normal
probability density function (the height of the curve) at position z from the mean.

NORM.S.DIST(z, 1) Replaces NORMSDIST. Returns the cumulative probability to the left of
z in the standard normal distribution. This function was used to generate Table A1.
To obtain the probability contained between ±z, use the cell equation NORM.S.DIST(z, 1)−
NORM.S.DIST(−z, 1). This approach was used to generate Table A2.

NORMS.S.INV(p) Replaces NORMSINV. Returns the inverse (the value of z) of the standard
normal distribution for a cumulative probability of p to the left of z.

T.DIST(t, df , 0) Returns the value of the probability density function (the height of the curve)
at t for a t-distribution with df degrees of freedom.

T.DIST(t, df , 1) Returns the cumulative probability to the left of t for a t-distribution with df
degrees of freedom.

T.DIST.2T(t, df ) Returns the two-tailed p-value for a calculated t-value for df degrees of
freedom. You do not need to look up the critical t-value to decide
significance – significance is shown if p < 𝛼.

T.DIST.RT(t, df ) Returns the probability p to the right of a calculated t-value for df degrees of
freedom.This could be used for a one-sided test – significance is shown if p < 𝛼.

T.INV(p, df ) Replaces TINV. Returns the inverse of the t-distribution (the t-value) for a
cumulative probability p with df degrees of freedom.

T.INV.2T(p, df ) Returns the two-tailed critical t-value for p = 𝛼 and df degrees of freedom,
or the one-tailed critical t-value for p = 2𝛼 and df degrees of freedom.

Statistical functions that calculate statistics from a data set

AVERAGE(cell1 ∶ cell2) Returns the arithmetic average (mean) of the range of numbers
between two cells. The range can be in a row (e.g., A1:A10), in a column (e.g., C5:C18), or it
could be an array of numbers between two cells in different rows and columns (e.g., A1:D6).
AVERAGE can also be used for specific cells separated by commas, for example,
AVERAGE(cellx, celly, cellz).

COVARIANCE.S(array1, array2) Returns the covariance of two columns or rows of paired
numbers.

GEOMEAN(array) Returns the geometric mean of the range of numbers between two cells.
The range can be in a row (e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array
of numbers between two cells in different rows and columns (e.g., A1:D6).
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MAX(array) Returns the maximum value in the range of numbers between two cells. The
range can be in a row (e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array of
numbers between two cells in different rows and columns (e.g., A1:D6).

MODE(array) Returns the most frequently occurring value in the range of numbers between
two cells. The range can be in a row (e.g., A1:A10), in a column (e.g., C5:C18), or it could be
an array of numbers between two cells in different rows and columns (e.g., A1:D6).

MEDIAN(array) Returns the median value in the range of numbers between two cells. The
range can be in a row (e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array of
numbers between two cells in different rows and columns (e.g., A1:D6).

MIN(array) Returns the minimum value in the range of numbers between two cells. The
range can be in a row (e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array of
numbers between two cells in different rows and columns (e.g., A1:D6).

PERCENTILE.EXC(array, k) Returns the kth percentile value in the distribution of numbers
between two cells (k is a decimal fraction between 0 and 1). The range can be in a row
(e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array of numbers between two
cells in different rows and columns (e.g., A1:D6). k is a fraction between 0 and 1, and the
function calculates a new value if the percentile falls between two values in the distribution
(see, e.g., the manual calculation in Figure 2.8). This function is not the same as the
PERCENTILE.INC (or its older version PERCENTILE) function, which returns different
values.

QUARTILE.EXC(array, quart) Returns the specified quartile value in the distribution of
numbers between two cells. The range can be in a row (e.g., A1:A10), in a column (e.g.,
C5:C18), or it could be an array of numbers between two cells in different rows and columns
(e.g., A1:D6). quart can have the value 0 (the minimum), 1 (first quartile or 25th percentile),
2 (second quartile or 50th percentile or median), 3 (third quartile or 75th percentile), or 4
(maximum value). This function is not the same as the QUARTILE.INC (or its older version
QUARTILE) function, which returns different values and results in a narrower IQR.

RANK.AVG(cellx, cell$1 ∶ cell$2, 1) Returns the rank of the value in a specified cell (cellx) of
an array of cells between cell1 and cell2. Ranking is from smallest to largest value, and tied
values are given average ranks. This is the one to use when constructing NED plots from
Weibull plotting positions. Note the $ to anchor the data array range when copying the
equation to all the rows of the data matrix.

RANK.AVG(cellx, cell$1 ∶ cell$2, 0) Returns the rank of the value in a specified cell (cellx) of
an array of cells between cell1 and cell2. Ranking is from largest to smallest value, and tied
values are given average ranks. Note the $ to anchor the data array range when copying the
equation to all the rows of the data matrix.

VAR.S(array) Replaces VAR. Returns the variance of the range of numbers between two cells,
treating the data as a sample (not as a census). The range can be in a row (e.g., A1:A10), in a
column (e.g., C5:C18), or it could be an array of numbers between two cells in different
rows and columns (e.g., A1:D6).

VAR.P(array) Replaces VARP. Returns the variance of the range of numbers between two
cells, treating the data as a census (not as a sample). The range can be in a row (e.g.,
A1:A10), in a column (e.g., C5:C18), or it could be an array of numbers between two cells in
different rows and columns (e.g., A1:D6). This will rarely be used because we seldom work
with census measures.

STDEV.S(array) Replaces STDEV. Returns the standard deviation of the range of numbers
between two cells, treating the data as a sample (not as a census). The range can be in a row
(e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array of numbers between two
cells in different rows and columns (e.g., A1:D6).
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STDEV.P(array) Replaces STDEVP. Returns the standard deviation of the range of numbers
between two cells, treating the data as a census (not as a sample). The range can be in a row
(e.g., A1:A10), in a column (e.g., C5:C18), or it could be an array of numbers between two
cells in different rows and columns (e.g., A1:D6).

STANDARDIZE(x, x, s) Calculates a z-score for the specified value x given the sample mean x
and sample standard deviation s, that is, z = (x − x)∕s.

Statistics related to correlation and regression

CORREL(x11, x2n) Same as PEARSON. Calculates the Pearson correlation coefficient for two
columns of numbers x1 and x2. The columns must of course be the same size. x11 is the top
value in the left column and x2n is the last value in the right column.

INTERCEPT(y1, xn) Calculates the y-axis intercept of a least squares regression line fitted to
a column of y-values and their corresponding x-values. The columns must of course be the
same size. y1 is the top value in the left (y-values) column and xn is the last value in the right
(x-value) column.

PEARSON(x11, x2n) Same as CORREL. Calculates the Pearson correlation coefficient for two
columns of numbers x1 and x2. The columns must of course be the same size. x11 is the top
value in the left column and x2n is the last value in the right column.

RSQ(y1, xn) Calculates the coefficient of determination (R2) of a least squares regression line
fitted to a column of y-values and their corresponding x-values. The columns must of
course be the same size. y1 is the top value in the left (y-values) column and xn is the last
value in the right (x-values) column.

SLOPE(y1, xn) Calculates the slope of a least squares regression line fitted to a column of
y-values and their corresponding x-values. The columns must of course be the same size. y1
is the top value in the left (y-values) column and xn is the last value in the right (x-values)
column.

Other useful functions

COMBIN(n, k) Calculates the number of possible combinations of n objects taken k at a time.
PERMUT(n, k) Calculates the number of possible permutations (orderings) of n things taken

k at a time.
PRODUCT(array) Calculates the product (Π) of the values in the array.
SUM(array) Calculates the sum (Σ) of the values in the array.
SUMSQ(array) Calculates the sum of the squares of each of the values in the array.

1.12 Exercises

1 In the bubble tube calibration example provided in the text, what are some of the minor
random variations that could have contributed to the distribution of measured values?
Note that there are several components involved – the air pump, the watch, and the
observer – each of which is a system in itself.

2 A corporate industrial hygienist supports three manufacturing plants with different
types of products and occupational hazards. Her field time spent per year at different
types of tasks in the three plants is, on average, as shown in the table. There is no
“multitasking” – only one task is performed at a time.
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Plant A Plant B Plant C Totals

Air sampling 384 192 288 864
Noise surveys 240 96 220 556
PPEa fit testing 144 72 144 360
Worker training 82 90 68 240
Totals 850 450 720 2020

aPersonal protective equipment such as air purifying respirators or ear plugs

(a) What is themarginal probability that on any given day shewill be doing noise surveys?
Answer: 0.275

(b) What is the joint probability that she will be doing noise surveys in Plant B?
Answer: 0.0475

(c) What is the conditional probability that she will be doing fit testing if she is in Plant
C that day?
Answer: 0.200

(d) Formally test whether the plant and task events are independent.

3 In an Excel spreadsheet, generate a list of z-values from −4 to +4 in Column A, compute
the corresponding standard normal density in Column B via =NORM.S.DIST(z, 0), and
produce a plot to visualize the probability density curve.

4 Using the appropriate z-table in Appendix A, determine the z-value corresponding to
0.995 cumulative probability. If you like, also calculate the value using Excel®. What is
the probability under the normal distribution curve corresponding to the range −z to +z
for this z-value?
Answer: 2.575; 0.9900

5 Using the appropriate z-table in Appendix A, determine the probability under the curve
for the z range (a) −𝜎 to +𝜎 (±1 standard deviation from the mean), (b) −2𝜎 to +2𝜎, and
(c) −3𝜎 to +3𝜎.
Answer: 0.6826; 0.9544; 0.9974

6 For a normal probability distribution curve with 𝜇 = 3 and 𝜎 = 2.5:
(a) Calculate the height of the curve at x = 3.5 and at x = 3.7

Answer: 0.15641; 0.15344
(b) Estimate the area under the curve between these two x-values (hint: the area is esti-

mated from the area of the rectangle with sidesΔx = 0.2 and the average height of the
interval).
Answer: 0.030985

(c) Calculate a z-value corresponding to each of the x values using Equation 1.10 (z =
x−𝜇
𝜎
).

Answer: 0.28
(d) Again estimate the area under the curve by taking the difference in cumulative prob-

abilities for these two z-values, using either Appendix A or Excel, and compare it to
your answer from part (b).
Answer: 0.0310
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7 What is the cumulative probability associated with an X2 = 12 if there are 3 df ? Specifi-
cally, what is P(X2 ≤ 12|k = 3)?
Answer: 0.9926

8 What X2 value would correspond to 95% cumulative probability if there are 5 df , that is,
P(X2 ≤ x|k = 5)? What X2 value would correspond to 99% cumulative probability?
Answer: For 95%, 11.0705 from Appendix B, or 15.0863 from Excel

9 For a population with a known mean 𝜇 = 105 and standard deviation 𝜎 = 22.5, what is
the X2 value associated with measures of 95, 100, 115, and 125 from this population?
Answer: 1.235

10 You would like to conduct breathing zone air sampling on 3 workers from a SEG of 8
workers. How many combinations of 3 of the 8 workers are possible?
Answer: 56 groupings of 3 workers

11 You have identified 6 workers on whom you would like to conduct noise dosimetry mea-
sures over an 8-hour work period. However, you have only 1 dosimeter so youmust spread
the work over 6 days. How many ways are there of ordering the 6 workers?
Answer: 720
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