
1
ELECTRONIC MATERIALS AND
CHARGE TRANSPORT

This chapter presents an overview of the quantum mechanical nature of electrons in a
solid. Following this discussion, through adoption of a relatively simple language, we
will attempt to tackle a number of very complicated phenomena (such as charge trans-
port). One of the remarkable achievements of the pioneers of semiconductor electron-
ics has been their success in proposing an intuitive set of simplifying assumptions for
reducing the mathematically complex language of quantum mechanics to the closed-
form descriptions of the effective charged particles. While oftentimes we find it hard to
justify these assumptions, they have proven their capabilities for large devices and
under low electric fields.

1.1 WAVE/PARTICLE ELECTRONS IN SOLIDS

Early in the twentieth century, a number of important experiments revealed that elec-
trons are not just simply particles in the Newtonian sense. Electrons in some of the
experiments demonstrated a wavelike nature. These experiments were very similar
to the double-slit optical experiments. It was demonstrated that electrons coming from
the two slits, if not observed, produce interference patterns expected from wave prop-
agation only. However, if we try to observe the electrons, by means such as the study
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of absorption and emission of light, the uncertainty1 created by these interactions
reduces electrons to almost Newtonian particles. The same argument can be applied
to the movement of electrons in a perfectly crystalline lattice (also known as mono-
crystalline lattice). As a result of these experiments,wave/particle duality is attributed
to electrons. In this duality, the de Broglie wavelength2 is the wavelength assigned to
a particle of momentum p (given by λ= h p).

Electronic materials, which are suitable for fabrication of high-performance
semiconductor devices, come in monocrystalline solid forms. The presence of both
long- and short-range orders in the structure of these crystalline solids extends many
important properties to charge transport through these media. However, the assump-
tion of periodicity in crystals is always relative. In real crystals a number of intentional
and unintentional mechanisms (such as introduction of impurities, crystal defects, and
thermal vibrations) result in scattering of electrons after a typical travel distance on the
order of 100 Å. Such scattering processes can be seen as mechanisms of observation
of electrons. Of course, the distance paced between successive scattering events is
dependent on the presence and dominance of different scattering mechanisms. The
most unavoidable crystal imperfection is rooted in lattice vibrations, which are even
present in a defectless crystal devoid of impurities at temperatures above 0 K. As a
result of these scattering events, instead of seeing a three-dimensional large crystal,
electrons are only exposed to a small volume on the order of 10−18 cm3 containing
only about 3000 atoms, before they are dephased by lattice vibrations.

In a flawless monocrystalline lattice, electrons are predicted by quantum mechan-
ics to travel as propagating waves. This results in either a persistent current or in oscil-
lations.3 Electron interactions with the vibrations of the lattice (expressed in terms of
observation by quantum particles known as phonons) and the resulting generation of
Joule heat prevent electrons from acting in such a fashion. The emission of phonons
with a broad range of energies and wave vectors results in dephasing of electrons and
loss of coherence.

Although the electron–phonon interactions do not result in total elimination of
quantic nature of electrons, they considerably weaken these properties. This reduced
degree of quantum nature is often expressed in terms of perturbation theory, through
employing the so-called Fermi golden rule.4 Throughout this chapter, with the help of
analytical models developed on the basis of this theory, familiar characteristics of
semiconductors (e.g., their sometimes Ohmic behavior5) are evaluated. Rivaling
the results of this approach, the only way that quantum mechanics can produce an

1Heisenberg’s uncertainty principles (which are named afterWerner Heisenberg) state that the uncertain-
ties of two conjugate variables such as momentum and position (i.e., Δp and Δx, respectively) cannot be
both reduced to 0, since ΔpΔx ≥ h 2π. This is also true between uncertainty of energy and time. Where h,
named after Max Planck, is the Planck’s constant, which is equal to 6.63 × 10−34 J s.
2 Named after Louis de Broglie.
3 These phenomena will be further elaborated in Section 1.7.
4 Named after Enrico Fermi.
5 Named after Georg Ohm.
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Ohmic characteristic is when the complicated many-body Schrödinger equations6 for
electrons and phonons are solved.

Since electrons in solids are subject to the laws of quantum mechanics, any discus-
sion of electron transport through solids requires at least a rudimentary description of
the quantum mechanical wave nature of electrons. Although the present text does not
seek to present this picture through explicitly invoking the laws of quantum mechan-
ics, a number of important outcomes of such studies are reviewed in this section.

1.1.1 Quantum Description of Electrons

In order to formulate the wave function of electrons (which is often represented in
form of function ψ r in space) the time-independent 3-D Schrödinger equation
should be solved,

−
ℏ2

2m
∇2 +U r ψ r =Eψ r 1 1

This equation can be presented equivalently through invoking the concept of
Hamiltonian7 (i.e., H),

Hψ r =Eψ r 1 2

In (1.1) and (1.2), ℏ is themodified Planck’s constant,8m is the electron mass,9 E is
the energy, and vector r represents the spatial coordinates. In these partial differential
equations, the potential function U r is assumed to be time independent.

For a constant potential (i.e., the case of an electron in free space), the solution is
rendered in the form of plane waves,

ψ r =
1

Ω
exp j k r 1 3

whereΩ represents the normalization volume, which is defined using the square of the
amplitude of the wave function as the probability density function. Evidently, k in
(1.3) is the wave vector. In quantum mechanics, the eigenvalue of momentum is given
by ℏ k.

Oftentimes, semiconductor devices such as field-effect transistors (FETs) are rea-
lized as a 2-D plane through which charge transport takes place. Assuming a semi-
conductor slab in the x–y plane with an infinitesimal thickness W in the z-direction,

6Named after Erwin Schrödinger.
7 Named after William Hamilton.
8ℏ= h 2π, where h = 6.62 ×10−34 J s.
9 In here, intentionally the notions of effective mass (m∗, which is to be defined in Section 1.1.2) and the rest
mass of electron (i.e., m0 = 9.1 × 10−31 kg) are not used. m will be later replaced by m∗.
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quantum mechanics provides a picture for electrons confined in the z-direction while
free to move in the x–y plane. For these quasi 2-D electrons, separation of variables of
the 3-D time-independent Schrödinger equation results in

ψ r =ϕ z φ x,y =ϕ z
1

A
exp j kxx + kyy =ϕ z

1

A
exp j k ρ 1 4

in which A is the normalization area and ρ is a vector in the x–y plane. In the case of a
confining potential, which imposes an infinite barrier against the movement of
electrons normal to x–y plane, quantization of energy will yield

ϕ z =
2
W
sin knz =

2
W
sin

nπz

W
, n = 1,2… 1 5

This is the case of the so-called infinite potential well.
If the confinement is further extended to the y-direction and the confining potential

is turned into a simple square well of infinitely high barriers, one will have

ψ r =ϕ y,z φ x =ϕ y,z
1

L
exp j kx 1 6

where

ϕ y,z =
2
W

sin
mπy

W
sin

nπz

W
, m,n = 1,2… 1 7

in which L is the normalization length. This is the case of the so-called quantum wire.
Figure 1.1 provides schematics for a quantum well and a quantum wire.
What is common between the cases of electron in free space, confinement in a

quantum well, and confinement in a quantum wire is that according to (1.3), (1.4),
and (1.6) for all three cases, electrons assume a propagating-wave nature. What this
means is that electrons feel almost free to move, either in 3-D, 2-D, or 1-D space.

As mentioned earlier, confinement of electrons in one and two dimensions results
in energy quantization. This is expressed through integer values of n and m.

Assuming a potential well in which an electron is only allowed to move between
the barriers and not parallel to them, energy quantization is expressed by

En =
ℏ2π2

2m∗W2
n2, n = 1,2,… 1 8

where, as shown in Figure 1.1, W is the distance between the two barriers.
In this equation, each of the values of energy expressed by En represents an allowed

energy level (or overlooking the spin of an electron: energy state). Electrons are pro-
hibited to assume all other values of energy. In the case of a finite potential well,
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quantization is present to a lesser degree, and a recursive equation should be solved to
calculate the allowed energy values.

Extending the degrees of freedom of electrons in the potential well results in over-
lapping of the wave functions of the neighboring electrons residing on each of these
energy states. As a result, due to the restrictions of Pauli’s exclusion principle,10 each
quantized energy state will split into a number of very closely packed energy states.
As will be seen later on in this section, these split energy levels, depending on the
degree of confinement, can grow into bands or the so-called subbands of energy.

In the form of confinement in a 2-D plane, the quantum-well situation especially
resembles that of the thin silicon body of a silicon-on-insulator11 MOSFET. This
device will be seen in Chapter 3. In this context, each of the energy levels expressed
in (1.8) stands for a subband with many allowed momentum states (also known as
k-states) in the x–y silicon plane. As shown by (1.8), increasing the confinement
(i.e., reducing W) increases the separation of the subbands. As will be observed later
on in this chapter, this is important to the reduction of the chance of electron scattering
from one subband to the next. In this system, through assigning an effective value of
mass to electrons (i.e., m∗), the total energy written as the sum of kinetic energy and
confining energy is given by

E k =En +
ℏ2k2

2m∗ ,n = 1,2,3,…
1 9

where k2 = k2x + k
2
y . The relationship between the energy and momentum (which is

represented by ℏk) is known as the dispersion relationship (also known as E–k).
As observed through our brief encounter with the Schrödinger equation, knowl-

edge of the Hamiltonian and the potential function is pivotal to understanding the
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FIGURE 1.1 (a) A 2-D confining quantum well. (b) A 1-D confining quantum wire.

10 Named after Wolfgang Pauli.
11 Also known as SOI.
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behavior of electrons in different solid structures. The following laws of mechanics
govern the time evolution of position (i.e., x) and momentum (i.e., p) in terms of H:

∂pi
∂t

= −
∂H pi,xi

∂xi
1 10

∂xi
∂t

=
∂H pi,xi

∂pi
1 11

The vector of average velocity for electrons is also identified as

v =
1
ℏ
∇kE k 1 12

1.1.2 Band Diagram and Effective-Mass Formalism

Themost basic outcome of such a quantummechanical entity (i.e., electrons in a solid)
appears in the form of energy bands and forbidden gaps. The evolution of the band
diagram composed of these energy bands and forbidden gaps (and its more detailed
version known as the E–k diagram) is deeply rooted in the interaction between the
wave-natured electrons and the periodic potential function of the crystalline solid.
Within each of the allowed bands, the variation of energy with momentum is calcu-
lated and represented in the form of energy versus momentum (i.e., E–k) diagrams.12

A major component of the simplified theory representing electrons in solids is the
band theory, which is the outcome of effective-mass theory. Effective-mass theory is
based on the resemblance of the form of the electron wave dispersion diagram at the
energy range of interest13 to that of electrons in free space. For an electron in free
space, since the effective mass (i.e., m∗) is clearly a constant (i.e., the rest mass of
the electron: m0), Equation (1.9) reduces to a parabola.

Although in a real semiconductor charge carriers are not truly traveling as propa-
gating waves, under many important circumstances, they almost behave that way.
These almost free charge carriers, however, feel a different mass than that of the free
electron. Based on the almost parabolic form of the dispersion diagram, effective-mass
theory uses the curvature of this diagram to assign a value of mass to charge carriers,

m∗ =
ℏ2

∂2E ∂k2
1 13

While this simple picture successfully reduces the wave/particle electrons to sim-
ple particles, it fails to hold when charge carriers receive substantial amounts of
kinetic energy. Under those circumstances, the resemblance in form to the dispersion
diagram of a free electron vanishes.

12Also referred to as dispersion diagram.
13 This will be clarified shortly.
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In some situations the complete set of information offered in an E–k diagrams is
needed; however, in most cases of interest to the present volume, we only adopt a
selective portion of this information. As will be pointed out shortly, this selection
of information in the E–k diagram comes from calculating the E–k curvature given
specific values of momentum matched to the edges of two of the bands resulting from
splitting of energy levels.

Localization of electron states, caused by unavoidable imperfections in real semi-
conductors, can be incorporated into this model through the corrective measure of
scattering processes. Incorporation of such small perturbations to the perfect crystal
is implemented through determining the scattering rates using Fermi golden rule (or
Born approximation14).

Under these presented conditions, the E–k diagram is reduced to merely a one-
dimensional energy diagram, which, at least for the sake of presentation, is often
expanded into a second dimension (i.e., position). Figure 1.2 illustrates a typical
E–k diagram and the resulting 1-D and 2-D band diagrams. As pointed out in these
illustrations, forbidden gaps of energy are present among allowed energy bands. As
shown, the momentum information is not presented in an energy-band diagram. Later
on in this chapter, through invoking the concept of momentum relaxation time con-
stant, we will discuss the significance of this lost bit of information.

The curvatures of the E–k diagram and therefore the values of the effective mass are
different along different directions in a crystal. At this point in our discussion, it is
important to point out that in calculating the subband energies in (1.8), effective mass
in the direction of the confining potential should be employed.

1.1.3 Density of States Function

As indicated earlier, the bands of energy are composed of very narrowly packed sets
of individual energy states. However, since at normal temperatures of operation of an

E
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Ev Eg

E E

(a) (b) (c)
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k

FIGURE 1.2 (a) A simplified typically observed E–k diagram among a number of
semiconductors. As will be indicated shortly, in this diagram Ec and Ev mark the bottom of
the conduction and the top of the valence band and Eg represents the size of the forbidden
gap of energy. (b) A 1-D representation of the bandgap. (c) The 2-D band diagram.

14Named after Max Born.
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electronic device the separation between the individual states is much smaller than the
average random thermal energy of an electron in a 3-D solid (i.e., 3/2kT15), electrons
tend to see the band as a continuum of energy states. Since the occupancy of each
individual energy state is governed by Pauli’s exclusion principle (i.e., maximum
accommodation for only two electrons that must have opposite spins at each energy
level), each band has a certain maximum capacity for electrons, which is identified by
a density of states (i.e.,DOS) function. This function is a double-density function, and
it essentially expresses the density of states per unit energy, per unit volume.

For three-dimensionally moving charge carriers, the DOS at the bottom of a band
(i.e., identified by Ec) can be approximated by

D3D E =
2m∗ 3

2

2π2ℏ3 E−Ec 1 14

However, in the case of 2-D charge-carrier confinement, the two-dimensional
density of states per unit energy and area is given by

D2D E =
m∗

πℏ2 1 15

This is only with the assumption of the first subband. Finally, with the same
assumption the DOS in the one-dimensional case is given by

D1D E =
2m∗

πℏ
1

E−Ec
1 16

Figure 1.3 illustrates the dependence of the DOS function on energy for the three
cases. Due to the direction dependence of effective mass, the value of the effective
mass used in calculation of the DOS is very often different than that used in the trans-
port problem.

1.1.4 Conduction and Valence Bands

Due to electrons’ natural tendency to arrive at minimum enthalpy, electrons occupy
states of lower energy before filling up states of higher energy. In the presence of ther-
mal energy, however, this picture gets slightly distorted. This is caused by thermal
excitation of electrons from lower energy states to higher energy states. In the case
of a semiconductor, this renders lower energy bands to be full, renders higher energy
bands to be empty, and also causes two of the adjacent bands to be only partially occu-
pied at temperatures above 0 K. At 0 K, however, a semiconductor behaves like an
insulator and is composed only of full and empty bands. Figure 1.4 illustrates this

15 This is based on statistical mechanics. According to equipartition theorem in 1-D and 2-D cases, this
energy is equal to 1/2kT and kT, respectively. k is the Boltzmann constant, which is equal to 1.38 ×
10−23 J/K.
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FIGURE 1.3 (a) Typical form of the density of states function in a 3-D semiconductor.
(b) Typical form of the DOS function in a quantum well. (c) Typical form of the DOS
function in a quantum wire.
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FIGURE 1.4 (a) Occupancy status of the conduction and valence band of a semiconductor
at 0 K, where the full portion of a band is hash marked. (b) The water pipe analogous to the band
occupancy presented in (a). In this analogy the full portion of the pipe is presented in gray, while
the empty portion is white. (c) Occupancy status of the conduction and valence band of a
semiconductor at a finite temperature, where the full portion of a band is hash marked. One
can see the electron transfer from valence to the conduction band in analogy with water
transfer from the lower to the upper pipe.
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picture at 0 K and at a temperature T, in analogy with doubly sealed water pipes.
According to this picture, since neither a full nor an empty band can contribute to
net movement of charge carriers (i.e., in water pipe analogy: water), among all of
the bands resulting from the aforementioned quantum mechanical description, only
those bands that at normal temperature of operation of a device are partially full/par-
tially empty are of prime value.16

A partially full band is created by means such as thermal excitation of electrons
from the top of a lower band to the unoccupied states at the bottom of a higher band.
In semiconductors we therefore encounter two partially full/partially empty bands. All
other bands below these remain completely full, and those above remain completely
empty. As a result, only two bands are worth mentioning: the valence and the
conduction band. The valence band is the highest band that is full at 0 K, and the con-
duction band is the lowest band that is empty at 0 K. The energy difference between
the bottom of the conduction band (i.e., Ec) and the top of the valence band (i.e., Ev) is
the bandgap (i.e., Eg).

Since the size of the forbidden gap is much larger than the average amount of ther-
mal energy acquired by an electron in a three-dimensional solid, one can expect such a
charge-carrier transfer to be far more probable between the top of the valence band
and the bottom of the conduction band. These values of energy are therefore much
more important to study than the other energy levels in the rest of conduction and
valence bands.

Although approximate equations such as (1.14) present theDOS of conduction and
valence band17 in the form of a square-root law, higher in the conduction band (and
also lower into the valence band) the proportionality ofDOS to E−Ec (and Ev−E
in the valence band) vanishes. This is due to the more complicated E–k variation at
higher values of energy. For these higher energies, numerical methods are needed to
evaluate the DOS. As will be observed shortly, even for the case of lower energies, in
the presence of high concentrations of impurities, there is a need to reevaluate this
square-root law.

1.1.5 Band Diagram and Free Charge Carriers

The band diagram representation of Figure 1.5, through extending the bandgap infor-
mation in space, substantially helps in implying the relatively free nature of electrons
in the conduction and valence band (i.e., those that are not associated with the nuclei
of the atoms in the crystal). This relative freedom is implied since the electrons are
now free to be at different positions in the semiconductor without any need for chan-
ging their energy value. The energy axis of the band diagram imports only the energy
difference between the lowest energy value of the conduction band (i.e., Ec) and the
highest energy value of the valence band (i.e., Ev) of the E–k diagram. As a result, as
mentioned earlier, momentum and curvature information of the E–k diagram are sim-
ply omitted (of course with the exception of the curvature used in calculation of the

16 Just like the case of a zero net movement of liquid in a full, or an empty, doubly sealed water pipe.
17 In this equation, in case of valence band E−Ec changes to Ev−E.
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effective electron mass). While in reality in charge transport through electronic
devices larger than tens of nanometers, the presence of many scattering processes
results in the loss of coherence in transport and the randomization of momentum, this
simplifying omission of momentum information comes at a very affordable cost.
As mentioned earlier, this cost is paid through adoption of the notion of effective
electron mass.

Knowing that the band diagram provides only a selective set of information about
the energy and momentum, which is sufficient only for specific applications,
Table 1.1 provides a summary of links between the considered range of energy in
the band structure and various electronic devices. This table can provide a sense of
the limitations inherent to the band diagram.

1.1.6 Supplementary Notes on Band Diagram

A two-dimensional band diagram, such as the one shown in Figure 1.5, is often used
while discussing the behavior of electrons in bulk semiconductors. However, the

Ec

Ev Eg

E

x

FIGURE 1.5 Band diagram in a semiconductor.

TABLE 1.1 Energy Range of Interest in the Band Structure of Semiconductor for
Understanding the Behavior of Various Electronic Devices and under Different
Conditions

Electronic Device
Energy Range of Interest
within the Bandgap

Low electric-field regions of a transistor Approximately 2kT from the
band edges

High electric-field regions of a transistor Approximately 0.5 eV
Power transistors and devices operating close to breakdown

conditions or operating on those basis
The full size of the bandgap

k, is the Boltzmann constant; T, is the temperature in Kelvin.
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one-sided potential imposed on the electrons at the surfaces and interfaces disrupts the
periodicity of potential applied on electrons and as a result the formation of the band-
gap. Nevertheless, with the goal of simplifying the complicated reality of these sur-
faces and interfaces, oftentimes the aforementioned notion of a band diagram is
readily extended to the surface. The presence of a surface is then factored into the band
diagram through improvising an interfacial layer known as surface layer. Since most
FETs operate through charge transport in the vicinity of these surfaces and interfaces,
later on in the chapter, we will deal with these nonidealities at greater length.
Figure 1.6 shows an example of incorporation of such a layer.

In the operation of semiconductor devices, the presence of surface states (which as
implied in Fig. 1.6 are present in the bandgap of the surface layer) often results in
hysteresis of the devices’ characteristics. In order to avoid this, in high-speed semi-
conductor devices, bare surfaces should always be avoided. This can be done through
implementing the so-called self-aligned technologies or even by passivating these sur-
faces through deposition of an insulator layer over them. In later chapters, these tech-
nologies will be covered in greater depth.

Additionally, while periodicity of crystal structure is key in developing a band dia-
gram, in the description of the behavior of electronic devices, the notion of a band
diagram is extended to amorphousmaterials (such as dielectrics used in FET technol-
ogies), which clearly do not possess a periodic structure. In strictest sense such an
extension is not allowable. However, in these materials the presence of short-range
order induces effects that are approximately explainable with the aid of a band dia-
gram. One of the most important assets of silicon technology has been the possibility
of achieving an almost perfect interface between the crystalline silicon and amor-
phous SiO2. Thermal growth of SiO2 on silicon results in a few dangling bonds with
very little bond-angle distortion at the Si/SiO2 interface. Even the few present dan-
gling bonds can be saturated by the presence of hydrogen or fluorine throughout
the thermal oxidation process. While SiO2 is an amorphous solid, it exhibits an almost
tetrahedral arrangement at short range.

As already pointed out, bandgap is an important property of semiconductors. This
property is itself dependent on a number of factors including temperature. Table 1.2
summarizes the temperature dependence of the size of the bandgap of a number of
important semiconductors.

Surface layer

Bulk semiconductor

FIGURE 1.6 Surface layer is often treated as a separate layer envisioned at the surface, with a
certain concentration of energy levels, known as surface states, within the bandgap of the
semiconductor.
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Another piece of information that is present in a band diagram is referred to as
electron affinity (i.e., qχ). This quantity represents the amount of energy required
to set a conduction-band electron free from the bulk of the semiconductor. This
amount of energy is denoted by the difference between the bottom of conduction band
(i.e., Ec) and vacuum energy level (i.e., E0). Figure 1.7 illustrates this in a band dia-
gram. The definition of electron affinity is only loosely connected to measurable
quantities such as photothreshold. This is due to the contribution of other factors
including image forces18 and the formation of surface layer to these measurable
quantities. As a result, electron affinity remains as a quantity that can only be used
in relative terms with a certain attributed approximation.

TABLE 1.2 The Temperature Dependence of the Size of the Bandgap of a Number of
Important Semiconductors

Semiconductor Temperature Dependence of the Size of the Energy Bandgap

Si Eg eV = 1 17 − 4 73 × 10−4 T2 T + 636
Ge Eg eV = 0 742 − 4 8 × 10−4 T2 T + 235
GaAs Eg eV = 1 519 − 5 405 × 10−4 T2 T + 204 for 0 < T < 1000
InAs Eg eV = 0 415 − 2 76 × 10−4 T2 T + 83 for 0 < T < 300
InP Eg eV = 1 421 − 4 9 × 10−4 T2 T + 327 for 0 < T < 800
InSb Eg eV = 0 24 − 6 × 10−4 T2 T + 500 for 0 < T < 300
GaN Eg eV = 3 47 − 7 7 × 10−4 T2 T + 600
AlN Eg eV = 6 21 − 1 799 × 10−4 T2 T + 1462 for 0 < T < 300

Ec

Ev

x

Eg

E0

E

qχ

FIGURE 1.7 Identification of electron affinity (i.e., qχ) of a given semiconductor on band
diagram.

18 These will be dealt with in Chapter 2.
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1.1.7 Bond Model

A parallel description often used in explaining the electronic behavior of semiconduc-
tors is the bond model. The analog of migration of electrons across the bandgap in the
bond model is the breaking away of electrons from covalent bonds. In other words,
electrons in the valence band represent the electrons in covalent bonds with the atoms
in the crystal, while those in the conduction band are the ones that have broken away
from the covalent bonds and are almost free to roam within the confines of the crystal.
While the bond model provides a simple picture for the electrons in the conduction and
valence bands, it fails to satisfactorily describe the quantic nature of the wave/particle
electrons and the role of the density of states function in each band.

1.2 ELECTRONS, HOLES, AND DOPING IN SEMICONDUCTORS

According to the energy-band and bond models, in an ideal semiconductor the num-
ber of electrons missing from the covalent bonds (i.e., missing from the valence band)
and the number of free electrons (i.e., conduction-band electrons) are equal to one
another. Such a semiconductor is referred to as intrinsic semiconductor. In the oper-
ation of electronic devices, however, we deal with semiconductors in which electron
concentration in the conduction band (i.e., n0 in cm−3)19 and concentration of energy
states devoid of electrons in the valence band (i.e., p0 in cm−3) are often not equal to
one another. These semiconductors are referred to as extrinsic semiconductors.

The process of forming of an extrinsic semiconductor is referred to as doping.Dop-
ing occurs when a limited concentration of impurities is introduced into the semicon-
ductor, and impurities are driven to replace some of the compositional atoms of the
crystal. There are a few different doping processes. In these processes, impurities (also
referred to as dopants) are either in situ incorporated into the crystal structure, as the
crystal is being grown, or added in after crystallization. In the latter case, dopants are
either thermally diffused into the crystal at the gas/solid interface (i.e., due to their
higher concentration at the gaseous side) or implanted into the crystal in the form
of highly energized ions. Each of these techniques has its own advantages in terms
of cost/accuracy balance in the creation of the dopant profiles. The creation of a cer-
tain dopant profile (i.e., with precise control on the concentration, depth, and lateral
extent of the distribution of impurities) and maintenance of their form throughout the
operation of the device (i.e., when the device is exposed to high electric fields and
temperatures) are keys to the success of a doping process.

1.2.1 Electrons and Holes

In both doped and undoped semiconductors, empty energy states of the valence band
comprise only a small fraction of the states available in that band. Likewise, only a

19Whereas electron density in metals is in the order of 1023 cm−3, in semiconductors this value is at least two
orders of magnitude smaller.
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small fraction of the states of the conduction band are filled by electrons. Based on the
knowledge of Pauli’s exclusion principle and the limited capacity of each of these
bands for electrons, charge transfer can be envisioned either through movement of
electrons or equally well through the transfer of empty states (of course in the opposite
direction). As previously done in Figure 1.4, if we imagine a doubly sealed partially
full water pipe, we can analogously say that the net movement of liquid caused by
tilting the pipe is also representable through the movement of bubble in the opposite
direction. In dealing with charge transfer in the conduction band, electrons are fewer
in number than the empty states. Between the two equivalent presentations of charge
transfer, it will be much simpler to focus on electrons. The opposite of that happens in
the valence band. In the valence band, instead of electrons, charge transfer is studied
through the movement of their complementary profile (i.e., profile of empty states).
Of course, it will be easier to treat this complementary profile if we use a more
addressable name for the empty states. Traditionally we call these empty states
holes.20

Increasing the temperature of an undoped semiconductor causes the generation of
electrons and holes in pairs (known as electron–hole pairs (EHP)). Caused by a num-
ber of events including collisions, these charge carriers can also go through the
inverse of this generation process (which is known as recombination). During the
recombination process, electrons fall back into the valence band and effectively anni-
hilate an equal number of holes. These processes can either take the form of direct
band-to-band transitions or be assisted transitions involving impurity states or exci-
tonic states.21 Through the process of recombination, the energy difference (i.e.,
almost equal to Eg) is either emitted in form of photons or is nonradiatively passed
onto other particles such as phonons.

Holes have an equal amount of charge but are opposite in polarity to electrons.
Hole effective mass is calculated according to the quantum mechanical information
expressed in the E–k diagram of the valence band. E–k diagrams or band diagrams
are developed for a negatively charged particle (i.e., electron). The opposite charge
polarity of a hole requires us to look at these diagrams upside down while studying
holes. Whereas the basis of calculation of the effective mass is already presented
(1.13), it is important to point out that often the E–k diagrams are not as simple as
illustrated in Figure 1.2. Among the intricacies present in these diagrams are the over-
lapping profiles of branches known as degeneracy. In terms of the presence of degen-
eracies, the structure of the E–k diagram of conduction band, however, is much
simpler than that of the valence band.

Among the elements of the periodic table of which semiconductors are made of,
valence electrons either occupy s-type or p-type orbitals. Even in the crystalline sem-
iconductor made out of these elements, charge carriers in the conduction and valence

20 These are imaginary charged particles in the valence band.
21 An exciton is a hydrogen atom-like entity, in which the role of the nucleus is replaced by a hole. In the case
of an exciton in the form of a bond between an electron and a very heavy hole, the exciton acts not unlike an
impurity level. However, the picture is more complicated if the hole mass is comparable to that of the
electron.
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band retain much of these s- and p-type characters. This is especially remarkable,
when we remind ourselves of the fact that these charge carriers are now free Bloch
electrons22 and not bound by the nucleus of an atom. This s- and p-type nature plays a
very important role in charge transport in semiconductors. This nature also
extensively simplifies the quantum mechanical description of semiconductors, as
now the shape of s- and p-type orbitals can be used as eigenvectors in the matrix
representation. This simplification is used in the implementation of tight-binding
technique.

According to the tight-binding technique, the top of the valence band is explained
in terms of a threefold degeneracy, corresponding to that of p-orbitals (i.e., px, py, pz).
With incorporation of spin degeneracy, this threefold degeneracy grows to a sixfold.
The threefold degeneracy, or sixfold with reference to spin degeneracy, is observed in
the form of a twofold degeneracy of two bands (one heavy hole and one light hole) of
equal energy at the top of the valence band and another band with slightly lower elec-
tron energy referred to as split-off band. The names heavy and light hole are given in
terms of effective mass of electrons and holes at the top of the valence band. In terms of
the definition of the effective mass, the wider band (i.e., of smaller curvature) poses a
larger effective mass on the holes, hence the name heavy-hole band. The effects of
these bands can be incorporated only in the case of incorporation of relativistic effects
of the problem, which are referred to as spin–orbit coupling.

Figure 1.8 provides a schematic representation of the nature of the valence and
conduction band of most semiconductors. On the basis of the typical concave and
convex E–k diagrams presented in Figure 1.8 (i.e., for conduction and valence bands,
respectively) and considering the opposite polarity of the charge of a hole, it can be
observed that both electrons and holes (i.e., charge carriers of the conduction and
valence bands, respectively) possess positive effective mass. In spite of commonalities
between semiconductors, the curvature at the top of the E–k diagram of a band is not
always negative. In the case of tellurium, the E–k diagram is of the form shown in
Figure 1.9, which prohibits the definition of negative mass for electrons, and as result
prohibits the definition of imaginary positively charged particles (i.e., holes) for miss-
ing electrons.

Semiconductors are divided into two groups according to their value of momentum
at the conduction-band minima: direct bandgap and indirect bandgap. The E–k dia-
grams for these two groups are illustrated in Figure 1.8. While in the E–k diagram of
direct-bandgap semiconductors the top of the valence band and the bottom of con-
duction band coincide at a momentum of 0,23 indirect semiconductors only have
the top of their valence band defined there. As a result of the difference between
the momentum at the top of the valence band and the bottom of conduction band
of indirect semiconductors, these semiconductors are not efficient producers of
photons. This is because another momentum changing collision will be required

22 Electrons expressed in terms of propagating waves belonging to quantized energy states. The quantized
energy states are referred to as Bloch states. Named after Felix Bloch.
23We will identify later in the chapter that this coincidence happens at the Γ-point in the so-called Bril-
louin zone.
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FIGURE 1.8 (a) E–k diagram of a direct-bandgap semiconductor; in this case the direct
bandgap is smaller than the indirect bandgaps. (b) E–k diagram of an indirect-bandgap
semiconductor; in this case the direct bandgap is larger than one or more of the indirect
bandgaps. Top of the valence band is defined at k = 0.

E

k

FIGURE 1.9 Top of the valence band in some materials such as tellurium present a positive
effective mass for electrons hence at this position prohibits the definition of the positive charge
carrier (i.e., hole).
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besides the electron–hole interaction involved in the recombination process. In this
case, the transitions involve a photon (which is responsible for energy change) and a
phonon (which is responsible for momentum change). This division of responsibilities
is caused by the very small momentum of photons and very small energies of phonons.

Silicon has an indirect bandgap,24 with a sixfold degenerate conduction-band
edge. Germanium is another well-known indirect semiconductor.25 In both of these
cases, a strong anisotropy of electronwave function persists near the band edge, which
is caused by the mixing of p-type and s-type orbitals. The conduction-bandminima of
direct-bandgap semiconductors, being made of s-type orbitals, have spherically sym-
metric central cells. However, in the states further into the conduction band, this
spherical symmetry, as the result of increasing contribution of p-type orbitals, fades.
This is an important issue to be considered under high kinetic energy conditions.

In contrast to the conduction-band edge, the valence-band edges of most semicon-
ductors are quite similar. In the case of the valence band, the central part of the elec-
tron wave functions is primarily p-type.26

As shown in Figure 1.10, there exists a declining trend between the electron effec-
tive mass and the size of the bandgap of direct-bandgap semiconductors.

1.2.2 Doping

Now that we know about holes, we can say that in an intrinsic semiconductor electron
concentration of the conduction band (i.e., n0) is equal to hole concentration of the
valence band (i.e., p0). In an extrinsic semiconductor, this balance is either tilted in

mn
*

GaSb

InSb
InAs

GaAs

GaN

InP

Eg

FIGURE 1.10 The prevalent trend between the effective electron mass and the size of the
bandgap demonstrated among a few direct-bandgap III–V semiconductors. This approximate
diagram is presented in linear scales.

24Which, as will be seen later in this chapter, has a conduction-bandminimum near the X point of the Bril-
louin zone.
25Whose band edge is defined near L point of the Brillouin zone.
26 This nature induces a strong spin–orbit interaction.
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favor of electrons (i.e., n0 > p0 in an n-type semiconductor) or holes (i.e., p0 > n0 in a
p-type semiconductor).

Tilting the intrinsic balance of electron and hole concentration upon doping can be
explained in terms of either the energy-band or bond models. In this review, we will
address the process of doping in a specific group IV semiconductor (of the periodic
table): silicon.

In an n-type semiconductor: n0 > p0. This means that not all of the electron popu-
lation of the conduction band has originated from the valence band. In this case, the
source of the excess population of electrons is the loosely bound electrons to
the nucleus of dopants added to the semiconductor crystal. In silicon technology,
the dopants used for this purpose are group V atoms of phosphorus and arsenic. These
group V atoms possess one electron in excess of the four that they should share with
the nearest neighboring silicon atoms while substituting one. This is schematically
shown in Figure 1.11. The ionization energy of this excess electron is much smaller
than the ionization energy of the dopant atom outside the confines of the crystal. This
is caused by the overriding effect of the other atoms surrounding the dopant in the
crystal, which renders an ionization energy quite close to that of the hydrogen atom.
The effective mass of this electron and the value of the permittivity needed in the cal-
culation of ionization energy are, however, modified to those values imposed by the
silicon crystal. For offering an effective impurity, this ionization energy should be
small compared to the average thermal energy of electrons at operating temperature

Si Si Si Si

Si Si P

e

Si

Si Si Si Si

FIGURE 1.11 A 2-D schematic representation of silicon crystal upon substitutional doping
with phosphorus. Covalent bonds are represented by the double lines, while the circles are
representative of the silicon and phosphorus atoms.
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of the device. Under such a condition, dopants can be effectively activated (i.e., con-
tribute their excess electrons to the conduction band). This is one of the reasons P and
As are chosen as suitable n-type dopants in silicon technology as their ionization ener-
gies are within the range of 20–40 meV.27 These dopants are referred to as shallow
dopants. This is in contrast to the dopants with higher ionization energies, which
are known as deep dopants.

The other reason for the choice of As and P in silicon technology is the relatively
high concentrations at which these atoms can be incorporated into the silicon structure
under thermodynamic equilibrium. Under thermodynamic equilibrium there is an
upper limit to the concentration of impurities that can be incorporated into a solid
at a given temperature, known as solid solubility. Because the earliest technique of
doping (i.e., diffusion doping) was a thermal-equilibrium process, this property
played an important role in the choice of these dopants. However, in ion implantation
doping, which is not performed under thermodynamic equilibrium, the solid solubility
is not as important.

While in silicon crystal the concentration of Si atoms is on the order of 1022 cm−3 at
room temperature, the maximum level of doping is only slightly above 1020 cm−3. As
a result, to a first approximation we can assume that semiconductor properties such as
the size of the bandgap are not much altered by the doping process. In reality, the
random nature of substitutional doping results in a disrupted periodicity of the crystal
(and also a disruption in the formation of forbidden energy gaps). Due to this disrup-
tion, the doping process results in an introduction of energy levelswithin the forbidden
energy gap. If an n-type dopant is shallow, the energy levels will form closer to the
conduction-band edge (i.e., Ec). This is the band diagram explanation of the n-type
doping process, which is illustrated in Figure 1.12. With an increasing doping level

Ec

Eg

x

Ed

E

Ev

FIGURE 1.12 Band diagram of a semiconductor doped with a shallow donor.

27 Since we deal small amounts of energy, in semiconductor electronics instead of using Joule as the unit of
energy, we use electron Volt (i.e., eV). One electron Volt is almost equal to 1.6 × 10−19 J.
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(i.e., number of incorporated substitutional dopants per unit volume), these shallow
energy levels will split into bands of energy (often referred to as an impurity band).
The splitting is caused by the overlapping wave function of the electrons residing in
the impurity energy levels. As shown in Figure 1.13, doping at very high levels,
through merging of these bandswith the conduction band (or valence band in the case
of p-type doping), results in shrinkage of the bandgap. If the energy levels introduced
by dopants are separated from the conduction band by only tens of milli-electron volt,
at room temperature electrons residing in those energy states (i.e., loosely bound elec-
trons to the nuclei of the n-type impurity) can readily leave these levels and jump to the
conduction band without adding a hole to the valence band. This is how the balance
between the electron and hole concentration is broken in an extrinsic n-type
semiconductor.

The more appropriate name for an n-type dopant is donor because it donates elec-
tron to the conduction band. In the energy-bandmodel, the energy levels provided by
these donors to the previously forbidden bandgap are also known as donor levels.
Through the process of electron donation to the conduction band, the donor atom
becomes a positively charged ion, and as a result, charge neutrality prevails in the sem-
iconductor. Using the energy-band model, we can describe this behavior in terms of
the following definition for the donor level:

An energy level is referred to as donor, if it were to be neutral when full and pos-
itively charged when empty.

For very highly doped semiconductors,28 when the impurity band developed by the
donors merges with the conduction band, the semiconductor adopts a metallike
behavior and remains highly conductive even at very low temperatures. This forma-
tion is also known as an impurity band tail. As shown in Figure 1.14, the choice of the
name comes from the presence of finiteDOS at the band edge and the gradual, and not
sharp, increase of the DOS function. This is unlike the predictions of (1.14). Later in

Ec

Ev

E

ΔEg: shrinkage of the
bandgap

Eg

x

FIGURE 1.13 Schematic depiction of the role of heavy doping in shrinking the bandgap of a
semiconductor. The wide gray band of energy stands for the impurity band resulting from the
splitting of donor energy levels.

28 For which a more quantitative definition is to follow in Section 1.3.5.
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this chapter, we will talk about formation of band tails also in the case of the so-called
alloyed semiconductors.

It is worthwhile mentioning that arsenic, due to its larger atomic size than phos-
phorus, has a smaller thermal diffusion constant through the silicon crystal. Since
many processing steps run at very high temperatures, achieving the small n-type dop-
ant profiles that are required in modern devices is much easier with the use of As. For
that reason, in many applications of Si technology, As has already replaced P as the
proper donor.

So far, with exception of a few points, we have avoided discussing p-type doping.
A slightly different version of events can explain the intricacies of p-type doping. The
suitable p-type dopant in Si technology is the group III atom of boron. Substitution of
Si with B (which has only three electrons in its valence shell) leaves one out of four
broken covalent bonds, originally formed between nearest neighboring Si atoms, in
need of an electron. The missing electron, however, can be acquired by breaking
one electron away from an existing covalent bond in the vicinity of the impurity.
In terms of energy-band model, this can be explained through the addition of an
energy level closer to valence band in the forbidden gap, which is keen to accept elec-
trons. Through receiving electrons from the valence band, a hole is left behind in that
band. For this reason, this energy level is called an acceptor level, and the p-type
dopants are referred to as acceptors. Quite similar to the definition of the donor energy
level, an acceptor energy level is neutral when empty and negatively charged when
full. Boron, like arsenic and phosphorus, provides silicon with a shallow impu-
rity level.

Doping process can take place through substitution of structural atoms of the crys-
tal with dopants (also referred to as direct doping) or indirectly through incorporation

EE

E

EcEv Ed EcEv Ed

EcEv

(a)
DOS DOS

DOS

Band tail
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FIGURE 1.14 Schematic depiction of the evolution of the conduction band’s DOS function
upon increase of the donor concentration, from (a) to (c). Scales are linear.
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of dopants into the interstitial sites. For dopants to contribute to electron and hole
concentration, however, they need to take substitutional positions. As already indi-
cated implicitly, dopants also need to be activated through ionizations. The movement
of dopants in the crystal and their later activation is a process that requires exposure to
high temperatures. The process of movement of dopants within a crystal can happen
through thermal diffusion of dopant in the form of interstitial diffusion, substitutional
diffusion, or a mixture of the two (dopants sometimes taking substitutional positions
and sometimes interstitial throughout the diffusion process), which is referred to
interstitialcy.

A doped semiconductor under a number of conditions will retain its intrinsic
characteristics:

1. When the lattice temperature29 is very low and dopants are under carrier
freeze-out (i.e., not ionized).

2. When the concentration of activated donors and acceptors are equal to one
another. This case is referred to as compensative doping.

3. When lattice temperature is high and the number of thermally induced charge
carriers to conduction and valence band, in the form of EHP, well exceeds the
concentration of electrons and holes contributed by donors and acceptors,
respectively. As shown in Figure 1.15, the characteristic temperature of this
behavior is determined by the size of the bandgap of the semiconductor.

n (cm–3)

Nd1
Nd2

T (K)0

FIGURE 1.15 Variation of the electron concentration versus temperature for two n-doped
semiconductors of different bandgaps. The wider bandgap semiconductor is assumed to have
been doped more lightly. The levels of doping of the two semiconductors, in increasing order
of the size of the bandgap, are indicated by Nd1 and Nd2, respectively. The dashed lines
represent the variation of electron concentration in each semiconductor when undoped (i.e., ni).
Diagrams in black represent the smaller bandgap semiconductor, while the gray diagrams
represent the wider bandgap semiconductor. Within the temperature range for which the
electron concentration reaches a plateau, semiconductor behaves extrinsically. Scales are linear.

29 It will be identified in Section 1.4.4 why instead of simply speaking of temperature, we are talking about a
temperature quantity called lattice temperature.

23ELECTRONS, HOLES, AND DOPING IN SEMICONDUCTORS

0002621443.3D 23 5/1/2016 5:43:23 PM



Realization of extrinsic semiconductors is a prime requirement in formation of
electronic devices. In these devices, the interaction between regions of different
charge-carrier concentrations provides the chance for enforcing selective control
over the movement of charge carriers. Such junctions between regions of different
dopant concentration can be realized through simply doping the semiconductor
and/or growing semiconductors of different bandgaps and/or electron affinities on
top of one another.

1.2.3 Calculation of Ionization Energies in Semiconductors

With regard to the process of doping, it is quite important to be able to have means to
approximately calculate the energy of donor and acceptor states. For the loosely
bound fifth electron of ordinary donors such as P, As, and Sb inGe or Si technologies,
the ionization energy, referenced to the conduction-band edge (i.e., Ec), calculated in
terms of hydrogenic models provides us with

Ed = −13 6
m∗

m0

ϵ0
ϵ

2 1
n2

eV 1 17

where n is the principal quantum number, ϵ is the dielectric constant, and ϵ0 is the
permittivity of the vacuum.

In the above equation, the differences between the effective mass of an electron and
the free electron mass, and also the dielectric constant of a semiconductor and that of
the free space, cause the electron orbit for the impurity atom to be much larger than the
value in a free atom. As a result, ionization energy is much smaller for an impurity in a
semiconductor than that of the hydrogen atom.

A similar relationship can be developed for acceptor states. This approximate
framework is, however, not as valid due to the more complicated nature of the E–k
diagram of the valence band. Here the effective mass of the electron should be
replaced with that of the hole. Because of the much higher effective mass of holes com-
pared to electrons in most semiconductors (with the exception ofGe), realizing the full
activation of acceptors requires higher temperatures than those required for activating
donors. Between Si andGe, the ionization energies in Si for both types of dopants are
larger. This is due to the smaller dielectric constant and larger effective mass in Si.

Despite their usefulness, it should be pointed out that the aforementioned formal-
ism of calculation of donor and acceptor energy levels is only sufficient for evaluation
of ionization energies within an order of magnitude approximation. However, since
more accurate estimations require more intensive quantum mechanical mathematics,
this framework is often used for providing the first-order estimate. Although for the
considered case of a hydrogen atom the potential and, as a result, effective mass are
spherically symmetric, not all semiconductor energy bands have this degree of sym-
metry. With regard to this case, it is necessary to use an appropriate average of the
effective mass in different directions. The other simplifying assumption used in the
development of the hydrogenic model of (1.17) is that the position of the conduction
band is taken to coincide with Ed when the quantum number tends to infinity. While
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not true in a strict sense, this has been deemed to provide a good estimate. The last
limitation that this model suffers from is that it does not distinguish between the
ionization energies of different dopants. Although the impact of the ion core on
the ionization energy is reduced in a dopant-in-semiconductor scenario, this reduced
impact still can be felt in terms of the difference in ionization energy of different
dopants.

Table 1.3 provides a detailed list of ionization energies for impurities in Si, Ge,
GaAs, InP, and GaN.

1.3 THERMAL-EQUILIBRIUM STATISTICS

Considering the large number of energy states in the conduction and valence band,
studying the state of the electron population of these bands (i.e., electron concentra-
tion and hole concentration in the conduction and valence band, respectively) can be
only addressed statistically. However, before presenting the suitable statistical frame-
work of this problem, it should be mentioned that such a statistical framework loses its
validity when statistical fluctuation of the number of dopants in an extremely small-
size device grows close to the small number of dopants incorporated in its volume. As
a result, the framework presented in this section faces difficulties in application to
nanoscale devices.

Evidently, absence of time variation yields a more manageable mathematical
framework. The condition set in the study of this time-invariant situation is referred
to as thermal-equilibrium condition. Under thermal equilibrium, the semiconductor is
not exposed to any external source of excitation, and at a given temperature (which we
will call from now on lattice temperature), all thermal processes are counterbalanced.
As a result, electron and hole concentration among other properties of the semicon-
ductor will remain time independent.

1.3.1 Fermi–Dirac Statistics

In Appendix 1.A, with special attention to the restrictions of Pauli’s exclusion prin-
ciple, the mathematical derivation of the fundamental outcome of this thermal-equi-
librium statistics, which is referred to as the Fermi–Dirac distribution function,30 is
provided. This temperature-dependent statistical model, irrelevant of the presence of
an energy state at a given energy value, determines the chance of having an electron of
that value of energy. As a result of the definition of Fermi–Dirac statistics, one can
calculate the spatial concentration of electrons within an infinitesimally small range of
energy by multiplying the Fermi–Dirac distribution function by the known density of
states function of the conduction band.

The process of establishing a state of thermal equilibrium is not instantaneous.
Instead, for a given crystal at a set temperature, thermal equilibrium evolves sponta-
neously over a certain period of time.

30Named after Enrico Fermi and Paul Dirac.
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TABLE 1.3 List of Ionization Energies for a Number of Important Impurities in Si, Ge,
GaAs, InP, and GaN

Semiconductor Ionization Energies of a Number of Important Impurities

Si Li: Ec − 0.034 eV (D)
Sb: Ec − 0.043 eV (D)
P: Ec − 0.046 eV (D)
As: Ec − 0.054 eV (D)
Be: EV + 0.42 eV (A), Ev + 0.17 eV (A)
Au: Ec − 0.54 eV (A), Ev + 0.35 eV (D), Ev + 0.29 eV (D)
Cu: Ev + 0.53 eV (A), Ev + 0.4 eV (A), Ev + 0.24 eV (A)
B: Ev + 0.044 eV (A)
Al: Ev + 0.069 eV (A)
Ga: Ev + 0.073 eV (A)

Ge Li: Ec − 0.0095 eV (D)
Sb: Ec − 0.0096 eV (D)
P: Ec − 0.012 eV (D)
As: Ec − 0.013 eV (D)
Pt: Ec − 0.23 eV (A), Ev + 0.04 eV (A)
Au: Ec − 0.04 eV (A), Ec − 0.2 eV (A), Ev + 0.15 eV (A), Ev + 0.05 eV (D)
Cu: Ec − 0.26 eV (A), Ev + 0.32 eV (A), Ev + 0.045 eV (A)
B: Ev + 0.010 eV (A)
Al: Ev + 0.010 eV (A)
Ga: Ev + 0.011 eV (A)

GaAs Si: Ec − 0.0058 eV (D), Ev + 0.035 eV (A)
Ge: Ec – 0.0061 eV (D), Ev + 0.0404 eV (A)
O: Ec − 0.4 eV (D), Ev + 0.67 eV (D)
C: Ev + 0.026 eV (A)
Be: Ev + 0.028 eV (A)
Mg: Ev + 0.028 eV (A)
Au: Ev + 0.09 eV (A)
Mn: Ev + 0.095 eV (A)
Cu: Ev + 0.44 eV (A), Ev + 0.24 eV (A), Ev + 0.19 eV (A), Ev + 0.14 eV (A),

Ev + 0.023 eV (A)
Fe: Ev + 0.52 eV (A), Ev + 0.37 eV (A)

InP S, Si, Sn, Ge: Ec − 0.0057 eV (D)
C: Ev + 0.04 eV (A)
Hg: Ev + 0.098 eV (A)
Zn: Ev + 0.035 eV (A)
Si: Ev + 0.03 eV (A)
Cu: Ev + 0.06 eV (A)
Be: Ev + 0.03 eV (A)
Mg: Ev + 0.03 eV (A)
Ge: Ev + 0.021 eV (A)
Mn: Ev + 0.027 eV (A)

GaN Si: Ec − (0.02 – 0.12) eV (D) (often instead of a single value, a range has been
reported)

Mg: Ev + (0.14 – 0.21) eV (A) (often instead of a single value, a range has been
reported)

(D) and (A) are indicators of energy level of donor and acceptor nature, respectively. The presented
information for the first three semiconductors is more complete.
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In the description of the Fermi–Dirac distribution function, a certain value of
energy, known asFermi level (i.e., Ef), serves as the reference value of energy in deter-
mination of the probability of occupation of all energy states. According to Fermi–
Dirac statistics, an energy state with Ef as its energy value, at any given temperature,
has a 50% chance of being occupied by an electron. Energy states above Ef have lower
than 50% chance of occupation, and those below have higher than 50% chance of
occupation. Fermi–Dirac statistics is presented by

fD E =
1

1 + exp E−Ef kT
1 18

In this equation, T is the lattice temperature in Kelvin and k is the Boltzmann
constant.31 At 0 K, fD(E) reduces to a Heaviside unitary step function. Whereas at
all temperatures fD Ef = 1 2, an increase in temperature causes this step function
to spread out further.

1.3.2 Maxwell–Boltzmann Statistics

The Fermi–Dirac distribution function when E−Ef kT can be reduced to a simpler
distribution function, which is referred to as Maxwell–Boltzmann distribution
function,32

fM E = exp −
E−Ef

kT
1 19

As shown in Appendix 1.A, the derivation of Fermi–Dirac statistics is bound by
the constraints of Pauli’s exclusion principle. Electrons and holes, as particles that are
required to follow these constraints, are referred to as Fermions. Although in the case
of Maxwell–Boltzmann statistics such a constraint is not present, simplifying Fermi–
Dirac statistics by the distribution function of (1.19) does not impose any difficulty.
The reason is rooted in the condition applied to this approximation (i.e., E−Ef kT).
Under this condition, the chance of finding an electron at energy state E will be very
small. As a result the chance of encountering two electrons at the same state and clash-
ing with Pauli’s exclusion principle will be equally small. The semiconductor for
whichMaxwell–Boltzmann statistics is applicable is referred to as a nondegenerate33

semiconductor. Figure 1.16 presents the form of temperature variation of the

31 k = 8.62 × 10−5 eV/K.
32Named after James Maxwell and Ludwig Boltzmann.
33 In this case the definition of degeneracy is with reference to becoming metallike, which as hinted earlier
happens when the dopant concentration is very high and as a result of overlapping the impurity-band and
conduction-band (likewise valence band in case holes) charge-carrier concentration of conduction- or
valence-band approaches that of the metal. This degeneracy is different from the one observed in our dis-
cussions of E–k diagram.
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Fermi–Dirac distribution function and its approximation with theMaxwell–Boltzmann
distribution function.

For a nondegenerate semiconductor the distribution function of (1.18) can be sim-
plified to a Maxwell–Boltzmann distribution function. Through adopting a semiclas-
sical approach to the definition of energy such as

E =Ec +
1
2
m∗v2, 1 20

one can rewrite (1.19) as

fM exp
Ef −Ec

kT
exp −

m∗v2

2kT
=C exp −

m∗v2

2kT
1 21

It can be proven that C for a given doping level is constant.34 According to this
equation, charge-carrier velocities of a nondegenerate semiconductor are distributed
in the form of a Gaussian with an average velocity of 0 and a variance, which is a
function of lattice temperature. In the three-dimensional setting,

f (E)

f (E)

f D(E)

f D(E)
f M(E)

1

0.5

0

1

0.5

0 Ef

Ef
E (eV)

T = 0 K

T > 0 K

E (eV)

(b)

(a)

FIGURE 1.16 (a) Variation of Fermi–Dirac distribution function with temperature.
(b) Comparison between the Fermi–Dirac and the Maxwell–Boltzmann distribution
functions at a temperature above 0 K. Scales are linear.

34 That is, using (1.23) and (1.32) or (1.33).
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v2 = v2x + v
2
y + v

2
z 1 22

and as a result such a conclusion can also be drawn for carrier velocities along each of
the axes of the Cartesian coordinate system.

1.3.3 Calculating Electron and Hole Concentration in
Nondegenerate Semiconductors

As suggested earlier in this section, in calculating thermal-equilibrium electron con-
centration in the conduction band (i.e., n0), one needs to multiply the Fermi–Dirac
distribution function (or where appropriate theMaxwell–Boltzmann distribution func-
tion) with the density of states function of the conduction band and take an integral
over the energy width of this band. Likewise, in calculating the thermal-equilibrium
hole concentration in the valence band (i.e., p0), one should multiply theDOS function
of the valence band by the complementary of the Fermi–Dirac (or where appropriate
the Maxwell–Boltzmann) distribution function and take an integral over the energy
extent of the band. For cases in which Maxwell–Boltzmann statistics is applicable,
such calculations result in the following closed-form expressions for n0 and p0:

n0 =Nc exp
Ef −Ec

kT
1 23

and

p0 =Nv exp
Ev−Ef

kT
1 24

where Nc and Nv are the effective density of states at the lower edge of the conduction
band (i.e., Ec) and the higher edge of the valence band (i.e., Ev), respectively. These
effective values are mathematical tools proposed to yield the above simple expres-
sions.35 While in reality in a bulk semiconductor, the DOS at the lower edge of con-
duction band and the higher edge of the valence band are either 036 or have a very
small value (i.e., in case of formation of band tail), the values of Nc and Nv are quite
large. This is because they effectively represent the total number of states distributed
throughout the bands in the form of two Dirac delta functions defined at the edge of
each band. These values, as expressed in (1.25) and (1.26), are dependent on lattice
temperature and effective mass of electrons and holes (i.e., for Nc and Nv,
respectively):

Nc = 2
2πm∗

nkT

h2

3 2

1 25

35 In terms of these effective density of states, the aforementioned integral is calculated using the gamma
function.
36 See (1.14).
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and

Nv = 2
2πm∗

pkT

h2

3 2

1 26

Equations (1.23)–(1.26) imply that the Fermi level of an intrinsic semiconductor is
very close the middle of the bandgap but not exactly there since m∗

p >m
∗
n.

Table 1.4 presents a list of important properties, such as Nc and Nv, for a few
well-known semiconductors.

Since in nondegenerate doping of a semiconductor, due to low levels of dopant
concentration, structural properties of the semiconductor remain almost intact, under
these conditions Nc and Nv will not change with doping. As a result, letting Ei

TABLE 1.4 A Number of Important Properties of Si, Ge, GaAs, and GaN at Room
Temperature

Property

Semiconductor

Si Ge GaAs GaN

Lattice type and constant
a (Å)

Zinc blende Zinc blende Zinc blende Wurtzite
5.431 5.658 5.65325 3.189 (c = 5.186)

Melting point Tm ( C) 1412 937 1237 2500
Bandgap Eg (eV) 1.12 0.67 1.42 3.39
Static relative
permittivity ϵr

11.7 16 12.9 8.9

Specific heat Cp (J/g/K) 0.7 0.31 0.33 0.49
Thermal conductivity k
(W/cm/K)

1.412 0.606 0.455 1.3

Electron mobility μn
(cm2/V/s)

1417 3900 8800 1000 (approx.)

Hole mobility μp
(cm2/V/s)

471 1900 400 200 (approx.)

Effective conduction-
band density
of states Nc (cm

−3)

2.8 × 1019 1.04 × 1019 4.7 × 1017 2.23 × 1018

Effective valence-band
density of states Nv

(cm−3)

1.04 × 1019 6 × 1018 7 × 1018 4.62 × 1019

Intrinsic carrier
concentration ni (cm

−3)
1.45 × 1010 2.4 × 1013 9 × 106 1.9 × 10−10

Critical electric-field Ec

(V/cm)
3 × 105 8 × 104 3.5 × 105 5 × 106

Effective transport
electron mass mn

∗
0.26m0 0.12m0 0.068m0 0.2m0

Effective transport hole
mass mP

∗
0.386m0 0.3m0 0.5m0 0.8m0

Optical phonon energy
Eop (meV)

63 37 35 91.2
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represent the Fermi level of the intrinsic semiconductor, (1.23) and (1.24) can be
rewritten in terms of Ei and ni (i.e., intrinsic electron and hole concentration):

n0 = ni exp
Ef −Ei

kT
1 27

and

p0 = ni exp
Ei−Ef

kT
1 28

1.3.4 Mass Action Law

Concentration profiles of electrons and holes in a semiconductor are not independent
from one another. From (1.27) and (1.28) it is quite obvious that

p0n0 = n
2
i 1 29

This relationship is referred to as the mass action law.
Also based on (1.23) and (1.24),

ni = NcNvexp
−Eg

2kT
1 30

On the basis of (1.30), for a semiconductor of smaller bandgap, at any given tem-
perature the intrinsic charge-carrier concentration (i.e., ni) is larger. This explains
why a wider bandgap semiconductor remains extrinsic over a wider range of tempera-
tures (Fig. 1.15).

Equation (1.23) shows that as a result of elevation of the Fermi level through n-type
doping, Ef approaches Ec, and E–Ef at the bottom of the band will become smaller.
When this difference becomes smaller than a few times kT, the approximation of
Fermi–Dirac statistics byMaxwell–Boltzmann statistics is inadmissible. An identical
situation will happen when Ef is lowered toward Ev. Under these situations, which are
caused by heavy n- and p-type doping, approximate equations of (1.23)–(1.28) are no
longer valid. A highly doped semiconductor like this is referred to as a degenerate
semiconductor, since with the increase in charge-carrier concentration, the conduc-
tion properties of the semiconducting material have essentially degenerated into those
of a metal.37 In degenerate semiconductors, electron and hole concentrations should
be calculated with the use of Fermi–Dirac integrals.

37We have previously come across this situation while speaking of the merger of the impurity band and
conduction or valence bands in a highly doped semiconductor.
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Themass action law is a thermal-equilibrium relationship. Whereas simply multiply-
ing (1.27) and (1.28) proved themass action law in a nondegenerate semiconductor, for
all semiconductors under thermal equilibrium, such a relationship is readily extendable.
In a general form, this can be easily proven through considering the counterbalancing
processes of generation and recombination of EHP. While the process of generation
is a thermally induced process (where its rate can be expressed in terms of a function
of temperature: f1(T)), the process of recombination is not only temperature dependent
but also dependent on the population of electrons in the conduction band and holes in the
valence band. The temperature-dependent part of the rate of the recombination process is
expressed in terms of another function of temperature, whichwewill call f2(T). By equat-
ing the rates of the two counterbalancing processes, under thermal equilibrium,

G=R f1 T = p0n0 f2 T
f1 T

f2 T
= p0n0 = f3 T 1 31

Knowing that the function f3(T) is just a function of temperature and not the doping
process, it will be evident that f3 T = n2i , which yields the mass action law
(i.e., (1.29)).

On the basis of the mass action law and charge neutrality, one can prove that in a
semiconductor doped with both donors (i.e., Nd in cm−3) and acceptors (i.e., Na in
cm−3), if all dopants were to be activated,

n0 =
Nd−Na

2
+

Nd−Na

2

2

+ n2i for Nd >Na , 1 32

which yields n0 Nd−Na when Nd−Na ni.
In addition,

p0 =
Na−Nd

2
+

Na−Nd

2

2

+ n2i for Na >Nd , 1 33

which yields p0 Na−Nd when Na−Nd ni.

Example
AGe sample is uniformly dopedwith both B and As to the levels of 1016 and 1015 cm−3,
respectively. Determine the electron concentration in this sample at both 300 and
500 K. Assume that at both temperatures, all impurities are activated.

According to Table 1.4, the bandgap of Ge at room temperature is 0.67 eV,
while ni = 2 4 × 1013 cm−3.

Based on Table 1.2 the size of the bandgap at 500 K is given by

Eg T = 500K = 0 742−4 8 × 10−4 500
2

735
0 579 eV
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According to this value and the values of Nc and Nv at room temperature (provided
in Table 1.4), (1.30) yields the intrinsic electron concentration at 500 K:

ni T = 500K = 1 04 × 1019 × 6 × 1018
500
300

3

exp −
0 579

2 × 0 0258 × 500
300

2 03 × 1016 cm−3

Based on these values, Equation (1.33), and the mass action law, we can calculate
the electron concentration given Nd = 1015 cm−3 and Na = 1016 cm−3.

For T = 300 K,

p0 =
1016−1015

2
+

1016−1015

2

2

+ 2 4 × 1013
2

9 × 1015 cm−3

and

n0 =
n2i
p0

=
2 4 × 1013

2

9 × 1015
6 4 × 1010 cm−3

For T = 500 K,

p0 =
1016−1015

2
+

1016−1015

2

2

+ 2 03 × 1016
2

2 5 × 1016 cm−3

and

n0 =
n2i
p0

=
2 03 × 1016

2

2 5 × 1016
1 6 × 1016 cm−3

1.3.5 Calculation of Electron and Hole Concentration in a
Degenerate Semiconductor

According to the density of states functions presented Section 1.1.3 and the Fermi–
Dirac distribution function of (1.18), the calculation of electron concentration in terms
of Fermi–Dirac integral yields the following for bulk 3-D, 2-D, and 1-D semiconduc-
tors. The calculation of hole concentration follows the same principles.

In the case of the 3-D semiconductor, using (1.14),

n0 =
∞

0
fD E D3D E dE =N3DF1 2

Ef −Ec

kT
=N3DF1 2 ηF 1 34
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where N3D = 2 2πm∗
nkT h2

3 2
and F1/2 is the order ½ Fermi–Dirac integral.38

As presented in Section 1.3.3, for a nondegenerate 3-D semiconductor, this
simplifies to the familiar form of

n0 =N3D exp
Ef −Ec

kT
1 35

Similar to this, in the two-dimensional case,

ns =N2DF0 ηF cm−3 1 36

where

F0 ηF  ≡ 
1

Γ 1

∞

0

dξ

1 + exp ξ−ηF
=

1
Γ 1

∞

0

exp ηF−ξ dξ

1 + exp ηF−ξ
= −

1
Γ 1

Ln 1 + exp ηF−ξ
∞
0

1 37

As a result, in the case where the second subband is much above Fermi level,39

ns =N2DLn 1 + exp
Ef −E1

kT
1 38

E1 is the bottom of the first subband identified in (1.8) and N2D = m∗
nkT πℏ2.

Again, under nondegenerate conditions,

ns =N2D exp
Ef −E1

kT
1 39

For the one-dimensional case,

nL =N1DF−1 2 ηF 1 40

where

N1D =
2m∗kT

π

ℏ
1 41

38Fermi–Dirac integral of order j is defined in terms of the Γ-function: Fj η  ≡ 1 Γ j + 1
∞

0
ξjdξ 1 + exp ξ−η .

39 That is, at least 3–4kT above Ef. In this case, only the first subband will be having a chance of having
electrons.
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Under nondegenerate conditions, with the assumption of only the first subband,

nL Ef =N1D exp
Ef −E1

kT
1 42

1.3.6 Quasi-Fermi Levels

It should be kept in mind that the definitions of Fermi–Dirac statistics and the Fermi
level are only possible under thermal equilibrium. For a semiconductor removed from
thermal equilibrium, through the application of external excitations (such as electrical,
optical, magnetic, or nonuniform thermal excitations), the definition of the Fermi level
is not possible. However, we tend to preserve the form of the two closed-form
Equations (1.27)–(1.28) for calculating the electron and hole concentration. This is
done through proposing the following equations40:

n= ni exp
Efn−Ei

kT
1 43

and

p= ni exp
Ei−Efp

kT
1 44

where n and p are the nonthermal-equilibrium concentration of electrons and holes in
the conduction and valence band, respectively. These values can either be larger than
the concentrations under thermal equilibrium (i.e., n0 and p0) or smaller. Efn and Efp

are referred to as quasi-Fermi levels of electrons and holes, respectively. Unlike the
Fermi level, there is no physical origin to the quasi-Fermi levels. Often quasi-Fermi
levels are referred to as imref (i.e., Fermi spelled backward). Evidently, under thermal
equilibrium, quasi-Fermi levels will overlap one another and the Fermi level. The
degree of deviation from thermal equilibrium can be quantified in terms of the differ-
ence between the quasi-Fermi levels of electrons and holes.

1.3.7 Statistics of Dopant Activation Process

Whereas at high enough temperatures all shallow dopants are ionized, in the low-to-
moderate temperature range the degree of ionization of dopants requires attention. In
evaluating this degree of ionization, the occupation status of donor and acceptor states
should be studied. In such an investigation Fermi–Dirac distribution functions,
slightly different from the one presented in (1.18), are employed. The electron distri-
bution functions determining ionization status of donor and acceptor states (i.e., Ed

and Ea) are expressed as

40 Subscript 0 assigned in the previous equations to electron and hole concentrations is reserved for thermal-
equilibrium situations.
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fd a =
1

1 + βd a exp
Ed a −Ef

kT

1 45

In here βd and βa are often approximated by 1/2 and 2,41 respectively (Landsberg,
1969, p. 270). Spontaneously arriving at the thermal-equilibrium state, which is
expressed in (1.45), normally requires a considerably long period of time. This time
requirement is due to the fact that in this case the donor and acceptor states should
reach systemic thermal equilibrium with valence and conduction band.

There are important differences in the application of Fermi–Dirac statistics to the
occupancy of the conduction and valence band and those of the donor and acceptor
energy levels. In the latter cases, attention should be paid to the fact that while an
energy state in the conduction or valence band can accommodate two electrons
(i.e., considering spin degeneracy42), a donor state (or an acceptor state) can accom-
modate only one electron (or one hole), which is to be donated to the conduction band
(or valence band). This single electron or hole, however, can take any of the two spin
values at its ground state and also excited states. This is the fact that results in the
presence of βd/a unequal to 1 in (1.45).

In silicon technology in the case of a donor atom, the donor state (i.e., Ed) is occu-
pied if the fifth valence shell electron is occupying it. If ionized, this donor state will
be unoccupied. What makes this process unlike the process of EHP generation is that
this fifth electron has one of the two spin-orientation choices in occupying the donor
state (i.e., one spin-up and one spin-down). However, all of the electrons in covalent
bonds (i.e., in valence band) have such a choice. A spin state is associated with the
presence of the electron. As a result, in the absence of an electron, the donor state,
instead of two empty states, merely has one. The two states of opposite spin orien-
tation have the same value of energy and as a result impose a twofold degeneracy
in the Fermi–Dirac distribution function of electrons, which as we saw in (1.45) is
represented by β−1

d . In terms of this distribution function, the density of activated
donors in a 3-D semiconductor is given by

nd =
Nd

1 + 2exp Ef −Ed kT
Nd for Ed−Ef kT 1 46

whereNd is the volume density of donors. Since for low-to-moderate dopant levels the
density of states function of dopant states is representable by a Dirac delta function,
integration over the product of the density of states and the distribution function of
(1.45) was not required to be shown explicitly.

This discussion, with an importantmodification, can also be extended to the acceptor
states. Since the valence-band electrons in many semiconductors are shown to have
wave functions rooted in p-type orbitals (hence exhibiting a threefold orbital degener-
acy), βa is expected to go beyond the pure spin degeneracy (addressed by βd).

41 As we will see shortly, βa in many situations is equal to 4.
42 See the discussions in Section 1.1.2.
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This threefold degeneracy that impacts the occupation function of acceptor states
can be partially lifted by the crystal field and spin–orbit coupling. As a result, either
a twofold degeneracy between the heavy- and light-hole bands or a pure spin-degen-
erate valence-band edge will evolve. For these two cases, βa is equal to 4 or 2,
respectively.43

As a result, without lifting the degeneracy between the heavy- and light-hole
bands,44 the density of activated acceptors is given by

pa =
Na

1 + 4exp Ea−Ef kT
1 47

in which βa is equal to 4.
In the development of this formalism, it has been assumed that the doping level has

been low enough so that no serious perturbation on the band structure of the host crys-
tal is induced. As a result, the definition of the effective charge-carrier mass is still
possible in terms of the simple parabolic band approximation near the band edges
(i.e., calculated in terms of (1.13)). As we took note earlier, with increasing the doping
level, when the dopants are on average separated from one another only by about
10 nm, such a formalism cannot be used. In that case, since dopants are not acting
independent of one another, electron–electron interactions develop. Caused by Pau-
li’s exclusion principle and electron exchange of energy, electrons will spread in their
momenta. This spreading is to avoid the overlapping of the wave function of individ-
ual electrons. As mentioned earlier, this is the cause of the evolution of the donor and
acceptor states into bands and eventual formation of band tails and shrinkage of the
bandgap. This issue causes the optical bandgap to become larger than the electronic
bandgap, which is mathematically defined using the mass action law (i.e.,
Equation (1.30)).

1.4 CHARGE-CARRIER TRANSPORT IN SEMICONDUCTORS

On the basis of the Bloch theorem, as indicated in Section 1.1, quantum mechanics
predicts that in a perfect semiconductor (i.e., devoid of any lattice vibration and crys-
tal defects) charge carriers travel as propagating waves within the boundaries of the
3-D semiconductor. Nevertheless, the presence of nonidealities existing in real semi-
conductors imposes randomizing scattering processes on the trajectory of charge car-
riers, rendering them to be not as free as Bloch theorem alludes. Many of these
scattering processes are inelastic.

In electronic devices of relatively large sizes, the randomizing effect of the scat-
tering processes paves the way for the description of charge transport45 in terms

43 In the case of acceptors, the degeneracy factor appears as g in the complementary Fermi–Dirac function:
1

1+ 1
gexp Ef −E kT

, which is βa in the Fermi–Dirac function of (1.45).
44 Usually the split-off band due to its energy separation from the top of the valence band is not considered.
45 From this point onward instead of speaking of charge-carrier transport, we will talk of charge transport.
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of averaging. In order to be able to identify the length scale of the devices to which this
language of charge transport is applicable, we will identify more quantifiable length
scales in Section 1.4.2. The transport language used under these circumstances is
drift–diffusion transport. In this averaging formalism, there are charge carriers that
go through fewer scattering processes and obtain higher carrier velocities (and there-
fore energies), which are referred to as lucky electrons (or holes), and there are those
that suffer from scattering with a higher frequency than average. As expected, over a
shorter travel length, the chance of encountering lucky electrons grows, and as a result
the average-based drift–diffusion formalism fails to account for the full behavior of
charge transport. Although for modern deep-submicron and nanoscale FETs such a
formalism, which is developed according to the Drude46 model, is insufficient, we
will still focus our treatment of transport in this chapter on this model. Later on in
Chapter 6, we will discuss the transport formalism for these smaller-size devices.

As one of the reference scales of length, the concept ofmean free path is adopted as
the length over which an average electron goes through a scattering process, resulting
in total loss of momentum. Under the condition of charge transport in a device of
shorter length than the mean free path,47 it is said that charge carriers travel ballis-
tically. This situation is encountered in deep-submicron FETs. Later on in this chapter,
other length scales, which are also important to the description of charge transport,
are reviewed.

While asserting that under thermal-equilibrium spatial profiles of electron and hole
concentration are time independent, it should not be imagined that charge carriers at
temperatures above 0 K remain stationary. On the contrary, as invoked earlier, accord-
ing to the laws of statistical mechanics at a temperature T (in Kelvin) per degree of
freedom, an average particle possesses an amount of energy equal to 1/2kT. As a
result, in a three-dimensional semiconductor, the average semi-Newtonian charged
particle (i.e., with effective mass of m∗) has a finite thermal velocity (i.e., vth), which
can be calculated through the following equation:

1
2
m∗v2th =

3
2
kT 1 48

This random thermal velocity, however, results in a zero net velocity for the total
population of charge carriers. It should be mentioned that the above equation, which
is based on semiclassical quantum mechanics, is only an approximation and it suffers
from improper averaging.

In the presence of an external source of energy (such as an electric field) or a non-
zero gradient in charge-carrier concentration, this random thermal velocity can be
slightly biased toward a certain trajectory to produce a nonzero net velocity of charge
carriers. This results in electrical current. While (1.48) predicts a random thermal
velocity in the order of 107 cm/s at room temperature, the net velocity would be much
smaller than this. Therefore, only a semiclassical description of quantum mechanics

46Named after Paul Drude.
47 In Section 1.4.2 we will present this condition on a more accurate ground.
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(certainly without invoking relativistic mass) needs to be considered in the formula-
tion of charge transport.48

1.4.1 Current-Continuity Equation

A capable tool in the description of the netmovement of charge carriers in a relatively
large-size semiconductor is the current-continuity equation. According to
Figure 1.17, the charge-carrier concentrations in a semiconductor’s conduction
and valence bands evolve with time as functions of carrier transport and genera-
tion/recombination rates of carriers (i.e., G and R in terms of the number of carriers
per unit time, per unit volume). According to this one-dimensional depiction,

∂n

∂t
A dx= Fn x −Fn x + dx A+ Gn−Rn A dx 1 49

∂p

∂t
A dx= Fp x −Fp x + dx A+ Gp−Rp A dx 1 50

In these equations, Fn/p(x) stand for the flow rates of charge carriers normal to the
cross-sectional area A. Since electrons and holes are not always created (or annihi-
lated) in pairs,49 in the above equations (with indication of the appropriate

Jn(x)

x + dx

Jn(x + dx)
A

~ ~

~ ~
~ ~

x x

Gn Rn
Ev

Ec

FIGURE 1.17 Schematic depiction of current continuity across a slab of semiconductor.

48 In semiconductors, due to Bragg diffraction and evolution of negative mass, velocities much higher than
108 cm/s do not usually transpire.
49 That is, through direct band-to-band processes.
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subscripts50), the rates of generation/recombination of electrons and holes are differ-
entiated from one another.

If the flow rates were to change almost linearly (i.e., expressed by the first-order
Taylor series) between the two ends of the elemental volume A.dx, Fn p x −

Fn p x + dx −
∂Fn p

∂x
dx. As a result,

∂n

∂t
−
∂Fn x

∂x
+ Gn−Rn 1 51

∂p

∂t
−
∂Fp x

∂x
+ Gp−Rp 1 52

While in terms of electron and hole current densities (i.e., Jn and Jp, in units of
A/cm2), Fn = Jn −q and Fp = Jp q,51 we have

∂n

∂t

1
q

∂Jn x

∂x
+ Gn−Rn 1 53

∂p

∂t
−
1
q

∂Jp x

∂x
+ Gp−Rp 1 54

According to the continuity equation, in the absence of a considerable generation/
recombination rate, the time evolution of charge-carrier concentration will be purely
explainable in terms of the spatial gradient of the electrical current density. The time
constant determined in terms of the charge-transport processes for removing any
amount of excess charge concentration in the semiconductor (i.e., beyond charge
neutrality) is referred to as the dielectric relaxation time. Dielectric relaxation time
is one of the important metrics in evaluation of charge-transport properties of a
semiconductor.

1.4.2 Drift–Diffusion Formalism

We shall start our description of the drift–diffusion formalism with drift transport and
also address the limitations of this carrier-transport formalism. This mode of carrier
transport, due to its similarity with electron transport through conductors (which is
normally expressed in terms of Ohm’s law), is relatively easier to understand for a
reader not so familiar with semiconductors. According toOhm’s law, for a rectangular
slab of semiconductor with homogeneous concentration of charge carriers, conduct-
ance (G in Siemens) can be written in terms of its width (W), length (L), thickness (T),
and the important material property known as conductivity (σ in 1/Ω cm):

G= σ
W T

L
1 55

50 That is, n for electrons and p for holes.
51 q is the absolute value of the charge of an electron.
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As will be further explored in Chapter 6, with the reduction of the length scale of
this slab on the order of a few mean free paths at normal temperatures of operation
(i.e., into deep submicrometers), such an equation will not hold. One recent develop-
ment in physics of semiconductor devices has taken place regarding determining these
minimum dimensions. Physical realization of deep-submicron devices (i.e., of dimen-
sions within the range or smaller than the mean free path) has led to significant prog-
ress in understanding the meaning of resistance at nano- and molecular scales and
also the notion of contact resistance to these small-scale entities.52

With respect to this concept, a relatively new area has evolved in semiconductor
electronics, which is referred to as mesoscopic electronics. In mesoscopic devices,
dimensions are intermediate between the atomic scales and scales over which the
Ohmic behavior of drift transport prevails. Although so far we have only talked about
this length scale relative to mean free path, it is worth elaborating more on the matter.
For a conductor to exhibit anOhmic behavior, the dimensions ought to be much larger
than each of the following three characteristic length scales (and not just one of them):

• The de Broglie wavelength of the electron

• The mean free path

• The phase-relaxation length

Whereas we are already acquainted with the first two, the last of these length scales
indicates the distance that a wave electron travels before its initial phase information
is lost.

These characteristic length scales are dependent on material, processing, temper-
ature, and also external forces. As a result of the shortening of these characteristic
length scales with increase in temperature and bias, a mesoscopic behavior is further
encountered at lower temperatures and under lower biases. At room temperature, this
characteristic is often washed out by the many existing scattering processes.

Caused by the tremendous push to realize electronic devices of ever-smaller
dimensions, it is worth paying attention to the underlying physics of these length char-
acteristics. This qualitative description paves the way to better understand three
important (and often confused or overlooked) time constants in evaluation of the
behavior of electronic devices: momentum relaxation time, phase relaxation time,
and energy relaxation time.

Not all collisions and interactions that electrons go through are inelastic. As a
result,momentum relaxation time (referred to as τm) in terms of collision time constant
(i.e., τc) can be given by

1
τm

=
1
τc
αm, 1 56

52Measuring semiconductor properties requires creating a contact between themacroscaleworld and nano-
or micron-scaled semiconductor devices. Starting from Chapter 2, through dealing with the concept of con-
tact, we will address this issue more in-depth.

41CHARGE-CARRIER TRANSPORT IN SEMICONDUCTORS

0002621443.3D 41 5/1/2016 5:43:27 PM



where αm is a constant varying between 0 and 1, which indicates the effectiveness of
the collision for destruction of momentum. For example, collisions resulting in small-
angle scattering have very little impact on erasing the momentum information.

In order to get a more hands-on feeling about the length scales over which meso-
scopic transport prevails, let’s consider the case of low-temperature conduction
through a 2-D populated channel, where the conductance is entirely determined by
the electrons with energies close to the Fermi level,53

vf =
ℏkf
m∗ =

ℏ
m∗ 2πn 1 57

In this example, on the basis of (1.56), the mean free path is calculated in terms of
Fermi velocity (i.e., vf) as

54

Lm = vf τm 1 58

For an electron concentration on the order of 1011 cm−2, Fermi velocity will be
about 107 cm/s. As a result, for amomentum relaxation time of 100 ps,mean free path
will amount to about 30 μm. Considering the size of modern semiconductor devices,
this is extremely large.55 As a result, as suggested earlier, application of equations
such as (1.55) will not be extendible to devices operating under these regimes, even
when the dimensions of the devices are still on micron scale.

In order to magnify the differences in nature of the three aforementioned length
scales, it is worth paying attention to the special case of electron–electron scattering.56

Among the many scattering events, electron–electron scattering is a scattering proc-
ess that does not impact the mean free path. This is due to the fact that in such pro-
cesses, no net loss in momentum of electrons occurs. In this average sense, a
momentum lost from one electron is a momentum gained for the other. However,
unlike the efficiency factor of this process (i.e., αm), that of phase relaxation time
is not equal to 0. Phase relaxation in general is the byproduct of scattering by fluc-
tuating scatterers.

Whereas rigid sources of scattering such as impurities in general do not contribute
to the phase relaxation process, magnetic impurities due to their internal degree of
freedom (i.e., their time-fluctuating spin) serve as phase randomizerswhile scattering
electrons.

53 This is due to the fact that under low temperatures, the Fermi–Dirac function of (1.18) turns into a step
function.
54Which is the velocity of electrons in states matched to Fermi level.
55 In (1.57) electrons are assumed to be in a 2-D channel, which is almost like that ofMOSFETs to be seen in
Chapter 3. On the basis of assumptions of low temperature and occupation of only one subband in this
channel, Equation (1.15) yields n= m∗ πℏ2 Ef −E1 . Using the semiclassical definition of energy as

E = 1
2m mv 2 = 1

2m ℏk 2, this yields the Fermi wave number kf = 2πn.
56 In Section 1.7, we will deal with scattering mechanisms at a greater length.
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In normal temperatures of operation, depending on the semiconductor’s crystal
structure and electron energy, an electron can propagate without perturbation over
an inelastic mean free path in the range of 3 × 10−7 to 10−5 cm. Because these dis-
tances span many lattice constants,57 electrons still see the crystal as a phase-coherent
quantummechanical entity. This explains why, between the scattering events, pertur-
bation theory allows us to see the electrons in light of Bloch states, which are defined
by the periodic crystal. However, after this unperturbed propagation, electrons,
according to Fermi golden rule, scatter to other Bloch states and go through dephas-
ing. As a result of this discussion, as indicated in the opening of Section 1.4, on geo-
metric scales much larger than the inelastic mean free path, electrons are more or less
seen as classical particles.

Evaluation of the aforementioned time constants and modes of scattering is
extremely important in the formulation of the Boltzmann transport equation (BTE),
of which the drift–diffusion formalism dealt with in this chapter is only a special case.
For the BTE one needs to identify a distribution functional for electrons in terms of
time, position, and momentum. Considering the constraint of the uncertainty princi-
ple, such a definition would be possible only if the geometrical flight length allows the
application of the aforementioned semiclassical framework.

According to the earlier discussions and as a result of the uncertainty principle, the
allowable value of uncertainty of the electron wave vector will be about 105 cm−1,
which is matched to the geometrical uncertainty in the range of 10−5 cm. This degree
of accuracy in determining wave vector k is often deemed sufficient, since the Bril-
louin zone58 boundary is about 108 cm−1. In compliance with these conditions, a dis-
tribution functional f k , r , t representing the probability of finding an electron
having a wave vector between k and k + d k and located in a space between r and
r + d r can be identified.

1.4.2.1 Drift Transport So far in our discussions, we have encountered three
velocity terms:

• Random thermal velocity (which is of zero net velocity)

• Drift velocity or net velocity (which is a slight bias imposed on random thermal
velocity through application of an external sources of energy)

• Fermi velocity

Our aim is now to see why in Equation (1.57) Fermi velocity, and not the other
velocities, was used in determining the characteristic length scale Lm.

57 The long-range order in a crystalline material indicates the presence of unit cells, which are repeated in the
structure. As will be elaborated in Section 1.6, lattice constant is an indicatory dimension of these unit cells.
58 Using Schrödinger equation, a real-space crystal structure can be transformed into momentum space.
While in the real space periodicity of crystal presents itself through the notion of repetition of unit cells,
in themomentum space also the information is repeated in the form of repetition of a building block, which is
known as Brillouin zone. This is named after Léon Brillouin.

43CHARGE-CARRIER TRANSPORT IN SEMICONDUCTORS

0002621443.3D 43 5/1/2016 5:43:28 PM



In a large homogeneous semiconductor, carrier transport is explained in terms of
the drift velocity (i.e., vd), which yields the electron drift current density as

Jn = qnvdn 1 59

The drift hole current density can also be expressed through an equation identical in
form to (1.59). However, instead of electron concentration (i.e., n), hole concentration
(i.e., p), and instead of drift velocity of electrons (i.e., vdn), drift velocity of holes (i.e.,
vdp) should be used. In the calculation of current under conditions very close to ther-
mal equilibrium, we can still approximately rely on Fermi–Dirac statistics. However,
for further deviations from thermal equilibrium, another distribution functional
should be used in the current calculation.

In this equation, through incorporation of electron concentration n, it is implied that
all conduction-band electrons are contributing to current conduction. However, in the
case of conductors, or in degenerate semiconductors,59 such a framework becomes
misleading. In these cases, application of an external electric field does not induce
a net velocity (i.e., vd) in all conduction electrons. With the use of energy-resolved
measurements, it has been shown that only those electrons with energy values within
a few kT of the electron quasi-Fermi level are carriers of the net current. This occurs
while the rest of the conduction-band electron population maintains at its zero net
velocity. This finding results in a tremendous simplification in studying the behavior
of these solids at very low temperatures, since only a very small concentration of con-
duction electrons are now required to be studied.

This fact highlights the difference between the impact of application of electric
field on electrons as individual single particles or as an ensemble of electrons. From
the point of view of an ensemble of electrons, the application of an electric field results
in moving only a few electrons from states with negative wave number (i.e., −kf) to
states with positive wave number (i.e., +kf). This is schematically illustrated in
Figure 1.18. Accordingly, the drift transport equation in this case can be rephrased as

Jn = q n
vdn
vf

vf , 1 60

where the quantity in the square brackets is representative of a small fraction of total
concentration of electrons with energies within a few kT of quasi-Fermi level. These
are the electrons that move with Fermi velocity. Although from a purely quantitative
point of view this equation implies no change in the value of drift current density, it
conceptually indicates why it is required to talk about Fermi velocity in metals as well
as in low-temperature/low-dimensional degenerate semiconductor systems. As is
shown in (1.60), in degenerate systems under low temperature, conduction takes place

59Which, as indicated earlier in this chapter, refers to the cases where Fermi level is positioned above the
conduction-band edge for a three-dimensional bulk semiconductor or above the first subband level for the
case of a lower-dimensional semiconductor kBT Ef −E1, which materializes specially at lower tempera-
tures. Many of the FETs have degenerate channels for current conduction.
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through the movement of a small number of electrons at velocities much higher than
indicated by the drift velocity.

However, aside from this ballistic transport in low-dimensional systems and low-
temperature transport behavior of degenerate systems, transport under low electric
fields can be easily described in terms of the drift (and to be added in
Section 1.4.2.2 diffusion) formalism.

As expected, upon application of an electric field, the netmovement of charge car-
riers is materialized either along the direction of electric field (for holes) or opposite of
that (for electrons). Inmacroscopic electronic devices, an instantaneous relationship is
proposed between the applied electric field and this net velocity (i.e., drift velocity: vdn
and vdp):

vdn = −μnE 1 61

vdp = μpE 1 62

The proportionality constants of these relationships are referred to as low-field
electron and hole mobility (i.e., μn and μp in cm

2/V s, respectively). As will be shown
in Section 1.7, these constants are dependent on the frequency of a large number of
scattering processes that a carrier encounters when moving in a semiconductor. As a
result, they depend on a long list of parameters including temperature, presence of
impurities, presence of internal polarization in the semiconductor, etc.

Equations (1.61) and (1.62) certainly have their own limitations. Assumption of
such instantaneous relationships even in portions of large-size semiconductor devices

kz

ky
qE

⃪

kx

FIGURE 1.18 While prior to the application of an electric field all states within a sphere of
radius kf (i.e., Fermi wave number) are filled at low temperatures, upon application of an electric
field E, this sphere shifts according to the vector q E. As a result, instead of symmetric filling of
the band, states that carry the current along the electric-field vector are filled up to a higher
energy. This elimination of symmetry between the states (kx, ky, kz) and (−kx, −ky, −kz)
results in current conduction in the range of energies for which the two spheres are
nonoverlapping.
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(i.e., in regions of rapidly changing electric field) has been proven to be misleading. In
these relationships, it is assumed that an average semi-Newtonian electron,60 while
traveling through a piece of semiconductor across which an electric field (i.e., E)
has been established, will at any given point experience a force equal to −qE. As a
result of this force, assuming a constant electric field between any two inelastic scat-
tering events (which are separated from one another by an amount of time typically
referred to as mean scattering time), the electron will receive an amount of energy
equal to qEλ over the length of one mean free path (i.e., λ). If we assume that on aver-
age after a time period equal to the so-called mean scattering time (i.e., τcn, for
electrons),61 an electron undergoes an inelastic scattering process (and sees a drop
in its field-contributed drift velocity to 0), we can write the following Newtonian equa-
tion for this particle:

qEτcn = −m∗
nvdn 1 63

in which m∗
n is the effective mass of electron.

As a result, based on (1.61),

μn =
qτcn
m∗

n
1 64

Likewise, we can calculate the low-field hole mobility as

μp =
qτcp
m∗

p
, 1 65

where τcp and m∗
p are the mean scattering time and effective mass of holes,

respectively.
These approximations, in circumstances dealing with large-size electronic devices

and when the applied electric field is small, hold well. Nevertheless, at higher electric
fields since electrons (and holes) move away from the bottom of conduction band (and
valence band), the effective-mass values calculated at the band boundaries will not be
applicable. It is worth noting that in formalizing drift transport, if electric field were
large, higher powers of E would be required in explaining the transport. This is
because high electric field appreciably disturbs the equilibrium distribution of velo-
cities of carriers (i.e., profile expressed in (1.21)). In addition, increase in energy will
not only change the scattering rates, and as a result the value of mean scattering time,
but will also trigger a number of new scattering processes. In Section 1.7.3, we will
perform a fuller evaluation of a variety of scattering processes.

60While this discussion is being presented for electrons, in case of holes, evidently with the appropriate
change of signs, appropriate equations are developed.
61 It should be emphasized that τcn (also its counterpart in case of holes: τcp) is given by the momentum
relaxation time and not the collision time constant in (1.56).
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In a simple review of this problem, we see that we have thus far made a good num-
ber of assumptions, including:

• The electron, which is a wave/particle dual, is a Newtonian particle.

• Transport is one-dimensional.

• The electric field is constant between any two inelastic scattering events.

• An inelastic scattering process happens every τcn (i.e., mean scattering time for
electrons) and τcp (i.e., mean scattering time for holes).

These assumptions prevent us from developing a thorough understanding of the
behavior of the quantum wave/particle charge carrier. The processes of receiving
(or dissipating) energy of these wave/particles are not instantaneous. These processes
are instead governed by a relaxation time constant, referred to as energy
relaxation time.

Prompted by the difference in the energy of phonons and electrons, the momentum
relaxation time is often shorter than the energy relaxation time. This is because the
thermalization of electrons requires a number of inelastic scattering events, consider-
ing the large electron energy (i.e., electron–phonon energy exchange). However, in
contrast, even with one scattering event, the momentum of the charge carrier can
be randomized.

As mentioned before, the low-field mobility is dependent on the frequency of
electron interaction with scattering processes. Temperature and presence of ionized
impurities are two prime contributors to scattering processes, on which the low-field
mobility depends. These contributions result in ionized-impurity scattering and
lattice-vibration scattering (also known as phonon scattering). At low temperatures,
due to insignificant lattice vibrations, ionized-impurity scattering is dominant. At
higher temperatures, phonon scattering plays the dominant role.

As a result, the temperature dependence of the low-field mobility takes two com-
pletely different characteristics at the temperature extremes. At high temperatures,
because of the strengthening of the dominant scattering process (i.e., phonon scat-
tering), the frequency of scattering events increases, and as a result carrier mobil-
ity deteriorates. At lower temperatures, an increase in temperature results in a
mobility improvement. This improvement in mobility is due to the increased ther-
mal velocity of carriers and, as a result, reduction in the time spent by them in the
vicinity of the dominant scatterers (i.e., ionized impurities). In semiconductors
free of ionized impurities (i.e., in the absence of ionized-impurity scattering), at
lower temperatures mobility becomes temperature independent. Whereas depend-
ing on the curvature of the E–k diagram and the value of mean scattering time, the
values of electron and hole mobility of different semiconductors are different, at
higher temperatures the low-field mobility becomes almost independent of the
semiconductor.

With increase in dopant concentration and when ionized-impurity scattering is
dominant, carrier mobility deteriorates. Figure 1.19 schematically illustrates these
temperature- and doping-dependent variations of carrier mobility.
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1.4.2.2 Diffusion Transport Under the aforementioned circumstances, which
were identified as suitable for the application of drift-transport formalism, the second
mode of conduction is diffusion. Diffusion is a thermal process that, unless there is a
gradient in the concentration of carriers, produces a zero net movement of charge
carriers. This is because the average carrier, although moving with thermal velocity,
has a random zero-sum movement. In the presence of a gradient in charge-carrier
concentration, however, carriers will diffuse from regions of higher concentration
to regions of lower concentration.

According to the one-dimensional situation depicted in Figure 1.20, with a few
assumptions a simple equation can be produced for this net movement of charge in
the presence of a carrier concentration gradient (while electric field is 0). In this
one-dimensional situation, carriers at any given point have a 50% chance of traveling
toward the right or the left side. Taking two points to the right and to the left of a given
reference point, distanced from the reference point by the mean free path, one can
assume that an average carrier starting at each of these two points and coming to
the reference point will not go through any inelastic scattering event before reaching
x = 0. As a result, in the case of electrons, the net flux of carriers at x = 0 will be
equal to

F =
1
2
vthn x−λ −

1
2
vthn x+ λ 1 66

(b)

(a)

Nd1

Nd2 ∝ T –1.5~2.5

Nd3

T

Ionized impurity concentration

Carrier mobility

Carrier mobility

FIGURE 1.19 (a) Typical dependence of carrier mobility on lattice temperature for a
semiconductor doped to three different levels of doping: Nd1, lightly doped; Nd2, moderately
doped; Nd3, heavily doped. (b) Typical dependence of carrier mobility on the ionized-
impurity concentration. Scales are linear.
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Assuming that the electron concentration gradient is small enough so that n(x) can
be approximated by the first-order Taylor series, we can write

F −λvth
dn

dx
1 67

Since for electrons diffusion current and flow rate of electrons can be related as
JDiff-n = −qF, the diffusion-current density can be written as

JDiff-n qλvth
dn

dx
1 68

The factor λvth is referred to as the diffusion constant of electrons (Dn in units of
cm2/s).

For the case of holes, with appropriate modifications, the following equation is
developed:

JDiff-p −qλvth
dp

dx
1 69

1.4.2.3 Einstein Relationship It is important to understand that the constants
of drift and diffusion in terms of current are not independent of one another. At
conditions close to thermal equilibrium (i.e., low E) and for nondegenerate

n (cm–3)

n (–λ)

–λ +λ0

n (0)

n (+λ)

x

~ ~
~ ~

FIGURE 1.20 Schematic depiction of an arbitrary 1-D dependent carrier concentration
profile (i.e., along the x-axis) on the cross section of a slab of semiconductor.
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semiconductors, a simple derivation will result in the famous Einstein relationship62

between these constants.63

According to our earlier discussions,

Dn = λvth = v
2
thτcn = v

2
th
μnm

∗
n

q
1 70

For a one-dimensional semiconductor, with no electric field, according to the
equipartition theorem,

1
2
m∗

nv
2
th =

1
2
kT 1 71

As a result, based on (1.70) and (1.71),

Dn = μn
kT

q
1 72

An identical relationship can also be established between the diffusion constant of
holes and their low-field mobility. As a result, between the four transport factors of
drift–diffusion formalism, we have

Dn

μn
=
Dp

μp
=
kT

q
, 1 73

which, as indicated already, is referred to as Einstein relationship.
This version of Einstein relationship is only valid for a nondegenerate semicon-

ductor (i.e., theMaxwellian semiconductor expressed in (1.21)). However, as proven
in Appendix 1.B, for a degenerate semiconductor at low electric fields, in terms of
Dirac integrals, we will have

D

μ
=
kT

q
2F3 2 η 3F1 2 η , 1 74

where

Fj η  ≡ 
∞

0

ξjdξ

1 + exp ξ−η
and η=

Ef −Ec

kT
1 75

Notice that Fj(η), which we saw in Section 1.3.5, is the scaled version of Fj(η)
by Γ j+ 1 .

62Named after Albert Einstein.
63 In Appendix 1.B, we will show how a more sophisticated version of this relationship is also valid without
these conditions.
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According to the drift–diffusion formalism, the total electron and hole current
density terms can be written as

Jn = qnμnE + qDn
dn

dx
1 76

Jp = qpμpE−qDp
dp

dx
1 77

Through applying the definitions of quasi-Fermi levels to a nondegenerate semi-
conductor, we can combine the drift- and diffusion-current terms in one equation:

Jn = nμn
dEfn

dx
1 78

Likewise we can write

Jp = pμp
dEfp

dx
1 79

The diffusion process, in addition to being instigated by the presence of a finite
gradient in dopant and charge-carrier concentration, can also be provoked by the
existence of a temperature gradient. This can be clearly seen through the temperature
dependence of the quasi-Fermi levels presented in Equations (1.43) and (1.44).

With explicit indication of transport due to a temperature gradient, drift–diffusion
transport of electrons can be formulated as

J = nqμE + qD∇n + qS∇T , 1 80

where S is referred to as Soret coefficient.64

Although we have already provided the drift–diffusion formalism in a unified form,
it is worth emphasizing again that, especially due to the restrictions of Pauli’s exclu-
sion principle, for degenerate semiconductors, one cannot assume that drift and dif-
fusion are independent processes.

Example
Along the length of a slab of n-doped germaniumwith a peak dopant concentration of
1015 cm−3, a constant electric field of 100 V/cm is applied. The length of the slab is 1 μm.
Assuming that at room temperature along this sample a current of 10 A/cm2 is flowing in
the direction of the electric field, determine the spatial distribution profile of the dopants.
Room-temperature values of electron and hole mobility everywhere along the length of
this sample are taken equal to 1000 and 800 cm2/V s, respectively.

64 Soret coefficient is defined as Sn = μn k q n, and it is named after Charles Soret.
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Since the sample is n-doped, we start with assuming that the current is being carried
by electrons only. Taking the electric field to be in the +x direction, in terms of (1.76),

Jn = qnμnE + qDn
∂n

∂x
= + 10 A cm2

Since μn = 1000 cm2 V s, according to mass action law,

Dn

μn
=
kT

q
Dn 25 8 cm2 s

Based on these values,

1 6 × 10−19 n x × 1000 × 100 + 25 8
∂n

∂x
= 10,

which yields

n x =A exp −3 88 × 103x + 6 25 × 1014 cm−3

We assume first that Nd x n x and then evaluate the validity of this
assumption.

Since the peak of the donor concentration is 1015 cm−3, n(x = 0) is set to this value.
Accordingly,

Nd x = 3 75 × 1014 exp −3 88 × 103x + 6 25 × 1014 cm−3

Based on this distribution profile, along the length of the sample stretch-
ing from x = 0 to x = 10−4 cm, dopant concentration changes from 1015 to
8 79 × 1014 cm−3.

Within this range everywhere Nd is at least an order of magnitude greater
than ni T = 300 K = 2 4 × 1013 cm−3, which validates our earlier assumption
of Nd x n x .

We still have to validate another assumption (i.e., if electrons are the predominant
charge carriers). Based on the electron concentration profile, the hole concentration
profile is evaluated as

p x =
2 4 × 1013

2

3 75 × 1014 exp −3 88 × 103x + 6 25 × 1014

According to which,

Jp = qpμpE−qDp
∂p

∂x
,

where μp = 800 cm2 V s and Dp = 800 × 25 8 × 10−3 20 64 cm2 s.
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Based on these, since both n p and ∂p ∂x ∂n ∂x , Jp would be much smal-
ler than Jn, which sets electrons as the predominant charge carriers.

1.4.3 Characterization of Low Electric-Field Transport Parameters

Hallmeasurement is one of the most capable tools in characterizing semiconductors.
This tool can be used to not only measure the carrier mobility in a semiconductor but
also to reveal the type of its majority carriers and their concentration. Figure 1.21
illustrates a Hall measurement setup. In this setup in presence of both an electric
field (which is induced due to the application of bias V) and the permanent magnetic
field, while charge carriers are traversing along, or opposite to, the direction of the
electric field (i.e., for the holes and electrons, respectively), they are deflected to the
same transverse side of the semiconducting slab. In this deflection, charge neutrality
will be imbalanced, which results in induction of a second electric field normal to the
first. The balancing act between the Lorentz force imposed on the moving charge
carriers by the magnetic field and the force exerted by this secondary electric field
(which is referred to as Hall field) renders an equilibrium state. Through measuring
the polarity and the magnitude of VH, one can gain insight into the majority carrier
type, mobility, and concentration. For example, for an n-type sample the balance of
forces yields

EH = −
Jn
qn

B 1 81

Power supply

Metal–semiconductor Ohmic contact
Metal–semiconductor Ohmic contact
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FIGURE 1.21 Schematic depiction of a simple Hall measurement setup. A uniformmagnetic
field with flux density B is applied perpendicular to the x–y plane. According to the polarity of
the connections to the power supply, a current in the positive x-direction is fed normal to the y–z
plane of the slab with contact area indicated as W × t. Based on the indicated directions of
deflection for electrons and holes, in the case of p- and n-doped semiconductor, a positive
or a negative Hall potential (i.e., VH) will be observed on the voltmeter, respectively.
Accordingly, the direction of the resulting Hall electric field EH defined along the y-axis
will depend on whether the semiconductor is n- or p-type doped.

53CHARGE-CARRIER TRANSPORT IN SEMICONDUCTORS

0002621443.3D 53 5/1/2016 5:43:31 PM



Likewise, in a p-type sample we have

EH =
Jp
qp

B 1 82

Clearly VH, which is equal to EH W , is positive in a p-type sample and negative in
an n-type sample. EH is often expressed as RH J B.

In the analysis of Hall measurement data, we have to pay attention to the inherent
assumptions of drift-current transport. According to this first-order approximation
expressed in (1.81) and (1.82), we have assumed that all carriers have the same mean
scattering time. In reality, however, a proper averaging of mean scattering time
must be adopted. Formal analysis by the Boltzmann transport equation, in the case
of electrons, results in

μ=
q

m∗
v2τ

v2
1 83

RH = −
1
qn

v2τ2 v2

v2τ 2 1 84

The symbol <> represents the averaging process over the Boltzmann distribution
of carriers. As a result, the product of RH and conductivity (i.e., σ in units ofΩ−1 cm−1)
is different from the low-field mobility (i.e., drift mobility) that we have talked about
in this section. This product is referred to as Hall mobility.

As a result of these relationships, the ratio of Hall mobility (i.e., μH) versus drift
mobility (i.e., μ) can be written as

μH
μ

=
RH σ

μ
=

v2τ2 v2

v2τ 2 1 85

This ratio, although not equal to 1, is generally close to 1. Nonuniformity in the
distribution of current, temperature nonuniformity across the sample, and lack of
an ideal Ohmic contact65 to the semiconductor sample are often the other sources
of ambiguity in Hall measurement data.

1.4.4 High Electric-Field Drift Transport

As identified earlier, under high electric fields the semilinear relationship between
the drift velocity and the electric field vanishes (i.e., (1.61) and (1.62)). Throughout

65As shown in Figure 1.21 and more clearly explored in Chapter 2, a metal–semiconductor contact between
the outside world (in this case power supply) and the semiconductor is required. The main characters of such
a contact are that it presents very little potential drop at the contact-site and behaviorally it follows Ohm’s
law (hence the name Ohmic contact).
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this section we have already named a few culprits, which we now intend to
summarize.

The increase in the amount of excess kinetic energy gained by the average electron
(or hole) from the electric field results in further drift of the charge carrier into the
conduction band (or valence band). Consequently, the effective mass of the charge
carrier and its mobility change. In addition, in some semiconductors, this can cause
the migration of electrons from lower valleys to higher valleys66 of conduction band.
At the same time, the increase in energy of the charge carriers plays an important role
in modifying the scattering rates and also in activating scattering processes that were
not present in the case of lower carrier energies. This excess of energy under high
electric-field conditions is often expressed in terms of a quantity referred to as electron
temperature (i.e., Te). This definition is in analogy with the statistical mechanics,
notion of kT (where T is the lattice temperature) as a representation of average thermal
energy of an electron. In this discussion, one should be careful to distinguish between
the notions of lattice temperature and that of electron temperature.

1.4.4.1 Electron Temperature versus Lattice Temperature In order to understand
the development of electron temperature beyond lattice temperature at high electric
fields, we shall start with a review of our understanding of thermal equilibrium. Under
thermal equilibrium, the equality of charge carriers’ emission and absorption of
energy results in a zero-sum gain of energy. This equality is maintained through equal-
ity of emission and absorption rates of phonons, which are quantum particles repre-
sentative of lattice vibrations. Under this condition, the energy distribution is
Maxwellian. However, applying an electric field across a semiconductor removes
the system from the state of thermal equilibrium (as now charge carriers begin to gain
additional energy from the electric field while still emitting some of it through the
phonon emission process). As a result, not only for high electric fields but also for
low-to-moderate values of electric field, electrons will become more energized than
they were under thermal equilibrium. This excess of energy beyond thermal equilib-
rium is what is explained through the notion of electron temperature. In connection to
this excess energy, it must be indicated that even under moderate electric-field con-
ditions, the increase in energy is less than the amount predicted by the laws of elec-
trostatics. This is because the emission rate of phonons is now also on the rise, which
will eventually reach steady state for a given electric field by matching the absorption
rate. This description partially explains the bowing in the drift velocity versus electric-
field characteristics (also known as vd–E characteristics) at medium values of electric
field (Fig. 1.22).

Figure 1.22, in addition to demonstrating the bowing of vd–E characteristics, shows
two other important phenomena: (i) saturation of drift velocity at high electric fields
and (ii) peaking of the vd–E and evolution of a negative differential mobility67 region

66Also referred to as satellite valley.
67Differential mobility is defined unlike the linear mobility and is calculated around a given value of electric
field as Δv/ΔE.
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in the intermediate range of electric field only for electrons (and not holes) in some
semiconductors.

While for small electric fields the low-field carrier mobility remains descriptive of
the achievable carrier drift velocity, Figure 1.23 behaviorally presents the dependence
of this parameter on temperature under the dominance of a number of scattering pro-
cesses (which will be dealt with especially in Section 1.7).

Absolute value of the
drift velocity (cm/s):
∣vdn∣ and vdp

Steady-state drift velocity of electrons in
semiconductors such as GaAs, InP, and GaN

Steady-state drift velocity of electrons in many other
semiconductors such as Si and Ge. This trend also represents
the vd–E characteristics for holes among all semiconductors

E (V/cm)

FIGURE 1.22 A behavioral depiction of vd–E characteristic for electrons and holes in
different semiconductors. Scales are linear.
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∝T–0.5: screened
ionized-impurity
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∝T–1.5: acoustic
phonon scattering

∝T–2: optical
phonon scattering

∝T1.5: ionized-
impurity scattering
with little
screening effect

FIGURE 1.23 Correlation between the typically observed temperature dependences of low-
field carrier mobility in semiconductors and the dominance of scattering processes. Scales are
linear.
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For moderate values of electric field, which do not result in transfer of electrons
from one valley to the next, we can equate the rates of emission and absorption of
energy at a given electric field in order to quantify the electron temperature. For
the relatively simpler cases of Ge and Si, which are semiconductors with no interval-
ley electron transfer, balancing the rate equations results in the following definition for
the ratio of electron temperature to lattice temperature:

Te
T

=
1
2

1 + 1 +
3π
8

μnE

cs

2

1 86

In terms of which,

vdn = −μnE
T

Te
1 87

In these equations, μn is the low-field electron mobility and cs represents the veloc-
ity of sound. As shown in (1.86) and (1.87), for moderate fields (i.e., when the linearly
calculated drift velocity is comparable to the sound velocity), the electron temperature
increases beyond the lattice temperature. As a result, drift velocity will become smal-
ler than the linearly predicted value of μnE.

Other more general frameworks have also been developed for determining the
electron temperature. With certain approximations, it can still be proven that the
distribution function of electrons under conditions far from thermal equilibrium fol-
lows the form ofMaxwell–Boltzmann statistics. The major difference is that the lattice
temperature (i.e., T) should be replaced by the electron temperature (i.e., Te), where
approximately

Te≈T 1 +
E2

E2
C

1 88

In (1.88) E is the electric field and EC is called the critical electric field (which for
the case of electrons in silicon is about 104 V/cm). At this critical electric field, Te is
approximately equal to 2T. 3/2kTe is a measure of average energy of electron. This can
result from the Boltzmann transport equation, assumption of E–k diagram, and scat-
tering in terms of the Fermi golden rule.

In the aforementioned derivation of the Einstein relationship in Section 1.4.2.3,
it has been assumed that the first-order Taylor series representation of electron con-
centration is sufficient. However, in certain situations, such as under high electric
fields, this picture is not necessarily acceptable. Obviously, the aforementioned der-
ivation was performed from a thermal-equilibrium perspective in which it was
assumed that kinetic energy is equal to thermal energy. Such an assumption, which
ignores drift energy, is not permissible under high electric fields. However, under high
electric fields, one can establish a relationship close to the Einstein relationship by
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simply replacing the lattice temperature with the electron temperature (i.e.,
D μ = kTe q ). This is valid only for nondegenerate (i.e., Maxwellian)
semiconductors.

The electric fields encountered in a transistor can be very well in excess of EC. As a
result, electron temperature can be much higher than lattice temperature. However,
we should avoid confusing the electron temperature with the actual device tempera-
ture. A transistor with thousands of degrees of electron temperature is still cool to the
touch. For electrons to leave the crystal and have their temperature felt, they have to
overcome a work function. This work function itself is typically several electron volts,
which interestingly enough corresponds to thousands of degrees Kelvin (i.e., just like
the Te). It should also be mentioned that the earlier formalism loses validity at
extremely high fields (i.e., E ~ 106 V/cm). At such high electric fields (and as a result
high energies), the density of states function becomes extremely nonlinear. However,
in the derivation of the above, a DOS function such as (1.14) has been employed. For
those high electric-field cases, numerical techniques such as theMonte Carlomethod
should be used to calculate the electron temperature.

As a result of the discussions on electron temperature, it should be indicated that in
the definition of quasi-Fermi levels, these energy levels are functions of Te and not the
lattice temperature.

1.4.4.2 Steady-State Velocity Overshoot and Saturation At higher electric fields,
increase in the carrier energy (and carrier temperature) triggers the interaction of car-
riers with other sources of scattering known as optical phonons.68 This is an interac-
tion that is, however, not incorporated into the balance equations employed in the
derivation of (1.86) and (1.87). The optical-phonon emission process, being a very
efficient process of removing excess energy (beyond that of optical phonons) from
carriers, results in a drift velocity quite independent of electric field (i.e., saturation
of vd–E). For all semiconductors, such a field-independent saturation of drift velocity
is observed for both electrons and holes at high electric fields (Fig. 1.22). The onset of
this saturating behavior is determined by the optical-phonon emission energy of the
given semiconductor.

Saturation velocity, being determined by optical-phonon emission scattering, is
essentially independent of doping concentration. It is also quite independent of the
semiconductor itself. The reason for the similarity of saturation velocity of different
semiconductors is that at high energies, corresponding to the high electric fields, the
DOS functions of all semiconductors are quite similar. In spite of this, the saturation
velocity decreases with increase in temperature, since under these conditions at lower
electric fields, electrons acquire a sufficient amount of energy for triggering the opti-
cal-phonon emission process.

As pointed out on Figure 1.22, for the case of electrons in only direct-bandgap
semiconductors, a more interesting characteristic emerges before velocity saturation
takes over. In these semiconductors, due to the migration of the energetic69 electron

68We will pay a more in-depth attention to these scatterers, among others, in Section 1.7.3.7.
69 Called also hot electrons, in connection to the notion of electron temperature.
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from lower valleys of lower effective mass70 to higher valleys of higher effective
mass, a region of negative differential mobility develops. This is because while
such a transfer is taking place, electron energy is still insufficient for interaction
with optical phonons. To maintain the value of kinetic energy as a consequence
of this migration, since electrons are feeling heavier, the drift velocity will become
less as the electric field is increasing. This region of negative differential mobility
provides fascinating opportunities for designing microwave sources and oscillators
in forms such as Gunn diodes. Due to the absence of multiple valleys in the valence
band, negative differential mobility is not observed on drift-transport characteris-
tics of holes.

The saturation velocity for the case of Si and Ge, which have a simple saturating
vd–E characteristic, is

vs =
8
3π

Ep

m0
107 cm s, 1 89

where Ep is the optical-phonon energy (which as indicated in Table 1.4 is 63 meV in
the case of Si).

Oftentimes, approximate closed-form analytical models are used to explain the var-
iation of drift velocity versus electric field in the regions of small, medium, and high
electric fields. One such an empirical relationship used for Si is

vd =
μE

1 + μE vs
C2

1 C2
1 90

The constant C2 is a temperature-dependent fitting parameter, which is in the range
of two for electrons and one in the case of holes. Evidently, (1.90) represents the drift
velocity as an absolute value.

For the case of the direct-bandgap semiconductor of GaAs, which is the most
investigated III–V semiconductor,71 due to the presence of negative differential mobil-
ity, the vd–E characteristic is more complicated (i.e., as suggested in Fig. 1.22). As
indicated already, in order to explain the hump in this characteristic, careful knowl-
edge of the E–k diagram and also optical-phonon energy is required. While in the
lower valley, which is located at the center of Brillouin zone (i.e., Γ-valley), electron
mobilities as high of 8000 cm2/V s can be achieved at room temperature, the satellite
valley (located along the <111> axes) offers an electron mobility in the range of
100 cm2/V s. This satellite valley is located 0.3 eV above the lower valley. The elec-
tron effective mass in the lower and the satellite valleys are equal to 0.068m0 and
0.55m0, respectively.

70 That is, the central valley of the Brillouin zone: Γ valley.
71 Unlike silicon, which is a monoatomic semiconductor, GaAs is a compoundsemiconductor composed of
atoms from groups III and V of the periodic table (hence the name III–V).
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1.4.4.3 Nonsteady-State Velocity Over- and Undershoot With only one excep-
tion mentioned in the opening of Section 1.4, all of our discussions are thus far con-
cerned with steady-state drift velocity. In order to arrive at steady state, charge
carriers need to go through a sufficient number of scattering events. For devices
of shorter length scale than themean free path, however, such a steady-state condition
will not be achieved. Under such circumstances, drift velocity is observed to reach
values larger than the steady-state values. This is referred to as velocity overshoot.
This condition is instigated by what was called earlier in this section ballistic trans-
port. Under this condition, in analogy to our discussion on low-field mobility, we can
say that velocity increases with time and as a result with distance according to
≈ qEt m∗ . However, it should be emphasized that these values, which are higher
than the steady-state values, are only attained momentarily, within a limited span
of space and time. Besides the phenomenon of velocity overshoot, an undershoot
in the nonsteady-state drift velocity is also possible.

Generally speaking, these nonsteady-state phenomena are not just encountered in
nanoscale devices. Instead they are encountered when carriers are suddenly exposed
to a large variation of electric field. For a Γ-valley electron suddenly exposed to a high
electric field, electron energy can very well exceed the intervalley separation, while
due to the short time of travel, an electron does not get a chance to scatter to a higher
valley. As a result, drift velocity exceeds the value it could obtain under steady state
and in the higher valley (i.e., of higher effective mass). This is the case of the velocity
overshoot. However, if an electron originally occupying the higher valley (of higher
effective mass) is suddenly introduced into a region in which electric field is suddenly
reduced, electron velocity remains much lower than the steady-state value that it could
obtain from that electric-field strength. This happens because the electron has not
received a chance to scatter to the lower valley. This is the case of the velocity
undershoot.

1.4.4.4 Summary of Observations on the Choice of Carrier-Transport
Formalism As observed through the so far presented discussions in Section 1.4,
charge-carrier transport is a sophisticated problem. In carrier-transport problem,
interactions of charge carriers with scattering potential of a variety of sources
(e.g., ionized impurities, acoustic phonons, optical phonons, polar optical phonons,
piezoelectric polarization, etc.),72 internally induced and externally applied electric
fields are investigated. While in large-size electronic devices, oftentimes phenomeno-
logical description of carrier transport in terms of the drift–diffusion formalism is
capable of providing sufficient insight into the problem, in smaller-size devices
(and also where the electric-field variation is strong), effects such as nonsteady-state
velocity overshoot (or undershoot) and ballistic transport are required to be
considered.73

72Only some of which are named prior to this in the text. Section 1.7 will deal with a larger number of these
processes at a deeper level.
73 Later on, where appropriate, we will add more items to this list, such as real-space transfer.
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The ongoing trend in the design of transistors of scaled dimensions has rendered
the drift–diffusion formalism more and more insufficient. As an intermediate step in
incorporation of some of these carrier-transport effects, steady-state models of drift
characteristics have been used to incorporate effects such as transferred electron and
velocity saturation (which as noticed earlier are due to take over at intermediate to
high electric fields). In these models of carrier transport, mobility and diffusion con-
stant are defined as functions of local electric field. Accordingly, even beyond low
electric fields, the drift velocity in terms of the instantaneous relationship to electric
field is identified using (1.61) and (1.62). On the basis of this high-field linear mobil-
ity, Einstein relationship is then employed to produce the high electric-field diffusion
constant.

However, as it was mentioned earlier, reduction of the size of the channel along
which carriers are to fly (compared tomean free path) renders even these intermediate
models insufficient. This is because under these circumstances, the steady-state
assumption vanishes. At the same token carrier transit time becomes comparable
to energy relaxation and momentum relaxation time constants. Under these condi-
tions, carrier distribution functions determined by the local value of electric field
are no longer valid, and carrier transport both in time and in space is nonlocal.
As a result, the device’s current characteristics cannot be explained by the continuity
equations (i.e., Equations (1.49) and (1.50)).

Now that we have presented some of the limitations of different formalisms of car-
rier transport in semiconductor devices, it is time to point out that in design and anal-
ysis of electronic devices, the first step is the selection of the appropriate transport
formalism. This process of selection is done in terms of comparison of device sizes
to those characteristic length scales identified in Section 1.4.2 and also the carrier
flight time with the relevant timescales. In the case of silicon as the semiconductor
medium of carrier transport, this is summarized in Figure 1.24. In this regard, for
a rapidly changing potential on scale of the lattice constant, only a full quantum
mechanical treatment, and not a semiclassical effective-mass approach, will be suffi-
cient. In this quantum mechanical treatment, the wave equation with incorporation of
all potentials (i.e., including scattering, externally applied and internally induced)
should be solved.

So far in our discussion, we have invoked a few properties of Si and GaAs.
Table 1.5 provides an essential summary of a few of their important carrier-transport
properties.

1.4.5 Thermionic and Field Emission

In macroscale devices, not all components of carrier transport are explained through
the drift–diffusion formalism. There are two other frequently encountered modes of
current conduction in semiconductor devices: thermionic and field emission. Therm-
ionic and field emission modes evolve in association with the presence of a potential
barrier.

In the case of the thermionic emission, existence of a potential barrier restricts the
movement of majority charge carriers normal to the barrier, especially if the carrier
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temperature is low (and as a result the kinetic energy of the charge carrier is less than
the barrier height). Nevertheless, energized (i.e., hot) charge carriers can rise over the
barrier andmove across it. It is due to this temperature dependence that the mechanism
of carrier transport is referred to as thermionic emission. In this mode of transport,
the critical parameter is the height of the potential barrier and not its shape. An exam-
ple is provided in Figure 1.25.

TABLE 1.5 A Summary of Important Transport Properties of Si and GaAs

Property

Semiconductor

Si GaAs

Longitudinal acoustic velocity (cm/s) 9.04 × 105 5.24 × 105

Transverse acoustic velocity (cm/s) 5.34 × 105 3.0 × 105

Electron acoustic deformation potential (eV) 9.5 7.01 (Γ-valley), 9.2 (L-valley),
and 9.0 (X-valley)

Electron optical deformation potential (eV/cm) — 3.0 × 108 (L-valley)
Hole acoustic deformation potential (eV) 5.0 3.5
Hole optical deformation potential (eV/cm) 6.0 × 108 6.48 × 108
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FIGURE 1.24 Approximate boundaries for the applicability of drift–diffusion carrier
transport and the necessity for dealing with the full quantum mechanical description of
transport in a silicon medium, as a function of time and length scale. Although, more or less
such trends are applicable to other semiconductor media, the indicated values are dependent
on the medium. Adapted from Lundstrom (2000, p. 347). Copyright 2000, Cambridge
University Press. Reprinted with the permission of the Cambridge University Press.
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Thermionic emission is observed in a variety of semiconductor devices including
Schottky barrier diodes.74 Ideally, for this mechanism to be the controlling mode of
transport, the carrier transport in the barrier is supposed to be without scattering.
In other words, carriers injected into the barrier should go through this material bal-
listically (i.e., the barrier width is to be smaller than the mean free path), instead of
following the drift–diffusion transport. In addition to this, injected carriers should be
moved out of the barrier on the opposite interface (which is often an interface with a
metal), without scattering.

In order to quantify the thermionic current, we should remind ourselves of the fact
that according to Fermi–Dirac statistics, while the number of carriers with energy
values deeper into the conduction and valence band decreases with the separation
from Ec and Ev, these carrier concentrations are not equal to 0. In addition, the carrier
concentration in the states deeper above Ec, or below Ev, increases as the carrier tem-
perature increases. As a result, the integrated number of carriers with energy values
above the barrier height increases with this temperature. These carriers, which are not
confined by the barrier, can now participate in current conduction through the therm-
ionic emission process. The electron current density over a barrier of height qϕB can
be quantified as

Jn =A
∗ T2 exp

−qϕB

kT
, 1 91

where A∗, which is often referred to as effective Richardson constant,75 is defined as

A∗ ≡ 
4πqm∗

nk
2

h3
1 92

e–

Semiconductor

qϕB

Metal

FIGURE 1.25 An example of thermionic emission across a potential barrier of height qϕB

formed between a metal and a semiconductor. We will talk about these contacts in details in
Section 2.2.

74Which will be explored in Chapter 2. These diodes are named after Walter Schottky.
75 Named after Owen Richardson.
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As suggested earlier, the thermionic emission process is not the only mode of trans-
port through a potential barrier. Transport through such a barrier can be assisted,
or even overwhelmed, by another mode of carrier transport, which is rooted in
the quantum mechanical tunneling. These modes, which are known as field emission
and field-assisted thermionic emission, are illustrated in Figure 1.26. In those cases,
A∗will be modified by processes such as reflection and tunneling of the electron wave.

Quantum tunneling is rooted in thewave nature of electrons. According to quantum
mechanics, even charge carriers with less energy than the barrier height exhibit a
finite probability of tunneling through the barrier. According to the shape of the bar-
rier, at each energy value, the effective thickness of the barrier that carriers need to
tunnel through is different. Hence, unlike thermionic emission this mode of transport
is quite dependent on the shape of the barrier. The smaller the effective width of the
barrier at a certain energy value, the larger is the tunneling probability for charge car-
riers with that much energy. This is an exponential dependence.

Although the potential barriers often encountered in semiconductor devices do not
have a rectangular form, for the sake of simplicity, it is worth considering the simple
case of a rectangular barrier of height V0 and of thickness W to describe the quantum
tunneling process. This situation is illustrated in Figure 1.27. According to quantum
mechanics, in this one-dimensional scenario, electrons on either side of the potential
barrier are expressed in terms of propagating waves. However, at positions within
the thickness of the barrier, the time-independent portion of the wave function
follows a decaying exponential represented by exp − kx , where wave number

k = 2m∗ V0−E ℏ2. In this case, the energy of the electron (i.e., E) is less than

e–

e–

Semiconductor

(a)

(b)

Semiconductor

e–

Metal

Metal

qϕB

qϕB

FIGURE 1.26 (a) An example of field emission across a potential barrier formed between a
metal and a semiconductor. (b) An example of field-assisted thermionic emission across a
potential barrier of height qϕB.
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the barrier height V0. Establishing the boundary conditions (i.e., in terms of continuity,
single valuedness, and finiteness of thewave function and its first derivative) results in
tunneling probability of

Tt = 1 +
V2
0 sinh k W

4E V0−E

−1

≈
16E V0−E

V2
0

exp −2
2m∗ V0−E

ℏ2 W 1 93

In the case of more complicated barrier shapes,WKB76 approximation is employed
as a simplification over solution of the Schrödinger equation. This approximation is
applicable where potential V(x) is not varying rapidly with position. In terms of this
approximation, according to the schematics of Figure 1.28, the tunneling probability
can be calculated by

Tt≈exp −2
x2

x1

k x dx = exp −2
x2

x1

2m∗

ℏ2 V x −E dx 1 94

Knowing the tunneling probability one can calculate the tunneling current density
Jt by integration versus energy over the product of three components: the tunneling
probability, the number of carriers at each value of energy at the originating side of
the barrier, and the number of empty states at that value of energy on the receiving side
of the barrier:

Jt =
qm∗

2π2ℏ3 FE NE Tt 1−FR NRdE 1 95

V(x)

V0

W

Electron energy: E

x

FIGURE 1.27 Quantum tunneling across a rectangular potential barrier of height V0.

76 Named after Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin.
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FE, FR, NE, and NR stand for the Fermi–Dirac distributions and densities of states
in the emitting and receiving sides of the barrier, respectively. This framework
describes the mode of transport, which is purely explicable in terms of quantum
tunneling (i.e., field emission).

Transport through a potential barrier can also take place through a mixture of
thermionic- and field emission processes. In this fashion, whereas carriers are ther-
mally raised behind the barrier, depending on the shape of the barrier, they see an
effective reduction in the barrier width and as a result an improvement in tunneling
probability. As suggested earlier, this mode of carrier transport is known as therm-
ionic field emission or field-assisted thermionic emission.

1.5 BREAKDOWN IN SEMICONDUCTORS

In discussing the high electric-field effects on electrons, the other mechanism that is
of interest is impact ionization. Intervalley scattering is not the only outcome of
electrons becoming hot (i.e., rise in Te). As electrons become hot, they also become
capable of breaking covalent bonds and producing EHP. This is shown in
Figure 1.29. This happens in the form of an avalanche. One hot charge carrier pro-
duces two more charge carriers, and if the high electric-field region is large enough,
each of these charge carriers will develop a chance for producing an extra EHP. As
a result, carrier concentration will multiply itself. Due to this, the other name for this
process of EHP generation is avalanche breakdown. The minimum amount of
energy needed for a hot carrier to instigate this process should be larger than the
bandgap of the semiconductor. Assuming the same effective mass for electrons
and holes, this energy can be easily proven to be 50% in excess of the bandgap
(i.e., 1 5 ×Eg).

V(x)

xx1 x2

Electron energy: E

FIGURE 1.28 Quantum tunneling of an electron of energy E across an arbitrary potential
barrier.
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The avalanchemultiplication process is characterized by an ionization rate, which
is defined by the number of EHP generated while the electron is traversing a unit of
distance. Assuming the electron velocity to be vn, this rate can be written as

αn =
1
n

dn

d tvn
=

1
nvn

dn

dt
1 96

In terms of this ionization rate and a similarly defined rate for holes, the time
variation of electron and hole concentrations can be written as

dn

dt
=
dp

dt
= αnnvn + αppvp =

αnJn
q

+
αpJp
q

1 97

According to the continuity equation, we can also have

dJn
dx

= αnJn + αpJp 1 98

and

dJp
dx

= −αnJn−αpJp 1 99

Based on these, the spatial derivative of Jn+ Jp remains 0, resulting in

dJn
dx

= −
dJp
dx

1 100

h+

x xx + dx

e–
e–

A

~ ~

~ ~
~ ~E

⃪

FIGURE 1.29 Generation of an electron–hole pair upon collision of a hot electron generated
within the high electric-field section of a semiconductor slab with a covalent bond.
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As expected, the ionization rates have a strong dependence on electric field. The
following physical expression represents this dependence:

α E =
qE

εI
exp −

EI

E 1 + E EP +ET
1 101

In this equation εI is the high-field effective ionization threshold energy. ET, EP,
and EI stand for the electric-field strength needed by carriers to overcome the decel-
erating effects of thermal, optical phonon, and ionized-impurity scattering, respec-
tively. In the case of silicon, εI for electrons and holes is equal to 3.6 and 5 eV,
respectively. For a limited range of electric field, the above equation can be replaced
by the following simpler equations:

α E =
qE

εI
exp −

EI

E
, if ET <E <EP 1 102

or

α E =
qE

εI
exp −

EI EP

E2
, if E >EP and E > EP ET 1 103

Figure 1.30 depicts the experimentally observed ionization rates for Ge, Si, SiC,
and GaN.
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FIGURE 1.30 Approximate variation of ionization rate of electrons versus inverse of the
electric field for Ge, Si, SiC, and GaN at room temperature. Adapted from Sze and Ng
(2006, p. 41). Copyright 2006, John Wiley and Sons. Reprinted with the permission of the
John Wiley and Sons.
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In electronic devices, in connection to the process of avalanching, we often speak
of avalanche breakdown voltage. This refers to the voltage difference applied to the
terminals of a device that causes the induction of electric fields beyond the onset of an
avalanche process. Production of large concentrations of charge carriers induces
heating and either permanent structural damage to the electronic device or temporary
malfunction.

As expected from (1.101), for larger bandgap materials the ionization rates are
smaller. As a result, wide bandgap semiconductors such as SiC, GaN, AlN, and
ZnO are deemed suitable for high electric-field/high-voltage applications. In addition
to bandgap, optical-phonon energy is also an important factor in determining the
breakdown voltage, which as suggested earlier is the minimum voltage needed to cre-
ate a rush of current. The higher the optical-phonon energy, the higher the chance of
charge carriers becoming hot, and as a result, the smaller would be the applied volt-
age causing breakdown. GaN, which is a wide bandgap material, possesses a large
value of optical-phonon energy. These two factors promote adversary agenda with
regard to the breakdown voltage.

With respect to ionization rates, it is also important to mention that at a constant
electric-field ionization energy is a declining function of temperature. This is due
to the fact that at high temperatures, phonon scattering deteriorates the chance of
carriers becoming hot.

The other mechanism instigating breakdown at high electric fields is Zener77

breakdown. In this mechanism, the high electric field directly breaks covalent bonds
and produces a large number of EHPs needed to create a rush in current.

The impact ionization process, unlike the Zener breakdown mechanism, is an
avalanching process, which is why it requires carriers to travel a distance multiple
times longer than the mean free path. As a result of this requirement, avalanche
breakdown can only happen in devices that have a relatively long high electric-field
region.

1.6 CRYSTALLINITY AND SEMICONDUCTOR MATERIALS

At the beginning of this chapter, it was pointed out that while from the point of view of
crystallinity semiconductors can be found in amorphous, polycrystalline, or mono-
crystalline forms, monocrystalline semiconductors are often preferred in electronic
applications. An interesting question to address in dealing with semiconductor
devices, which is at the root of semiconductor electronics, is: why should we prefer
monocrystalline semiconductors over polycrystalline or amorphous?

The reason for this choice is the short wavelength of electrons. As a result of this
short wavelength, charge-carrier transport is critically dependent on the atomic
arrangement in the solid. The higher the crystalline order, the better the transport prop-
erties. As invoked earlier, according to Bloch theorem, for a perfect monocrystalline

77 Named after Clarence Zener.
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solid electrons travel as propagating waves, and the atoms in the crystal essentially pose
no cause for scattering of the electron wave. However, in contrast to electrons, photons
have a longer wavelength and are not impacted by the mere short-range order of the
hostmaterial. As a result, noncrystalline materials such as glasses are suitable for optical
applications while not so for electronic applications.

An important line of research in the area of semiconductor electronics focuses on
crystalline growth of semiconductor materials. Interaction of these crystals with
X-rays in the form of diffraction is one of the capable tools for studying the degree
of crystallinity of a solid. X-rays are suitable for this purpose because their wave-
lengths are very close to the lattice constants of the semiconductor crystals.

The structure of an ideal crystal can be explained in terms of copying and pasting of
a building block or a so-called unit cell according to a certain translation vector,

r = r + u1 a1 + u2 a2 + u3 a3 , 1 104

where u1, u2, and u3 are the three arbitrary integers, r is the position of an arbitrary
point in the building block, and a1 , a2 , and a3 are referred to as the translation vectors.
This is schematically presented in Figure 1.31.

z
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y

a3
r

r' = r + u1a1 + u2a2 + u3a3

⃪

a1

⃪

a2

⃪

⃪ ⃪

⃪

FIGURE 1.31 Translation of a cubic building block of a lattice in space according to the
translational vector u1 a1 + u2 a2 + u3 a3 .
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1.6.1 Bravais Lattices

In the representation of (1.104), considering all possible integer values taken by u1, u2,
and u3, an infinite three-dimensional space has to be completely filled (i.e., with no
voids). This requirement imposes certain restrictions on the degree of symmetry of the
unit cells of a crystal. For example, while one, two, three, four, or sixfold rotational
symmetry is allowed, five and seven are inadmissible (see Fig. 1.32). The degrees
of symmetry for a given semiconducting crystal have considerable importance in
its carrier-transport properties.

These building blocks are often explained in terms of a lattice and a basis. While
lattice is the abstract arrangement of points in space representing a block, basis refers
to the atoms assigned to these points. An infinite number of building blocks can be
proposed for constructing a crystal. This is shown in Figure 1.33. The smallest of all
these building blocks (or unit cells) is referred to as a primitive cell. While the number
of atoms assigned to a primitive cell and its volume (which is identified by the trans-
lation vectors as a1 a2 × a3) are unique, the vectors representing the primitive cell
are by no means unique. An easy way to envision a primitive cell is through following
the Wigner–Seitz78 procedure.

In theWigner–Seitz procedure, the boundaries of the primitive cell are determined
by the intersection of imagined planes normal to the lines connecting a given lattice
point to all its neighboring points. In the case of a two-dimensional lattice, this is illus-
trated in Figure 1.34.

Generally speaking, different lattice types, which are explained in terms of lattice
and basis, are referred to as Bravais79 lattices. In the case of three-dimensional

FIGURE 1.32 Schematic demonstration of inability of fivefold symmetry in filling of an
infinite space.

78 The primitive cells produced according to this procedure, after Eugene Wigner and Frederick Seitz, are
referred to as Wigner–Seitz cells.
79 Named after Auguste Bravais.
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90° 90°

90° 90°

FIGURE 1.34 Drawing of the Wigner–Seitz primitive cell for a two-dimensional lattice. In
this case, instead of envisioning a volume defined by the intersection of normal planes passing
through the middle of the lines connecting neighboring atoms of the crystal, a primitive cell is
formed by the intersection of normal lines passing through these points on the plane of the 2-D
crystal. This plane is marked in gray, where atoms are presented by the dark circles.
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FIGURE 1.33 A schematic depiction of lattice and basis on a two-dimensional Bravais
lattice. Atoms are represented by the dark circles. While as examples the parallelograms
represented by a pair of vector a1n and a2n for n = 1–4 represent various primitive cells for
this 2-D crystal, the parallelogram represented by a15 and a25 owing to its twice as large
the area does not represent a primitive cell.
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lattices, the number of lattice types is restricted to 14. This is due to the limitations
posed by the point symmetry groups. These lattice types are indicated in Table 1.6.
Out of these 14 lattice types, only two (which belong to cubic and hexagonal systems)
are of interest in solid-state electronics and optoelectronics.

1.6.1.1 Hexagonal Crystals In the hexagonal system, the unit cell is in the form of
a right prism. Figure 1.35a illustrates this right hexagonal prism through indication of
14 atoms, 7 arranged on each of the two basal hexagons. The separation between the two
basal hexagons is referred to as c (which clearly denotes the height of the hexagonal
prism). In order to clearly imagine this structure, envision seven identical atoms on a
plane, six of which are centered at the six corners of a hexagon and one sitting right
in the middle. If we imagine the atoms as hard spheres, in the so-called hexagonal
close-packed (or hcp) structure, these spheres are supposed to tangentially touch each
other. Now looking from above normal to this plane, we see cavities among the spheres.
Obviously in the right prism, from this angle the seven atoms of the top basal hexagon
will also have their centers coincide with those of the bottom basal hexagon.

The unit cells of many important semiconductors are formed through inter-
penetration of two of these hexagonal prisms according to a certain translation
vector. As a result of this interpenetration, a second layer of atoms will also appear
between the two basal hexagons of the first prism. As suggested in Figure 1.35b,
the centers of these atoms coincide with the identified set of cavities. In terms of
the vectors identified in Figure 1.35a, the second hexagonal prism is displaced by
2 a1 3 + a2 3 + a3 2. As shown in this figure, a3 has a magnitude equal to c and is
identified normal to the basal hexagon. a1 and a2 defined in the basal plane have an

TABLE 1.6 The Fourteen 3-D Lattice Types

Crystalline
System

Number of
Admissible
Lattices

Relationships between the Sizes of the Axes of the Cell
(a1, a2, a3) and the Angles Defined Sequentially
between These Axes (α, β, and γ)

Triclinic 1 a1 a2 a3
α β γ

Monoclinic 2 a1 a2 a3
α = γ = 90 β

Orthorhombic 4 a1 a2 a3
α = β = γ = 90

Tetragonal 2 a1 = a2 a3
α = β = γ = 90

Cubic 3 a1 = a2 = a3
α = β = γ = 90

Trigonal 1 a1 = a2 = a3
α = β = γ < 120 , 90

Hexagonal 1 a1 = a2 a3
α = β = 90
γ = 120
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equal magnitude, which we denote as a, defined at 120 from one another. This crystal
structure is known as wurtzite.80 In order to guarantee maximum sphere packing, c/a

should be equal to 8 3. This condition identifies an ideal hcp crystal.

1.6.1.2 Cubic Crystals The cubic system can be in the forms of simple cubic,
body-centered cubic (or BCC), and face-centered cubic (or FCC). Shared between
these three lattice types is a cube with edge length a (which is known as the lattice
constant). While in a unit cell of simple cubic crystals only eight atoms are present
(each centered at one of the eight corners of the cube), in BCC an extra atom is added
to the middle of the cube. In FCC, six extra atoms are centered in the middle of the six
faces of the cube. The atomic arrangements of these cubic lattice types are illustrated
in Figure 1.36. A number of important characteristics of cubic lattices are summarized
in Table 1.7.
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120°
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(a) (b)

FIGURE 1.35 (a) A right hexagonal prism with the indication of placement of atoms as dark
circles. (b) Position of the center of the atoms on the first, second, and third layer of a wurtzite
crystal. While the gray circles represent the atoms of the first layer, letters S and T stand for the
position of the center of the atoms on the second and third layer from a top perspective,
respectively.

80 Named after Charles-Adolphe Wurtz.
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Among the cubic crystals, FCC Bravais lattice is the lattice type that explains the
largest number of semiconductors of interest in optoelectronics and electronics (e.g.,
Si, Ge, GaAs, AlAs, InP, etc.). However, as suggested already, not all semiconductors
of interest are explained by the FCC Bravais lattices. Many semiconductors, and
also metals, crystallize in form of hcp structures (e.g., BN, AlN, GaN, SiC, etc.).81

a

a

a

a

a

a

(a) (b)

(c)

FIGURE 1.36 Atomic arrangements in the unit cells of (a) a simple cubic, (b) a face-centered
cubic, and (c) a body-centered cubic crystal. Atoms are marked by full circles.

TABLE 1.7 Summary of the Characteristics of Cubic Lattice Types

Characteristic

Lattice Type

Simple Cubic BCC FCC

Volume of the conventional cell in
terms of the lattice constant a

a3 a3 a3

Volume of the primitive cell a3 0.5a3 0.25a3

Number of nearest neighbors 6 8 12
Nearest neighbor distance a 0.866a 0.707a
Maximum packing ratio 0.524 0.680 0.740

81 Some semiconductors such as GaN can be grown in both cubic and hexagonal forms.
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Silicon, which is the most popular semiconductor, has a lattice type that results
from interpenetration of two identical FCC lattices. Each of these FCC lattices is
referred to as a sublattice. The translation vector between the two FCC sublattices,
in terms of the lattice constant a, is (a/4, a/4, a/4). The crystal structure of silicon,
which is constructed in this fashion, is referred to as diamond (since this is also
the crystal structure of diamond). This is illustrated in Figure 1.37. Germanium also
crystallizes in this form, although with a different lattice constant.

Whereas other important semiconductors such as GaAs and InP are also formed
through interpenetration of two FCC sublattices, in their cases the two sublattices
are not identical. In these cases, one sublattice has metallic atoms from group III of
the periodic table (e.g., Ga and In) as its bases, while the other one has group V atoms
(hence the name III–V semiconductors). These crystals are referred to as zinc blende.82

In contrast to silicon and germanium, which are known as elemental semiconduc-
tors, those semiconductors in which more than one atom is present in their undoped
structures are referred to compound semiconductors. There are compound semicon-
ductors that are cubic and those that are hexagonal. There are those such as GaAs that
are III–V and those such as ZnO that are II–VI. There are those such as InP that are

a

a

a

a/2

a/2

a/2

FIGURE 1.37 Placement of atoms on a diamond crystal unit cell. The gray full circles are
sitting at the FCC positions. The other four atoms indicated by the darker circles are placed
in the middle of the four inner cubes of edge length a/2.

82 Named after the mineral zinc blende (sphalerite).
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binaries and those such as GaxIn1− xP (i.e., x part Ga, 1− x part In) that are
ternaries.83

Example
Calculate the volume density of the atoms in a diamond crystal of lattice constant a.

Since according to Figure 1.37 in a diamond crystal out of the 18 atoms associated
with the cubic unit cell of volume a3 only four completely reside within this volume
while eight atoms share only 1/8th of their volume with the cube and the other six

share half of their volume, the volume density is expressed as
4 + 8 8 + 6 2 = 8

a3
.

In this evaluation we have taken the atoms as hard spheres.

1.6.1.3 Miller Indexing System Due to differences in atomic arrangement along
different directions of a lattice, carrier transport will be dependent on the alignment
of the designed channel of the device with the crystalline axes. For that reason, it is
important to use an indexing system to distinguish between different directions in a
crystal. This system is known as the Miller index.84 This indexing system is used to
denote different planes and directions in a crystal.

To identify theMiller indices for a plane in a cubic crystal, the following procedure
is used:

• Choose a Cartesian coordinate.

• Find the intersection of the given plane with the three axes of the coordinate.

• Construct a vector composed of the inverses of the intersections with x-, y-, and
z-axis.

• Multiply this vector by the smallest common denominator.

• The resulting vector, which is often referred to as (hkl), refers to the aforemen-
tioned plane.

In a cubic crystal direction normal to the plane (hkl) is denoted by [hkl]. This is not
generally extendable to all crystalline types. This procedure is shown schematically in
Figure 1.38a.

In this procedure, the choice of the Cartesian coordinate was an arbitrary one. Due
to this and the existing degrees of symmetry among different crystals, there are a num-
ber of equivalent planes and directions in a crystal. The existence of these equivalen-
cies is a source for degeneracy in crystals, with which we have already made an
acquaintance in Section 1.2.1. As a result of this degeneracy, {hkl} refers to a group
of identical planes, and <hkl> denotes a group of identical directions.

Since many semiconductors crystallize in the hexagonal form, it is also of interest to
indicate how the planes and directions in the hexagonal unit cells are indexed. The
adopted indexing system in these cases is represented in termsof four digit indicesknown
as Miller–Bravais indices. In dealing with hexagonal crystals, instead of orthogonal

83We can equally well have more than three atoms in a compound.
84 Named after William Miller.
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coordinates, three nonorthogonal basis vectors (i.e., a1 , a2 , and a3) in the basal plane of
the hexagonal unit cell and one height vector (i.e., c) along the height of this hexagon
are chosen. Directions of these vectors are identified in Figure 1.38b. In terms of the
previously mentioned procedure identified for evaluation of Miller indices in cubic
crystals, Miller–Bravais indices of hexagonal crystals are identified by finding out
the intersection of a plane with these four vectors. Following that procedure, desig-
nations for a plane and the direction perpendicular to that plane are identified by (hkil)
and [hkil], respectively. In evaluating these, care should be taken that the amplitude of
unit vector c is different from that of the three other vectors. As an example, the plane
parallel to the base of the unit cell has Miller–Bravais indices of (0001), while a face
plane on the side that intersects a1 , a2 , a3 , and c, at 1, ∞ , −1, and ∞ (which are scaled
with the amplitudes of these vectors), is called 1010 . Orientations identified in
Figure 1.38b for a1 , a2 , and a3 indicate that h + k + i is always equal to 0.

1.6.2 Strain and Techniques of Epitaxy

Originally, epitaxial crystal growth techniques such as MOCVD85 and MBE86 were
developed for growing planar crystals on a substrate. More recently, there has been
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FIGURE 1.38 (a) Definition of Miller indices in a cubic system. Vector (h,k,l) is created by
multiplying the vector (1/a, 1/b, 1/c) by the smallest common denominator between the three
elements of the vector. (b) Coordinate system used in identifying Miller–Bravais indices in a
hexagonal system.

85Which, as identified earlier, stands for metal organic chemical vapor deposition.
86 Also indicated earlier to stand for molecular beam epitaxy.
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an increasing interest in selective overgrowth (i.e., growth over the windows opened
through a masking material). For local overgrowth applications, an advantage of
epitaxial crystal growth techniques relying on chemical reactions (e.g., vapor depo-
sition epitaxial process of MOCVD) over MBE is that they can take advantage of
lateral temperature control for realizing local area growth. Based on this principle,
for some materials laser-assisted local area growth has been proven possible.

Over the past three decades, techniques of epitaxy, either through realizing local
area or planar crystal growth, have contributed significantly to realization of new
opportunities in the FET technologies.

1.6.2.1 Ordered and RandomMixing of Semiconductors Whereas fundamentals
such as free-energy minimization dictate the natural choice of the growth mode and
lattice constant of crystals, the advances made with crystal growth techniques have
made it possible to grow artificial crystals with structures other than those that can
be found based on natural laws. Such a possibility is the outcome of the availability
of techniques that enable atomic placement with exact precision.

With this degree of precision, the so-called superlattice structures have been
grown. Realization of superlattices takes place in the form of epitaxial growth of alter-
nating layers of different crystalline materials. While in each of these layers the crys-
talline structure is defined according to the laws of nature, control over the pitch and
the period of these alternating layers helps in realizing an arbitrary degree of perio-
dicity along the direction normal to the interface. This is schematically presented in
Figure 1.39.

As the periodicity of the crystal impacts the carrier-transport properties, realiza-
tion of superlattices provides a new dimension in engineering the carrier transport.
These structures have been used in a variety of applications such as realization of
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FIGURE 1.39 A superlattice is formed by growing a stack of a large number of alternating
thin layers of at least two different semiconductors on a substrate.
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drain and source Ohmic contacts in a few FET technologies such as AlGaN/GaN
HFET technology87 or production of high-frequency signals.

One of the important contributions of crystal growth techniques is that they provide
the possibility of randomly mixing semiconductors to create semiconductor alloys.
Whereas ordered structuring of a number of semiconductors can be of interest in forms
such as superlattices (i.e., in realizing artificial crystals), random alloying of semicon-
ductors provides the opportunity for tuning parameters such as lattice constant, band-
gap, and effective carrier mass between the elements of the alloyed semiconductor. The
lattice constant of such a semiconductor alloy is often provided in terms of a linear
weighted average between those of the parent semiconductors. This approximation is
referred to as Vegard’s law. We will deal with this law in further detail shortly.

1.6.2.2 Coherent and Incoherent Growth of Heterojunctions In epitaxy, crystal
growth is performed over a crystalline template. An epitaxial junction formed
between two different semiconductors is referred to as a heterojunction. This is in con-
trast to homojunctions, which are formed between two pieces of one semiconductor
that are, for example, merely doped differently. The terms heterostructure, heteroin-
terface, and heteroepitaxy are also used in this context. Depending on the matching of
the lateral lattice constant of the template (which is often the substrate) and the free-
standing88 lateral lattice constant of the overgrowing crystal, one can either have a
lattice matched or a lattice mismatched mode of crystal growth. Figure 1.40 offers a
schematic representation of these two modes of epitaxial growth. Lattice-matched
(also known as coherent) growth, which is the result of the similarity of the two lattice
constants, produces the highest-quality heterojunction between the two crystals. On
the other hand, the presence of lattice mismatch results in formation of a large number
of dangling bonds at the heterointerface and also crystal faults in the overgrown layer.

While only a few of the known semiconductors are lattice matched to one another,
there is a strong demand for realization of heterojunctions between a variety of
lattice-mismatched semiconductors. In order to avoid the unwanted effects of
lattice-mismatched growth, techniques of strained epitaxy have been developed in
a large number of semiconductor families. Through engineering the lateral lattice
constant of the overgrowing crystals to match that of the template (i.e., often
substrate), these techniques realize the so-called pseudomorphic mode of epitaxy.

1.6.2.2.1 Strain Calculation Depending on the sign of the algebraic difference
between the lateral lattice constant of the substrate and that of the freestanding over-
grown material, a built-in strain in either tensile or compressive form is induced at the
pseudomorphically grown heterointerface. The presence of this strain, if tensile, lim-
its the maximum thickness of the overgrown material. This is because the increasing
of the thickness of the overlayer builds up strain energy, eventually surpassing the
bonding energy of this film. Consequently, if not instantaneously, overtime cracks
will appear in the film. In contrast, compressive strain poses no limit of this kind

87 To be dealt with in detail in Chapter 5.
88 That is, when grown as bulk and not in contact with another crystal.
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on film thickness. A film grown under compressive strain, however, eventually
relaxes to its own freestanding lattice constant as its thickness grows beyond a critical
value. Figure 1.41 provides schematics for these growth modes.

One of the recent developments in the area of semiconductor devices has taken
shape in the form of engineering this heteroepitaxial strain for realizing different
levels of charge concentration in the vicinity of the pseudomorphically grown hetero-
junctions.89 This property has been used especially in polar III-Nitride technology,
which enjoys large piezoelectric coefficients in all its binaries (i.e., AlN, GaN, and
InN) and their alloys.

Another recent development in this area is the realization of compliant substrates.
In these substrates, it is not just the overgrownmaterial whose lattice constant is being
modified. Researches on development of compliant substrates, which contribute to
decoupling the strain induced at the wafer substrate interface from the heterojunc-
tions, and also development of substrates for heterostructures such as AlGaN/GaN,
which traditionally lack a viable freestanding lattice-matched substrate, are some
of the major activities in this area. Such modes of epitaxy are also seen as major hopes
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FIGURE 1.40 (a) Two lattice-mismatched 2-D lattices. (b) Strained epitaxial growth. Under
this mode of tensile-strained epitaxy, the lateral lattice constant of the overlayer is expanded to
match that of the substrate (i.e., aS). (c) Lattice-mismatched epitaxial growth.

89We will provide an in-depth analysis of this situation in Chapter 5.
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for integration of devices and circuits of different semiconductor technologies on the
same chip.

In order to explain the outcomes of lattice-mismatched epitaxy, it is worth
acquainting ourselves with its language of the strain tensor.90 In a planar epitaxial
growth, the overgrown layer is biaxially strained in the plane of substrate (indicated
by ϵ ) while uniaxially strained in a direction normal to the substrate (indicated by ϵ⊥).
For a thick noncompliant substrate, the amount of strain in terms of lateral lattice con-
stant of the substrate (i.e., aS) and that of the freestanding overgrowing crystal (i.e.,
aL) is calculated as

ϵ =
aS
aL

−1 = ϵ 1 105

Since there is only in-plane stress, the amount of perpendicular strain ϵ⊥ will be
calculated in terms of in-plane strain and Poisson’s ratio91 (i.e., σ),

ϵ⊥ =
−ϵ

σ
1 106

According to this situation of zero stress along the growth direction, for a strained
growth over a (001) substrate of FCC type, it can be shown that

aL

as

as

as

aL

as

Pseudomorphic
growth

Pseudomorphic
growth

Thin overgrown layer

A few monolayers of the
thick substrate

Thin overgrown layer

A few monolayers of the
thick substrate

(a)

(b)

FIGURE 1.41 Two-dimensional schematic depictions of pseudomorphic growth under
(a) tensile and (b) compressive strained epitaxy.

90Within a more general context, the notion of strain tensor is presented in Appendix 1.C.
91 Named after Siméon Poisson.
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σ =
c11
2c12

ϵxx = ϵ

ϵyy = ϵ

ϵzz = −
2c12
c11

ϵ

ϵxy = 0

ϵyz = 0

ϵzx = 0

1 107

cij’s present in (1.107) and the rest of this discussion are the elastic constants.
Such relationships are obviously developed on the basis of the knowledge of the

plane over which growth is taking place. As another example in case of growth over a
(111) FCC substrate, we have

σ =
c11 + 2c12 + 4c44
2c11 + 4c12−4c44

ϵxx =
2
3
−
1
3

2c11 + 4c12−4c44
c11 + 2c12 + 4c44

ϵ

ϵyy = ϵxx
ϵzz = ϵxx

ϵxy = −
1
3
−
1
3

2c11 + 4c12−4c44
c11 + 2c12 + 4c44

ϵ

ϵyz = ϵxy
ϵzx = ϵyz

1 108

It canbeobserved from(1.107)and (1.108) thatwhile in (001) growth the strain tensor
is diagonal, in (111) growth (among a few other directions) the strain tensor has nondia-
gonal terms. The distortion caused by strained epitaxy to the cubic lattice, depending on
the growth orientation, can produce a reduced degree of crystal symmetry. The nondia-
gonal terms introduced into the strain tensor by the reduced crystal symmetry are often
used in production of built-in polarization fields in the heterostructure. Since we have
alreadymade a connectionbetween thedegreeof symmetry and transport-relatedproper-
ties such as the presence of degeneracies at the band edges, we can expect the strained
epitaxy tobe capable of extendingopportunities for engineering these properties.Wewill
deal with these aspects in further details later in Chapter 4.

As we have already mentioned, due to the possession of large piezoelectric
coefficients, strained growth has even more important impacts on electronic devices
realized in hcp pseudomorphic heterostructures of III-Nitride semiconductors. These
heterostructures are often realized in the form of AlxGa1−xN or InxGa1−xN alloyed
ternaries92 on a thick relaxed GaN layer, grown along c-axis of the hexagonal prism.
In this case, the strain tensor is given by

92As an example, alloyed ternary of AlxGa1− xN is created by random mixing of AlN and GaN binaries in
proportions identified by x(AlN) + (1 − x)GaN.
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ϵxx = ϵyy =
aS
aL

−1

ϵzz = −
2c13
c33

ϵxx
1 109

In Chapter 5, we will establish a connection between this component of strain and
problem of charge induction into the heterostructure’s quantum well formed at the
heterointerface. Recently, a growing degree of interest is also observed on a-axis
growth in this family. This endeavor has been developing with the goal of reducing
the amount of polarization-induced charge.

1.6.2.2.2 Band Diagram Engineering The band structure of a semiconductor,
which is naturally defined through its chemical composition and crystalline structure,
can be engineered through a number of different ways including:

• Alloying two or more semiconductors

• Implementing quantum confinement in heterostructures

• Implementing built-in strain in pseudomorphically grown heterojunctions

BAND ENGINEERING THROUGH ALLOYING In the discussion of alloyed epitaxy, we have
already indicated that a weighted averaging law can produce a first-order approxima-
tion for the properties of the semiconductor alloy. In regard to the application of this
law (i.e., Vegard’s law), it should be emphasized that this law of weighted averaging is
applicable only when the alloy is random and the components in the alloy have the
same crystalline structures. This law is not extendable to phase-separated alloys,
which are alloys in which components of the alloy are separated into regions. Obvi-
ously, this need not be a superlattice for which case we have already hinted that
Vegard’s law is not applicable.

Most of the alloys used in semiconductor electronics are random alloys. In these
alloys, in the absence of periodicity in the background crystal potential, the descrip-
tion of the electron wave in terms of a traveling wave (i.e., defined by Bloch theorem)
is not possible. Instead, the wave function and the probability density function are
position dependent. As will be discussed later in this chapter, this is a cause for scat-
tering and degradation of carrier mobility in alloyed crystals.

In the application of Vegard’s law, which is motivated by weighted averaging of
the virtual crystal approximation, it should be appreciated that in most alloys bowing
effects (i.e., in excess of linear averaging) arise from the increasing disorder due to
alloying. This bowing is usually modeled through adding a parabolic term to Vegard’s
linear weighted average. In the virtual crystal approximation, the effective carrier
mass is defined in terms of the effective carrier masses in the parent semiconductors
(i.e., A and B) of the alloy AxB1− x

93:

93 That is, x part A and 1− x part B.
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1
m∗

alloy

=
x

m∗
A

+
1−x
m∗

B
1 110

This is because in terms of the Vegard’s law,

Ealloy k =
ℏ2k2

2m∗
alloy

= x
ℏ2k2

2m∗
A

+ 1−x
ℏ2k2

2m∗
B

1 111

Based on (1.111), the law of weighted averaging used to determine the electron
affinity and bandgap of a direct-bandgap alloy is formulated as

qχalloy = xqχA + 1−x qχB 1 112

Eg-alloy = xEg-A + 1−x Eg-B 1 113

The lattice constant also approximately follows the same relationship.
As mentioned, Equation (1.113) can only be used when parent semiconductors are

both direct. Otherwise, (1.111) should be used to evaluate the bottom of the conduc-
tion band for all values of k and then to identify the bandgap as the smallest energy
gap between the conduction and valence band.

BAND ENGINEERING THROUGH QUANTUM CONFINEMENT AND STRAIN As indicated earlier in
this section, the implementation of carrier confinement is another way for altering the
density of states functions and the semiconductor band structure. Nowadays, with an
increased intensity, a combination of crystal growth (i.e.,MOCVD andMBE) and pro-
cessing techniques are being explored for realizing 2-D, 1-D, and 0-D confined car-
riers in semiconductor heterostructures. Implementation of heterostructures in
different material systems has created a variety of new possibilities for the design
of electronic and optoelectronic devices. Differences between the size of the bandgap
and the electron affinity of different semiconductors provide three different forms of
band lineup between the crystals from which a heterostructure can be created (i.e.,
nested bandgap: Type-I, staggered bandgap: Type-II, and offset bandgap: Type-
III). The three types of band lineup are depicted in Figure 1.42. The various possibi-
lities for band lineup are among the determining factors for the choice of materials in
designs involving carrier confinement.

Among the types of band lineup, Type-I is the one that is most studied for elec-
tronic applications. Especially in Chapter 5, an in-depth analysis of Type-I band lineup
with respect to FETs is provided.

Type-II band lineup, because of its small effective bandgap,94 is of considerable
interest in the design of long wavelength optoelectronic devices. An important obser-
vation of Type-II band lineup is the small spatial separation of electrons and holes.

94Which is essentially formed between the conduction-band edge of one semiconductor and the valence-
band edge of the other.
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In this case as demonstrated in Figure 1.42b, electrons and holes are accumulated on
the opposite sides of the heterojunction. This can be very important in the design of
infrared detectors when it comes to the consideration of instantaneous EHP
recombination.

One should also be aware that, while oftentimes the definition of electron affinity is
employed in envisioning the type of band lineup in a heterostructure, this definition is
often not so accurate when two different semiconductors form a heterostructure. This
is due to the presence of charge sharing across the heterointerface atoms. Although a
few theoretical techniques have been developed to decide the type of band lineup, due
to the complexity of these techniques, experiments are often used to shed light on the
type of band lineup.

According to our discussions in Section 1.1.3 in terms of subband energy levels,
the density of states functions in a quantum well is formulated as

N E =
i

m∗

πℏ2U E−Ei for conduction band 1 114

N E =
i

2

j= 1

m∗
j

πℏ2U Eij−E for valence band, 1 115

where U is the Heaviside step function and Ei is the subband energy level. The pres-
ence of double subscripts in Equation (1.115) points to the lift in degeneracy of heavy-
and light-hole subbands even in the absence of strain.

Often in simple descriptions of quantum wells, the conduction-band states are seen
as pure s-type states and a simple effective-mass theory like the one suggested in
(1.13) is employed. For a more accurate description, a full band structure, which is
referred to as an eight-band model, is employed. As a result of this more sophisticated
calculation, it is observed that while the conduction-band states in unstrained hetero-
structures are not affected by the incorporation of this fuller mode, in highly strained

Effective size of the bandgap

Eg1

Ec1

qχ1
qχ2

Ev1

Eg2

Ec2

Ev2

Eg1

Ec1

qχ1

qχ2

Ev1

Eg2

Ec2

Ev2

E0

Eg1

Ec1

qχ1
qχ2

Ev1

Eg2

Ec2

Ev2

E0

E0
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FIGURE 1.42 Types of band lineup: (a) Type-I, (b) Type-II, and (c) Type-III. Occupation of
the bands by electrons is indicated by the hash marks.

86 ELECTRONIC MATERIALS AND CHARGE TRANSPORT

0002621443.3D 86 5/1/2016 5:43:46 PM



heterostructures the more complicated calculation is definitely required. An example
of this would be the case of so-called self-assembled quantum dots. These are 3-D
quantum wells that are created as the result of large lattice mismatch between the sub-
strate and the freestanding lattice constant of the overgrown material. Excessive ten-
sile strain induces a 3-D mode of growth instead of a planar growth. The density of
these islands of 3-D growth is determined by the material properties and lattice mis-
match. These self-assembled quantum dots have been realized between AlAs and a
GaAs substrate.

The description provided in (1.115) of subbands for valence-band states is only
approximately valid. While heavy-hole and light-hole states are pure states at
k = 0, they strongly mix away from k = 0.

Built-in strain has been successfully used to lift degeneracies in the band edges,
change the character of band-edge wave functions, and engineer the density of states
at the band edges.

In direct-bandgap semiconductors, with regard to the conduction band, strain only
moves the position of the band edge and has a very limited impact on the carrier mass.
Because the bottom of conduction band is not degenerate, this shifting of the band
edge does not result in lifting any degeneracy or change in theDOS and effective mass.
However, while the valence-band edge of semiconductors are degenerate, strain
causes lifting of that degeneracy. The amount of lift in degeneracy caused by quantum
confinement is usually about 10–15 meV and is less than the amount of shift due to
strain. Compressive biaxial strain raises the band edge and lifts the degeneracy on the
order of 100 meV. In this case, the HH band is lifted above LH band. Under tensile
biaxial strain this order is reversed. This is depicted in Figure 1.43.

In indirect-bandgap semiconductors, due to the presence of degeneracy in the con-
duction-band edge, the role of strain in modifying the conduction-band characteristics

(a)

(b)

Heavy-hole band

Amount of lift
of degeneracy

Amount of lift
of degeneracy

Strain

Strain

Light-hole band
Split-off band
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Light-hole band
Split-off band
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FIGURE 1.43 Lifting the valence-band degeneracy of heavy- and light-hole bands through
the application of (a) compressive and (b) tensile biaxial strain, depicted on the E–k diagram.
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is much different. Whereas the bottom of conduction band of a direct semiconductor
is in the Γ-valley (which has no degeneracy), for the case of the indirect semiconduc-
tor Si, this is located close to the X-valley. According to the form of the unit cell of the
diamond crystal of Si and Ge, there are six equivalent faces (or, consistently, six
equivalent X-valleys in their Brillouin zone or E–k diagram).

As a result, in contrast to the direct-bandgap semiconductors, the conduction band
of indirect alloy of SixGe1− x is significantly altered by the strain imposed through
pseudomorphic growth on Si substrate. In the case of (001) growth, strain lifts in
the degeneracy between the six equivalent valleys of the conduction band. This biax-
ial compressive strain causes breaking of the sixfold degeneracy into a fourfold (in-
plane) and a twofold (out of plane) degeneracy, where the fourfold degeneracy is
lower in energy. The resulting reduction ofDOS at the bottom of the conduction band
helps with reducing the effective electron mass. An additional result of this lift in
degeneracy is a rapid reduction of the size of the bandgap of SiGe alloy with the
Ge mole fraction (i.e., 1 − x). In the context of improving the carrier-transport prop-
erties of the channel of the modern FET technologies, this concept will be heavily
dealt with in Chapter 4.

Despite the differences in the conduction-band structures, due to the similarity of
the valence bands of direct and indirect semiconductors, the aforementioned discus-
sion on the impact of strain on the valence band of direct semiconductors is readily
extendible to indirect semiconductors.

In the valence band, lift in degeneracy is also accompanied by large changes in the
band curvature. In the edge states of this band, strain can cause theDOS effective mass
to be scaled down by as large as a factor of three.

We have already talked about the consequences of the formation of the bottom of
the conduction band of Si near the X-valley. In this case, constant-energy surfaces for
electrons form six ellipsoids along the <100> directions. The ellipsoidal form is
expressed in terms of two values of effective mass. For an x–y surface, whereas
the two ellipsoids in the z-direction have an effective mass (referred to as longitudinal),
which is equal to ml = 0.98m0, the other four ellipsoids’ electron effective mass is the
transverse effective mass (given by mt = 0.19m0). Among these, in determining the
subband energies, the effective mass in the direction of the confining potential is
employed.

In calculating the DOS function, it is easy to incorporate ellipsoidal shape of the

constant-energy surfaces. In the case of silicon, m∗ must be replaced by m∗
l m

∗2
t

1 3
.

Multiplying this by 6 takes care of the sixfold degeneracy inside the Brillouin zone
of silicon.95 In the case of germanium, because the conduction band is defined at
the L-valley, an eightfold degeneracy is present. Hence, rather than six degenerate
ellipsoids, eight are present. However, since only one-half of each ellipsoid falls inside
the Brillouin zone, the overall degeneracywill be only fourfold. Instead of multiplying
the mass by 6 (as is the case with silicon), it should only be multiplied by 4.

95 In the calculation of conductivity in silicon, however, 1
m∗

n
= 1

3
1
m∗

l
+ 2

m∗
t
.
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1.7 QUANTUM TRANSPORT PHENOMENA AND SCATTERING
MECHANISMS IN SEMICONDUCTORS

Whereas scattering processes are of interest to physicists in studying the electron–
electron and electron–matter interactions at a fundamental level, electrical engineers
need to know how these processes contribute to the problem of charge-carrier trans-
port in a semiconductor. In evaluation of the conductivity of semiconductors, accurate
understanding of the motion of electrons in the solid (i.e., including the scattering
events) is required. It is only in the presence of scattering events (i.e., imperfections)
that the known notion of conductivity in terms of the Ohm’s law is extendible to semi-
conductors. Without these imperfections, as mentioned earlier, ballistic transport and
a number of other important modes of persistent current or oscillations will prevail.

In order to establish the connection between conductivity and scattering, the
velocity–field relationships of different semiconductors are studied. These relationships,
as encountered in Section 1.4, are often illustrated in terms of the drift process of charge
carriers under steady-state conditions. According to those discussions, in the descrip-
tion of the steady-state drift-transport characteristics, three regions are identified:

1. When the electric field is low and drift velocity changes as a linear function of
the electric field: vd = μE. Under this condition, the Boltzmann transport
equation yields an analytical form.

2. When the electric field takes on moderate values (usually larger than 1 kV/cm).
Under this regime, vd−E does not follow a linear trend. Numerical methods are
often used in evaluation of carrier transport under this regime. Interpolation of
an analytical relationship between the drift velocity and electric field is often
used to produce an analytical basis for evaluation of carrier transport.

3. When the electric field exceeds the breakdown field of the semiconductor (usu-
ally larger than 105 kV/cm). Under this regime, either due to impact ionization
or electron tunneling from band to band (i.e., Zener breakdown), the semicon-
ductor breaks down.

As mentioned in Section 1.4, in order to reach steady state, an electron needs to
undergo several tens of collisions. Considering the collision times on the order of
picoseconds and assuming electrons to travel at velocities as high as 107 cm/s, the
traveling distance to reach steady state will amount to micron-size distances. As a
result, in small submicron devices the steady-state transport formalism becomes less
and less applicable.

It has been already indicated in this chapter that electrons can be scattered through
a variety of elastic and inelastic scattering processes. Two major categories of these
processes are ionized-impurity scattering and lattice-vibration (or phonon) scattering.
It should also be mentioned that lattice vibrations themselves (i.e., phonons) are also
scattered by elastic scatterers such as ionized and neutral impurities, the presence of
different atomic isotopes, and surfaces. This is the cause for the slow propagation of
heat in a semiconductor, which is identified in terms of heat resistivity. While ideally
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in a solid heat should propagate with the velocity of sound, these scattering mechan-
isms cause the heat transfer to become much slower.

1.7.1 Quantum Phenomena in Carrier Transport: A Snapshot

We already know that in the presence of scattering events, such as lattice vibrations
(which result in inelastic scattering), a few of the important predictions of quantum
mechanics are not realizable. Among these is the Bloch oscillation. This mode of
oscillation originates from reflection of electron waves at the boundaries of the
Brillouin zone. According to Bloch theorem, electrons in a perfectly periodic crys-
tal follow the bands to the edges of the Brillouin zone and then return. This situation
for an arbitrary E–k diagram is depicted in Figure 1.44. Considering the small size
of the Brillouin zone, these oscillators are expected to operate at very high
frequencies.

However, in the presence of phonon scattering, due to the inelastic nature of the
scattering process, electrons do not get a chance to reach the boundaries of the Bril-
louin zone. As a result all attempts to realize a Bloch oscillator have remained
unsuccessful.

Another mode of oscillation envisioned for perfect semiconductors is referred to
as Esaki–Tsu oscillation. Although these oscillations are also never realized in
practice, the theoretical drive behind them prompted major advances in epitaxial
growth of superlattices. As shown later, quantum mechanics predicts that the appli-
cation of a constant DC electric field to a periodic structure (i.e., with periodic E–k
diagram) results in very high-frequency oscillations. The frequency of these oscil-
lations is determined proportional to the lattice constant of the periodic structure.
These oscillators in theory are capable of generating very high-frequency tunable
signals.

1 2

3

E

k

e–

E

⃪

FIGURE1.44 Trajectory of movement of an electron in an arbitrary band. In a perfect crystal,
electron after climbing up the band tail, reflects upon reaching the zone edge. This reflection
looks like scattering by a reciprocal lattice vector. The numbers are supposed to provide a
snapshot of the position of electron in sequential instances of time.
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In order to gain a first-order mathematical insight into the Esaki–Tsu oscillators,
we will consider the band structure of a one-dimensional crystal. This E–k diagram
similarly applies to a simple cubic three-dimensional crystal,

E k =E0 1−coska 1 116

As suggested in (1.12), for electrons in the conduction band, we can calculate their
group velocity as

v=
1
ℏ
∇kE k =

1
ℏ
dE

dk
=
E0a

ℏ
sin ka 1 117

In addition, in terms of the definition of momentum in quantum mechanics, we
know that ℏ dk dt = −qE. This equality results in

k = −qE
t

ℏ
+ k0 1 118

Assuming that the electron starts at zero momentum at t = 0, we will have

v= −
E0a

ℏ
sin qEa

t

ℏ
1 119

According to (1.119), the current density created by the constant electric field E is a
sinusoidal signal of angular frequency: (qEa)/ℏ. Clearly this angular frequency can be
tuned by changing the period of the structure of the crystal and its lattice constant: a.
As a result, realization of a superlatticewith a very large period is expected to result in
materialization of a very high-frequency oscillation.

1.7.2 Drude’s Model: A Close-UP

Due to the presence of a large number of interfering factors (including dependence of
scattering on the momentum of electrons and phonons, presence of many electrons
and as a result importance of consideration of many-body interactions, requirement
for statistical evaluation of electron propagation, and the role played by the band
structure in transport), the theory of carrier transport is quite complicated. However,
as long as the electric field is weak to moderate, instead of a detailed description of all
these intricacies, simpler models are usually adopted.

1.7.2.1 Boltzmann Transport Theory The Boltzmann transport equation (i.e.,
BTE) is the foundation of these simpler formalisms, through which the mean scatter-
ing time constant needed in calculation of low-field mobility is evaluated (see (1.64)
and (1.65)). According to this equation, upon application of an external perturbation to
a system under thermal equilibrium, the distribution functions of charge carriers
can still be represented in terms of the Fermi–Dirac distribution function (i.e.,
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thermal-equilibrium distribution). As we took note in Section 1.3.1, such a distribu-
tion function shows the spread of electrons in energy space (and as result momentum
space). According to BTE, this distribution function is then used to evaluate all of the
transport properties of charge carriers.

Assuming f
k
r as the local occupation function of electron in momentum state k

and in position r, the first step in Boltzmann transport theory is to study the time
evolution of this function. This time evolution is prompted by the thermal motion
of the electrons, the drift of electrons due to an external force, or due to scattering
between different momentum states. For these three different causes, we can explain
the time evolution of f

k
r in terms of the following equations:

1. Thermal motion of the electrons

∂fk
∂t diff

= −
∂fk
∂ r

vk, 1 120

where vk is the velocity of a carrier in the state k.

2. Drift of electrons due to an external electromagnetic force

∂fk
∂t external force

= −
q

ℏ
E + v × B

∂fk

∂ k
1 121

3. Scattering between different momentum states

∂fk
∂t scattering

= fk 1− fk W k ,k − fk 1− fk W k,k
d3k

2π 3 , 1 122

where W(k, k ) represents the rate of scattering from momentum state k to k .
According to the process of microscopic reversibility, the scattering rates
between the before and after momentum states, as long as scattering is elastic,
are equal:

W k,k =W k ,k 1 123

The inclusion of the scattering rate in BTE is rooted in the wave nature of electrons.
The roleof timeconstant τ inBoltzmann transport theory is tomodel the timeconstant

for relaxation of the aforementioned perturbations. This is based on the so-called relax-
ation time approximation. As suggested earlier, this time constant can be calculated
according to the scattering rate of different scattering processes. Under steady-state con-
ditions, the timeevolutionscreatedby theaforementionedsourcescanceloneanotherout.

In formulation of the scattering rate, attention should be given to the nature of the
collision processes, which cause the scattering. For example, alloy scattering (which
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is present in semiconductor alloys, due to their deficient periodicity) and impurity
scattering are results of collisions in which electron’s energy remains unchanged
(i.e., elastic collisions). However, many scattering processes are inelastic. For exam-
ple, phonon scattering due to the change caused in the electron energy is an inelastic
scattering process. Instigated by the domination of different scattering processes in
carrier transport and a number of other complications listed in Section 1.4.3, Hall
mobility can be quite different from drift mobility (see (1.85)).

In the case of elastic scattering processes in parabolic bands, the calculation of
relaxation time is quite trivial. However, many of the scattering processes are not
so lenient.

As long as the energy gained from the electric field is smaller than the thermal
energy, carrier transport stays under the linear regime expressed in terms of the
low-field mobility. However, with further increase of energy, the simple approxima-
tions used in solving the Boltzmann transport equation will become insufficient. As
mentioned earlier in this section, under this regime complex numerical techniques
such as the balance equation andMonte Carlomethod are often used. The continuity
equations, (1.49) and (1.50), are two of these so-called balance equations. Monte
Carlo method treats electrons as particles whose scattering events between Bloch
states are described probabilistically through the so-called Fermi golden rule. In this
numerical technique, carrier transport is seen as periods of free flight and instanta-
neous scattering events, which are accurately described in terms of the probability of
the involved scattering processes.

Monte Carlo has been proven to be a versatile technique in addressing a variety of
transport-related problems, such as evaluation of steady-state drift-transport charac-
teristic, electron temperature, valley occupation, distribution in k-space, noise, ballis-
tic transport, transit time, carrier injection/thermalization process,96 and impact
ionization.

1.7.2.2 Drude’s Model Drude’s model of conduction, which is devised on the
basis of the Boltzmann transport equation, is the model that we have so far adopted
in this volume (i.e., in the definition of low-field diffusion constant and mobility).
Now that we are further acquainted with the foundations of this model, before getting
too involved in a rigorous discussion of scattering rates of different scattering pro-
cesses, it seems quite instructive to pay a closer visit to this model. As implicitly sug-
gested in Section 1.4, Drude’s model is built on the following assumptions:

1. All electrons move with the same velocity v, which in terms of applied force F0

is identified as ℏk =mv =F0t.

2. Instead of taking the whole band structure into account, the effective-mass
notion (i.e., m∗) has been introduced to take the position of the mass of an
electron.

96Thermalization of electrons refers to the process of electrons losing energy and coming back to the bottom
of conduction band through emitting phonons.
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3. Scattering processes are envisioned as a friction force in the above equation of
motion (i.e., Ff), which is defined in terms of the relaxation time constant of the
friction force: Ff mv τ. In terms of the Boltzmann transport equation, the
presence of this friction force is presented through the modified electron distri-
bution function: f

k
r = f

k + qτE
ℏ

0 r .

As a result of these assumptions, the total equation of motion is given by97

m∗ dv
dt

=F0−Ff =F0−
m∗v
τ

, 1 124

where in the absence of an applied force (i.e., F0),

m∗dv
dt

= −
m∗v
τ

1 125

and

v exp −
t

τ
1 126

As a result, τ will also be the time constant in decaying v. The current density is
then evaluated by multiplying this velocity by the charge of an electron and the elec-
tron concentration.

In this framework, in the presence of a number of independent scattering pro-
cesses, the total scattering rate can be calculated in terms of mean scattering times
of individual scattering processes

1
τtot

=
i

1
τi

1 127

Only when the various scattering rates follow the same energy dependence (i.e.,
the same effective mass), the above equation results in an overall low-field mobility
that follows Matthiessen’s rule98:

1
μtot

=
i

1
μi

1 128

However, the above condition is usually not satisfied. In spite of this, Matthies-
sen’s rule has been widely used and found to be reasonably accurate.

97As suggested in (1.121), magnetic force can be easily incorporated into this equation (i.e.,

m∗ dv
dt = −q E + V × B − m∗v

τ ).
98 Named after Augustus Matthiessen.
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As examples for the application of Drude’s theory, in the presence of only an elec-
tric field, it is instructive to apply (1.124) to the following two special cases:

1. When the electric field is finite but time independent.
Due to lack of time dependence in the external source of energy, this

case refers to a steady-state situation where
dv

dt
= 0 and m∗ v = −q E τ. This

relationship results in a DC current of

J = −qnv =
q2τn

m∗ E 1 129

with no chance of persistent current and oscillation (since inDrude’s model the
full E–k diagram has been overlooked by the notion of the effective mass). This
special case refers to the case that we have investigated earlier in our discussions
in Section 1.4. In this case, the conductivity σ is observed to be a scalar value
given by σ = qnμ, where μ= qτ m∗.

2. When the electric field is a low-frequency field.
The definition of the “low frequency” is given in relation to the energy relax-

ation time. In this case, E ≡ Eac exp jωt +Eac exp − jωt . In solving for v, the
velocity vector is written as v = v0 exp jωt + v0 exp − jωt , which results in

m∗jωv0ejωt = −qEac exp jωt −m∗v0
exp jωt

τ
1 130

Accordingly,

−v0 =
qEac

jm∗ω+ m∗ τ
=

μEac

1 + jτω
1 131

This result indicates that the drift velocity is equal to theDC velocity divided
by 1 + jτω. As a result, at frequencies comparable to 1/τ (usually greater than
10 GHz), the semiconductor instead of a purely resistive behavior expresses
a resistive–inductive behavior. The imaginary part can be seen as a contribution
of free electrons to the dielectric constant of the semiconductor. The other inter-
esting point to mention is that the real part is inversely proportional to the relax-
ation time at very high frequencies, meaning that for this frequency range, the
conductivity is 0 even in the absence of scattering.

1.7.3 Major Scattering Processes

According to Boltzmann transport theory, scattering rates between different states of
momentum space are to be evaluated for a range of important scattering processes.
Before embarking any deeper into this discussion, it is worth pointing out that
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momentum space (which is also referred to as k-space) is really a Fourier space.99 In
this analogy, it should be emphasized that in treating a scattering problem, a scatter-
ing matrix should be established between each initial state and a range of final states
of an electron. These initial and final states are plane wave states that can be calculated
by taking the Fourier transform of the potential (i.e., solving the Schrödinger equa-
tion for carrier wave function). Analogous to the role of Fourier series, the transfor-
mation from almost periodic real space to k-space sometimes greatly simplifies the
equations. As a simple example, the Poisson equation according to this transformation
will be simplified as

∇2ϕ = −
ρ

ϵ
ϕ=

ρ

ϵk2
1 132

At this point in our discussion, without getting into details, we present a few impor-
tant facts such as scattering rates to explain different scattering processes that are
encountered by electrons in semiconductors. A few of these processes, such as
ionized-impurity scattering and phonon scattering, have been introduced in
Section 1.4. In addressing ionized-impurity scattering and the Coulombic potential
imposed by these impurities on charge carriers, one needs to pay attention to the issue
of charge screening. As an example, we can consider the case of a positive charge
placed in an electron gas. Movement of electrons around this charge can essentially
screen off its potential. As will be seen in this section, in the case of ionized-impurity
scattering and also carrier–carrier scattering, screening can be dealt with by repla-
cing the Coulombic potential of a point charge by a screened Coulombic potential.

1.7.3.1 Ionized-Impurity Scattering In this case, the scattering rate given by the
Fermi golden rule in terms of Dirac’s delta function is represented by

W k,k =
2π
ℏ

Zq2

Vϵ
δ Ek−Ek

4k2sin2 θ 2 + λ2
2 , 1 133

where Zq, V, and θ represent the charge of the impurity, volume, and polar scattering
angle, respectively. ϵ is the semiconductor’s permittivity. In this equation, λ is
defined as

λ =
n0q2

ϵkT
, 1 134

where n0 is the mean background carrier concentration.
In the presence of a large free carrier concentration, a screened Coulombic

potential has been used in this framework:

ϕ r =
q

4πϵr
exp −λr 1 135

99Named after Joseph Fourier.

96 ELECTRONIC MATERIALS AND CHARGE TRANSPORT

0002621443.3D 96 5/1/2016 5:43:49 PM



For the situations without screening (i.e., low free carrier concentration), the rate
equation is evaluated when λ tends toward 0, for which case

W k,k
1

16k4sin4 θ 2
1 136

However, under strong screening λ ∞ and

W k,k
1

λ4
1 137

On this basis, one can see that while forward scattering is dominant in the case of
weak screening, for strong screening angular dependence is not present. As a result,
because forward scattering does not imply carrier mobility reduction, the ionized-
impurity scattering in presence of weak screening is less important.

In the formalism presented in (1.133), ionized impurities are treated independent of
one another (i.e., the average distance >10 nm). This assumption is not extendable to
heavily doped semiconductors (i.e., >1018 cm−3) for which case the ionized-impurity
scattering is more complex. For a degenerate semiconductor, the screening param-
eter λ should be changed to

λ =
3n0q2

2ϵEF
, 1 138

where EF refers to the Fermi energy level measured from the band edge.
The Equation (1.138) results in a faster drop in mobility with the concentration of

ionized impurities. This is due to the effect of multi-impurity scattering.
In ionized-impurity scattering,

μ Z2Ni
−1

1 139

where Ni is the concentration of ionized impurities and Z, as indicated earlier, is the
charge of the donor. The presence of Z in this relationship explains one of the reasons
why impurities that can offer more than one electron from each atom are not used as
proper dopants. In order to explain this further, we can imagine dopant atoms that
offer two electrons instead of one. In this case, to achieve the same electron concen-
tration, Z2 will become four times larger, whereasNi will be only divided by a factor of 2.
As a result, according to this change of dopants, mobility will be reduced by 50%.

As indicated in Section 1.4.2.1, carrier mobility as a function of temperature follows
an improving characteristic (which is of the form μ T3/2), when ionized-impurity scat-
tering is dominant. This is a distinguishing feature of this process of scattering.

1.7.3.2 Alloy Scattering We have already suggested that the root of this scattering
mechanism is the presence of disorder in the crystal’s potential. According to the hard
sphere model, the scattering potential is represented by
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ΔV r =
V0 for r ≤ r0
0 for r > r0

1 140

in which r0 and V0 refer to interatomic distance and the maximum potential difference
between any two points in the solid, respectively. Using the Fermi golden rule, the
scattering rate of an alloy scattering process is represented by

W k =
2π
ℏ k

Mkk
2δ Ek−Ek 1 141

where matrix elements are given by

Mkk = exp j k− k r ΔV r d3r 1 142

Using the fact that scattering potential extends only to a unit cell, the exponential
term in the above equation tends toward one. As a result, in alloy scattering there is no
angular dependence because there is no k and k dependence on the matrix elements.
Hence, for an isotropic density of states function, there will be no angular dependence
of scattering rate. After performing a proper ensemble averaging, relaxation time of
alloy scattering results in

1
τ

=
3π3

8ℏ
VunitV

2
0 x 1−x

m∗3 2 kT 1 2

2π2ℏ3

1
0 75

1 143

where Vunit is the volume of the unit cell.
This equation shows that the carrier mobility in terms of alloy scattering degrades

with temperature as

μ T −1 2 1 144

In Equation (1.143), V0 is on the order of 0.5 eV. The assumptions behind these
equations are that there are no clusters formed in the alloy and that the smallest region
over which a disorder is present is a unit cell.

1.7.3.3 Neutral Impurity Scattering The presence of neutral impurities and
defects is another reason for carrier scattering in semiconductors. This presence
can be caused by substitutional impurities and dopants that are not activated. Scatter-
ing by neutral impurities can be seen in the same light as alloy scattering (i.e., in the
form of a disturbance to the periodicity of the crystal potential seen by Bloch states).
The resulting scattering rate, not unlike the case of alloy scattering, is given by

W k =
2π
ℏ

4π
3
r30V0

2

N Ek 1 145
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in which V0 denotes the scattering potential and r0 stands for the radius of the hard
sphere representing the defect. Accordingly, the scattering time constant is
given by

1
τ

=Nimp
2π
ℏ

4π
3
r30V0

2m∗3 2 kT 1 2

2π2ℏ3

1
0 75

1 146

where Nimp stands for the concentration of neutral impurities.
Only in the presence of a very large concentration of these types of impurities

(>1018 cm−3) is the neutral impurity scattering mechanism worthy of consideration.

1.7.3.4 Interface Roughness Scattering The channel of the majority of FETs is
formed in the vicinity of an interface (i.e., of either two semiconductors, the interface
of a semiconductor and a metal or the interface of a semiconductor and an insulator).
As a result, a scattering process often encountered in the channel of these transistors
is the interface-roughness scattering. The degree of roughness at these interfaces is
dependent on fabrication technology. Roughness at these interfaces imposes an ele-
ment of disturbance on the potential felt by Bloch states. This is in addition to the role
played by the surface states (as either neutral or charged states), which were discussed
in Section 1.1.6. The scattering rate caused by these interface potential bumps in an
inversion MOSFET channel to be explored in Chapter 3 is formulated as

W k =
1
A

2π
ℏ

1
4π2

2π

0
dθ

∞

0
qdq M k,k 2δ Ek−Ek 1 147

where A is the area and q = 2k sin θ 2 .
In this equation, it is assumed that half of the electric field drops across the

insulator.

1.7.3.5 Carrier–Carrier Scattering Whereas the scattering sources so far dis-
cussed in this section are fixed in time and in space, not all scattering sources operate
in this way. Carrier–carrier scattering is one of the scattering processes that belongs
to this latter group. Scattering processes that are fixed in time and in space result in
elastic scattering (i.e., zero change in carrier energy), which is due to the large mass of
scatterers in those processes. This is not the case in carrier–carrier scattering.
Carrier–carrier scattering can be in the form of electron–hole scattering or elec-
tron–electron scattering (which is analogous to hole–hole scattering in the valence
band). Due to the Fermionic nature of electrons, scattering of two identical carriers
is a more complex process. Carrier–carrier scattering gains significant importance
only when carrier concentration exceeds 1018 cm−3.

As an approximation, assuming that the effective mass of a hole is much larger than
that of an electron, we can envision the role of electron–hole scattering on electrons in
a p-type semiconductor (minority-carrier scattering) by multiplying the scattering
rate due to ionized acceptor impurities by a factor of 2.
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1.7.3.6 Auger Processes and Impact-Ionization Scattering An important charac-
teristic of these two scattering processes is that they result in a change in carrier con-
centration in the conduction and valence band. While in Auger100 process, scattering
results in recombination of an electron and a hole (and as a result reduction of carrier
concentration in both conduction and valence band), impact ionization results in an
increase in carrier concentration in both bands (i.e., through EHP generation). We
have already visited the process of impact ionization while addressing the breakdown
processes in Section 1.5.

Auger is the inverse process of impact ionization. This is a nonradiative recombi-
nation process and is detested in optoelectronic photon generators. According to this
process, even in direct-bandgap semiconductors, an electron and a hole can recom-
bine without generation of a photon. This is possible since in this interaction the
energy is being transferred to another carrier or to a phonon. These processes can
be assisted byCoulombic interactions (i.e., electron–electron scattering), by phonons,
or by trap states. Only in high-purity direct-bandgap semiconductors is the photon
generation dominant.

In impact-ionization process, as noted in Section 1.5, carriers gain energies in
excess of the size of the bandgap (from sources such as the electric field). This
can cause a high-energy electron in the conduction band to scatter an electron from
the valence band (i.e., to break a covalent bond and produce an EHP). Each of these
three carriers can then go through the same process and as a result instigate an ava-
lanche in the number of carriers in both bands.

As a result of the requirement for the conservation of momentum and energy, rates
of Auger and impact-ionization process are obviously dependent both on the size of
the bandgap and temperature. Reduction of the size of the bandgap among different
semiconductors results in an exponential increase in the rate of both processes. The
rate of Auger process increases with the number of carriers and likewise with tem-
perature. The impact ionization rate, however, reduces with increasing temperature.
This is because of the increase in the rates of other inelastic scattering processes and
the subsequent increased difficulty for carriers to gain energy from the electric field.
In semiconductors with bandgaps larger than 1.5 eV, Auger process has a limited
presence.

Complete calculation of the rate of impact-ionization process requires knowledge
from the entire band structure. In the case of Auger process, the threshold value of
energy can be approximated by

E1 =
1 + 2μ
1 + μ

Eg, where μ=
m∗

n

m∗
p

1 148

However, due to the anisotropic nature of the bands, at higher energies this thresh-
old has a strong angular dependence.

100Named after Pierre-Victor Auger.
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In the case of parabolic bands, Ridley has successfully formulated the impact-ion-
ization rate in terms of a simple closed-form expression:

Wimpurity = 4 139 × 1016 ×
4 m∗

nm
∗
p

m0

m∗
n

m0
+ μ

ϵ0
ϵ

2 E1

Eg
− 1 + μ 1 149

1.7.3.7 Lattice Vibration or Phonon Scattering Vibration of the crystal lattice
can be seen as a hindrance on the periodicity of the lattice and, as a result, a source
of scattering between the Bloch states.

As indicated before, crystallization in a particular crystalline form is the result of
the tendency of a system to achieve minimum energy. Due to this tendency, as the
atoms start to move about their lattice points, for example, due to exertion of thermal
energy, a restoring force will be developed. This combination results in lattice vibra-
tions. Depending on the similarity, or lack thereof, of atoms in sublattices of the crys-
tal, their charge status, and the direction of the movement of these sublattices, lattice
vibrations can have a few different modes (e.g., acoustic, optical, polar, piezoelec-
tric). As indicated earlier in this chapter, lattice vibrations are expressed in terms
of quantum particles known as phonons.

1.7.3.7.1 Optical and Acoustic Vibrations As a result of lattice vibrations, the
position of atoms within the crystal can then be expressed as traveling waves. Solving
the force equations for these traveling waves yields certain dispersion characteristics
(i.e., ω or E vs. k dependence, where k is the wave number). An example is depicted in
Figure 1.45. In this figure, a is the equilibrium distance between identical atoms along
the direction of vibration.

In Figure 1.45, two branches of vibration can be identified. In the lower-frequency
branch, known as the acoustic phonon branch, the frequency of vibration tends
toward 0 as the wave number reduces to 0. This is the result of the movement of
the two sublattices of the crystal along the same direction with equal velocity at
any given time. However, if keeping the condition on velocity we reverse the direction
of the movement of one sublattice versus the other, a high-frequency oscillation
results (i.e., at k equal to 0). The branch identifying with this high-frequency mode
is known as the optical-phonon branch (due to its higher frequency). This branch
even for k equal to 0 is not producing 0 in its dispersion characteristic.

The acoustical branch represents the propagation of sound waves in a crystal.
Using the dispersion characteristic of this branch, sound velocity is given by

vs =
dω

dk
=

C

Mav
a 1 150

whereMav, a, and C stand for the average mass of the two atoms, minimum separation
between identical planes in the crystal, and spring constant of the vibratory system,
respectively.
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Whereas in Figure 1.45 we envisioned the vibrations in a one-dimensional lattice,
in the case of three-dimensional lattices, a few other branches also appear on the dis-
persion characteristic. In reality, for a three-dimensional crystal, for each wave vector
one longitudinal and two transverse modes of vibration will be present. This is true in
the case of both optical and acoustical branches. Due to the difference in arrangement
of atoms along different directions of most crystals, frequencies of vibration differ
between the longitudinal and transverse branches.

DEFORMATION POTENTIAL AND BANDGAP VARIATION The distorting effect of phonons on
the crystal, among a number of other appearances, takes the form of inducing a defor-
mation potential. This deformation potential can be envisioned through the variation
of the semiconductor bandgap (as the lattice deformation is causing the interatomic
distance to change). According to this description, the displacement of the lattice by
an amount u results in changing the energy of the conduction or valence bands in
the form

ΔEc,v =Ec,v a −Ec,v a+
du

dx
a 1 151

Here a is the lattice constant, which in the description of (1.151) has been assumed
to be smaller than the wavelength of the phonon (i.e., phonon wavelength spans over
many lattice constants, so that the displacement of the lattice can be taken for the
expansion and contraction of the whole crystal). Through Taylor series expansion,
(1.151) results in

ΔEc,v =
dEc,v

da

du

dx
a 1 152

Optical-phonon branchω (rad/s)

Acoustic-phonon branch

0 k
a
π

FIGURE 1.45 Schematic depiction of the dispersion diagram of a 1-D diatomic lattice,
expressing the optical- and acoustic-phonon branches.
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WAVE-FUNCTION SYMMETRY AND CRYSTAL VIBRATIONS In a 3-D lattice the volumetric
changes induced by acoustic and optical phonons are fundamentally different.
Therefore, optical-phonon scattering has been shown to be very sensitive to the
symmetry of the band structure (i.e., in the range relevant to carrier scattering). This
has very important implications on carrier mobility. As a result of this sensitivity, if
an electron is scattered close to the Γ-valley minimum (e.g., in GaAs) or near the
X-valley minima and has a spherically symmetric wave function, optical defor-
mation potential scattering is forbidden. The existence of this symmetry at the
conduction band minimum of GaAs and lack thereof in Si result in superior
electron mobility in GaAs.

However, while for both GaAs and Si the top of the valence band happens at the
Γ-point, for these cases the hole wave function does not have spherical symmetry (i.e.,
they possess sp rather than s-orbital nature). Therefore, the optical deformation poten-
tial is present for holes in both semiconductors, which results in low hole mobility for
both cases.

POLAR OPTICAL AND PIEZOELECTRIC VIBRATIONS In ionic crystals, in which the atoms of
the two sublattices are different (e.g., in the zinc blende crystal ofGaAs), optical vibra-
tions also induce vibrating polarization fields. This is due to the vibration of cation
and anion sublattices in opposite directions to one another. Presence of these vibrating
fields is important in longitudinal vibrations but not in transverse vibrations. Hence,
in the case of longitudinal vibration, there is an additional restoring force due to the
long-range polarization. As an example, Figure 1.46 shows the dispersion relation-
ship of GaAs, in which the frequency of the longitudinal optical mode is higher than
the transverse optical mode.
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FIGURE 1.46 Approximate representation of phonon dispersion characteristics in GaAs.
Adapted from Singh (2003, p. 228). Copyright 2003, Cambridge University Press.
Reprinted with the permission of the Cambridge University Press.

103QUANTUM TRANSPORT PHENOMENA

0002621443.3D 103 5/1/2016 5:43:51 PM



These vibrating polarization fields are indicated by the presence of polar optical
phonons. While polar optical phonons are not present in group IV semiconductors,
in III–V semiconductors they play a very important role. This is why in group IV semi-
conductors there is no split between the transverse and longitudinal optical branches
of the dispersion characteristic. Figure 1.47 illustrates this situation.

Optical phonons (especially transverse optical phonons) are much less dispersive
than acoustic phonons. This is especially true at low k values. As shown in
Figure 1.47, longitudinal optical and longitudinal acoustic dispersions tend toward
the same value of angular frequency as k increases. However, this is not the case with
transverse modes.

So far, we have only spoken of the role of optical phonons in inducing polar
vibrations. Acoustic vibrations also cause polar vibrations, which are referred to as
piezoelectric effects. Piezoelectric scattering, while much weaker than polar
optical-phonon scattering, only becomes important in very high-purity samples at
low temperatures.

1.7.3.7.2 Phonon Distribution Function Although we have already mentioned
that phonons are quantum particles, at this point in our discussion, it is worthwhile
to explain the quantum nature of these particles a little further. According to quantum
mechanics, oscillation energy of crystal vibrations is not continuous. The quantum
oscillator has a minimum energy of ℏω/2, while the energy changes only in ℏω
quanta, referred to as a phonon. With regard to this quanta, quantum number n refers
to the occupation number of phonons in the system. Just like electrons, in order to
evaluate the number of phonons in a given mode ωk and at a given temperature T,
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FIGURE 1.47 Approximate representation of phonon dispersion characteristics in Si.
Adapted from Singh (2003, p. 228). Copyright 2003, Cambridge University Press.
Reprinted with the permission of the Cambridge University Press.
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a distribution function is required. However, because phonons do not obey Pauli’s
exclusion principle, they do not follow Fermi–Dirac statistics. Instead, the proper dis-
tribution function for them is defined in terms of Bose–Einstein statistics. Hence, pho-
nons, rather than being Fermions, are referred to as Bosons. Because phonons are
Bosons, their occupation number at thermal equilibrium, which is denoted as

nω =
1

expℏω
kT −1

, 1 153

is not a probability of occupation unlike the case of Fermions.
As expressed by this distribution function, the number of phonons increases with

the temperature, since vibration also becomes stronger at higher temperatures.
Obviously, at low temperatures the occupancy of the optical phonons will be very

small. This is due to the fact that for any value of k, the energy of an optical phonon is
large unlike that of the acoustic phonon. As a result, acoustic-phonon scattering is
present even at low temperatures. For optical-phonon scattering, temperature or
energy of the carriers must be beyond a certain value. This threshold of energy is
determined by the band structure of the crystal.101

1.7.3.7.3 Quantum Mechanical Foundations of Phonon Scattering Electrons and
phonons are treated similarly by solving the Schrödinger equation in a periodic poten-
tial. However, there is a qualitative difference between the two cases, which results
from the difference in their de Broglie wavelength. In the case of electrons, only when
the dimensions of the quantum well approach the de Broglie wavelength of the elec-
tron (i.e., ~10 nm) the band offsets at semiconductor heterostructures render the het-
erostructure effects important. However, the equivalent length scale in the case of
phonons is about a fewmonolayers. This difference results in the development of pho-
non modes, associated with interfaces and superlattices of small periods.

As an example of the similarity between electrons and phonons, we can take a look
at interface between AlAs and GaAs. This structure has a Type-I band lineup, which
restricts the movement of carriers normal to the heterointerface. It also restricts the
movement of the optical phonons from one material to the next. This is because the
optical branches of the dispersion characteristics of GaAs and AlAs do not overlap.
This is a fact that we will appreciate more after covering the materials in
Chapter 2, where we get ourselves further acquainted with junctions and interfaces.

Phonons, lattice vibrations, and band structure are, to a first-order approximation,
separated from one another. This treatment overlooks the obvious variations of the
band diagram depicted in Figure 1.48, which are expressed in equations such as
(1.151) and (1.152). As a result of this approximation, scattering by phonons is treated
merely as a perturbation. Frequencies of lattice vibrations (i.e., phonons) are in the
range of terahertz. Yet, in dealing with this electronic system, even in presence of
phonons, it has been proven possible to imagine a band structure defined by a

101 Previously in Section 1.4.4.2, we talked about optical phonons in relation to saturation of drift velocity.
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time-independent periodic potential. Due to the much smaller mass of electrons than
atoms, which gives them a de Broglie wavelength on the order of 10 nm, this is a valid
approximation.

As a result of the small wavelength, the electron frequency will be in the order of

1016 Hz (i.e.,
c

λ
=
3 × 108

10−8 = 3 × 1016 Hz). This is about four orders of magnitude higher

than the phonon frequency, which renders the Hamiltonian describing the system
almost stationary. This approximation is referred to as adiabatic approximation.

In the adiabatic approximation, electrons see the impact of phonon-caused energy
fluctuations in terms of scattering between existing states. These interactions are seen
as processes of emission and absorption of phonons, depending on whether a loss or a
gain in electron energy results. The scattering rate is deduced based on the Fermi
golden rule.

Through phonon scattering, both the energy and momentum of charge carriers are
changed. While the wave vectors of electrons and phonons are similar, the energy of
an electron is much larger (i.e., due to larger frequency). These are very consequential
points in establishing the energy and momentum conservation.

As a result of the small energy of phonons, under low electric fields, interband scat-
tering of holes (and not electrons) is probable. This will be in the form of scattering
between the two degenerate heavy- and light-hole bands. However, due to the small
amount of energy of phonons, even interband scattering to the split-off band, which
is only separated by several hundred meV, is not possible. For interband scattering to
occur to the split-off band, the electric field should be much stronger. However, because
of themuch smaller difference between thedegenerate bands and split-off band at the top
of the valence band of silicon (i.e., 44 meV), this semiconductor is an exception. This is
one of the contributing factors to the deterioration of hole transport in silicon.

Vibration of atoms

Ec

Ev

Average position of atoms

Average position of the conduction-band edge

Average position of the valence-band edge

Position

FIGURE 1.48 Schematic depiction of position dependence of band edges due to lattice
vibrations. Adapted from Singh (2003, p. 228). Copyright 2003, Cambridge University
Press. Reprinted with the permission of the Cambridge University Press.
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In III–V semiconductors, while at low temperatures and low electric fields polar
optical-phonon scattering is not important, at room temperature and also in the pres-
ence of high electric fields (even at low temperatures), the process of emission of polar
optical phonons becomes the dominant scattering mechanism. As an example see
Figure 1.49 for an approximate depiction of the rates of acoustic and polar
optical-phonon scattering processes in GaAs at room temperature.

The processes of phonon emission and absorption in intervalley scattering are
illustrated in Figure 1.50. As mentioned in Section 1.4.2.2, the intervalley scattering
process plays a very important role in manifesting negative differential mobility in
some semiconductors.
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Polar optical-phonon absorption rate

Polar optical-phonon emission rate

Acoustic-phonon scattering rate

FIGURE 1.49 Comparison of absorption and emission rates of polar optical phonons with
acoustic-phonon scattering rate of GaAs at room temperature. Adapted from Singh (2003,
p. 228). Copyright 2003, Cambridge University Press. Reprinted with the permission of the
Cambridge University Press.
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FIGURE 1.50 Schematic depiction of the possibility of an energetic electron scattering from
the central valley to the X-valley through (1) absorption or (2) emission of a phonon of
energy ℏω0.
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Now that we have visited a number of important scatteringmechanisms, it is time to
point out that there are important differences between ionized-impurity scattering and
phonon scattering. The first important difference is that in regard to phonon scattering,
we have both absorption and emission processes, which result in variation of the wave
functions of both the phonon and the electron. The second important difference between
the phonon scattering and ionized-impurity scattering is rooted in the formation of a
scattering potential. As we have seen already in this section, the distorting effect of
phonons on the crystal lattice can take a number of different forms (i.e., deformation
potential, piezoelectric potential, and polar optical potential). Due to these differences,
dealing with ionized-impurity scattering is much less complicated.

1.7.3.8 Carrier Scattering in Lower-Dimensional Systems So far in our discus-
sions, we have maintained a focus on carrier transport in three-dimensional systems.
In lower-dimensional systems, in addition to the aforementioned processes of scatter-
ing, due to the differences in DOS functions, a few additional scattering mechanisms
become important.

As a special case, we have already identified interface-roughness scattering as a
scattering process important only to two-dimensional carrier transport. Such a scat-
tering mechanism is also sometimes present when carrier transport is confined to a
one-dimensional channel (i.e., a quantum wire). In such lower-dimensional systems,
due to the development of energy subbands (i.e., which are expressed by the modi-
fication in the 2-D DOS presented in (1.114) and (1.115) and also the so-called mini-
bands in smaller lower-dimensional systems), both intra- and intersubband scattering
are present. In a 2-D system, the larger the energy difference between the subbands,
the less probable would be the intersubband scattering.

The DOS in 1-D systems (such as quantum wires) is qualitatively different from
3-D and 2-D systems, which results in very important implications on carrier trans-
port. As illustrated in Figure 1.51, in the case of a 1-D system, intrasubband scatter-
ing is very restricted, while elastic scattering is considered. As depicted in this figure,
in elastic scattering electron can scatter only to a state with the same or opposite
momentum (i.e., k and −k). While the former results in no change on transport,
the latter event requires a very short-ranged potential to conserve momentum. This
requirement severely limits the scattering. Consequently, mobilities as high as 107

cm2/V s are predicted for quantum wires. However, due to fabrication and crystal
growth difficulties, this has not been experimentally observed yet.

kfinal= –kinitial kinitial K0
Along the single dimension of the 1-D system

FIGURE 1.51 In the event of elastic scattering in a 1-D semiconductor, the equal energy
surface has only two viable k-states. In the case of 2-D or a 3-D system, this equal energy
surface evolves into the surface of a circle or a sphere, respectively, of radius kinitial
containing many more k-states available to scattering. Adapted from Singh (2003, p. 228).
Copyright 2003, Cambridge University Press. Reprinted with the permission of the
Cambridge University Press.
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PROBLEMS

1.1 Using the time-independent 3-D Schrödinger equation, prove that for an
electron in a 3-D infinite potential well described by

U x,y,z =
0 for 0 ≤ x ≤W , 0 ≤ y ≤W ,0 ≤ z ≤W
∞ elsewhere

, the allowed energy levels

are expressed by E =
ℏ2π2

2m∗W2
n2 +m2 + p2 where n, m, and p are integers.

Wave function and its first spatial derivative are continuous, single-valued
functions.

1.2 Demonstrate that the Fermi level of an intrinsic semiconductor instead of resid-
ing in the middle of the bandgap has a slight offset from this position, which is

determined by the following expression:
3
4
kTLn

m∗
p

m∗
n

.

1.3 According to (1.21) calculate the average thermal energy of Maxwellian
particles having a single degree of freedom. What is the thermal energy if
the particles were allowed to move in the 2-D or the 3-D space?

1.4 Calculate the effective density of states at the lower edge of the conduction-
band Nc, for silicon at room temperature. Notice the difference in the defini-
tions of transport and DOS effective masses and take the transverse and
longitudinal effective mass to be equal to 0.19m0 and 0.98m0, respectively.

1.5 Prove Equation (1.32).

1.6 For a silicon sample doped with arsenic, only a quarter of the impurities are
ionized at room temperature. Elaborate on the cause(s) of the observation
and describe how the electron concentration is calculated in this case.

1.7 Prove Equations (1.78) and (1.79).

1.8 Formulate the Hall effect when the semiconductor is behaving semi-intrinsically.
Presentation of the Section 1.4.3was providedwith the assumption of a significant
extrinsic characteristic.

1.9 Perform a literature survey on the values of the magnetic flux density often used
in Hall effect measurements and indicate why Hall measurements are not per-
formed under high magnetic fields.

1.10 EmployingWKB approximation, calculate the tunneling probability of an elec-
tron of energy 1 eV across a rectangular barrier of height 5 eV and width 1 nm.
Repeat this problem for a triangular barrier of the same height and also the same
width at the energy level of the electron.

1.11 Prove that assuming the same effective mass for electrons and holes, an elec-
tron requires 50% more kinetic energy than the size of the bandgap to instigate
impact ionization.
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1.12 Prove that to guarantee maximum sphere packing, the c/a ratio of the hexag-

onal prism of a wurtzite crystal should be equal to 8 3.

1.13 Calculate the entries of Table 1.7.

1.14 Indicate the plane 1100 on a hexagonal unit cell.

1.15 Perform a literature survey to determine the type of the band lineup between the
following pairs:

a. InP/InGaAs.
b. AlGaN/GaN.
c. GaSb/InAs.

1.16 Perform a literature survey to determine which material system is more suitable
for solar cell applications:

a. AlInGaAs
b. AlInGaN

Determine the energy coverage of the bandgap of each compound and com-
pare to solar spectrum.

1.17 In strained epitaxy we often simplistically define the critical thickness of the

overlayer causing the generation of dislocations within this film as
aS
2 ϵ

. Con-

sidering the pseudomorphic growth of In0.2Ga0.8As over a thick relaxed layer
ofGaAs, determine the critical thickness of InGaAs. Perform the calculations at
room temperature for which aInAs = 6 058 Å and aGaAs = 5 653 Å.

1.18 Through producing schematic depictions of a 1-D lattice, demonstrate why the
dispersion diagram of the acoustic-phonon branch tends toward 0 at small
values of wave number while for the optical-phonon branch the energy remains
sizable (see Fig. 1.45).

APPENDIX 1.A DERIVATION OF FERMI–DIRAC STATISTICS

The key point in the derivation of Fermi–Dirac statistics is to acknowledge that Fer-
mions (electrons included) are indistinguishable particles obeying Pauli’s exclusion
principle. According to this definition, the total number of ways that Ni Fermions
can be arranged among gi states corresponding to ith energy level (which are deter-
mined in terms of density of states function) is given by

Pi =
gi

Ni gi−Ni
1A 1

According to Pauli’s exclusion principle, gi is greater than or equal to Ni.
Since thedensity of states function is adouble-density function (i.e., representing the

number of states per unit energy per unit volume), in studying the thermal-equilibrium
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distribution of Fermions among these states, we should not only consider the states
corresponding to the ith energy level but also all those other states assigned to other
values of energy. Accordingly, considering a total of N electrons, where Ni of which
take the ith energy level, we will have

N =
n

i = 1
Ni 1A 2

where n is the number of energy-wise distinguishable levels.
In terms of this distribution, the total energy is given by

E =
n

i= 1
NiEi 1A 3

where Ei is the energy of the ith level.
As a result of (1A.2), the total number of ways of arranging N1, N2,…Nn indistin-

guishable particles among n energy levels would be

P=
n

i= 1
Pi =

n

i= 1

gi
Ni gi−Ni

1A 4

On the basis of (1A.2) and (1A.3), in order to identify the distribution function pre-
senting the least amount of systemic energy (i.e., representative of thermal equilib-
rium), the most likely distribution function should be selected. Toward that end
Ni’s should be arranged so that P is maximized (i.e., representing the most plausible
distribution) for a fixed N.

According to the discussions of Section 1.3.5, Ni can be replaced by gifi. This sub-
stitution results in

P =
n

i= 1

gi
gifi gi−gifi

1A 5

Using Stirling’s approximation of factorials and assuming that n is greater than 20,

n 2πnnn exp −n +
1
12n

, 1A 6

which gives

Ln n nLn n −n+
1
2
Ln 2πn 1A 7

Neglecting the third term on the right side of (1A.7), (1A.5) can be rewritten as

Ln P
n

i= 1
Ln Pi =

n

i= 1
giLn gi −gifiLn gifi −gi 1− fi Ln gi−gifi

1A 8
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This has been proven to be a valid approximation.
To maximize P, according to the Lagrange method of undetermined multipliers

and Equations (1A.2) and (1A.3), the following function should be maximized by
the appropriate choice of α and β to get P or Ln(P) maximized

f gifi = Ln P −α
i
gifi−β i

Eigifi 1A 9

As a result, the derivative of function f(gi fi) versus gi fi is set to 0 in order to cal-
culate α and β:

∂

∂ figi
Ln P −α

i
gifi−β i

Eigifi = 0 1A 10

Assuming fixed gi (which is determined by the density of states function of the
semiconductor) and through the following mathematical manipulation, fi results in

−Ln gifi + Ln gi− figi −α−Eiβ = 0

Ln
gi−gifi
gifi

= α + βEi fi =
1

1 + exp α+ βEi

1A 11

As expressed below, the function fi is a Fermi–Dirac distribution function
with Ef = −α β:

fD Ei =
1

1 + exp
Ei−Ef

1 β

1A 12

Knowing that E =
n

i= 1
Eifigi,

dE =
n

i= 1
Eid figi +

n

i= 1
figid Ei 1A 13

Besides from (1A.10),

1
β
∂ LnP =

n

i= 1
Eid figi +

α

β

n

i= 1
d figi 1A 14

where Ef = −α β and
n

i= 1
d figi = dN.

As a result, (1A.14) can be rewritten as

dE =
1
β
∂Ln P +EfdN +

n

i= 1
figid Ei 1A 15
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Through incorporating dV as a volumetric variation,

dE =
1
β
∂Ln P +EfdN +

n

i= 1
figi

dEi

dV
dV 1A 16

This relationship is similar to thermodynamic identity of dE = TdS−PdV + μdN.
According to this analogy, β = 1 kT , S = kLnP, and μ (the energy of the Fermions)
is represented by Ef.

As a result (1A.12) evolves into the familiar form of

fD E =
1

1 + exp
E−Ef

kT

1A 17

FURTHER READING

G. Fournet, English edition edited by S. Chomet, Solid State Electronics (first published in
French: Physique Électronique des Solids), Iliffe Books, London, 1968.

APPENDIX 1.B DERIVATION OF EINSTEIN RELATIONSHIP IN
DEGENERATE SEMICONDUCTORS

In the case of one-dimensional carrier transport and according to the definition of
thermal equilibrium,

Jn = qnμnE + qDn
dn

dx
= 0 1B 1

where E =
1
q

dEi

dx
or equivalently E =

1
q

dEc

dx
.

In addition, based on the discussions in Section 1.3.5, n=NcF1 2 ηF

where ηF =
Ef −Ec

kT
.

Resulting from the definition of electric field E and n,

dn

dx
= −

1
kT

dn

dηF

dEi

dx
= −

q

kT

dn

dηF
E 1B 2

Based on (1B.1) and (1B.2), the following general form of the Einstein relationship
results:

Dn

μn
=
kT

q

n

dn dηF
1B 3

in which n =NcF1 2 ηF and F1 2 η = 2 π F1 2 η where F1 2 η =
∞

0

ξ1 2dξ

1 + eξ−η
.
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A relationship identical in form to (1B.3) can also be developed for holes.
In general,

Fj η  ≡ 
1

Γ j+ 1

∞

0

ξjdξ

1 + eξ−η
1B 4

Fj η eη as η −∞ 1B 5

d

dη
Fj =Fj−1 η 1B 6

F1 2 η e−η + ξ η −1 1B 7

where

ξ η = 3
π

2
η+ 2 13 + η−2 13 2 4 + 9 6

5 12 −3 2

1B 8

with a maximum error of ± 0 5 ,

η
Ln U

1−U2
+

3 πU 4 2 3

1 + 0 24 + 1 08 3 πU 4 2 3 −2 1B 9

where U ≡ F1 2 η with a maximum error of ± 0 5 .
A convenient approximation for (n)/(dn/dηF) is presented in Nilsson (1978), in the

form of F1 2 ηF F−1 2 ηF .
In its nondegenerate limit, n becomes equal to Nc exp(ηF) and (n)/(dn/dηF) tends

toward one. As a result (1B.3) takes on to its familiar form,

Dn

μn
=
kT

q
1B 10

While this derivation relies on thermal-equilibrium conditions, it can be
shown that the Einstein relationship is also valid under nonthermal-equilibrium
conditions.

FURTHER READING

N. G. Nilsson, “Empirical approximation applied to generalized Einstein relation for degenerate
semiconductors,” Phy Stat Sol (a), vol. 50, 1978b, K43–K45.
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R. F. Pierret, Advanced Semiconductor Fundamentals, vol. VI Modular Series in Solid State
Devices, Prentice Hall, Upper Saddle River, NJ, 2003.

APPENDIX 1.C STRAIN TENSOR

Deformations in the crystal structure result in induction of strain. Strain is defined in
terms of the relative change in the lattice constants with regard to the freestanding
lattice constants of a crystal. Figure 1.C.1 illustrates a simple 2-D lattice under strain.
The outcomes of this pictorial insight can be mathematically represented in the 3-D
form with the use of the strain tensor.

As illustrated in Figure 1.C.1a, in the 2-D case we can use two unit vectors x and y of
theCartesian coordinate system to represent the unstrained lattice. In a simple lattice,
these vectors correspond to the basis vectors of the lattice. A small uniform deforma-
tion of the lattice results in distortion of the unit vectors both in magnitude and ori-
entation (see Fig. 1.C.1b). These distortions result in a new set of vectors identified by

x = 1+ ϵxx x + ϵxyy+ ϵxzz 1C 1

y = ϵyxx+ 1 + ϵyy y+ ϵyzz 1C 2

In the 3-D case, we also have a distortion with regard to the z-axis of the coordinate
system,

z = ϵzxx + ϵzyy + 1+ ϵzz z 1C 3

Elements ϵij are referred to as strain coefficients. These coefficients are dimension-
less. The 3 × 3 matrix composed of these elements is referred to as strain tensor:

ε =
ϵxx ϵxy ϵxz
ϵyx ϵyy ϵyz
ϵzx ϵzy ϵzz

1C 4

y

(a) (b)

ŷ

x̂

y'

x
x'

ŷ'

x̂'

FIGURE 1.C.1 (a) Schematic depiction of a 2-D Bravais lattice. (b) Arbitrary deformation of
the lattice drawn in (a).
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Generally speaking, tensor is a mathematical notion used to describe a linear rela-
tionship between two physical quantities. Depending on the degrees of freedom, a
tensor can be a scalar quantity (i.e., zero rank), a vector (i.e., first rank), or as in this
case a matrix (i.e., second rank). As an example, we can look into the strain-caused
deformation with regard to a lattice point represented by the vector r = xx+ yy + zz.
Considering a uniform deformation to evolve this point to r = xx + yy + zz for a gen-
eral varying strain, the strain tensor is formulated as

ϵij =
∂ui
∂xj

1C 5

where ui = ux,uy,uz , xj = x,y,z.
In this definition, ui refers to the displacement of the lattice point (e.g., r) along

xi.
102 According to this definition, it is obvious that without rotation, the strain tensor

is symmetric and

ϵij = ϵji =
1
2

∂ui
∂xj

+
∂uj
∂xi

1C 6

Oftentimes, instead of the aforementioned set of strain tensor components, the fol-
lowing are used:

exx = ϵxx;eyy = ϵyy;ezz = ϵzz
exy = x y = ϵxy + ϵyx
eyz = y z = ϵyz + ϵzy
ezx = z x = ϵzx + ϵxz

1C 7

As presented in (1C.7), the strain components exy, eyz, and ezx are defined with
respect to changes of angle between the basis vectors. This definition is provided with
neglecting the terms of order ϵ2ij in the small-strain approximation.

The above six strain coefficients, shown by an array e = exx,eyy,ezz,eyz,ezx,exy ,
offer a complete definition of strain. This set provides a more convenient way for
describing the relationship between the strain and the strain-related physical quanti-
ties. The form of presentation expressed in (1C.4), however, gets complicated very
quickly. This is because the relationship between two second-rank tensors (i.e.,
one for the strain tensor and one for the strain-related physical quantity) is represent-
able through a fourth-rank tensor. However, describing each of the two second-rank
tensors by a vector only requires dealing with a second-rank tensor for evaluation of
the interactions.

102 According to (1C.1)–(1C.3), r = x 1 + ϵxx + yϵyx + zϵzx x+ xϵxy + y 1+ ϵyy + zϵzy y+
xϵxz + yϵyz + z 1 + ϵzz z. Hence, as an example, ux = x 1 + ϵxx + yϵyx + zϵzx−x, and as a result ∂ux ∂xwould
be equal to ϵxx.
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In terms of the first-rank tensor description of (1C.7), the dilation of the unit cell of
the crystal can be simply evaluated through calculating the volume of the unit cell by

V = x y × z = 1 + exx + eyy + ezz 1C 8

Equation (1C.8) shows the dilation δ as

δ=
δV

V
= exx + eyy + ezz 1C 9

Interestingly enough, this is the trace of the strain tensor. This dilation is the same
as the negative of the hydrostatic pressure.

It is worthwhile indicating that under a hydrostatic pressure P, the shear stress is 0
and the stress along any principal direction is equal to −P,

τ =
−P 0 0
0 −P 0
0 0 −P

1C 10

According to this sign convention, the tensile stress is indicated with a positive
sign, while the compressive stress is indicated in terms of negative values.

In the case of the uniaxial stress T along the [001] direction, all stress components
but τzz are 0, and τzz = T . In other words,

τ =
0 0 0
0 0 0
0 0 T

1C 11
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