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Introduction—Contraction 
Bias in Simple 
Discrimination Tasks

Perception is a complex cognitive process in 
which noisy signals are extracted from the 
environment and interpreted. It is generally 
believed that perceptual resolution is limited 
by internal noise that constrains people’s abil-
ity to differentiate physically similar stimuli. 
The magnitude of this internal noise is typi-
cally estimated using the two-alternative 
forced choice (2AFC) paradigm, which was 
introduced to eliminate participants’ percep-
tual and response biases during experiments 
(Green & Swets, 1966; Macmillan & Creelman,  
2004). In this paradigm, a participant is pre-
sented with two temporally separated stimuli 
that differ along a physical dimension and is 
instructed to compare them. The common 
assumption is that the probability of a correct 
response is determined by the physical differ-
ence between the two stimuli, relative to the 
level of internal noise. Performance is typically 
characterized by the threshold of discrimina-
tion, referred to as the Just Noticeable 
Difference (JND). Thus, the JND is a measure 
of the level of internal noise such that the 
higher the JND, the higher the inferred inter-
nal noise.

However, if the stimuli are highly predicta-
ble, perceptual resolution may not be limited 
by the magnitude of the internal noise. In 
other words, the assumption of a one-to-one 

correspondence between the JND and the 
internal noise may ignore this potential ben-
efit that derives from previous experience. If 
the internal representation of a stimulus is 
noisy and hence unreliable, prior expecta-
tions should bias the participant against 
unlikely stimuli. The larger the uncertainty of 
the measurements, the larger the contribu-
tion of these prior expectations is likely to be. 
The Bayesian theory of inference defines 
computationally how expectations regarding 
the probability distribution of stimuli should 
be combined with the noisy representations 
of these stimuli in order to form an optimal 
posterior percept (Knill & Richards, 1996).

One limitation of the Bayesian model is that 
it relies heavily on the assumption that the 
prior distribution of stimuli is known to the 
observer. While this assumption may be plau-
sible in very long experiments comprising a 
large number of trials (e.g., thousands in 
Körding & Wolpert, 2004) or in experiments 
utilizing natural tasks (e.g., in reading; 
Norris,  2006), it is unclear to what extent a 
rich Bayesian inference is formed when par-
ticipants have less experience with a task.

Here, we studied participants’ patterns of 
responses on a 2AFC tone discrimination 
task in relatively short experiments consist-
ing of tens of trials. We found a substantial 
 context effect, whose extent depended on 
the statistics of the stimuli used in the task 
and on participants’ internal noise level. 
Participants’ pattern of behavior was con-
sistent with an “implicit memory” model in 
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1 A Computational Model of Dyslexics’ Perceptual Difficulties4

which the  representation of previous stimuli 
is a single scalar that continuously updates 
with examples. Thus, this model can be 
viewed as a simple implementation of the 
Bayesian model that provides a better 
account of participants’ perceptual decision 
making. We then applied this model to a spe-
cial population of dyslexic subjects and 
found that this model captures their difficul-
ties on such tasks.

Contraction Bias—a Simple 
Experimental Measure  
of Context Effects

In order to evaluate the impact of the stimu-
lus statistics on perception parametrically, 
we used a 2AFC frequency discrimina-
tion task. On each trial, participants were 
sequentially presented with two pure tones 
and instructed to indicate which had a higher 
pitch (illustrated in Fig. 1.1). The mean fre-
quency of each pair was uniformly selected 
from a broad range and the frequency differ-
ence was chosen either adaptively or accord-
ing to a pretesting decision. We termed this 
protocol the No-Reference, since it differs 
from typical psychophysical assessments 
where one of the two stimuli on each trial 
serves as a reference and repeats across tri-
als. Though frequency discrimination tasks 
are traditionally used as an assessment of 
low-level sensory bottlenecks, we have 
shown that performance is highly affected by 
context, both in the No-reference protocol 
(Raviv, Ahissar, & Loewenstein,  2012) and 
in the various reference protocols. In fact 
the form of integration of previous stimuli 
explains seemingly inconsistent biases in 
success rate depending on the position of 
the reference stimulus within the trial (Raviv, 
Lieder, Loewenstein, & Ahissar, 2014).

Specifically, expectations, formalized as the 
prior distribution of the stimuli used in the 
experiment, have been shown to bias partici-
pants’ responses in a way that is often (though 
not always) consistent with the Bayesian 
framework (reviewed in Körding, 2007). In 
particular, responses in the 2AFC paradigm 

have been shown to be biased by prior expec-
tations. Thus, when the magnitude of the two 
stimuli is small with respect to the mean of 
the previous stimuli used in the experiment, 
participants tend to respond that the second 
stimulus was smaller, whereas when the mag-
nitude of both stimuli is large they tend to 
respond that the second stimulus was larger 
(Preuschhof, Schubert, Villringer, & Heekeren, 
2010; Woodrow, 1933). We have shown that 
this bias, known as the “contraction bias,” can 
be understood within the Bayesian frame-
work. Rather than comparing the two noisy 
representations of the stimuli, the participant 
combines the noisy representations of the 
two stimuli with the prior distribution of the 
stimuli to form two posterior distributions. 
The two posteriors are compared to maxi-
mize the probability of a correct response. 
The contribution of the prior distribution to 
the two posteriors is not equal. The larger the 
level of noise in the representation of the stim-
ulus, the larger the contribution of the prior 
distribution to the posterior (Ashourian & 
Loewenstein, 2011). The level of noise in the 
representation of the first stimulus is larger 
than the level of noise in the representation 
of the second stimulus because of the addi-
tional noise associated with the encoding, and 
maintenance of the first stimulus in memory 
during the inter-stimulus interval of sequen-
tial presentation tasks (Bull & Cuddy,  1972; 
Wickergren, 1969). As a result, the posterior 
distribution of the first stimulus is biased 
more by the prior distribution than the poste-
rior distribution of the second stimulus. Since 
the posterior of the first stimulus is contracted 
more than the posterior of the second stimu-
lus, participants’ responses are biased toward 
overestimating the first stimulus when it is 
small and underestimating it when it is large 
with respect to the prior  (distribution of pre-
vious stimuli).

The expected outcome of the contraction 
bias on performance is that the combination 
of the mean frequency on the trial with respect 
to the mean frequency of the experiment, and 
the relative frequency of the two tones on the 
trial determines the impact of experiment’s 
statistics in the following  manner: Bias+ trials 
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Dyslexia  5

are trials in which the experiment’s statistics is 
expected to improve performance. Specifically, 
a stronger “pulling” of the first (compared to 
the second) tone toward the average frequency 
increases the difference between the represen-
tations of the two tones in the trial. In such 
trials (1) the frequencies of the two tones are 
either both higher than the mean frequency 
(in log scale) or both lower than the mean fre-
quency, and (2) the frequency of the second 
tone is more extreme than that of the first tone 
(yellow zones in Fig. 1.1). By contrast, Bias− 
trials are trials in which the statistics are 
expected to hamper performance. Specifically, 
when the two tones are above the mean, and 
the second tone is lower than the first, and 
when they are lower than the mean, and the 
second tone is higher than the first (gray zones 
in Fig. 1.1). In these trials, contracting the first 
tone toward the mean frequency decreases its 
perceived difference with the second tone and 
is thus expected to be detrimental to perfor-
mance. Bias0 trials (white zones in Fig. 1.1) are 
trials in which the first and the second tone 
flank the mean frequency.

Dyslexia

Dyslexia is defined as a “specific and signifi-
cant impairment in the development of read-
ing skills that is not accounted for by mental 
age, visual acuity problems, or inadequate 
schooling” (WHO, 2010) and affects 5% of 
the world’s population (Lindgren, De Renzi, 
& Richman,  1985). The standard assump-
tion is that dyslexics’ phonological repre-
sentations, which need to be accurate for 
efficient usage of the alphabetical code, are 
impaired (Snowling,  2000). However, dys-
lexics perform well on some tasks that rely 
on phonological representations (reviewed 
in Ramus & Ahissar, 2012). Moreover, dys-
lexics perform poorly on many simple 
auditory tasks that have no phonological 
component. In experimental settings, more 
than half of the tested dyslexic participants 
performed poorly on two-tone frequency 
discrimination batteries, and this perfor-
mance was correlated with verbal memory 
skills (Banai & Ahissar, 2004; McArthur and 
Bishop, 2004).
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Figure 1.1 Illustration of trials’ distribution and the contraction bias. Middle: Trials’ distribution on the f f1 2,  
plane. Each dot denotes f1 and f2 of a trial. Surrounding: schematic examples of the three types of trials. In Bias+ 
trials the first tone is closer to the mean frequency. In Bias− trials the first tone is farther from the mean. 
In Bias0 trials the two tones flank the mean.
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1 A Computational Model of Dyslexics’ Perceptual Difficulties6

Banai and Ahissar (2006) aimed to pin-
point the bottleneck to this performance by 
testing task protocols that relied to a greater 
or a lesser extent on implicit memory of 
previous trials and only found a deficit in 
the former. Ahissar et al. (2006) tested this 
reduced sensitivity to recently presented 
stimuli and found a similar phenomenon 
for speech stimuli. Based on these observa-
tions they proposed the anchoring deficit 
hypothesis (Ahissar,  2007; Ahissar, Lubin, 
Putter-Katz, & Banai, 2007), which posits 
that dyslexics’ deficits stem from poor utili-
zation of stimulus repetitions. Thus, dyslexia 
does not result from a deficit in stimulus 
processing (sensation) but from a lesser 
ability to process information from previ-
ous presentations (similar to the concept of 
predictive coding; Díaz, Hintz, Kiebel, & von 
Kriegstein, 2012).

The Magnitude of 
Contraction Bias is Smaller 
in Dyslexics than in Controls

Raviv et al. (2012) measured the magnitude 
of the contraction bias (the difference in suc-
cess rate between Bias+ and Bias− trials, as 
illustrated in Fig. 1.1) in the general popula-
tion in the No-Ref protocol and found a sub-
stantial effect. Even larger context effects in 
the general population of good readers (stu-
dents) were replicated by Jaffe-Dax et al. 
(2015). They used a relatively fixed frequency 
difference that was previously found to yield 
an average of 80% correct across trials. 
Though the difficulty of each trial was fixed 
(in terms of inter-stimuli frequency differ-
ence), average performance differed tremen-
dously with respect to the tone distributions 
(Fig. 1.2A). Interestingly, in the Bias− range, 
the average performance of the controls did 
not significantly differ from chance (Wilcoxon 
test, p = .55).

Based on the Anchoring Deficit hypoth-
esis we inquired whether dyslexics’ diffi-
culties in benefitting from simple stimulus 

repetitions also applied to the more gen-
eral summary statistics of the experiments. 
Specifically, we examined whether dys-
lexics’ context effects were reduced even 
when there was no reference, and the mean 
frequency was retrieved by some form of 
integration across previous trials. To test 
this, a group of dyslexics matched for age, 
education and general reasoning skills was 
also tested on the same 2AFC frequency 
discrimination protocol. Overall, dyslexics 
performed more poorly than the controls. 
However, they showed a smaller context 
effect; that is, a smaller difference in per-
formance between Bias+ and Bias− trials 
(Fig.  1.2B). Hence importantly, in spite of 
their overall lower performance, dyslexics’ 
performance in the Bias− region was signif-
icantly above chance (58.2% Wilcoxon test, 
p < .05), whereas controls’ performance was 
at the chance level.

The Implicit Memory Model 
(IMM) Account for the 
Contraction Bias

Raviv et al. (2012) derived a simple model of 
implicit memory to account for the contrac-
tion effect. We used to the same model to 
analyze the behavior of controls and dyslex-
ics, and test for putative differences between 
them. According to this model, choices on 
each trial are determined by the difference 
between the frequency of the second tone 
and a weighted average (M1) of the noisy 
memory of present and past frequencies of 
the first tone. Formally,

 a t M t f tsgn 1 2  (Eq. 1.1)

where a t  denotes the choice of the partici-
pant on trial t , sgn is the sign function, f t2  
is the frequency of the second tone on trial t , 
and:

 

M t M t
f t z t

1 1

1

1
1  

(Eq. 1.2)
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Figure 1.2 Performance of controls and dyslexics differentially depend on trial type. Mean performance 
(% correct) of controls (A) and dyslexics (B) in the six subregions of trial types, plotted on the frequency plane 
of the second tone f2 as a function of the first tone f1. Bias+ zones (denoted in yellow) are above the diagonal 
when both tones are above the mean frequency (second tone is higher) and below the diagonal when both 
tones are below the mean frequency (second tone is lower). Bias− regions (denoted in gray) are 
complementary with respect to the diagonal, and Bias0 trials (denoted in white) are those trials associated 
with the two remaining quarters. Each dot denotes f1 and f2 of a trial (tested across individuals). The color of 
each dot denotes the cross-subject average performance for that pair of stimuli. Numbers denote the average 
percent correct in each subregion.

where f t1( ) is the frequency of the first tone 
on the trial, z t  is an independent Gaussian 
random variable with zero mean and vari-
ance 2, and we assume resetting of the ini-
tial conditions M t f t z t1 11 1 1  
(Shteingart, Neiman, & Loewenstein, 2013). 
This model is characterized by two parame-
ters,  and . The first parameter, , denotes 
the level of internal noise in the process of 
“sensing and memorizing” the first tone on 
each trial. The second parameter, , denotes 
the weight of previously stored stimuli in the 
current comparison.

Therefore, the probability of responding 
“first tone higher” is:

 
Pr " "1 1 2M t f t

te  
(Eq. 1.3)

where  is the cumulative normal distribu-
tion function and e t  is the effective 
response variance at trial t , which depends 
on , , and t :

 
e

t t2 2 2 21 1
1  

(Eq. 1.4)

For each participant, we estimated the two 
parameters,  and , that minimize the 
squared distance between the predicted 
response probabilities of the model and the 
observed responses in the frequency dis-
crimination task. To assess the reliability of 
this estimate, we bootstrapped the trials for 
each participant by 1,000 samples of 300 
trials with replacement and re-estimating 
parameters.

We then estimated the optimal impact of 
implicit memory given this estimated ; that 
is, for each participant we found * − the  
that would maximize success on the audi-
tory task. We defined inadequacy, or sub- 
optimality, of the implicit memory weighting 
of each participant as the difference between 

* and the estimated .
The model (Eq. 1.2) is characterized by 

two parameters: , defined as the contribu-
tion of previous trials ( 0, no contribution; 
the larger the value of , the larger the con-
tribution), and , the level of internal noise 
(on a scale of percentage difference between 
the two tones: the larger the value of  the 
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1 A Computational Model of Dyslexics’ Perceptual Difficulties8

noisier the within-trial representation). We 
used the IMM to estimate the  values of  and 

 for each participant. We tested the model 
by simulating it on the same task using the 
estimated parameters. Qualitatively, the dif-
ferential performance on the three trial types 
and the different performance level of dyslex-
ics and controls was captured by the model 
(Fig. 1.3). Quantitatively, the difference in 
performance between the Bias+ and Bias− 
regions was slightly larger in the experiment 
than in the model, in particular for the con-
trol participants.

One prediction of the Bayesian frame-
work is that the effect of the stimulus sta-
tistics on behavior should increase when 
the level of internal noise increases. 
Qualitatively, this prediction is intuitive. If 
the representation of the stimuli is noise-
less, performance cannot be improved by 
incorporating prior information. However, 
if the representation of a stimulus is noisy, 
prior information should be useful, and 
the noisier the representation, the larger 
the weight that should be given to this 
prior on the discrimination task. One 
study in fact showed that in the visual 

modality, increasing the level of internal 
noise enhanced the contribution of prior 
knowledge to perception and decision 
making (Ashourian & Loewenstein, 2011).

The IMM makes no assumptions regard-
ing the relationships between participants’  
and  values. Nevertheless, the model can be 
used to determine the extent to which par-
ticipants’ weighting of previous trials (their 

 value) was close to optimal given their 
within-trial noise ( ) and the stimulus statis-
tics (in the sense of maximizing their success 
rate; Fig. 1.4A, green).

Analysis of the parameters character-
izing our participants indicated that, on 
average, the estimated value of  was 
higher among the dyslexic participants 
(median (IQR), controls: 35 (40)%; 
dyslexics: 98 (213)%; Mann–Whitney 
test, z = 2.2, p < .05). Given their higher 

 value, the optimal model solution pre-
dicted that the dyslexics’  should also be 
higher than the controls’  value. However, 
the dyslexics’  value was similar to that 
of the controls (median (IQR), controls: 

.52 (.5); dyslexics: .41 (0.53); Mann–
Whitney test, n.s.).
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Figure 1.3 Simulating the experiment with the IMM produces similar results to those measured 
experimentally (shown in Fig. 1.2). (A, B) Mean performance (% correct) of simulated controls (A) and simulated 
dyslexics (B) in the six subregions of trial types plotted on the f f1 2,  plane. Bias+ zones are denoted in yellow, 
Bias− in gray, and Bias0 in white. Each dot denotes f1 and f2 of a trial (tested across simulated individuals). The 
color of each dot denotes the average cross-simulation performance for that pair of stimuli. Numbers 
correspond to the percentage correct in each sub-region.
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Dyslexics Underweight 
Previous Trials Given Their 
Internal Noise Level

The IMM model was used to assess whether 
dyslexics underweight previous trials given 
their (calculated) level of internal noise. 
We calculated the optimal  value, that is, 
the value of  that minimizes the probability 
of an error in the stimulation schedule for a 
fixed value of .

We defined mental difference (D t( )) and 
correct difference (C t( )) on each trial as:

 D t f t M t2 1  (Eq. 1.5)

 C t f t f t2 1  (Eq. 1.6)

Thus, the probability of making a correct 
decision on each trial is:

 

Pr
Pr
correct

sign D t sign C t  
(Eq. 1.7)

According to Sheppard’s Median Dichotomy 
Theorem (Kendall, Stuart, & Ord, 1987,  
p. 482; Sheppard, 1899):

 

Pr

sin

sign D t sign C t

m
1
2

1 1

 
(Eq. 1.8)

where: m

D C

D C

cov

var var

,
 is the correla-

tion between the mental difference and the 
correct difference.

The probability of a correct response is a 
monotonic function of m over the relevant 
scope [0,1]; thus, it is sufficient to maximize 

m over :

where 
f

f f

f f

cov

var var

1 2

1 2

,
 is the correla-

tion between the two tones and f
2  is the 

variance of f1 (the overall variance of the fre-
quencies of the first tones), which is also 
equivalent to the variance of f2 (the same 
marginal distributions for the frequencies of 
the first and the second tones).

The optimal  is a solution to the equation:

 
m 0

 
(Eq. 1.10)

The solution to this equation was found 
using Mathematica 9.0 (Wolfram Research, 
Inc., Champaign, IL).

Since this computation assumes an infinite 
number of trials, the solution is only an 
asymptotic approximation of the optimal . 
In order to verify its proximity to the optimal 

 value, with a finite number of trials, we ran 
numerical simulations. We estimated the  
value that yielded the highest accuracy rate 
in the actual sequence of trials used in the 
experiment, for various values of  and com-
pared the two solutions.

As shown in Fig.  1.4A, controls’  values 
(blue squares) were nearly optimal (green 
line) given their  values, indicating that their 
weighting of the history was similar to that of 
an “ideal listener” (in the framework of the 
IMM). By contrast, dyslexics’  values were 
lower than expected given their  values (red 
squares). To quantify this group difference,  
we calculated the difference between the 
 optimal and the actual  value for each partic-
ipant. We found that dyslexics’ underweight-
ing of implicit memory was  significantly 
larger than the controls’ (Fig.  1.4B; Mann–
Whitney test, z = 2.6, p < .01). Hence, given 

 

m
f f

f f f f

2 2

2 1 1
1

2

2 2 2 2 2 11 2 12 2 2 2
f f f

 

(Eq. 1.9)
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1 A Computational Model of Dyslexics’ Perceptual Difficulties10

their internal noise level, dyslexics, in contrast 
to  controls, do not give sufficient weight to 
prior information.

Taken together, these findings show that in 
the framework of the IMM, controls’ weight-
ing of past events was nearly optimal. By 
contrast, dyslexics’ weighting of these past 
events was too low, indicating a deficit in 
adequate incorporation of prior knowledge 
into perception.

General Discussion

In this chapter we showed that the contrac-
tion bias is a dominant determinant of par-
ticipants’ behavior in a 2AFC tone frequency 
discrimination task. Though clearly evident 
also in the pattern of dyslexics’ behavior, its 
magnitude is significantly smaller.

The IMM, Detection Theory,  
and the Bayesian Framework

Some features of the contraction bias (and 
of the IMM) are consistent with the behav-
ior of an ideal detector that utilizes the 
prior distribution to maximize performance. 
What  information does the cognitive  system 

store about the prior distribution? The 
full Bayesian model represents an extreme 
approach, in which it is assumed that the par-
ticipant has full information about the joint 
distribution of the two stimuli. The stand-
ard way in which signal detection theory is 
applied to psychophysics represents the other 
extreme, in which the participant does not 
have (or does not utilize) any prior informa-
tion about the identity of the stimuli (but only 
about the probability of each response being 
correct; Green & Swets, 1966). The contrac-
tion bias in Fig.  1.2 demonstrates that par-
ticipants have some information about the 
marginal probabilities.

The IMM can be viewed as a minimal 
modification of the standard approach of 
applying signal detection theory to percep-
tion in the direction of the full Bayesian 
model. Here, participants represent the prior 
distribution of the stimuli with a single sca-
lar, which is an estimate of the mean of the 
marginal of the prior distribution. Despite 
its simplicity, this implicit model cap-
tures many facets of the behavioral results. 
Further studies are needed to determine 
whether, and to what extent other moments 
of the prior distributions are learned 
and utilized in the 2AFC  discrimination 
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Figure 1.4 Estimated parameters of the Implicit Memory Model for controls and dyslexics. (A) Estimated 
values of  (which determine the proportion of implicit memory in the current representation of f1) as a 
function of the estimated values of  (percentage of internal noise with respect to the difference between the 
tones within the trial) of controls (blue; error bars denote bootstrapped inter-quartile range) and dyslexics 
(red). For all values of  the optimal value of  (the value of  that minimizes the probability of an error in the 
experiment), denoted as *, is plotted in green. Gray area depicts the values of  that yield more than 97.5% of 
the optimal performance. (B) Median of the deviations from optimal weighting of previous trials. Dyslexics’ 
deviation was significantly larger than controls’ (Mann–Whitney test, z = 2.5, p < .01). Error bars denote 
inter-quartile range.

Moustafa159018_c01.indd   10 8/23/2017   7:22:27 AM



General Discussion  11

task, especially under longer exposure to  
distribution statistics.

Several studies have shown that the mag-
nitude of the contribution of the prior distri-
bution to perception on a given trial depends 
on the level of internal noise (Körding & 
Wolpert, 2004; Trommershauser et al., 2005). 
In particular, in the framework of the 2AFC 
task, increasing the delay between the first 
and second stimuli (Hanks et al.,  2011; Lu, 
Williamson, & Kaufman, 1992) or introducing 
a distracting task between them (Ashourian 
& Loewenstein, 2011) enhances the contrac-
tion bias. These results are consistent with 
the Bayesian approach and can be accounted 
for in the framework of the IMM by optimal 
weighting of previous trials. In line with these 
studies, we found that controls’ weighting of 
the mean of previous trials did not differ from 
optimal. However, dyslexics’ weighting was 
significantly lower than optimal.

It should however be noted that our sim-
ple, two-parameter IMM only assumes 
within-trial noise. Although the dyslexics’ 
underweighting of the stimulus statistics was 
suboptimal in this case, their weighting of 
history could be close to optimal if their defi-
cit leads to increased memory noise. 
Introducing this to the model would require 
the addition of a third parameter, whereas 
our model accounts well for controls’ perfor-
mance with only two parameters. On the 
other hand, we could assume optimal weight-
ing of the history (i.e., the weighting of the 
history is determined by the stimulus statis-
tics) and replace  with a parameter that esti-
mates the noise of previous trials (memory 
noise). In that case, increasing the weight of 
previous trials might not enhance their per-
formance since it would also increase the 
memory noise. However, this would require 
an additional optimality assumption, which 
for this reason we did not pursue.

The Contribution of the 
Computational Model to 
Understanding Dyslexia

The IMM is an extended formalization of 
the anchoring deficit hypothesis of dys-
lexia (Ahissar,  2007; Ahissar et al.,  2006), 

which posits that repeated stimuli serve 
as an anchor, and thus boost performance 
when these stimuli are subsequently used. 
According to this theory, the ability to track 
such simple regularities is deficient in dys-
lexia. The IMM presented here proposes a 
specific, well-defined computation that is 
impaired in dyslexics’ incorporation of stim-
ulus statistics. The model specifies the con-
ditions where incorporating previous trials 
is expected to improve perception and those 
where it is expected to hamper perception. It 
shows that stimulus repetition is not neces-
sary (e.g., Bias+ trials in a protocol with no 
reference), and may even not be beneficial 
(Bias− in a fixed reference protocol) for per-
formance. The IMM predicts that dyslexics 
will only perform worse than controls on the 
trials that benefit from the stimuli statistics.

The anchoring deficit hypothesis and its 
computational implementation are incon-
sistent with the hypothesis that poor phono-
logical representations are the core deficit in 
dyslexia (e.g., Snowling,  2000). By contrast, 
our computational description of dyslexics’ 
difficulties is tightly related to hypotheses 
that associate dyslexics’ difficulties with a 
failure to make effective predictions that can 
facilitate task performance (“predictive cod-
ing”; Díaz et al., 2012). It is also compatible 
with hypotheses that dyslexics are less resil-
ient to external noise (the “noise exclusion 
hypothesis”; e.g., Conlon, Lilleskaret, Wright, 
& Power,  2012; Beattie, Lu, & Manis,  2011; 
Partanen et al., 2012; Sperling, Lu, Manis, & 
Seidenberg,  2005,  2006). According to the 
Bayesian framework underpinning the IMM, 
the prior information is utilized to compen-
sate for the noise in the representation of the 
stimuli. We found that dyslexics do not prop-
erly adjust the weight of previous trials to the 
level of internal noise (Fig. 1.4). Functionally, 
this results in reduced noise exclusion. 
Importantly, putting this broad concept in a 
computational framework leads to a counter-
intuitive prediction: when the context is 
compromising (e.g. Bias− like conditions 
leading to disruptive predictions), dyslexics 
should not do worse and may even do better 
than controls since this mechanism for “noise 
exclusion” is biased by the prior statistics.
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Other studies have suggested that dyslex-
ics’ implicit sequence learning is impaired 
(e.g., Jiménez-Fernández, Vaquero, Jiménez, 
& Defior, 2011; Stoodley, Harrison, & Stein, 
2006; Vicari et al.,  2003). This phrasing 
is very broad. For example, it is not clear 
whether the representation of syllables 
should be intact, whereas the representa-
tion of words, which are perhaps formed 
by implicit sequential learning (conditional 
probabilities between adjacent syllables; 
Saffran, Aslin, & Newport, 1996) should be 
impaired. Our computational model assumes 
poor incorporation of basic attributes (zero-
order statistics), as observed by the poor 
usage of the mean frequency of the experi-
ment. It predicts that the same deficit may 
lead to reduced sensitivity to the prevalence 
of single syllables.

Other studies (Boets et al.,  2013; Ramus, 
2014; Ramus & Szenkovits, 2008) have pro-
posed that phonological representations 
remain intact, but that dyslexics’ access to 
these representations is inefficient, perhaps 
due to impaired connectivity between the 
superior temporal areas that encode auditory 
stimuli and the frontal areas (e.g., Broca’s 
region) which utilize them. This hypothesis 
assumes a clear distinction between represen-
tations and access, though it does not specify 
what “access” is, and whether it precedes 
perception. Consequently, it is too loosely 
defined, and does not specify which retrieval 
conditions are expected to pose  difficulties 

(e.g., whether implicit priming should be 
impaired) and whether they are expected 
to degrade perception or merely voluntary 
memory retrievals. Our own perspective, as 
described above, is that perception is never 
devoid of context (Raviv et al., 2014). Ease of 
retrieval is heavily affected by the availability 
of adequate predictions, which can substan-
tially facilitate the process. Thus, difficulty in 
utilizing priors may impair the efficiency of 
retrieval. Nevertheless, the nature of retrieval 
processes in different behavioral contexts is 
far from being understood.

Recently, it has been shown that a hierar-
chical model of perception is able to recon-
struct or decode the dynamics underlying 
a generated series of stimuli (Yildiz, von 
Kriegstein, & Kiebel,  2013). Our observa-
tions can be interpreted within this frame-
work, and suggest that dyslexics’ deficit 
resides in the higher and slower level of the 
hierarchy, which is characterized by larger 
time constants, or in their impaired commu-
nication with lower levels (Boets et al., 2013). 
The slower dynamics in this higher level are 
able to track cumulating evidence and form a 
prior based on the underlying statistics of the 
stimuli. In turn, these predictions are used to 
modulate the lower levels of the hierarchy to 
better match the upcoming stimuli and the 
requirements of the task. This coincides with 
data showing that among dyslexics, task-
related top-down modulation is impaired 
(Díaz et al., 2012).
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