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CHAPTER 1
Derivatives, Volatility and Variance

T he first chapter provides some background information for the rest of the book. It mainly
covers concepts and notions of importance for later chapters. In particular, it shows how the

delta hedging of options is connected with variance swaps and futures. It also discusses differ-
ent notions of volatility and variance, the history of traded volatility and variance derivatives
as well as why Python is a good choice for the analysis of such instruments.

1.1 OPTION PRIC ING AND HEDGING

In the Black-Scholes-Merton (1973) benchmark model for option pricing, uncertainty with
regard to the single underlying risk factor S (stock price, index level, etc.) is driven by a geo-
metric Brownian motion with stochastic differential equation (SDE)

dSt = 𝜇Stdt + 𝜎StdZt

Throughout we may think of the risk factor as being a stock index paying no dividends. St is
then the level of the index at time t, 𝜇 the constant drift, 𝜎 the instantaneous volatility and Zt is
a standard Brownian motion. In a risk-neutral setting, the drift 𝜇 is replaced by the (constant)
risk-less short rate r

dSt = rStdt + 𝜎StdZt

In addition to the index which is assumed to be directly tradable, there is also a risk-less bond
B available for trading. It satisfies the differential equation

dBt = rBtdt

In this model, it is possible to derive a closed pricing formula for a vanilla European call option
C maturing at some future date T with payoff max[ST − K, 0], K being the fixed strike price.
It is

C(S, K, t, T , r, 𝜎) = St ⋅ N(d1) − e−r(T−t) ⋅ K ⋅ N(d2)

3
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The price of a vanilla European put option P with payoff max[K − ST , 0] is determined by
put-call parity as

Pt = Ct − St + e−r(T−t)K

There are multiple ways to derive this famous Black-Scholes-Merton formula. One way relies
on the construction of a portfolio comprised of the index and the risk-less bond that perfectly
replicates the option payoff at maturity. To avoid risk-less arbitrage, the value of the option
must equal the payoff of the replicating portfolio. Another method relies on calculating the
risk-neutral expectation of the option payoff at maturity and discounting it back to the present
by the risk-neutral short rate. For detailed explanations of these approaches refer, for example,
to Björk (2009).

Yet another way, which we want to look at in a bit more detail, is to perfectly hedge
the risk resulting from an option (e.g. from the point of view of a seller of the option) by
dynamically trading the index and the risk-less bond. This approach is usually called delta
hedging (see Sinclair (2008), ch. 1). The delta of a European call option is given by the first
partial derivative of the pricing formula with respect to the value of the risk factor, i.e. 𝛿t =

𝛿Ct

𝛿St
.

More specifically, we get

𝛿t =
𝛿Ct

𝛿St
= N(d1)

When trading takes place continuously, the European call option position hedged by 𝛿t index
units short is risk-less:

dΠt ≡ dCt − 𝛿tSt = 0

This is due to the fact that the only (instantaneous) risk results from changes in the index level
and all such (marginal) changes are compensated for by the delta short index position.

Continuous models and trading are a mathematically convenient description of the real
world. However, in practice trading and therefore hedging can only take place at discrete points
in time. This does not lead to a complete breakdown of the delta hedging approach, but it
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introduces hedge errors. If hedging takes place at every discrete time interval of length Δt, the
Profit-Loss (PL) for such a time interval is roughly (see Bossu (2014), p. 59)

PLΔt ≈
1
2
Γ ⋅ ΔS2 + Θ ⋅ Δt

Γ is the gamma of the option and measures how the delta (marginally) changes with the chang-
ing index level. ΔS is the change in the index level over the time interval Δt. It is given by

Γ = 𝜕2C
𝜕S2

=
N′(d1)

S𝜎
√

T − t

Θ is the theta of the option and measures how the option value changes with the passage of
time. It is given approximately by (see Bossu (2014), p. 60)

Θ ≈ −1
2
ΓS2𝜎2

With this we get

PLΔt ≈
1
2
Γ ⋅ ΔS2 − 1

2
ΓS2𝜎2 ⋅ Δt

= 1
2
Γ ⋅ S2

[(ΔS
S

)2
−
(
𝜎 ⋅

√
Δt

)2
]

The quantity 1
2
Γ ⋅ S2 is called the dollar gamma of the option and gives the second order change

in the option price induced by a (marginal) change in the index level. (ΔS
S

)2 is the squared
realized return over the time interval Δt – it might be interpreted as the (instantaneously)
realized variance if the time interval is short enough and the drift is close to zero. Finally,

(𝜎 ⋅
√
Δt)2 is the fixed, “theoretical” variance in the model for the time interval.

The above reasoning illustrates that the PL of a discretely delta hedged option position is
determined by the difference between the realized variance during the discrete hedge interval
and the theoretically expected variance given the model parameter for the volatility. The total
hedge error over N = T

Δt
intervals is given by

Cumulative PLΔt ≈
1
2

N∑
t=1

Γt−1 ⋅ S2
t−1

[(
ΔSt

St−1

)2

−
(
𝜎 ⋅

√
Δt

)2
]

(1.1)

This little exercise in option hedging leads us to a result which is already quite close to a
product intensively discussed in this book: listed variance futures. Variance futures, and their
Over-the-Counter (OTC) relatives variance swaps, pay to the holder the difference between
realized variance over a certain period of time and a fixed variance strike.
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1.2 NOTIONS OF VOLATIL ITY AND VARIANCE

The previous section already touches on different notions of volatility and variance. This
section provides formal definitions for these and other quantities of importance. For a more
detailed exposition refer to Sinclair (2008). In what follows we assume that a time series is
given with quotes Sn, n ∈ {0,… , N} (see Hilpisch (2015, ch. 3)). We do not assume any spe-
cific model that might generate the time series data. The log return for n > 0 is defined by

Rn ≡ log Sn − log Sn−1 = log
Sn

Sn−1

� realized or historical volatility: this refers to the standard deviation of the log returns of
a financial time series; suppose we observe N (past) log returns Rn, n ∈ {1,… , N}, with
mean return �̂� = 1

N

∑N
n=1 Rn; the realized or historical volatility �̂� is then given by

�̂� =

√√√√ 1
N − 1

N∑
n=1

(Rn − �̂�)2

� instantaneous volatility: this refers to the volatility factor of a diffusion process; for
example, in the Black-Scholes-Merton model the instantaneous volatility 𝜎 is found in
the respective (risk-neutral) stochastic differential equation (SDE)

dSt = rStdt + 𝜎StdZt

� implied volatility: this is the volatility that, if put into the Black-Scholes-Merton option
pricing formula, gives the market-observed price of an option; suppose we observe today
a price of C∗

0 for a European call option; the implied volatility 𝜎imp is the quantity that
solves ceteris paribus the implicit equation

C∗
0 = CBSM(S0, K, t = 0, T , r, 𝜎imp)

These volatilities all have squared counterparts which are then named variance, such as real-
ized variance, instantenous variance or implied variance. We have already encountered realized
variance in the previous section. Let us revisit this quantity for a moment. Simply applying the
above definition of realized volatility and squaring it we get

�̂�2 = 1
N − 1

N∑
n=1

(Rn − �̂�)2

In practice, however, this definition usually gets adjusted to

�̂�2 = 1
N

N∑
n=1

R2
n
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The drift of the process is assumed to be zero and only the log return terms get squared. It
is also common practice to use the definition for the uncorrected (biased) standard deviation
with factor 1

N
instead of the definition for the corrected (unbiased) standard deviation with

factor 1
N−1

. This explains why we call the term ( ΔSt

St−1
)2 from the delta hedge PL in the previous

section realized variance over the time interval Δt. In that case, however, the return is the
simple return instead of the log return.

Other adjustments in practice are to scale the value to an annual quantity by multiplying
it by 252 (trading days) and to introduce an additional scaling term (to get percent values
instead of decimal ones). One then usually ends up with (see chapter 9, Realized Variance and
Variance Swaps)

�̂�2 ≡ 10000 ⋅
252
N

⋅
N∑

n=1

R2
n

Later on we will also drop the hat notation when there is no ambiguity.

1.3 L ISTED VOLATIL ITY AND VARIANCE DERIVATIVES

Volatility is one of the most important notions and concepts in derivatives pricing and analytics.
Early research and financial practice considered volatility as a major input for pricing and
hedging. It is not that long ago that the market started thinking of volatility as an asset class
of its own and designed products to make it directly tradable.

The idea for a volatility index was conceived by Brenner and Galai in 1987 and pub-
lished in the note Brenner and Galai (1989) in the Financial Analysts Journal. They write in
their note:

“While there are efficient tools for hedging against general changes in overall market
directions, so far there are no effective tools available for hedging against changes
in volatility. … We therefore propose the construction of three volatility indexes on
which cash-settled options and futures can be traded.”

In what follows, we focus on the US and European markets.

1.3.1 The US History

The Chicago Board Options Exchange (CBOE) introduced an equity volatility index, called
VIX, in 1993. It was based on a methodology developed by Fleming, Ostdiek and Whaley
(1995) – a working paper version of which was circulated in 1993 – and data from S&P 100
index options. The methodology was changed in 2003 to the now standard practice which uses
the robust, model free replication results for variance (see chapter 3 Model-Free Replication
of Variance) and data from S&P 500 index options (see CBOE (2003)). While the first version
represented a proxy for the 30 day at-the-money implied volatility, the current version is a
proxy for the 30 day variance swap rate, i.e. the fixed variance strike which gives a zero value
for a respective swap at inception.
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F IGURE 1.1 Historical volume of traded VIX derivatives on a log scale. Data source:
http://cfe.cboe.com/data/historicaldata.aspx

Carr and Lee (2009) provide a brief history of both OTC and listed volatility and variance
products. They claim that the first OTC variance swap has been engineered and offered by
Union Bank of Switzerland (UBS) in 1993, at about the same time the CBOE announced the
VIX. These were also the first traded contracts to attract some liquidity in contrast to volatility
swaps which were also introduced shortly afterwards. One reason for this is that variance swaps
can be robustly hedged – as we will see in later chapters – while volatility swaps, in general,
cannot. It is more or less the same reasoning behind the change of methodology for the VIX
in 2003.

Trading in futures on the VIX started in 2004 while the first options on the index were
introduced in 2006. These instruments are already described in Whaley (1993), although their
market launch took more than 10 years after the introduction of the VIX. These were not the
first listed volatility derivatives but the first to attract significant liquidity and they are more
actively traded at the time of writing than ever. Those listed instruments introduced earlier,
such as volatility futures launched in 1998 by Deutsche Terminbörse (now Eurex), could not
attract enough liquidity and are now only a footnote in the financial history books.

The volume of traded contracts on the VIX has risen sharply on average over recent years
as Figure 1.1 illustrates. The volume varies rather erratically and is influenced inter alia by
seasonal effects and the general market environment (bullish or bearish sentiment).

In December 2012, the CBOE launched the S&P 500 variance futures contract – almost
20 years after their OTC counterparts started trading. After some early successes in building
liquidity in 2013, liquidity has dried up almost completely in 2014 and 2015.

1.3.2 The European History

Eurex – back then Deutsche Terminbörse – introduced in 1994 the VDAX volatility index, an
index representing the 45 day implied volatility of DAX index options. As mentioned before,
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FIGURE 1.2 Historical daily closing levels for the VIX and the VSTOXX volatility indexes. Data
source: Yahoo! Finance and http://stoxx.com

in 1998 Eurex introduced futures on the VDAX which could, however, not attract enough
liquidity and were later delisted. In 2005, the methodolgy for calculating the index was also
changed to the more robust, model-free replication approach for variance swaps. The index
was renamed VDAX-NEW and a new futures contract on this index was introduced.

In 2005, Eurex also launched futures on the VSTOXX volatility index which is based on
options on the EURO STOXX 50 index and uses the by now standard methodology for volatil-
ity index calculation as laid out in CBOE (2003). In 2009 they were re-launched as “Mini
VSTOXX Futures” with the symbol FVS. At the same time, Eurex stopped the trading of
other volatility futures, such as those on the VDAX-NEW and the VSMI.

Since the launch of the new VSTOXX futures, they have attracted significant liquidity and
are now actively traded. A major reason for this can be seen in the financial crisis of 2007–2009
when volatility indexes saw their highest levels ever. This is illustrated in Figure 1.2 where the
maximum values for the VIX and VSTOXX are observed towards the end of 2008. This led
to a higher sensitivity of market participants to the risks that spikes in volatility can bring and
thus increased the demand for products to hedge against such adverse market environments.
Observe also in Figure 1.2 that the two indexes are positively correlated in general, over the
period shown with about +0.55.

In March 2010, Eurex introduced options on the VSTOXX index. These instruments also
attracted some liquidity and are at the time of writing actively traded. In September 2014,
Eurex then launched a variance futures contract on the EURO STOXX 50 index.

1.3.3 Volat i l i ty of Volat i l i ty Indexes

Nowadays, we are already one step further on. There are now indexes available that measure
the volatility of volatility (vol-vol). The so-called VVIX of the CBOE was introduced in March
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F IGURE 1.3 Historical daily closing levels for the VIX and the VVIX volatility (of volatility)
indexes. Data source: Thomson Reuters Eikon

2012. In October 2015 the index provider STOXX Limited introduced the V-VSTOXX indexes
which are described on www.stoxx.com as follows:

“The V-VSTOXX Indices are based on VSTOXX realtime options prices and are
designed to reflect the market expectations of near-term up to long-term volatility-
of-volatility by measuring the square root of the implied variance across all options
of a given time to expiration.”

These new indexes and potential products written on them seem to be a beneficial addition to
the volatility asset class. Such products might be used, for example, to hedge options written
on the volatility index itself since the vol-vol is stochastic in nature rather than constant or
deterministic.

The VVIX index is generally on a much higher level than the VIX index as Figure 1.3
illustrates. This indicates a much higher volatility for the VIX index itself compared to the
S&P 500 volatility.

Over the period shown, the VVIX is highly positively correlated with the VIX at a level
of about +0.66. Figure 1.4 plots the time series data for the two indexes on two different scales
to show this stylized fact graphically.

1.3.4 Products Covered in th is Book

There is quite a diverse spectrum of volatility and variance futures available. Out of all possible
products, the focus of this book is on the European market and these instruments:

� VSTOXX as a volatility index
� VSTOXX futures
� VSTOXX options
� Eurex Variance Futures.
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FIGURE 1.4 Different scalings for the VVIX and VIX indexes to illustrate the positive correlation.
Data Source: Thomson Reuters Eikon

The majority of the material has originally been developed as part of the Eurex Advanced
Services. Although the focus is on Europe, the methods and approaches presented can usu-
ally be tranferred easily to the American landscape, for instance. This results from the fact
that some methodological unification has taken place over the past few years with regard to
volatility and variance related indexes and products.

1.4 VOLATIL ITY AND VARIANCE TRADING

This section discusses motives and rationales for trading listed volatility and variance deriva-
tives. It does not cover volatility (variance) trading strategies that can be implemented with,
for example, regular equity options (see Cohen (2005), ch. 4).

1.4.1 Volat i l i ty Trading

It is instructive to first list characteristics of volatility indexes. We focus on the VSTOXX
and distinguish between facts (which follow from construction) and stylized facts (which are
supported by empirical evidence):

� market expection (fact): the VSTOXX represents a 30 day implied volatility average
from out-of-the money options, i.e. the market consensus with regard to the “to be real-
ized” volatility over the next 30 days

� non-tradable asset (fact): the VSTOXX itself is not directly tradable, only derivatives on
the VSTOXX can be traded

� mean-reverting nature (fact): the VSTOXX index is mean-reverting, it does not show a
positive or negative drift over longer periods of time
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F IGURE 1.5 Different scalings for the S&P 500 and VIX indexes to illustrate the negative
correlation. Data source: Yahoo! Finance

� negative correlation (stylized fact): the VSTOXX is (on average) negatively correlated
with the respective equity index, the EURO STOXX 50

� positive jumps (stylized fact): during times of stock market crisis, the VSTOXX can jump
to rather high levels; the mean reversion generally happens much more slowly

� higher than realized volatility (stylized fact): on average, the VSTOXX index is higher
than the realized volatility over the next 30 days.

Figure 1.5 illustrates the negative correlation between the S&P 500 index and the VIX index
graphically. Over the period shown, the correlation is about −0.75.

The value of a VSTOXX future represents the (market) expectation with regard to the
future value of the VSTOXX at the maturity date of the future. Given this background, typical
volatility trading strategies involving futures include the following:

� long VSTOXX future: such a position can be used to hedge equity positions (due to the
negative correlation with the EURO STOXX 50) or to increase returns of an equity port-
folio (e.g. through a constant-proportion investment strategy, see chapter 4, Data Analysis
and Strategies); it can also be used to hedge a short realized volatility strategy

� short VSTOXX future: such a trade can be entered, for example, when the VSTOXX
spikes and the expectation is that it will revert (fast enough) to its mean; it might also
serve to reduce vega exposure in long vega option portfolios

� term structure arbitrage: for example, shorting the front month futures contract and
going long the nearby futures contract represents a typical term structure arbitrage strategy
when the term structure is in contango; this is due to different carries associated with
different futures contracts and maturities, respectively
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� relative value arbitrage: VSTOXX futures can also be traded against other volatility/-
variance sensitive instruments and positions, like OTC variance swaps, equity options
portfolios, etc.

Similar and other strategies can be implemented involving VSTOXX options. With regard to
exercise they are European in nature and can be delta hedged by using VSTOXX futures which
is yet another motive for trading in futures. Typical trading strategies involving VSTOXX
options are:

� long OTM calls: such a position might protect an equity portfolio from losses due to a
market crash (again due to the negative correlation between VSTOXX and EURO STOXX
50)

� short ATM calls: writing ATM calls, and pocketing the option premium, might be attrac-
tive when the current implied volatility levels are relatively high

� long ATM straddle: buying put and call options on the VSTOXX with same (ATM) strike
and maturity yields a profit when the VSTOXX moves fast enough in one direction; this
is typically to be expected when the volatility of volatility (vol-vol) is high.

For both VSTOXX futures and options many other strategies can be implemented that exploit
some special situation (e.g. contango or backwardation in the futures prices) or reflect a certain
expectation of the trader (e.g. that realized volatility will be lower/higher than the implied/
expected volatility).

1.4.2 Variance Trading

The motives and rationales for trading in EURO STOXX 50 variance futures are not too dif-
ferent from those involving VSTOXX derivatives (see Bossu et al. (2005)). Typical strategies
include:

� long variance future: this position benefits when the realized variance is higher than
the variance strike (implied variance at inception); it might also be used to hedge equity
portfolio risks or short vega options positions

� short variance future: this position benefits when the realized variance is below the vari-
ance strike which tends to be the case on average; it can also hedge a long vega options
position

� forward volatility/variance trading: since variance is additive over time (which volatil-
ity is not), one can get a perfect exposure to forward implied volatility by, for exam-
ple, shorting the September variance future and going long the October contract; this
gives an exposure to the forward implied volatility from September maturity to October
maturity

� correlation trading: variance futures can be traded to exploit (statistical) arbitrage oppor-
tunities between, for example, the (implied) variance of an equity index and its compo-
nents or the (implied) variance of one equity index versus another one; in both cases, the
rationale is generally based on the correlation of the different assets and their variance,
respectively.
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1.5 PYTHON AS OUR TOOL OF CHOICE

There are some general reasons why Python is a good choice for computational finance and
financial data science these days. Among others, these are:

� open source: Python is open source and can be used by students and big financial insti-
tutions alike for free

� syntax: Python’s readable and concise syntax make it a good choice for presenting formal
concepts, like those in finance

� ecosystem: compared to other languages Python has an excellent ecosystem of libraries
and packages that are useful for data analytics and scientific computing in general and
financial analytics in particular

� performance: in recent years, the ecosystem of Python has grown especially in the
area of performance libraries, making it much easier to get to computing speeds more
than sufficient for the most computationally demanding algorithms, such as Monte Carlo
simulation

� adoption: at the time of writing, Python has established itself as a core technology at
major financial institutions, be it leading investment banks, big hedge funds or more tra-
ditional asset management firms

� career: given the widespread adoption of Python, learning and mastering the language
seems like a good career move for everybody working in the industry or planning to
do so.

In view of the scope and style of the book, one special feature is noteworthy:

� interactivity: the majority of the code examples presented in this book can be executed
in interactive fashion within the Jupyter Notebook environment (see http://jupyter.org);
in this regard, Python has a major advantage as an interpreted language compared to a
compiled one with its typical edit-compile-run cycle.

Chapter 1 of Hilpisch (2014) provides a more detailed overview of aspects related to
Python for Finance. All the code presented in this book is available via resources listed
under http://lvvd.tpq.io, especially on the Quant Platform for which you can register under
http://lvvd.quant-platform.com.

1.6 QUICK GUIDE THROUGH THE REST OF THE BOOK

The remainder of this introductory part of the book is organized as follows:

� chapter 2: this chapter introduces Python as a technology platform for (interactive) finan-
cial analytics; a more detailed account of Python for Finance is provided in Hilpisch
(2014)

� chapter 3: this chapter presents the model-free replication approach for variance; it is
important for both volatility indexes and derivatives written on them as well as for variance
futures.
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The second part of the book is about the VSTOXX and listed volatility derivatives. It comprises
the following chapters:

� chapter 4: as a starting point, chapter 4 uses Python to analyze historical data for the
VSTOXX and EURO STOXX 50 indexes; a focal point is the analysis of some simple
trading strategies involving the VSTOXX

� chapter 5: using the model-free replication approach for variance, this chapter shows in
detail how the VSTOXX index is calculated and how to use Python to (re-)calculate it
using raw option data as input

� chapter 6: Grünbichler and Longstaff (1996) were among the first to propose a parame-
terized model to value futures and options on volatility indexes; chapter 6 presents their
model which is based on a square-root diffusion process and shows how to simulate and
calibrate it to volatility option market quotes

� chapter 7: building on chapter 6, chapter 7 presents a more sophisticated framework – a
deterministic shift square-root jump diffusion (SRJD) process – to model the VSTOXX
index and to better capture the implied volatility smiles and volatility term structure
observed in the market; the exposition is slightly more formal compared to the rest of
the book

� chapter 8: this brief chapter discusses terms of the VSTOXX volatility index as well as
the futures and options traded on the VSTOXX.

Part three of the book is about the Eurex Variance Futures contract as listed in September 2014.
This part comprises three chapters:

� chapter 9: listed variance futures are mainly based on the popular OTC variance swap
contracts with some differences introduced by intraday trading; chapter 9 therefore cov-
ers variance swaps in some detail and also discusses differences between variance and
volatility as an underlying asset

� chapter 10: this chapter provides a detailed discussion of all concepts related to the listed
Eurex Variance Futures contract and shows how to (re-)calculate its value given historical
data; it also features a comparison between the futures contract and a respective OTC
variance swap contract

� chapter 11: this chapter discusses all those special characteristics of the Eurex Variance
Futures when it comes to (intraday) trading and settlement.

Part four of the book focuses on the DX Analytics financial library (see http://dx-
analytics.com) to model the VSTOXX index and to calibrate different models to VSTOXX
options quotes. It consists of three chapters:

� chapter 12: this chapter introduces basic concepts and API elements of the DX Analytics
library

� chapter 13: using the square-root diffusion model as introduced in chapter 6, this chapter
implements a calibration study to a single maturity of VSTOXX options over the first
quarter of 2014

� chapter 14: chapter 14 replicates the same calibration study but in a more sophisticated
fashion; it calibrates the deterministic shift square-root jump diffusion process not only
to a single maturity of options but to as many as five simultaneously.
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