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CHAPTER 1

Foundations of Vision

FRANK TONG

THE PURPOSE OF VISION

For people with intact vision, it would be
hard to imagine what life would be like
without it. Vision is the sense that we rely
on most to perform everyday tasks. Imag-
ine if instead you had to accomplish all of
your daily routines while blindfolded. We
depend on vision whenever we navigate
to work by foot or by car, search for our
favorite snack in the grocery aisle, or scan
the words on a printed page trying to extract
their underlying meaning. For many mam-
mals and especially for higher primates,
vision is essential for survival, allowing us to
reliably identify objects, food sources, con-
specifics, and the layout of the surrounding
environment.

Beyond its survival value, our visual
sense provides us with an intrinsic source
of beauty and pleasure, a tapestry of richly
detailed experiences. We may find ourselves
captivated by an expansive view from a
seaside cliff, a swirl of colors in an abstract
oil painting, or an endearing smile from a
close friend.

The power of vision lies in the dense
array of information that it provides about
the surrounding environment, from distances
near and far, registered by the geometry of
light patterns projected onto the backs of
the eyes. It is commonly said that a picture

is worth a thousand words. Consider for a
moment the chirping activity of the ganglion
cells in your retinae right now, and their
outgoing bundle of roughly 1 million axonal
fibers through each optic tract. Following
each glance or microsaccade, a new pattern
of activity is registered by the photorecep-
tors, then processed by the bipolar neurons
and the ganglion cells, after which these
high-bandwidth signals are relayed to the
lateral geniculate nucleus and ultimately to
the visual cortex for in-depth analysis.

Psychologists and neuroscientists have
made remarkable advances in understanding
the functional organization of the visual
system, uncovering important clues about
its perceptual mechanisms and underlying
neural codes. Computational neuroscientist
David Marr (1982) once quipped that the
function of vision is “to know what is where
by looking.” As Marr well appreciated, the
problem underlying vision is far easier to
summarize than it is to solve. Our visual
system does a remarkably good job of solv-
ing this problem, getting things pretty much
right about 99.9% of the time. On those rare
occasions where the visual system seems to
come up with “the wrong answer,” as in the
case of visual illusions, scientists can gain
insight into the powerful computations that
underlie the automatic inferences made by
the visual system.
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2 Foundations of Vision

Perception, Introspection,
and Psychophysics

Most fields of natural science rely exclusively
on third-person observation and experimen-
tation. In contrast, vision scientists can learn
a great deal from introspecting on their
personal visual experiences and by directly
testing their own eyes and brains. The
seminal contributions of vision research
to the emergence of psychology as a field
can be explained by the fact that scientists
could so readily test and analyze their own
perceptions.

Some early discoveries were made by
fortuitous observation, such as when Addams
(1834) noticed after staring at a waterfall
that his subsequent gaze at the neighboring
rocky cliff led to an unexpected impres-
sion of upward motion. His description of
the motion aftereffect, or waterfall illusion,
helped set the path toward the eventual devel-
opment of ideas of neuronal adaptation and
opponent-based coding to account for visual
aftereffects. Other discoveries involved
more purposeful observations and simple
experiments to characterize a perceptual
mechanism. Sir Charles Wheatstone devised
an optical apparatus to present different pic-
tures to the two eyes, and then drew simple
pictures to capture how a 3D object would
appear slightly differently from the vantage
point of each eye. By presenting these image
pairs in his stereoscope, he discovered that
it was possible to re-create an impression of
stereo-depth from flat pictures. He also found
that distinct patterns presented to the two
eyes could induce periodic alternations in
perception, or form-based binocular rivalry.
His optical invention grew so popular (akin
to the current-day popularity of 3D TV and
3D movies) that the Wheatstone stereoscope
could be found in many parlor rooms in
England in the 1800s.

As the process of characterizing percep-
tion became more formalized, a scientific
methodology evolved. Psychophysics refers
to experimental methods for quantifying
the relationship between the psychological

world and the physical world, which usu-
ally involves systematic manipulations of a
stimulus and measuring its perceptual con-
sequences. For instance, Weber reported that
the ability to detect a just noticeable differ-
ence (JND) between two stimuli depended
on their relative difference (or ratio) rather
than the absolute difference. Expanding upon
this idea, Fechner (1860) proposed that the
perceived intensity of a sensory stimulus
should increase in a predictable manner
proportional to the logarithm of its physical
intensity. Specifically, S = log(I ), where
S refers to the intensity of the sensation
and I refers to the intensity of the physical
stimulus. By describing this simple lawful
relationship between physical intensity and
psychological experience, the field of visual
psychophysics was born. A central tenet of
visual psychophysics is that perceptual states
can be quantified and formally characterized,
to help reveal the underlying mechanisms.

Signal Detection Theory

A fundamental advance in visual psy-
chophysics was the application of signal
detection theory to quantify the sensitivity
of the human visual system. This statistical
theory was originally developed to address
the problem of detecting faint radar sig-
nals reflected by a target in the presence of
background noise (Marcum, 1947). In visual
psychophysics, this same logic and approach
can be applied to both visual detection and
visual discrimination paradigms (Tanner &
Swets, 1954). These concepts are central to
vision research, so we will spend a good
amount of time reviewing them, but if they
are already very familiar to you, consider
moving on to the section “Why Vision Is a
Hard Computational Problem.”

A common design for a visual detection
task is as follows. There is a 50/50 chance that
a very faint target stimulus will be presented
on each trial, and the observer’s task is to
make a binary decision regarding whether the
target was present or absent. Let us assume
that the stimulus is extremely weak and that
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The Purpose of Vision 3

the visual system has some inherent level of
noise, so perfect performance is impossible.
There are four possible stimulus-response
outcomes, as shown in Figure 1.1A. If the
target stimulus is present and the observer
correctly reports “target present” this would
constitute a hit, but if the observer incorrectly
reports “target absent” this would constitute
a miss. Now, consider trials where the target
is absent and the observer correctly reports
“target absent”; this would be a correct rejec-
tion. But if the observer incorrectly reports
“target present,” this would be considered a
false alarm.

Now, imagine that a set of neurons in
the brain is selectively activated by the tar-
get, but these neurons exhibit some degree
of intrinsic noise even when the target is
absent. For example, the baseline firing rate
of these neurons may vary somewhat from
trial to trial. If a device was used to read out
the activity of these neurons, how would it
decide whether the target was presented or
not on a given trial?

In Figure 1.1B, you can find hypothetical
probability density functions that illustrate
how active these neurons will be under two
scenarios: when the target is absent and the
response arises from noise only, and when
the target is present and the response arises
from noise plus signal. (If a stronger neural
response occurred on a given trial, it would
correspond to an observation further to the
right on the abscissa. For mathematical con-
venience, the noise distribution is plotted
with a mean value of zero, even though in
reality, a neuron’s mean baseline firing rate
must be greater than zero and cannot produce
negative values.) Note how the two distri-
butions partially overlap such that perfect
discrimination is impossible. Both distribu-
tions are Gaussian normal with a common
standard deviation of 𝜎, corresponding to the
level of intrinsic noise, whereas the distance
D between their central means corresponds to
the magnitude of the signal-induced activity.
According to signal detection theory, sensi-
tivity at this detection task is mathematically
specified by the signal-to-noise ratio or what
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Figure 1.1 Overview of signal detection theory.
(A) Table showing classification of an observer’s
responses to a target stimulus, regarding its pres-
ence or absence. (B) Signal detection theory
proposes that the signal + noise distribution is
separated from the noise only distribution by dis-
tance D. Assuming that both distributions share a
common standard deviation, 𝜎, then visual sen-
sitivity or d ′ in this task will be determined
by D/𝜎. As the signal becomes stronger, the
signal + noise distribution shifts rightward, lead-
ing to larger d ′ and allowing for better detection
performance. Examples of d ′ = 1, 2, and 3 are
shown. The vertical dashed line indicates the crite-
rion (𝛽) that the observer uses for deciding whether
the target is present or absent. If the criterion
lies midway between the two distributions, the
observer is unbiased and the proportion of misses
and false alarms will be equal (bottom panel).
Relative to the midway point, leftward shifts lead
to a more liberal criterion for reporting target
present, while rightward shifts lead to a more
conservative criterion. The middle panel depicts
a conservative criterion, where the proportion
of false alarm responses would be reduced, but
at the cost of a greatly inflated proportion of
miss responses. Color version of this figure is
available at http://onlinelibrary.wiley.com/book/10
.1002/9781119170174.
Source: Figure created by Frank Tong; used with
permission of the author.
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4 Foundations of Vision

is commonly called d-prime or d ′, where
d ′ = D/𝜎.

Greater visual sensitivity and larger d ′

values will arise when the noise-only dis-
tribution and noise-plus-signal distribution
are more separated, sharing less overlap. For
d ′ values of 1, 2, or 3, the nonoverlapping
portions of the two distributions would com-
prise about 69%, 84%, and 93% of the total
area under the two curves. This percentage
of nonoverlap corresponds to the maximum
accuracy that one might attain in a detection
task if the observer were unbiased. If the two
distributions overlapped entirely, d ′ would
equal zero and performance would be at
chance level.

Performance at this task also depends on
the criterion that the observer adopts for
deciding whether the target is present or
absent. If the threshold is set to where these
two probability density functions intersect
(Figure 1.1B, bottom panel with d ′ = 3),
then responses will be unbiased. That is, an
equal proportion of miss responses and false
alarm responses will be made. If instead, the
observer adopts a conservative criterion by
setting a threshold that lies to the right of
the midway point between the two distribu-
tions (see Figure 1.1B, middle panel with
d ′ = 2), then a higher level of activity will
be required to respond “target present.” As a
consequence of this conservative criterion,
the proportion of false alarm responses will
be lower, but the proportion of hit responses
will also be lower, resulting in a greater
proportion of miss responses (hit rate =
1 − miss rate). Conversely, if the observer
adopts a liberal criterion by shifting the
threshold to the left, so that lower levels of
activity are needed to report “target present,”
then the proportion of misses will decrease
(i.e., more hits) but the proportion of false
alarms will increase. Larger biases that lead
to a greater imbalance between the frequency

of these two types of errors—misses and
false alarms—result in a higher overall error
rate. Despite this inherent cost of bias, there
are certain situations where a bias might be
preferable. For example, one might favor
a liberal criterion for a diagnostic medical
test to minimize the likelihood of reporting
false negatives.

Vision scientists are usually more inter-
ested in characterizing the visual sensitivity
of the observer rather than decisional bias.
A strategy for measuring sensitivity more
efficiently and eliminating bias is to adopt
a two-alternative forced-choice (2AFC)
paradigm, by presenting a target to detect on
every trial at say one of two spatial locations
or during one of two temporal intervals.
By requiring the observer to report which
location/interval contained the target, a target
present response is obtained on every trial,
thereby eliminating the possibility of bias.
Researchers have found that people’s perfor-
mance on 2AFC tasks can be modeled by
assuming that the observer can determine the
difference in the strength of the signal/noise
received in each of the two intervals, and then
base their decision on that difference signal.

Characterizing Visual Sensitivity

Signal detection theory provides the theoreti-
cal foundation for modern day psychophysics
and a powerful approach for characterizing
human visual sensitivity across a range of
stimulus conditions. To get an idea of this
approach in action, consider Figure 1.2A,
which shows the detection accuracy as a
function of stimulus contrast for gratings
presented at two different spatial frequen-
cies. Performance at the fovea is much
better at spatial frequencies of 1.0 cycles per
degree (cpd) than at extremely higher fre-
quencies of 32 cpd. By fitting a psychometric
function to these data, one can identify the
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Figure 1.2 Contrast sensitivity as a function of spatial frequency. (A) Examples of psychometric func-
tions showing detection accuracy plotted as a function of stimulus contrast. (B) Contrast sensitivity
plotted as a function of spatial frequency for sine-wave gratings (circles) and square-wave gratings
(squares) under brightly lit (500 cd/m2) viewing conditions (open symbols) and dimly lit (0.05 cd/m2)
scotopic viewing conditions. Square-wave gratings are easier to detect at very low spatial frequencies,
because they contain higher spatial frequency components that exceed the observer’s contrast threshold.
With scotopic viewing, rod photoreceptors are sensitive to much lower range of spatial frequencies. (C)
Visual demonstration of how contrast sensitivity varies with spatial frequency.
Each row of pixels shows a common range of luminance modulation, with the highest contrast appearing
at the bottom of the figure and progressively lower contrasts appearing above. Lower spatial frequen-
cies appear to the left in the figure and higher spatial frequencies appear to the right. Perception of
a hill-shaped bump of contrast modulation, akin to the open circles plotted in (B), is due to superior
sensitivity at moderately high spatial frequencies.
Source: (A) Example figures of performance accuracy as a function of contrast created by Frank Tong;
used with permission from the author. (B) From Campbell and Robson (1968).

contrast level at which performance reaches
76% correct in this 2AFC task (corresponding
to d ′ = 1) to characterize the observer’s sen-
sitivity at each spatial frequency. Figure 1.2B
shows contrast sensitivity as a function of
spatial frequency, and the shape of the full
contrast sensitivity curve (open circles).
The dependence of visual sensitivity on
spatial frequency can be directly experienced

by viewing the Campbell-Robson contrast
sensitivity chart (Figure 1.2C), where each
row of pixels depicts a common range of
luminance variation at progressively higher
spatial frequencies (from left to right).
Sensitivity is highest at intermediate spatial
frequencies, where one can perceive the
stripes extending farther upward along
the chart.
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6 Foundations of Vision

This ability to quantify visual sensitivity
across a range of stimulus conditions is
remarkably powerful. For example, Camp-
bell and Robson (1968) could accurately
predict the differences in contrast sensitiv-
ity to sine-wave and square-wave gratings,
based on signal detection theory and Fourier
analysis of the spatial frequency content of
the gratings. Likewise, this approach has
been used to characterize the differences in
spatial resolution under bright and dimly
lit conditions (see Figure 1.2B), as well as
the differences in temporal sensitivity under
these two regimes. Such approaches have also
been used to estimate the spectral absorp-
tion properties of cone receptors, by using
psychophysical methods to quantify visual
sensitivity to different wavelengths following
selective color adaptation (Smith & Pokorny,
1975; Stockman, MacLeod, & Johnson,
1993). Studies have further revealed the
exquisite sensitivity of the visual system
following dark adaptation. Indeed, human
observers are so sensitive that their detection
performance is modulated by quantum level
fluctuations in light emission and absorption
(Hecht, Shlaer, & Pirenne, 1941; Tinsley
et al., 2016).

Signal detection theory can also be used to
quantify how well observers can discriminate
among variations of a stimulus. For example,
if one were to judge whether a grating was
subtly tilted to the left or right of vertical, the
two distributions shown in Figure 1.1B can
instead be conceptualized as the neuronal
responses evoked by a leftward tilted stim-
ulus and a rightward tilted stimulus. Studies
such as these have shown that orientation
thresholds remain remarkably stable across a
wide range of contrast levels, leading to the
notion that orientation-selective neural pro-
cessing is largely contrast invariant (Skottun
et al., 1987). Studies have also revealed that
visual sensitivity is not perfectly uniform
across orientations. People are more sensitive

at discriminating orientations that are close
to horizontal or vertical (i.e., cardinal orien-
tations) as compared to orientations that are
oblique. Later in this chapter, we will also see
how signal detection theory has been used
to characterize how top-down attention can
improve visual performance at detection and
discrimination tasks.

From what we have just learned, it should
be clear that the psychophysical approach
is essential for characterizing the sensitivity
of the human visual system. Although neu-
roscience data can be highly informative,
many critical factors are grossly underspec-
ified, such as how the brain combines and
pools signals from multiple neurons or what
information the observer will rely on when
making a perceptual decision. A case in point
is that of visual hyperacuity: People can dis-
tinguish relational shifts between two-point
stimuli, even when they are spatially shifted
by just fractions of a photoreceptor unit
(Westheimer & McKee, 1977). Without psy-
chophysical testing, this empirical finding
would have been very difficult to predict
in advance. Psychophysical measures of
visual performance provide the benchmark
of the visual system’s sensitivity, by directly
testing the limits of what a person can or
cannot perceive.

Why Vision Is a Hard Computational
Problem

The initial encoding and processing of local
visual features, such as luminance, color,
orientation, and spatial frequency, provides
an essential front end for visual perception.
After these early processing stages, however,
the visual system faces even greater chal-
lenges it must solve. Indeed, much of what
the visual system must do is interpretive
and inferential in nature. Following each
eye movement, this system is presented with
a distinct pattern of light on the retina, akin
to a new megabyte puzzle that must be solved.
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Figure 1.3 How to recognize an array of numbers depicting an image. An image of a recognizable
object becomes impossible to perceive when it is presented as a matrix of numbers rather than as light
intensity values. This figure conveys a sense of the challenge faced by our visual system when interpreting
patterns of light. The grayscale version of this image is shown in Figure 1.4.

Look at the two-dimensional array of
numbers shown in Figure 1.3. Can you tell
what object is embedded in this matrix of
numbers? Larger numbers correspond to
brighter pixels of an image. This is the kind
of input a computer vision algorithm would
receive if it were tasked with identifying
objects in digital images. When faced with

a real-world image in this paint-by-numbers
format, it becomes apparent that our visual
system must solve a very challenging compu-
tational problem indeed. You probably have
no idea what this image depicts. Yet if the
numbers were converted into an array of light
intensities, the answer would be obvious (see
Figure 1.4).
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8 Foundations of Vision

Figure 1.4 Digitized image of the array shown in
Figure 1.3. Grayscale image with intensity values
specified by the matrix in Figure 1.3, showing a
coarse-scale digitized image of President Barack
Obama.
Source: Image adapted by the author.

This problem is challenging for several
reasons. First and foremost, the visual input
that we get from the retina is underspecified
and ambiguous. People tend to think of
seeing as believing, but in reality, the visual
system rarely has access to ground truth.
Instead, it must make its best guess as to
what physical stimulus out there in the world
might have given rise to the 2D pattern of
light intensities that appear on the retina at
this moment. This is known as the inverse
optics problem (Figure 1.5). Given the proxi-
mal stimulus (i.e., the retinal image), what is
the distal stimulus that could have given rise
to it?

Consider the scene depicted in Figure 1.6A
and the square patches marked with the let-
ters A and B. Which square looks brighter?
Actually, the two patches have the same
physical luminance, yet pretty much every-
one perceives B to be much brighter than A.
If you cover the other portions of the image,
you can see for yourself that the two squares
are the same shade of gray.

Figure 1.5 The inverse optics problem. The
inverse optics problem refers to underconstrained
nature of visual inference. For example, any num-
ber of quadrilateral shapes in the environment that
join together the four lines of sight (drawn in blue)
would create the same rectangular pattern on the
retina. How then does the visual system infer the
shape of an object from the 2D pattern observed
on the retina?
Source: Figure created by Frank Tong; used with
permission of the author.

This well-known brightness illusion, cre-
ated by Ted Adelson, illustrates that people
do not perceive the brightness of a local
region in terms of the raw amount of light
that is emitted from that region. Context
matters: The fact that square B appears
to be lying in a shadow while square A
is exposed to light has a strong influence
on this perceptual judgment. Some people
might think of this illusion as revealing the
mistakes made by the visual system. Humans
can be easily swayed by contextual factors
to make gross errors—a photometer would
perform so much better! However, another
way to think about this illusion is that our
visual system is remarkably sophisticated,
as it is trying to infer a more complex yet
stable property of the visual world, namely,
the apparent “paint color” or reflectance of
the local surface patch. Knowing the stable
reflectance of an object is far more useful
than simply knowing what colors are being
reflected from its surface. For example, it
would be helpful to know whether a banana
is greenish or ripe, regardless of whether it
is viewed in broad daylight, cool fluorescent
light, or in the orangey glow of sunset.
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Figure 1.6 Examples of visual illusions. (A) Adelson checkboard brightness illusion. (B) #TheDress.
(C) The right side of each dress consists of the exact same physical colors, but the apparent reflectance
of each dress is very different, as the left one appears to be lit by yellowish light, and the right
one appears in a bluish shadow. (D) Color perception illusion. The middle square on the top surface
and the middle square on the front surface actually show the same physical color, but they are per-
ceived very different. (E) Visual phantom illusion. The two sets of horizontal gratings are separated
by a uniform gray gap, but people tend to perceive the gratings as extending through the blank gap
region. (F) Subjective contour illusion, induced by the sudden color transition on the inducers. The
blue inducing components can lead to the perception of an illusory transparent diamond shape hover-
ing in front of the inducers, as well as neon color spreading. Color version of this figure is available at
http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: (A) Reproduced with permission from Edward Adelson. (B) Dress image reproduced with
permission from Cecilia Bleasdale. (D) Reproduced with permission from Beau Lotto. (E), (F) Used
with permission from Frank Tong.

Determining the reflectance of an object
is an underspecified computational prob-
lem, one that requires some inference and
guesswork. Why? Because the amount (and
spectral distribution) of light that reaches
our eye from an object is determined by two
factors: the object’s reflectance and the light
source that is shining on the object. Unless we

know the exact lighting conditions, we cannot
know the true reflectance of the object. (This
problem is akin to being told that the number
48 is the product of two numbers, X and Y,
and being asked to figure out what X and Y
are.) Usually, the visual system can make a
pretty good inference about the nature of the
light source by comparing the luminance and
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color spectra of multiple objects in a scene,
separately analyzing the regions that appear
to receive direct light and those that are in
shadow. But sometimes it can prove tricky to
infer the nature of the light source.

A striking example of this comes from
#TheDress (Figure 1.6B), an amateur photo
taken in a clothing store that became a viral
sensation on the Internet. Why? People
were shocked to discover that not everyone
perceives the world in the same way. Some
people perceived the dress as appearing as
blue and black, whereas others saw it as
white and gold.

This illusion arises in large part because
some people perceive the dress to be lying
in direct sunlight, in which case the dress
must have a dark reflectance (blue and
black), whereas others perceive the dress
to be in shadow, under an unseen awning
(Lafer-Sousa, Hermann, & Conway, 2015;
Winkler, Spillmann, Werner, & Webster,
2015). To appreciate how the inferred light
source can affect the perception of brightness
and color, Figure 1.6C shows a simpler illu-
sion, similar to #TheDress. The right portion
of each dress shows identical physical colors,
yet they are perceived differently depending
on whether they appear to lie in yellowish
light or bluish shadow. So what one per-
ceives depends on what the visual system
infers about the source of illumination (see
Figure 1.6D for another color/brightness
illusion).

The inverse optics problem also occurs
when we must infer the 3D structure of
an object from its 2D pattern of the retina.
(Binocular depth and motion parallax cues
are often weak or absent.) There are thou-
sands of common objects that we know
by name, and depending on the observer’s
viewpoint and the lighting conditions, any
single object can give rise to a multitude of
2D images. How then can one determine
the 3D shape and identity of an object from

the pattern of light it creates on the retina?
Consider even a very simple pattern, such as a
set of four lines that cast a rectangular pattern
on the retina. It turns out that an infinite possi-
ble variety of quadrilaterals could have given
rise to this retinal image (Figure 1.5). Indeed,
even a set of four disconnected lines could
lead to the same pattern on the retina, though
admittedly, it would be surprising to stumble
upon a set of lines that were arranged just
so to be viewed from this line of sight. One
strategy the visual system employs is to make
the simplifying assumption that the current
view is nonaccidental. Two lines that appear
parallel on the retina are assumed likely to be
parallel in the real world. Likewise, two lines
that appear to terminate at a common point
are assumed to form a junction in the 3D
world. As we will see next, our perceptions
can be well described as a form of statistical
inference.

Perception as Statistical Inference

Hermann von Helmholtz described the
nature of perception as one of unconscious
inference. By unconscious, he meant that
perceptual inferences are made rapidly
and automatically, scarcely influenced by
conscious or deliberative thought. When
presented with a visual illusion such as
the one shown in Figure 1.6A, we can be
told that patches A and B actually have the
same luminance. However, this cognitive
information will not overcome the inferences
that are automatically supplied by our visual
system. When the surrounding context is
particularly suggestive, as in cases of percep-
tual filling-in, the visual system may even
infer the presence of a nonexistent stimulus,
such as shadowy stripes (Figure 1.6E) or a
hazy blue diamond (Figure 1.6F) extending
through a physically blank region. Such illu-
sions are often described as “fooling our very
eyes.” However, does this necessarily mean
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that the visual system, and the computations
that it makes, are foolish? As we will see,
such a conclusion is unwarranted and far
from the truth.

Although von Helmholtz did not know
how to formalize the concept of unconscious
inference back in the 19th century, since
the 21st century there has been a growing
appreciation that perception can be under-
stood as a form of statistical or Bayesian
inference (Ernst & Banks, 2002; Kersten,
Mamassian, & Yuille, 2004; Knill & Pouget,
2004). Given the pattern of light that is
striking the retinae (i.e., the sensory data
or the proximal stimulus), the brain must
infer what is the most likely distal stimulus
that could have generated those sensory data.
What the brain considers most likely will also
depend on a person’s expectations and prior
experiences. For example, when judging
an ambiguous stimulus such as #TheDress,
some people may be predisposed to infer that
the dress is lying in shadow, whereas others
may consider it more likely that the dress is
lying in direct sunlight, leading to drastically
different perceptions of the same stimulus.

The formula for inferring the probability
of a stimulus, given the sensory data, is as
follows:

p(stimulus |data)

=
p(data | stimulus) × p(stimulus)

p(data)
Since the denominator term, p(data), is

independent of stimulus to be inferred, it
can be effectively ignored with respect to
determining the most likely stimulus that
could have given rise to the observed sensory
data. So, all that needs to be maximized to
make this inference is the numerator term.

Notice that any system that seeks to
determine the probability that the sensory
data would result from given the stimulus, or
p(data | stimulus), would require some type of
memory representation of the many previous

encounters with that stimulus, along with
the sensory data evoked by those encounters.
Likewise, the probability of encountering the
stimulus, p(stimulus), is sometimes referred
to as one’s prior expectations, which also
depend on a form of memory. What this
implies is that vision does not simply reflect
the processing of information in the here
and now. Instead, it reflects the interaction
between processing of the immediate sensory
input and what has been learned over the
course of a lifetime of visual experiences.
A telltale example is that of face percep-
tion. We often see faces upright but rarely
get to see them upside-down, so we have
greater difficulty recognizing a face when the
sensory data appears inverted on our retinae.

There is a growing body of evidence to
support this Bayesian view of perception,
though this theoretical framework has yet
to be fully tested or validated. That said,
even if the visual system does deviate from
Bayesian inference in certain respects, this
framework remains useful because it can
help us appreciate the conditions in which
visual processing deviates from statistical
optimality.

FUNCTIONAL ORGANIZATION
OF THE VISUAL SYSTEM

Now that we have a better grasp of the
computational challenges of human vision,
let’s consider how the visual system actually
solves them. In this section, we will review
the anatomical and functional organization of
the visual system, characterizing how visual
information is processed and transformed
across successive stages of the visual pathway
from retina to cortex. With this knowledge in
hand, we will consider how psychophysical
and neural investigations have shed light
on the mechanisms of visual perception,
attentional selection, and object recognition.



Trim Size: 7in x 10in Wixted-Vol2 c01.tex V1 - 01/02/2018 4:53 P.M. Page 12�

� �

�

12 Foundations of Vision

The visual system processes informa-
tion throughout the visual field in parallel,
analyzing and transforming the array of
visual signals from one processing stage to
the next, through a series of hierarchically
organized brain areas (see Figure 1.7A).
After phototransduction and the early-stage
processing of light information in the retina,
the vast majority of retinal outputs project
to the dorsal lateral geniculate nucleus of
the thalamus (LGN). LGN relay neurons in
turn have dense projections to the input layer
of the primary visual cortex, or area V1,
forming a myelinated stripe that can be seen
in cross section by the naked eye (i.e., stria
of Gennari). This is why V1 is also called
striate cortex. Intensive processing and local
feature analysis occurs within V1, which then
sends outputs to extrastriate visual areas V2,
V3, and V4 as well as the middle temporal
area (MT) for further analysis (Figure 1.7B).
Two major pathways can be identified in
the visual cortex: a dorsal pathway that
projects from the early visual cortex toward
the parietal lobe and a ventral pathway that
projects toward the ventral temporal cortex.
While the dorsal pathway is important for
spatial processing, eye movement control,
and supporting visually guided actions, the
ventral pathway has a critical role in visual
object recognition.

The patterns of activity that are evoked
by a stimulus at each level of this network
can be considered a neural representation
of that stimulus, and the changes in stimu-
lus’s representation across successive stages
can be understood as a series of nonlinear
transformations that are applied to that initial
stimulus input. That said, feedback projec-
tions are just as prominent as the feedforward
connections between most any two visual
areas, so visual processing is not strictly
feedforward or hierarchical, but rather bidi-
rectional and subject to top-down influences
from higher cortical areas.

Retina

The retina can be thought of as a multilayered
sheet that lies on the rear interior surface of
the eye (G. D. Field & Chichilnisky, 2007;
Masland, 2012). Photoreceptors form the
outer layer of the retina, which, curiously,
lies farthest from the light source (Figure 1.8).
Each photoreceptor signals the amount of
light (or dark) it is receiving by modulating
the amount of glutamate that is released
onto bipolar cells in the middle layer of the
retina. Bipolar cells, in turn, project to reti-
nal ganglion cells that form the inner layer
of the retina. These ganglion cells provide
the output signal from the retina, with a
large axonal bundle that exits the optic disk
(i.e., blind spot) and projects to the lateral
geniculate nucleus.

Embedded among the photoreceptors
and bipolar neurons are horizontal cells,
which provide a form of lateral inhibi-
tion to enhance the contrast sensitivity of
retinal processing. Amacrine cells are inter-
spersed among the bipolar neurons and
ganglion cells and strongly contribute to the
center-surround receptive field organization
of the ganglion cells.

Although curved in structure, the retina
is better understood in terms of its two-
dimensional organization. In essence, the
retina forms a 2D map that registers patterns
of light from the environment, preserving
their spatial geometry as light passes through
the pupil. High-acuity vision depends on
cone photoreceptors, which are most densely
packed at the center of the visual field, or
fovea. The concentration of cones steadily
declines as a function of eccentricity, or
distance from the fovea. When considering
the retina’s 2D layout, it is more useful to
consider its retinotopic organization in terms
of eccentricity and polar angle (Figure 1.7B)
instead of Cartesian (x, y) coordinates.

Cone photoreceptors support our ability
to perceive color and fine spatial detail under
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Figure 1.7 Hierarchical organization of the visual system. (A) Schematic illustration of the human
visual system, with projections from retina to the LGN to primary visual cortex. From V1, pro-
jections along the ventral visual pathway ultimately lead to the inferotemporal cortex (IT), while
the dorsal pathway projects toward the parietal lobe and regions in the intraparietal sulcus (IPS).
(B) Retinotopic organization of the human visual system. Colors show cortical responses to changes
in eccentricity and polar angle across the visual field. Color version of this figure is available at
http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: (A) Figure created by Frank Tong; used with permission from the author. (B) From Wandell
et al. (2007, pp. 368, 371). Reproduced with permission of Elsevier.
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Figure 1.8 Diagram illustrating a cross section
of the retina. This illustration depicts rod (R) and
cone (C) photoreceptors, bipolar neurons (Bi), hor-
izontal cells (H), amacrine cells (A), and retinal
ganglion cells (RGC) with axons projecting ulti-
mately toward the optic disk. Color version of
this figure is available at http://onlinelibrary.wiley
.com/book/10.1002/9781119170174.
Source: From Wikimedia commons. Retrieved
from https://commons.wikimedia.org/wiki/File:
Retina_layers.svg

well-lit or phototopic viewing conditions,
when reliable high-resolution spatial pro-
cessing won’t be limited by the amount of
available light. Individual cones can geneti-
cally express one of three types of photopsins,
which have different spectral sensitivities for
long (L-cone), medium (M-cone), and short
(S-cone) wavelengths of light. These roughly
correspond to our ability to perceive the red,
green, and blue portions of the visible color
spectrum (see Chapter 3 in this volume for
more on color vision).

Rod photoreceptors support low-
resolution monochromatic vision in scotopic

viewing conditions (i.e., when cones are
no longer active), because of their exquisite
sensitivity to very low levels of light. A single
photon of light is capable of modifying the
configuration of rhodopsin, the light-sensitive
molecule contained in rods. This, in turn,
leads to a cascade of molecular events that
can affect hundreds of downstream molecules
through a process of amplification, ultimately
modifying the electrical current of the rod
photoreceptor. While there are no rods in
the fovea, in the periphery, rods greatly
outnumber the cones.

Both rods and cones provide a continuous
analog signal of the local level of light.
In fact, photoreceptors remain continually
active in the dark (sometimes called dark
current), releasing glutamate steadily, and
are hyperpolarized by the presentation of
light. What functional advantage might this
serve? This counterintuitive coding scheme
ensures that rod photoreceptors can register
the appearance of even very low levels of
light by decreasing their rate of glutamate
release. Recall that following dark adaptation,
human observers appear sensitive to even
single-photon events. This coding scheme
also means that daylight conditions will
effectively bleach the rods, so they remain in
a continuous state of hyperpolarization. This
is helpful and efficient, since the downstream
activity of bipolar and ganglion cells will be
exclusively dominated by cone activity.

Individual bipolar neurons are either
excited or inhibited by the glutamate released
from innervating cone photoreceptors, result-
ing in a preference for either dark or light
in the center of their receptive field. In the
fovea, it is common for bipolar cells to
receive driving input from just a single cone,
and to project to just a single ganglion cell.
Thus, the number of cone photoreceptors
that ultimately converge upon a ganglion
cell’s receptive field center can be as low
as 1:1. Such a low convergence ratio from
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photoreceptor to ganglion cell provides the
foundation for high acuity vision in the
fovea. This can be contrasted with an esti-
mated convergence ratio of 1500:1 from rod
photoreceptors to ganglion cells.

The receptive fields of ganglion cells are
roughly circular in shape, with a central
region that prefers light and a surround that
prefers dark (i.e., on-center off-surround
receptive field) or a central region that
prefers dark and surround that prefers light
(i.e., off-center on-surround receptive field ).
The receptive field structure of ganglion
cells can be well described by a difference
of Gaussians (DoG) model, as illustrated in
Figure 1.9. A ganglion cell with an on-center
off-surround can be characterized by the
linear sum of a sharply tuned excitatory
center and a broadly tuned inhibitory sur-
round. The DoG model provides an excellent
quantitative fit of the spatial frequency tuning
properties of retinal ganglion cells, such as
the X-cells of the cat retina as was described
in the pioneering work of Enroth-Cugell and
Robson (1966).

That said, the standard textbook portrayal
of retinal ganglion cells tends to oversim-
plify their receptive field structure as being
perfectly circular and nonoriented. A large
number of retinal ganglion cells have elon-
gated visual receptive fields that exhibit some
degree of orientation bias, which can arise
from their elongated dendritic fields. These
elongations or deviations from circularity
tend to be more prominent for orientations
that radiate outward from the fovea (Schall,
Perry, & Leventhal, 1986). These modest
orientation biases, found in retinal ganglion
cells, are strongly predictive of the orienta-
tion bias found in downstream LGN neurons
(Suematsu, Naito, Miyoshi, Sawai, & Sato,
2013). At present, we do not know whether
this heterogeneity and bias in the retina and
LGN represent nuisance variables that must
simply be ignored, or whether they directly

On-center 

Off-center 

V1 Neuron

Retinal Ganglion Cell

Even-symmetric

Odd-symmetric

Figure 1.9 Examples of visual receptive fields
in the retina and V1. This illustration shows
the idealized receptive field structure of retinal
ganglion cells (RGC) with either on-center or
off-center organization. The 1D response profile of
the on-center RGC arises from the linear sum of an
excitatory center (red) and an inhibitory surround
(blue). The receptive field tuning of V1 neurons
can be modeled using even- and odd-symmetric
Gabor functions, with their 1D profile shown to
the right. Color version of this figure is available
at http://onlinelibrary.wiley.com/book/10.1002/
9781119170174.
Source: Figure created by Frank Tong; used with
permission of the author.

contribute to development of orientation
selectivity in V1.

Magnocellular, Parvocellular,
and Koniocellular Pathways

Recent studies suggest that there are about 20
different kinds of ganglion cells that tile the
retina. The connectivity and function of many
of these cell types remain to be determined
(Masland, 2012). Arguably, each of these
ganglion cell outputs could be described as
its own specialized signal or channel. For
our purposes, we will emphasize three major
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pathways of the early visual system: the
magnocellular (M), parvocellular (P), and
koniocellular (K) pathways. These pathways
are relayed through distinct layers of the
LGN, and their anatomical segregation in
the LGN has greatly facilitated their study
(Casagrande & Xu, 2004).

The magnocellular (M) pathway supports
the rapid temporal processing of transient
visual events and motion but with coarser
spatial resolution, whereas the parvocellu-
lar (P) pathway supports slower sustained
processing of fine spatial detail and color
information. This trade-off between tempo-
ral and spatial resolution suggests that the
visual system evolved two parallel pathways
for optimizing sensitivity. If the magno-
cellular system evolved to process rapidly
changing light levels, then there will be
minimal opportunity to pool visual signals
over time, so integrating signals over larger
regions of space is needed to improve the
signal-to-noise ratio of visual processing.
Higher resolution processing of static stimuli
can likewise be achieved by pooling signals
over time.

Magnocellular neurons in the LGN have
large cell bodies and receive inputs from
large, fast-conducting retinal ganglion cells,
called parasol cells. Each parasol cell
receives converging input from a fairly large
number of L and M cones, leading to coarser
spatial tuning and poor chromatic sensitivity.
Assuming that individual parasol cells sample
from local L and M cones in a fairly random
way, then most of these neurons would be
expected to lack strong chromatic bias.

Parvocellular LGN neurons receive their
inputs from midget cells in the retina, which
have smaller cell bodies and much smaller
dendritic fields than parasol cells. In the
fovea, the excitatory center of a midget cell
may receive input from only a single L- or
M-cone photoreceptor, allowing for both
high spatial acuity and strong chromatic

preference. Like all ganglion cells, midget
cells become progressively larger in the
periphery, integrating information from
a larger number of cone photoreceptors.
Although midget cells have modest tendency
to sample preferentially from either L cones
or M cones (G. D. Field et al., 2010), this
nonrandom bias is quite weak, which may
help explain why color perception is less
precise in the periphery.

The koniocellular (K) pathway is anatomi-
cally distinct from the M and P pathways and
has a specialized functional role in process-
ing signals originating from S-cone photore-
ceptors. S cones comprise only ∼10% of the
cones in the human retina, and project to their
own specialized classes of bipolar cells and
ganglion cells. These, in turn, project to the
interstitial layers of the LGN.

Lateral Geniculate Nucleus

The LGN consists of multiple functional lay-
ers that each contain a complete retinotopic
map of the contralateral hemifield. Layers 1
and 2 of the LGN consist of magnocellular
neurons that receive their respective input
from the contralateral eye and ipsilateral
eye, whereas layers 3–6 consist of parvo-
cellular neurons that receive contralateral
or ipsilateral input. Between each of these
M/P layers lies an interstitial layer of konio-
cellular neurons, whose very small cell
bodies led to difficulties in detection in early
anatomical studies.

These ganglion cell inputs synapse onto
LGN relay neurons, which primarily project
to area V1 in primates. Although the LGN has
traditionally been considered just a simple
relay nucleus, there is growing evidence of
its role in aspects of perceptual processing as
well as attentional modulation. LGN neurons
show evidence of adaptation to high levels of
stimulus contrast over time, and also exhibit a
considerable degree of surround suppression.
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Some researchers have emphasized that
such modulatory effects are due to retinal
mechanisms, whereas others have proposed
the importance of feedback from V1 to LGN
(Sillito, Cudeiro, & Jones, 2006; Alitto &
Usrey, 2008; Jones et al., 2012; Usrey &
Alitto, 2015).

Just as some orientation bias can be
observed in retinal ganglion cells, LGN
neurons can exhibit a modest but reliable ori-
entation bias. Moreover, this bias tends to be
correlated with the orientation preference of
innervating retinal ganglion cells (Suematsu
et al., 2013). Intriguingly, feedback pro-
jections from V1 to LGN have an oriented
spatial structure that matches the tuning pref-
erence of the V1 neurons providing feedback
(W. Wang, Jones, Andolina, Salt, & Sillito,
2006), suggesting that feedback from V1
to LGN may serve to modulate the efficacy
of the orientation signals that V1 ultimately
receives (Andolina, Jones, Wang, & Sillito,
2007). Modest orientation selectivity has
also been demonstrated in neuroimaging
studies of the human LGN (Ling, Pratte, &
Tong, 2015). It remains to be seen whether
the orientation bias of LGN neurons directly
contributes to the orientation selectivity of
V1 neurons. Advances in two-photon cal-
cium imaging in rodent models will help
inform our understanding of the basis of
V1 orientation selectivity, as the activity of
hundreds or thousands of synaptic boutons
can be concurrently monitored (Kondo &
Ohki, 2016; Lien & Scanziani, 2013; Sun,
Tan, Mensh, & Ji, 2016). That said, direct
characterization of orientation mechanisms
in primates will still be essential.

There is considerable top-down feedback
from V1 to the LGN, both directly and via
the thalamic reticular nucleus, which may
modify both the gain and the timing of
spiking activity in the LGN. Shifts of covert
attention can modulate LGN responses in
both monkeys and humans. Single-unit

studies in monkeys have found that spatial
attention can boost the responsiveness of
LGN neurons (McAlonan, Cavanaugh, &
Wurtz, 2008) and enhance the synaptic effi-
cacy of spikes transmitted from LGN to V1
(Briggs, Mangun, & Usrey, 2013). Human
neuroimaging studies have likewise found
spatially specific influences of attention in
the LGN (Schneider & Kastner, 2009), as
well as modulations of orientation-selective
responses (Ling et al., 2015).

Primary Visual Cortex (V1)

The primary visual cortex provides a detailed
analysis of the local features in the visual
scene. Visual signals travel from the retina
to the LGN, which in turn projects to V1 via
what is known as the retinogeniculostriate
pathway. This pathway is far more prominent
in primates than in lower mammals, which is
why V1 lesions in humans lead to much more
severe deficits. Patients with V1 damage
typically report a lack of visual awareness in
the damaged part of their visual field. Some
patients show some residual visual function
despite this lack of reported awareness, a
neuropsychological impairment that is called
blindsight (Stoerig, 2006).

From the LGN, parvocellular and magno-
cellular neurons project to different sublayers
of layer 4 of V1, whereas koniocellular
neurons have a strong direct projection to lay-
ers 1 and 3. Feedforward inputs to V1 are also
highly structured in terms of their topography.
At the most global level, V1 is retinotopically
organized according to eccentricity and polar
angle (see Figure 1.7B), with the foveal
representation near the occipital pole and
more eccentric regions lying more anteri-
orly. Projections from LGN to V1 are also
organized by eye of origin, leading to the
formation of ocular dominance columns.
These alternating monocular columns, each
about 1 mm thick in humans, give rise to
a striped pattern across the cortical sheet.
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Such columns have been successfully
mapped in humans using high-resolution
fMRI (functional magnetic resonance imag-
ing; Figure 1.10). At finer spatial scales, ori-
entation columns and pinwheel structures can
also be observed in the primary visual cortex
of human (Figure 1.10C) and nonhuman

(A)

(B) (C)

Figure 1.10 Ocular dominance and orientation
columns in human V1. High-resolution fMRI
of the human primary visual cortex (A) reveals
the presence of ocular dominance columns (B)
and evidence of columnar orientation structures
(C). Color version of this figure is available
at http://onlinelibrary.wiley.com/book/10.1002/
9781119170174.
Source: From Yacoub, Harel, and Ugurbil (2008,
p. 10608). Copyright 2008 National Academy of
Sciences, USA. Reproduced with permission of
PNAS.

primates (Obermayer & Blasdel, 1993;
Yacoub, Harel, & Ugurbil, 2008). Orienta-
tion domains have also been successfully
mapped in the extrastriate visual areas of
monkeys using invasive imaging methods.
Some have suggested that ocular dominance
columns may provide the necessary scaf-
folding for the functional organization of
binocular processing of disparity informa-
tion. Curiously, however, not all monkeys
show evidence of ocular dominance columns
(Adams & Horton, 2003).

Efficient Coding Hypothesis

Much of our current understanding of neural
coding can be traced back to early advances
in vision research, including the seminal con-
tributions of Horace Barlow, David Hubel,
and Torsten Wiesel. When Hubel and Wiesel
first planted their electrodes in area V1 of the
cat, it was akin to entering terra incognita. V1
neurons were far more quiet—almost eerily
silent—in comparison to earlier attempts to
record spiking activity from the LGN or from
retinal ganglion cells (Kuffler, 1953).

Why was the case? According to Barlow’s
(1961) efficient coding hypothesis, the
goal of the visual system is to reduce any
redundancies that exist in the natural sen-
sory input by learning a sparse efficient
neural code. A sparse code would require
fewer spikes to encode the information
contained in natural images commonly
encountered in the environment, thereby
improving the efficiency of information
transmission. If natural images contain reg-
ular predictable structure (i.e., redundancy),
then a more efficient code is achievable.
One example of redundancy is the fact that
neighboring photoreceptors usually receive
similar levels of light, so their activity level
is highly correlated. The center-surround
organization of retinal ganglion cells
serves to reduce this local redundancy to
some extent.
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The response tuning of V1 neurons is
even more sparse and efficient. Compared
to the number of retinal ganglion cells
(∼1 million per eye), there are far more
neurons in V1 (∼140 million), leading to
gross oversampling of the retinal array.
However, the percentage of V1 neurons that
respond to any given natural image, selected
at random, is much smaller than the percent-
age of active ganglion cells in the retina.
Both computational and neurophysiological
studies provide support for the proposal that
V1 neurons provide a sparse efficient code
for processing natural images (D. J. Field,
1987; Olshausen & Field, 1996; Vinje &
Gallant, 2000).

Orientation Selectivity and the Excitatory
Convergence Model

It is now part of neuroscience lore that ori-
entation selectivity was discovered when
Hubel and Wiesel accidentally triggered a V1
neuron to fire. After weeks of trying to evoke
neuronal responses using projected slide
images of simple round dots, a shadowy line
cast by the edge of the glass slide happened to
drift across the cell’s receptive field at just the
right orientation (Hubel, 1982). By carefully
mapping the receptive-field properties of that
cell and many others, they discovered the
sparse feature tuning of V1 neurons as well

as evidence of a hierarchical organization
(Hubel & Wiesel, 1962).

One class of neurons, called simple cells,
have a simple elongated receptive field, with
on-regions that responded positively to the
presentation of light and flanking off-regions
that were inhibited by light. (Off-regions
would also respond positively to a dark bar
presented against a gray background.) Hubel
and Wiesel proposed an excitatory conver-
gence model to explain the phase-specific
orientation selectivity of these neurons,
which have clearly demarcated on- and
off-regions. This model assumes that each
simple cell pools the excitatory input from
multiple LGN neurons whose circular recep-
tive fields form an elongated receptive field
(Figure 1.11).

In contrast, complex cells exhibit pos-
itive responses to a preferred orientation
presented anywhere within their excitatory
receptive field. The positional invariance of
this selectivity was noteworthy because it
provided novel evidence that neurons are
capable of some form of abstraction. The
researchers went on to speculate that this
process of generalization could be impor-
tant for form perception. If many of these
complex cells projected to a common cell of
higher order, that neuron might tolerate even
greater transformations of an image while

Figure 1.11 Hubel and Wiesel’s proposed model of a V1 simple cell. Hubel and Wiesel proposed exci-
tatory feedforward convergence model to account for the orientation selectivity of V1 simple cells. This
cell has an on-center and off-surround, based on the summation of inputs from a series of LGN neurons
with collinearly organized on-center receptive fields.
Source: From Hubel and Wiesel (1968).
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maintaining its selectivity. The response of
a complex cell can be modeled by assuming
that it receives excitatory input from multiple
orientation-tuned simple cells with slightly
shifted receptive fields, such that excitation
from any one of these simple cells will evoke
an action potential. As we will later see, this
proposed architecture for simple cells and
complex cells has helped to inform the design
of neural networks for object processing.

Although the orientation-selective prop-
erties of V1 were discovered over 50 years
ago, scientists are still striving to determine
the precise nature of the neuronal circuit that
gives rise to this sharp visual tuning. Indi-
vidual simple cells in the feedforward input
layer of V1 retain their strong orientation
selectivity after V1 is cooled or silenced,
implying that the sum of excitatory inputs
from LGN to V1 is enough to create this
oriented receptive-field structure (Ferster,
Chung, & Wheat, 1996; Priebe & Ferster,
2008). Recent studies have also discovered
that the neuronal projections from the LGN
to layer 4 of V1 are highly structured in
terms of spatial phase (Y. Wang et al., 2015),
leading to a consistent overlap of on- and
off-regions among neighboring simple cells
in layer 4. The orientation of these elongated
on- and off-regions reliably predicts the ori-
entation preference of neurons in other layers
of the same cortical column, suggesting that
it determines the broader organization of the
cortical orientation map.

Such findings are consistent with the pre-
dictions of the excitatory convergence model,
in which multiple LGN neurons that prefer a
common polarity in their center (i.e., light or
dark) form an elongated region (Figure 1.11).
However, an alternative theory is that each
V1 simple cell receives excitatory inputs
from a pair of LGN neurons with different
polarities, one with an on-center receptive
field that partially overlaps with an off-center
receptive field (Paik & Ringach, 2011).

The combination of these two LGN inputs
would lead to an oriented band that prefers
light and an adjacent band that prefers dark,
a prediction that has received support in
recent patch-clamp recordings from neurons
in the input layer of the mouse visual cortex
(Lien & Scanziani, 2013). However, the
presence of coarse orientation selectivity in
the retina and LGN presents a more complex
picture of how sharp orientation selectivity
is achieved in V1. With recent advances
in adaptive optics, researchers can concur-
rently image the calcium-based activity of
thousands of thalamic boutons arriving in
layer 4 of mouse V1. A large percentage of
thalamic boutons show some degree of orien-
tation selectivity (Kondo & Ohki, 2016; Sun
et al., 2016), raising the possibility that these
coarsely tuned inputs may also contribute to
the oriented structure of V1 receptive fields
(Vidyasagar & Eysel, 2015).

Extrastriate Visual Areas

At higher levels of the visual pathway, neu-
rons have larger receptive fields and more
complex tuning properties. The progres-
sive increase in receptive field size can be
understood if each V2 neuron receives inputs
from a local distribution of retinotopically
organized V1 neurons, leading to a broader
spread of retinotopic inputs to that V2 neu-
ron. Likewise, if a V3 neuron samples from
a local distribution of V2 neurons, then that
V3 neuron will also have a larger recep-
tive field than the V2 neurons from which
it samples.

This progressive increase in receptive field
size, when ascending the visual hierarchy, is
accompanied by an increase in neuronal tun-
ing complexity. Consider what will happen
if a V2 neuron happens to integrate signals
from a small pool of V1 neurons that prefer
more than one orientation, spatial location,
or spatial frequency. Single-unit recordings
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have found that some V2 neurons prefer
combinations of orientation elements, such
as curved spiral or hyperbolic gratings, or
sharp angles formed by abutting line orien-
tations (Hegde & Van Essen, 2000). In this
respect, V2 neurons may attain some sensi-
tivity to the higher order relationship between
orientations, an important step toward the
encoding of shape.

Neurons in V4 exhibit even more hetero-
geneous response preferences to variations
in orientation and spatial frequency, and
are less well activated by simple lines or
gratings. There is strong evidence that V4
neurons are sensitive to local aspects of
visual shape. By presenting a variety of 2D
shapes to a V4 neuron, it is possible to map
the neuron’s tuning preference for curvature
at different positions in the receptive field
(Pasupathy & Connor, 2002). A neuron might
prefer a sharp convexity at one location or
a moderate degree of concavity in another
location. The combination of many curva-
ture computations across an object would
provide a useful code to define the shape of
that object.

Area V4, or the cortical region just anterior
to it, has also been implicated in color per-
ception and color constancy. Damage around
this cortical region is strongly associated
with achromatopsia, that is, severe deficits
in visual color perception (Bouvier & Engel,
2006). Such deficits are often restricted to
just a hemifield or quarter visual field. Human
neuroimaging studies have implicated the
role of V4 as well as the more anterior
region VO1 (Figure 1.7B) in color percep-
tion and the perception of color aftereffects
(Brouwer & Heeger, 2009; Hadjikhani, Liu,
Dale, Cavanagh, & Tootell, 1998).

Higher Order Visual Areas

Beyond the early visual areas (V1–V4), a
series of higher order visual areas extend

along the dorsal pathway toward the parietal
lobe and along the ventral pathway toward
the ventral temporal lobe. The effects of
brain injury to these separate pathways have
revealed striking dissociations of function
(Farah, 2004; Goodale & Westwood, 2004).
Damage to the posterior parietal lobe can
sometimes lead to impairments in the ability
to perform visually guided actions, what is
known as optic ataxia. In other cases, it can
disrupt the patient’s ability to attentionally
orient to stimuli in the contralesional region
of visual space, what is known as visual
neglect. This can be contrasted with dam-
age to higher visual areas along the ventral
pathway, which can lead to impairments in
shape perception and object recognition.
Apperceptive agnosia or impairments in
shape perception often results from damage
to the lateral occipital cortex, whereas dam-
age to the ventral temporal cortex can lead to
object agnosia, in which object recognition is
impaired while the perception of basic shape
information remains intact.

Retinotopic mapping has revealed sev-
eral distinct visual areas in the parietal and
occipitotemporal regions of the human visual
system (Figure 1.7B). Distinct visual areas
have also been identified in the parietal and
temporal lobes of the macaque monkey,
but in most cases it remains unclear as to
which areas are directly homologous with
those found in humans (Orban, Van Essen, &
Vanduffel, 2004). The human parietal lobe
contains multiple visual areas in the intra-
parietal sulcus, including areas IPS1, IPS2,
IPS3, and IPS4 (Swisher, Halko, Merabet,
McMains, & Somers, 2007). These parietal
areas are sensitive to visual stimulation, shifts
of attention, and planned eye movements to
target locations (M. A. Silver & Kastner,
2009). In the ventral occipitotemporal cortex,
multiple category-selective regions have
been identified (Op de Beeck, Haushofer, &
Kanwisher, 2008), as well as large expansive
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regions that are generally sensitive to a
variety of object stimuli (Grill-Spector &
Weiner, 2014; Kriegeskorte et al., 2008).
Retinotopic mapping has helped identify
areas LO1 and LO2, which lie in the lat-
eral occipital cortex posterior to area MT
(Larsson & Heeger, 2006). These regions are
involved in earlier stages of object processing
and respond preferentially to intact objects as
compared to scrambled stimuli.

In the ventral temporal cortex, several
category-selective areas can be found. These
include the fusiform face area (FFA), which
responds preferentially to face stimuli, and
the parahippocampal place area (PPA),
which responds preferentially to buildings,
landmarks, and indoor and outdoor scenes
(Epstein & Kanwisher, 1998; Kanwisher,
McDermott, & Chun, 1997). On the lateral
occipital surface, identified regions include
the occipital face area and an adjacent region
called the extrastriate body area (Down-
ing, Jiang, Shuman, & Kanwisher, 2001).
An ongoing point of discussion concerns
whether the response selectivity of these
brain regions, and ultimately their under-
lying function, can be best understood as
category-selective or continuous represen-
tations of the visual-semantic properties of
objects (Haxby et al., 2001; Huth, Nishi-
moto, Vu, & Gallant, 2012; Kriegeskorte
et al., 2008; Op de Beeck et al., 2008;
Weiner & Grill-Spector, 2012). With respect
to this debate, it is intriguing that transcranial
magnetic stimulation applied to different
regions of the lateral occipital cortex can
selectively impair people’s ability to discrim-
inate faces, human bodies, and 3D rendered
objects (Pitcher, Charles, Devlin, Walsh, &
Duchaine, 2009). That said, selective effects
of disruption cannot fully establish whether
the underlying representations of these stim-
uli are categorical or continuous in nature.
(For further discussion see Chapter 8 on
visual object recognition in this volume.)

MECHANISMS UNDERLYING
VISUAL PERCEPTION

How does the human brain perceive basic
visual properties, such as the orientation,
color, or motion of a stimulus? What types
of processes and neural computations are
required to transform the incoming pat-
terns of light signals into the basic qualities
of our perceptions? Vision scientists have
brought to bear a variety of techniques and
approaches to address these challenges,
including visual psychophysics, neurophys-
iological recordings, human neuroimaging,
and computational modeling. From this
work, we will see how the perception of
basic visual properties is strongly linked to
information processing at early stages of the
visual pathway.

Visual Feature Perception

An important advance in vision science
was the realization that the early stages of
perceptual processing could be described by
mathematical concepts such as Fourier anal-
ysis and spatial-temporal filters. Our ability
to detect and discriminate simple visual
patterns depends on the spectral contents
of the stimulus and its match to the tuning
properties of our visual system. For example,
visual sensitivity at detecting a square-wave
grating can be predicted by one’s sen-
sitivity to the Fourier components that
comprise that grating (Campbell & Robson,
1968). Likewise, perception of motion can
be described in terms of spatiotemporal
energy detectors, or “oriented” filters in
space-time (Adelson & Bergen, 1985). Once
conceptualized in this way, one can quantify
the motion energy that would result from
any succession of images or from simple
two-frame apparent motion displays. (See
Chapter 5 in this volume for more on motion
perception.)
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Since neurons in the retina and the early
visual cortex have small receptive fields, the
analysis they perform is better understood as
a local analysis rather than a spatially unre-
stricted Fourier analysis. Indeed, a 2D Gabor
filter, which provides a good approximation
of the tuning properties of V1 simple cells,
is mathematically equivalent to a sine-wave
function that is spatially restricted within a
Gaussian window (Figure 1.9). This partly
explains how V1 neurons provide a sparse
efficient visual code for the natural images
we commonly encounter in the environment
(D. J. Field, 1987; Olshausen & Field, 1996).

Although spatial-temporal filter models
are effective and widely applicable, it is
important to keep in mind that they rely on
simplifying assumptions that may not fully
capture the complexities of human visual
processing. For instance, visual sensitivity
to oriented patterns is not uniform; people
are better at detecting and discriminating ori-
entations that are near cardinal as compared
to those that are oblique (Appelle, 1972;
Westheimer, 2003). Also, our perception of
a stimulus does not arise from strictly local
visual processing—the surrounding visual
context can have a strong influence. For
example, a central vertical grating surrounded

by a tilted grating will appear somewhat tilted
in the opposite direction, a phenomenon
known as the tilt illusion (Wenderoth &
Johnstone, 1988). Likewise, the perception
of a compound stimulus may not necessarily
be explained by the linear sum of its parts.
The perception of a moving plaid, consisting
of two superimposed gratings drifting in
different directions, can deviate greatly from
vector average of their individual motions
(Adelson & Movshon, 1982).

Finally, it should be emphasized that per-
ceptual sensitivity is not determined by the
information encoded in individual neurons,
but rather, by the information that can be
extracted or “decoded” from a population
of visual neurons, to support a perceptual
decision. This concept is described as popu-
lation coding. Indeed, computational models
have been developed to characterize how a
small population of feature-tuned neurons
can jointly encode information about a par-
ticular stimulus (Pouget, Dayan, & Zemel,
2003). Some models, for example, rely on
Poisson-process neurons tuned to different
feature values, by specifying how strongly
each neuron will respond on average to any
given orientation (Figure 1.12). One can
then apply a Bayesian estimation approach
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Figure 1.12 Example of a population-coding model with multiple orientation-tuned units. (A) Tun-
ing curves show the average firing rate of each unit to a given orientation. (B) The number of spikes
emitted by each tuned neuron is somewhat variable, due to presumed Poisson-process spiking activ-
ity. (C) Bayesian estimation can then be used to decode what is the most likely stimulus to have
occurred given the observed number of spikes (i.e., the data). Color version of this figure is available
at http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: From Knill and Pouet (2004). Reproduced with permission of Elsevier.
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to decode the stimulus orientation. Given
the number of spikes emitted by each of the
neurons in the population, it is possible to
determine what is the most likely stimulus
that could have evoked the observed response.

Neural Bases of Visual Feature
Perception

Multiple lines of evidence suggest that our
ability to detect and to discriminate basic
visual features depends on processing that
takes place in the early visual areas. From
psychophysical studies, we know that pro-
longed monocular adaptation to an oriented
grating or to drifting random dots will pro-
duce a stronger visual aftereffect (e.g., tilt
or motion aftereffect) if the subsequent test
stimulus is presented to the same eye; a
reduced aftereffect is observed if the test
stimulus is presented to the corresponding
location of the fellow eye. This implies
that the activity of monocular neurons, pre-
sumably those in V1, contributes to these
visual aftereffects to some extent (Blake,
Overton, & Lema-Stern, 1981).

Human fMRI studies also support the
notion that the perception of basic features
is strongly associated with visual processing
in early visual areas. For example, an early
study found greater sustained activity in
motion-sensitive area MT+ when observers
experienced a motion aftereffect while view-
ing a static test pattern (Tootell et al., 1995).
Sensitivity to changes in visual contrast
has also been linked to fMRI measures of
the contrast-response function in area V1
(Boynton, Demb, Glover, & Heeger, 1999).
Neuroimaging studies of binocular rivalry
provided some of the first evidence to link the
activity of cortical visual areas, including V1,
to spontaneous fluctuations of conscious per-
ception (Polonsky, Blake, Braun, & Heeger,
2000; Tong & Engel, 2001; Tong, Nakayama,
Vaughan, & Kanwisher, 1998).

A similar correspondence between cor-
tical activity and conscious perception has
been observed in threshold detection tasks.
Greater activity was observed in areas V1–V3
when an observer successfully detected the
presentation of a very low contrast grating
as compared to when it was missed, and
remarkably, activity is also greater on false
alarm trials when observers mistakenly report
“target present” when the grating was in fact
absent (Ress & Heeger, 2003).

The development of fMRI decoding, or
multivariate pattern analysis, has proven par-
ticularly useful for isolating feature-selective
responses in the human visual cortex (Tong &
Pratte, 2012). Kamitani and Tong discovered
that activity patterns in early visual areas
contain detailed information that can be used
to reliably predict what stimulus orientation
(Figure 13A and B) or motion direction is
being viewed by the subject (Kamitani &
Tong, 2005, 2006). Subsequent studies have
shown how voxel-based encoding models
can be used to quantify the feature-tuning
preferences of individual voxels in the visual
cortex, and how information from individ-
ually fitted voxels can likewise be pooled
(Brouwer & Heeger, 2009; Kay, Naselaris,
Prenger, & Gallant, 2008; Naselaris, Kay,
Nishimoto, & Gallant, 2011; Serences,
Saproo, Scolari, Ho, & Muftuler, 2009). Such
approaches have been used to demonstrate
compelling links between color perception
and cortical responses in area V4 (Brouwer &
Heeger, 2009) and to distinguish among hun-
dreds of natural scene images (Kay et al.,
2008). Researchers have also developed
fMRI approaches to decode not only infor-
mation about the perceived stimulus, but
also, the degree of uncertainty associated
with that perception. Recent work indicates
that on trials in which participants exhibit
greater perceptual error, greater uncertainty
is evident in the cortical activity patterns of
V1 (van Bergen, Ma, Pratte, & Jehee, 2015).
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Figure 1.13 fMRI decoding of stimulus orientation and attended orientation. (A) This polar his-
togram shows the accuracy of decoding which of eight possible stimulus orientations is being viewed
by an observer during each fMRI stimulus block. The true orientation is indicated by the thick black
line, and the decoded orientation is shown in blue. (B) Orientation preferences of individual vox-
els in areas V1–V4 are illustrated here, and can be used to train a classifier on stimulus decoding
or to decode which of two overlapping orientations is being covertly attended by the observer. (C)
fMRI decoding can accurately predict the attended orientation, indicating that feature-based attention
can alter orientation-selective responses in areas V1–V4. Color version of this figure is available at
http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: (A) Adapted from Kamitani and Tong (2005). (B) Figure created by Frank Tong; used with
permission of the author.

To what extent might these visual
representations be modified by extensive
perceptual training with particular stimuli?
In one study, observers underwent a month
of training that required discriminating a
small range of orientations in the left or
right visual field (Jehee, Ling, Swisher,
van Bergen, & Tong, 2012). Following this
training, orientation responses in V1 were
selectively enhanced for the trained orien-
tation at the trained location. Moreover, the
degree of cortical improvement was predic-
tive of the degree of visual learning exhibited
by each observer. Intriguingly, participants

can even be trained, via neurofeedback, to
enhance orientation-selective activity in V1
while they view a blank screen (Shibata,
Watanabe, Sasaki, & Kawato, 2011).
After neurofeedback training, participants
showed better orientation discrimination
performance for the so-called trained orien-
tation that was never actually seen. These
orientation-specific effects of learning concur
with neurophysiological studies in monkeys,
who after learning showed a greater prepon-
derance of V1 neurons with tuning curves
that flanked the trained orientation (Schoups,
Vogels, Qian, & Orban, 2001).
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Visual Segmentation
and Figure-Ground Perception

Whenever we look upon a visual scene,
our visual system is challenged by a con-
tinuous array of light intensity values (e.g.,
Figure 1.3) that must somehow be carved up
into meaningful entities and objects. Parsing
a visual scene engages mechanisms of visual
segmentation and figure-ground processing.
Differences in luminance, color, orienta-
tion, spatial frequency, and stereo-depth all
provide relevant cues for distinguishing an
object from its background. In fact, models of
visual saliency propose that local differences
in feature content are calculated throughout
the visual field (Itti & Koch, 2000; Li, 2002),
and that this information can then be used
to determine what portions of the scene may
contain potential objects of interest.

Differences in luminance or color are read-
ily detected because they create first-order
edges that are registered by enhanced levels
of activity, even at the level of the retina.
However, local differences in orientation
or spatial frequency content are trickier to
compute, because they require higher order
comparisons between the feature-selective
responses of different populations of neu-
rons. This depends on more sophisticated
processing in early cortical visual areas.

One mechanism that contributes to visual
segmentation is orientation-selective sur-
round suppression. Neurophysiological
studies have shown that a V1 neuron’s
response to a preferred orientation in its clas-
sical receptive field (CRF) can be strongly
modulated by stimuli presented in its sur-
round, outside of the CRF (Cavanaugh,
Bair, & Movshon, 2002a, 2002b). In general,
the presentation of any stimulus in the sur-
round will lead to some degree of response
suppression, but these suppressive interac-
tions are much stronger if the orientation
in the surround matches the orientation in

the center. The modulatory effects of sur-
round suppression can be well described
by computational models that incorporate
divisive normalization, in which feedforward
responses to the stimulus in the CRF are
reduced in a divisive manner by the activity
level of neighboring neurons corresponding
to the surround (Carandini & Heeger, 2012).

Neurophysiological studies in alert mon-
keys suggest that additional figure-ground
processes may take place in area V1. Using
displays such as those shown in Figure 1.14,
researchers have found two types of modu-
latory responses to figure-ground displays:
an edge enhancement effect and a figure
enhancement effect (Zipser, Lamme, &
Schiller, 1996). Responses are particularly
strong at the boundaries between surfaces,
regardless of whether those boundaries are
defined by differences in color, orientation,
or stereo-depth. This is consistent with
feature-tuned effects of surround suppres-
sion. However, stronger V1 responses are
also observed near the center of the figure,
and these emerge well after the initial onset
response. Evidence suggests that this figural
enhancement in V1 arises from top-down
feedback, as both anesthesia and lesions of
the parietal lobe eliminate this modulatory
effect (Lamme, Zipser, & Spekreijse, 1998).
More recently, researchers have compared
the timing of these figural enhancement
effects across different levels of the visual
hierarchy, finding that V4 is modulated about
40 ms earlier than V1, consistent with a
feedback interpretation (Poort et al., 2012).

Area V2 appears to have a more elaborate
role in figure-ground processing than V1,
providing a code for the apparent depth rela-
tion that occurs at visual boundaries. A large
percentage of V2 neurons respond differen-
tially to the edge of a stimulus, in a manner
that depends on whether that edge comprises
the left or right side of the figure. Such
preferences reflect a degree of abstraction
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Figure 1.14 Enhanced responses to perceptual figures in V1. Effects of figural enhancement (a) and
edge enhancement (b) in V1 in comparison to responses (d and e) to the same orientation in the central
square region, but with a background of matching orientation. Color version of this figure is available at
http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: From Lamme and Roelfsema (2000). Reproduced with permission of Elsevier.

or invariance, as they remain consistent
regardless of whether the edge is defined
by pictorial or stereo-depth cues (Qiu &
von der Heydt, 2005). This has led to the
proposal that V2 neurons provide a visual
code for border ownership, which serves to
distinguish which portions of an encoded
image belong to the figure and which por-
tions belong to the background. Intriguingly,
lesions applied to area V2 of the monkey
do not affect basic visual acuity or ability to
perceive the orientation of simple gratings,
but severely impair the animal’s ability to
detect orientation-defined figures presented
against a background of differing orientation
(Merigan, Nealey, & Maunsell, 1993).

Although figure-ground processing has
received limited attention in human studies
(Scholte, Jolij, Fahrenfort, & Lamme, 2008),

it has been shown that early visual areas
exhibit strong effects of surround sup-
pression (Zenger-Landolt & Heeger, 2003),
including evidence of an orientation-selective
component (McDonald, Seymour, Schira,
Spehar, & Clifford, 2009). Salient figures
defined by motion cues also lead to strong
sustained responses in the figural region,
corresponding to a lingering impression (or
hysteresis) of the figural percept (Strother,
Lavell, & Vilis, 2012). Recently, researchers
had the opportunity to record spiking activity
from area V2/V3 of a preoperative epilepsy
patient, and found similar effects of figural
enhancement for texture-defined figures (Self
et al., 2016) as had been found in the monkey.
These findings suggest a prevalent role for
early visual areas in visual segmentation and
figure-ground perception.
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Effects of Visual Context

So far, we have learned that the processing
of a stimulus does not occur in strict isola-
tion, as neural responses are also influenced
by stimuli in the surround. In some situations,
the impact of visual context can be especially
pronounced.

This is particularly evident in cases of
perceptual filling-in, where observers are
predisposed to infer the presence of a visual
stimulus in regions that lack direct stimula-
tion (Figures 1.6E and 1.6F). fMRI studies
have tested for neural correlates of percep-
tual filling-in using displays that evoke the
perception of subjective contours, neon-
color spreading or visual phantoms (Meng,
Remus, & Tong, 2005; Sasaki & Watanabe,
2004). These studies find evidence of
enhanced activity in regions of V1 cor-
responding to the blank gap, even when
attention is directed elsewhere, for example,
by having participants perform a demanding
task at fixation. High-resolution fMRI has
suggested that the effects of filling-in may
be more prominent in the deep layers of
V1, as compared to the middle layer region
that receives strong feedforward input (Kok,
Bains, van Mourik, Norris, & de Lange,
2016). Neurophysiological recordings in
alert monkeys have also found evidence of
filling-in responses to subjective contours
(Lee & Nguyen, 2001). Interestingly, these
filling-in effects are observed at earlier in
time in V2 than in V1. Although attention
was not controlled in these monkeys, these
results, in concert with the human neu-
roimaging studies, suggest that the top-down
inferential processes of filling-in can occur
in an automatic manner, without the benefit
of focused attention.

What might be the origin of this top-down
feedback? Although we do not know for
sure, the lateral occipital complex, which
has a central role in visual object processing,

is a very strong candidate. This swath of
cortical areas in the ventral pathway responds
more strongly to intact than scrambled
objects (Grill-Spector, Kourtzi, & Kanwisher,
2001), and has also been found to respond
more strongly to inducers that evoke the
perception of a subjective figure than to
control stimuli that do not (Mendola, Dale,
Fischl, Liu, & Tootell, 1999). Moreover,
an fMRI study of monkeys and humans
investigated what visual areas might be
sensitive to collinear patterns embedded in
an array of randomly oriented Gabor grat-
ings. This study found enhanced activity in
V1 and V2 to figures defined by collinear-
ity, as well as strong enhancement in the
lateral occipital complex, consistent with
the potential role of the lateral occipital
complex in top-down enhancement of local
features represented in the early visual
areas (Kourtzi, Tolias, Altmann, Augath, &
Logothetis, 2003).

Researchers have also investigated the
effects of visual context using more complex
visual displays. When flickering checker-
board patterns are presented against a
pictorial scene so that one checkerboard
appears much farther away and perceptually
larger than the other, the resulting illusion
in perceived size is accompanied by a larger
activated region in the primary visual cor-
tex (Murray, Boyaci, & Kersten, 2006).
Unlike the effects of perceptual filling-in,
this size illusion effect in V1 appears to be
modulated in strength by visual attention
(Fang, Boyaci, Kersten, & Murray, 2008).
Recordings in area V1 of monkeys have
demonstrated a similar neural correlate of
this size illusion, indicating the generality of
these effects (Ni, Murray, & Horwitz, 2014).
Presumably, processing in higher-level object
areas would also be needed to interpret the
complex visual scene and its portrayal of
depth. This would imply that information
pertaining to scene processing is fed back
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to V1 representations of the target object,
thereby modifying perception and associated
neural responses.

VISUAL ATTENTION

Visual attention has been a longstanding
area of inquiry in experimental psychology,
highlighted by William James’s (1890/1981)
oft-quoted description of attention as “the
taking possession of the mind, in clear and
vivid form, of one out of what seems several
simultaneously possible objects or trains of
thought.” Several ideas are evident here,
including James’s emphasis on voluntary
control, selectivity, and the fact that this
selection process leads to a clearer impres-
sion of the attended item. Although James
proposed that attention can be focused either
outwardly at an external object or inwardly at
one’s own thoughts, vision researchers have
concentrated on the problem of how people
attend to external visual stimuli.

In most social settings, we can tell where
a person is attending by noting where their
eyes are focused. Overt attention occurs
when a person directly gazes at the object
of interest, which leads to enhanced visual
processing starting at the retina. The foveal
region is overrepresented by the cones and
even more so by the ganglion cells, such
that any foveated stimulus will activate a
much larger population of neurons in V1 and
higher extrastriate areas, due to the greater
cortical magnification of the central visual
field. Moreover, a foveal stimulus will be
better processed by high-level object areas
such as the fusiform face area and the lateral
occipital area, due to their overrepresentation
of the central visual field for fine-grained
object processing.

Psychologists and neuroscientists, how-
ever, are more interested in the perceptual
and neural consequences of covert shifts of

attention. Covert attention refers to attending
to an object in the periphery, without moving
the eyes or directly gazing at the attended
item. If covert attention is capable of modify-
ing the strength or fidelity of visual responses
to a peripheral item, independent of any
change in retinal stimulation, then such
modulations would suggest the influence of
top-down feedback that can flexibly modify
the strength of feedforward responses.

Attention can also be distinguished
according to whether it is guided by involun-
tary or voluntary factors (Posner, Snyder, &
Davidson, 1980). Exogenous attention
(or stimulus-driven attention) refers to the
involuntary capture of attention. Stimuli
that are bright, high contrast, colorful, or
dynamic, and distinct from their surround,
are more salient (Itti & Koch, 2000) and
more likely to attract exogenous attention.
However, our attention is not simply only
governed by exogenous factors, or our atten-
tion would be forever capture by shiny salient
objects like moths to the flame. Endogenous
attention refers to the ability to shift atten-
tion in a voluntary manner, based on our
top-down goals, such that we can seek out a
particular target in a cluttered environment
(see Chapter 6 in this volume, on visual
search) or maintain attention on an object in
the face of distraction.

In a typical study of exogenous attention,
observers are instructed to maintain fixa-
tion while covert attention is manipulated
by briefly presenting a peripheral cue to
the left or right of fixation. This is shortly
followed by a target, which appears at the
same location as the cue on valid trials, or
at a different location on invalid trials. Such
experiments have revealed that exogenous
attention operates quickly, transiently, and
in a quite automatic manner (Nakayama &
Mackeben, 1989; Posner et al., 1980).

If a valid peripheral cue appears 50–150 ms
in advance of the target, participants will be
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faster and more accurate at processing that
target stimulus. Such facilitation occurs even
if the exogenous cue does not reliably predict
the target’s location across trials, implying
that observers tend to automatically shift
attention to the exogenous peripheral cue
on every trial. Consistent with this interpre-
tation, invalid spatial cues usually lead to
a behavioral cost, relative to a neutral cue
(often consisting of cues at both possible
target locations). These effects of exogenous
cuing, though potent, are short-lived. If the
target appears well over 200 ms after a valid
cue, no benefit is observed, and performance
may even be subtly impaired, a phenomenon
sometimes described as inhibition of return.

With endogenous cuing, a symbolic cue,
such as a letter (L or R), can be used to
indicate the location to be attended. For the
endogenous cue to influence performance on
the task, it must be predictive of the location
of the upcoming target at levels greater than
chance, otherwise the observer will start to
ignore these cues and focus exclusively on
the target. Thus, processing of the endoge-
nous cue is voluntary, and observers will take
advantage of the cue only if it is informative.
If the time between cue and target is too brief,
however (i.e., less than ∼150 ms), observers
will not have enough time to process the
meaning of the cue and shift attention to
the anticipated location of the target. Unlike
exogenous attention, endogenous attention
operates in a slower but sustained manner.
Performance at a validly cued location is
facilitated, even if the cue precedes the target
by several seconds.

Psychophysical studies have revealed
that covert attention reliably enhances the
signal-to-noise ratio of visual processing
in a manner that resembles increasing the
physical contrast of the attended stimu-
lus (Carrasco, Ling, & Read, 2004; Ling &
Carrasco, 2006). Such effects can be observed
with both exogenous and endogenous spatial

cuing. Consistent with this idea, when covert
attention is directed toward an adapting
stimulus, the rate of neural adaptation is
enhanced, leading to measurably stronger
visual aftereffects (Alais & Blake, 1999;
Chaudhuri, 1990).

Covert shifts of attention can also modify
the spatial resolution of visual processing.
Research suggests that exogenous cuing of
attention improves the processing of high
spatial frequency targets but also impairs
the processing of low spatial frequency
targets (Yeshurun & Carrasco, 1998). In
comparison, endogenous attention tends to
be more adaptive and flexible—observers
are able to adopt an attentional template that
matches properties of the task-relevant target
(Carrasco, 2011).

Attentional Modulation of Neural
Responses

Once thought to be rare and elusive, it is
now known that the top-down effects of spa-
tial attention are widespread and pervasive
throughout the visual system. Neurophysio-
logical, fMRI, and electroencephalography
(EEG) studies demonstrate that attentional
feedback can enhance visual responses to
a task-relevant stimulus, while dampening
responses to task-irrelevant stimuli. Accord-
ing to the biased competition model of
attention, visual stimuli that appear concur-
rently, especially those in close proximity,
will lead to competitive inhibitory interac-
tions across multiple levels of the visual
hierarchy (Desimone & Duncan, 1995). The
role of top-down attention is to bias this
competition in favor of the attended stimulus,
which in turn will lead to greater suppression
of the unattended stimulus.

In EEG studies of attention, stimuli are
usually presented concurrently in the two
hemifields while the observer is cued to
attend selectively to stimuli on either side.
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These studies find that attended stimuli
evoke a stronger P100 component at con-
tralateral occipital sites, compared to stimuli
that are ignored (Heinze et al., 1994; Luck,
Woodman, & Vogel, 2000). The P100 is the
first positive visually evoked component,
associated with processing in extrastriate
visual areas. Although attending to a stimu-
lus leads to faster behavioral response times,
by 20–30 ms or so, attention modulates the
amplitude but not the latency of the P100
response. Presumably, this boost in response
amplitude at this earlier processing stage
leads to a savings in processing time at later
stages.

Human fMRI studies have also demon-
strated powerful and spatially specific effects
of attention particularly in retinotopic visual
areas V1–V4 (Gandhi, Heeger, & Boynton,
1999; Somers, Dale, Seiffert, & Tootell,
1999). In fact, decoding of the activity pat-
terns in retinotopic visual cortex can be
used to reliably predict the spatial locus
of attention under conditions of constant
visual stimulation (Datta & DeYoe, 2009).
Modulatory effects of attention have even
been detected in the lateral geniculate nucleus
(Ling et al., 2015; O’Connor, Fukui, Pinsk, &
Kastner, 2002). Since there are no feedback
connections from the LGN to the retina, such
findings indicate that attentional feedback
propagates to the earliest possible stage of
visual processing.

The enhancement of visual responses by
attention can be modeled by implementing
some type of gain modulation, in which
top-down feedback leads to amplification of
the stimulus-driven response. In some cases,
attention appears to enhance the contrast
sensitivity of visual neurons, leading to a
leftward shift in the contrast response func-
tion. However, in other situations, attention
seems to lead to a multiplicative increase in
the neural response across all contrast levels.
These two types of gain modulation are

known as contrast gain and response gain,
respectively (see Figure 1.15).

Although attention can boost the gain of
visual evoked responses, both neurophys-
iological and neuroimaging studies have
shown that attending to a blank region of
space leads to enhanced activity in corre-
sponding retinotopic visual areas (Kastner,
Pinsk, De Weerd, Desimone, & Ungerleider,
1999; Luck, Chelazzi, Hillyard, & Desimone,
1997). Thus, top-down feedback is capable
of boosting both synaptic and spiking activity
within a local region, even in the absence
of visual stimulation. This may help explain
the sustained time course of endogenous
spatial cuing. If a task-relevant stimulus is
anticipated at a particular location, sustained
attentional feedback may serve to prioritize
processing at that location, whenever the
stimulus should appear (Ress, Backus, &
Heeger, 2000).

The nature of attentional gain modulation
was once subject to considerable debate, but
an emerging view is that nonlinear interac-
tions between attentional feedback, stimulus
processing, and surround suppression may
account for these diverse effects. According
to the normalization model of attention,
shifts in contrast gain will predominate if the
attentional window is large and the stimulus
is much smaller (Reynolds & Heeger, 2009).
This is attributed to the fact that spatially
suppressive surround interactions will tend
to saturate the neuron’s response to the tar-
get stimulus at high contrasts and the large
attentional window will contribute to this
suppressive effect. However, if the atten-
tional window is small and restricted within
the stimulus, then attention is expected to
boost responses to the stimulus in a multi-
plicative manner, by avoiding any increase
in the strength of surround suppression.
There is some compelling behavioral and
fMRI evidence to support the predictions
of the normalization model of attention
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Figure 1.15 Normalization model of attention. Possible effects of contrast gain (A) and response gain
(B) due to spatial attention. The normalization model of attention predicts different types of atten-
tional modulation, depending on whether the attentional field is much larger than the stimulus or
restricted within the stimulus proper. Effects of attention are plotted in comparison to an unattended
condition, with attention directed to the opposite hemifield. Color version of this figure is available at
http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: From Reynolds and Heeger (2009, p. 172). Reproduced with permission of Elsevier.

(Herrmann, Heeger, & Carrasco, 2012;
Herrmann, Montaser-Kouhsari, Carrasco, &
Heeger, 2010), although more research will
be needed to fully evaluate this model.

Attending to Multiple Spatial Locations

A spotlight metaphor is commonly used to
describe people’s ability to voluntarily shift
covert attention from one location to another.
However, attentional resources can be allo-
cated in more flexible ways. Multi-object
tracking studies have shown that people
can rely on covert attention to concurrently
track about three to four dynamically mov-
ing objects (Scholl, 2001), even when such
objects are not directly foveated. Such skills

are critical when we navigate busy crowds,
drive through traffic, or watch a fast-paced
basketball game. Parietal visual areas and
the frontal eye fields are strongly involved
in this dynamic tracking process. Activity
in these attentional control centers increases
as a function of the number of objects to be
tracked, peaking at about three to four items,
consistent with behavioral limits of atten-
tional performance (Culham, Cavanagh, &
Kanwisher, 2001). Other studies have tested
people’s ability to monitor rapid serial
sequences of letters presented at multiple
locations concurrently. These studies find
enhanced activity at multiple attended loca-
tions in areas V1–V4, indicating that the
attentional spotlight can indeed be divided
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across multiple regions of space (McMains &
Somers, 2004). Taken together, these studies
imply that people can concurrently attend
to multiple spatial locations and to multiple
dynamic objects.

Attending to Visual Features

Although we usually think of attention as
having a particular spatial locus, attention
can also be flexibly directed toward specific
visual features or objects. Feature-based
attention refers to the ability to attend to a
featural property, such as a particular color,
orientation, or motion direction (Maunsell &
Treue, 2006). Imagine you have forgotten
where you parked your car in a crowded lot.
If your car happens to be blue, you might find
yourself attending to a series of blue cars scat-
tered about the lot until you eventually find
your own. Theories of feature-based atten-
tion propose that top-down feedback to early
visual areas can selectively enhance the repre-
sentation of a particular feature value, such as
“blueness.” Moreover, this feature-selective
feedback is spatially diffuse, modulating the
activity of blue-preferring neurons through-
out the visual field, in a manner that can
facilitate the visual search process.

Neuronal recordings in motion-selective
area MT of alert monkeys provided novel
evidence to support a feature-based mecha-
nism of attention (Treue & Martinez-Trujillo,
1999). Monkeys were presented with over-
lapping sets of upward and downward
drifting dots in one part of the visual field,
and instructed to monitor for speed changes
in either set of dots. In the opposite hemi-
field, a task-irrelevant motion stimulus was
presented, consisting of either upward or
downward moving dots. The researchers
found that direction-selective responses to
these task-irrelevant dots were boosted when
they matched the motion direction being
attended in the other hemifield. This implies

that attending to a particular feature at a
specific location led to the enhancement of
that feature representation throughout the
visual field.

Neuroimaging studies have used multi-
variate pattern analysis to isolate feature-
selective responses in the visual cortex to
characterize the effects of selective attention.
When observers were cued to attend to one
of two overlapping orientations or motion
directions, activity patterns were reliably
biased in favor of the attended feature
(Kamitani & Tong, 2005, 2006). These
effects of feature-based attention were per-
vasive, encompassing the primary visual
cortex, extrastriate area V2–V4, as well as
area MT+ in the case of attending to motion
direction. In studies where task-relevant
and task-irrelevant stimulus features were
presented in separate parts of the visual field,
spatial spreading of feature-based atten-
tion has also been observed (Serences &
Boynton, 2007).

It is worthwhile to consider whether the
allocation of feature-based attention might
depend on whether the task requires visual
detection or discrimination. When perform-
ing a fine-grained discrimination task, such as
deciding whether a grating is rotated slightly
clockwise or counterclockwise relative to ver-
tical, it would be advantageous to boost the
response of neurons that can best distinguish
between an oriented stimulus tilted say +2∘
or –2∘. Based on the orientation-tuning band-
width of cortical neurons and the information
they can convey, one would expect that ori-
entation responses should be enhanced at the
near flanks of the discrimination boundary,
say at +10∘ and –10∘, rather than centered on
the discrimination boundary itself. Both psy-
chophysical and human neuroimaging studies
provide strong support for this prediction
(Scolari & Serences, 2009, 2010), demon-
strating that feature-based attention can be
allocated in a flexible manner to optimize task
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performance. This approach of extracting
orientation-selective responses has also been
successfully applied in EEG studies by mea-
suring steady-state visually evoked potentials
to flickering gratings. These studies reveal a
multiplicative gain modulation of attention
on the strength of orientation-tuned responses
(Garcia, Srinivasan, & Serences, 2013).

Attending to Objects

Many studies find that attention can enhance
the processing of particular spatial locations
or visual features, but to what extent does
attention act upon the representations of
visual objects? Whenever we encounter an
object in the environment, it has a particular
spatial location and consists of a set of visual
features, so it can be difficult to tease apart
whether attention to that object is guided by
its spatial location, its features, or its higher
order object properties.

Studies of object-based attention have
focused on some key predictions. First, if
covert attention is directed to one part of an
object, it should tend to spread to other parts
of that same object. Exogenous cuing studies
have found evidence of both spatial and
object-based attention. People respond most
quickly when an initial cue and subsequent
target appear at the same location on a com-
mon object. However, they are also somewhat
faster to respond if the cue and target appear
at different locations on the common object
(e.g., two ends of a rectangle) as compared
to equidistant locations on different objects,
suggesting that attention tends to spread
throughout an attended object. fMRI stud-
ies provide support for this view, finding
enhanced activity in retinotopic visual areas
V1–V4 at the site of the initial cue, but also
spreading effects of enhancement at distal
locations corresponding to the same object
(Muller & Kleinschmidt, 2003). Neurophys-
iological recordings in monkeys have also

found evidence of spatial spreading of atten-
tion along the length of an object. When these
animals perform a mental curve-tracing task,
the activity of V1 neurons is enhanced if that
neuron’s receptive field falls along the line
to be covertly traced (Roelfsema, Lamme, &
Spekreijse, 1998). Moreover, the latency
of this modulation corresponds well with
the distance along the curve. These studies
demonstrate an interaction between spatial
attention and object-based mechanisms, in
which spatial attention spreads more readily
along a perceptually defined object.

Other studies have investigated people’s
ability to attend to one of two overlapping
objects. When presented with simple objects,
such as a tilted line that spatially overlaps a
rectangle, participants are faster and more
accurate at making judgments about the two
visual properties if they pertain to a common
object, and slower if the judgment involves
both objects (Duncan, 1984). This so-called
two-object cost was convincingly established
in a follow-up study where observers had to
track two overlapping gratings that dynami-
cally and independently changed over time, in
orientation, color, and spatial frequency along
a randomized trajectory through this feature
space (Blaser, Pylyshyn, & Holcombe,
2000). These well-tailored stimuli minimized
the possibility of relying on spatial atten-
tion or attention to a static feature. When
tasked with following both dynamic gratings,
observers were unable to do so, yet they could
effectively attend to one dynamic grating at
a time, indicating a powerful object-specific
capacity limit.

fMRI studies have capitalized on the cat-
egory selectivity of high-level visual areas,
by presenting stimuli such as overlapping
face-house images to investigate object-based
attention. When participants were cued to
attend to the face (or the house), enhanced
activity was observed in the fusiform face
area (or the parahippocampal place area),
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as predicted (O’Craven, Downing, &
Kanwisher, 1999). Interestingly, if the
face happened to be moving while the
house remained static, activity in area MT+
was also greater when the attended object
was moving. These results implied that
object-based attention enhances multiple
properties of the attended object, even those
that are not immediately relevant to the task
at hand.

What specific mechanisms allow for the
attentional selection of a visual object? fMRI
studies have found that attentional feedback
signals to early visual areas serve to enhance
the representation of the low-level features
that comprise the attended object (Cohen &
Tong, 2015). As a consequence, it is possible
to decode which of two objects is being
attended from the activity patterns found in
early visual areas. Studies have also reported
greater functional connectivity between early
visual areas and higher category-selective
areas when participants are attending to
the object corresponding to that region’s
preferred category (Al-Aidroos, Said, &
Turk-Browne, 2012). These studies suggest
that object-based attention involves a strong
interplay between higher order visual areas
and early visual areas.

Sources of Top-Down Attentional
Feedback

We have learned a good deal about how
attentional selection is mediated by the top-
down modulation of activity in the visual
cortex, but where do these top-down atten-
tional signals come from? According to the
premotor theory of attention, common brain
structures are likely involved in controlling
overt shifts of the eyes and covert shifts of
attention (Awh, Armstrong, & Moore, 2006),
in particular the frontal eye fields and the lat-
eral intraparietal area. First studied in nonhu-
man primates, these frontal-parietal areas are

known to have strong reciprocal connections
with extrastriate visual areas, the pulvinar,
the superior colliculus, and with each other.

Neuroimaging studies have revealed
retinotopically organized maps in the frontal
eye fields and in multiple intraparietal areas
(IPS1 through IPS4). These maps can be
revealed by mapping responses throughout
the visual field evoked by visual stimu-
lation, planned eye movements, or covert
shifts of attention (M. A. Silver & Kastner,
2009). Such findings provide support for
the premotor theory that overt and covert
shifts of attention involve a common coding
scheme. Moreover, damage to the parietal
lobe often leads to visuospatial neglect of the
contralateral hemifield (Corbetta & Shulman,
2002). In healthy participants, transcranial
magnetic stimulation applied to the IPS can
cause impaired detection of stimuli presented
in the contralateral hemifield, especially
when a competing stimulus appears in the
ipsilateral visual field (Hilgetag, Theoret, &
Pascual-Leone, 2001). These studies provide
causal evidence of the role of the parietal
lobe in spatial attention.

Microstimulation studies performed in
monkeys also demonstrate a causal role
for the frontal eye fields (FEFs) in the top-
down allocation of spatial attention. In these
studies, researchers first applied strong stim-
ulation to an FEF site to determine where
the monkey would overtly look. Next, they
presented visual stimuli at this spatial loca-
tion while the animal maintained fixation,
applying mild stimulation at levels too weak
to evoke an eye movement. Remarkably,
the monkey was much better at detecting
appearances of a target at that corresponding
location whenever weak stimulation was
applied (Moore & Fallah, 2001). Simulta-
neous recordings in area V4 during FEF
stimulation further revealed attention-like
effects of feedback in area V4, which
boosted the neuron’s response to stimuli
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presented at the presumably attended location
(Armstrong & Moore, 2007; Moore &
Armstrong, 2003).

Neuroimaging studies have also inves-
tigated the brain areas associated with the
attentional control of feature-based and
object-based attention. Some studies have
reported greater activity in medial regions
of the parietal lobe time-locked to when
participants voluntarily switch their atten-
tional focus from one feature to another, or
from one object to another (T. Liu, Slot-
nick, Serences, & Yantis, 2003; Serences,
Schwarzbach, Courtney, Golay, & Yantis,
2004). Studies employing multivariate pat-
tern analysis have also provided evidence of
feature-selective representations in intrapari-
etal areas IPS1–IPS4 as well as the frontal
eye fields (T. Liu, Hospadaruk, Zhu, & Gard-
ner, 2011). A magnetoencephalography study
investigated the relative timing of attentional
modulations across the brain by presenting
an overlapping face and house that flickered
at different rates (Baldauf & Desimone,
2014). Not only was object-specific modula-
tion observed in the fusiform face area and
parahippocampal place area; attention also
modulated their degree of synchrony with
an inferior frontal region (near the FEF).
These frontal modulations appeared to lead
the ventral temporal modulations by about
20 ms, implying that the prefrontal region
was the likely source of the top-down atten-
tional signal. Taken together, these studies
suggest that frontoparietal regions associated
with the control of spatial attention may also
have an important role in the controlling
of nonspatial aspects of attention (Ester,
Sutterer, Serences, & Awh, 2016).

OBJECT RECOGNITION

An essential function of vision is the ability
to categorize and identify objects from a

distance: the what part of knowing what is
where by looking. It is hard to imagine what it
would be like to see color, lines, and rudimen-
tary shapes, without the ability to recognize
the objects around us. However, patients with
visual object agnosia demonstrate that such
outcomes are possible. Following damage to
the ventral temporal cortex, the perception
of basic features and shapes usually remains
intact; nevertheless, patients with associative
agnosia have great difficulty at identifying
objects by sight (Farah, 2004; Moscovitch,
Winocur, & Behrmann, 1997).

Research suggests that there are differ-
ent subtypes of visual agnosia, including
evidence of a double dissociation between
the processing of upright faces and the
processing of non-face objects (as well
as upside-down faces) (Farah, Wilson,
Drain, & Tanaka, 1995; Moscovitch et al.,
1997; Rezlescu, Barton, Pitcher, & Duchaine,
2014). Prosopagnosia, or severe impairments
in face recognition, is strongly associ-
ated with damage to the fusiform gyrus
(Meadows, 1974), whereas damage to more
lateral portions of the inferior temporal cortex
usually leads to general impairments in object
recognition (i.e., visual object agnosia). The
challenges faced by these patients indicate
that critical computations for object process-
ing take place at higher levels of the ventral
visual pathway.

To identify an object, the visual system
must analyze the complex pattern of reti-
nal input and determine the corresponding
identity (recall Figure 1.3), thereby allowing
access to previously stored information about
that type of object. This includes informa-
tion about the object’s visual appearance,
such as its shape, color, and texture, as well
as its semantic properties and associated
verbal label.

The visual analysis required for successful
object recognition is a very hard computa-
tional problem: The recognition system
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must somehow analyze and transform the 2D
retinal image into a representation that is both
selective for that particular object and invari-
ant to the image variations that can arise
from variations in 3D viewpoint or lighting.
This is a difficult problem to solve because
most strategies that lead to greater selectivity
will lead to less, not more, tolerance to vari-
ation. Related to this challenge is the inverse
optics problem (recall Figure 1.5), which
requires inferring what would be the most
likely 3D object that could have given rise
to the observed 2D image. Would a solution
to this problem necessarily require solving
for the full 3D structure of the observed
object, or might object recognition involve
matching diagnostic parts of the 2D image
to a flexible but image-based representa-
tion in memory? As we will see, multiple
computational approaches have been pro-
posed for solving this critical problem of
object recognition.

Early Models of Object Recognition

A variety of object recognition models have
been proposed over the years, often reflecting
the Zeitgeist of each period. In the follow-
ing, we will consider models from the early
1980s to the present, to shed light on how
scientific understanding of object recognition
has evolved.

In the 1980s, it was generally believed
that the visual system analyzed the 2D
retinal image by deriving a 3D model of
the viewed object. For example, David
Marr (1982) proposed that the visible sur-
faces of an object can be computed from
the image to form a viewer-centered 2.5D
sketch, based on various cues to the depth
dimension including stereopsis, shape-from-
shading, shape-from-texture, and so forth
(Figure 1.16A). The 2.5D sketch could
contain information about the distance of
different points along the object and its cur-
vature along the depth dimension, but from

a viewer-centered perspective. This, in turn,
could be used to determine an object-centered
3D representation of the object’s structure.

Consistent with this theory of 3D cod-
ing, visual experiments have shown that
presentation of an object in one viewpoint
can facilitate or prime the recognition of
that same object when shown from a dif-
ferent viewpoint. People are also good at
matching pictures of unfamiliar objects
across changes in viewpoint, especially
if the distractor objects have different 3D
parts or had a distinct spatial structure
(Biederman & Gerhardstein, 1993; Cooper,
Biederman, & Hummel, 1992). According
to Biederman’s recognition by components
theory (Figure 1.16B), objects are repre-
sented by the visual system according to their
geometric elements, or geons, and the spatial
arrangement of those elements, which can
lead to a unique structural description for
many individual objects (Biederman, 1987).
For example, a coffee mug and a pail consist
of the same geons: a cylindrical geon that has
an opening at the top and a curve cylinder that
is connected to the base cylinder. Whether
the object is a mug or pail, however, depends
on whether the curved cylinder connects to
the side or the top of the base cylinder.

Although the recognition by compo-
nents theory provided a simple and coherent
account of object recognition, several chal-
lenges for this account began to emerge.
First, it is nontrivial to determine what geons
are contained in an object from a 2D image;
this correspondence problem could prove
just as difficult as determining the identity
of the object. Second, geons might provide
a reasonable account of the 3D structure of
man-made objects, but it is not clear how a
geon-based account would generalize to the
recognition of objects in the natural world,
such as plants, animals, and people. To what
extent do the geons that describe a dog, cat,
or horse differ from one another?
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Figure 1.16 Early 3D-based models of visual object recognition. (A) Depiction of Marr’s proposed
stages of processing, which involved extracting edges in the image, calculating a 2.5D sketch of the
object with depth and curvature information estimated from the viewer’s perspective, and inferring a
fully invariant 3D model. (B) Biederman’s recognition-by-components theory proposed that objects are
recognized based on the spatial arrangement of their geon-defined parts. Many man-made objects have
a unique structural description, according to this view.
Source: (A) Figure created by Frank Tong; used with permission of the author.

In the 1990s, psychophysical studies
began to reveal behavioral costs in object
recognition performance following changes
in 3D viewpoint. For simple geometric
shapes such as geons, these costs were mod-
est (Tarr, Williams, Hayward, & Gauthier,
1998), but for structurally similar or confus-
able 3D stimuli, such as faces or contorted
wire-clips, the costs of viewpoint change
were far more severe (Bülthoff, Edelman, &
Tarr, 1995; Hill, Schyns, & Akamatsu, 1997).
Concurrently, recordings from the inferotem-
poral cortex of the monkey revealed that
most neurons respond to a preferred object
over a limited range of views, implying
view-specific tuning for objects (Logothetis,
Pauls, Bulthoff, & Poggio, 1994). These
findings led to the proposal that the visual

system stores a series of discrete 2D views.
fMRI studies of adaptation to visual objects
likewise found that lateral occipital object
areas primarily show view-specific adapta-
tion, with little evidence of view invariance
(Grill-Spector et al., 1999). While most
face-selective neurons in the monkey appear
to be tuned in a view-specific manner, a
subset have been found to be view-invariant,
especially in more anterior regions of the
temporal lobe (Freiwald & Tsao, 2010;
Perrett et al., 1991).

One theoretical argument against view-
specific representations goes as follows: It
would be too costly for the visual system
to encode a near-infinite number of views
of every possible object. However, a viable
alternative would be to encode a handful
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of distinct views and to rely on an inter-
polation process for intermediate views.
The correlational similarity between object
images is usually quite high following modest
depth rotations, and storing a small number
of discrete views would be enough to support
near-invariant performance.

Although there was growing evidence
that the ventral visual system relies on
view-specific object representations, it took
a while for researchers to develop plausible
neural models for image-based recognition.
An influential model emerged in the late
1990s, inspired by the hierarchical organi-
zation of the visual cortex (Riesenhuber &
Poggio, 1999). This hierarchical model,
referred to as HMAX, relies on a multilayered
architecture (cf. Fukushima & Miyake, 1982)
that capitalizes on the functional architec-
ture of V1 simple cells and complex cells
(Figure 1.17).

The HMAX model expands on ideas
originally proposed by Hubel and Wiesel,

noting that simple cells achieve greater
visual selectivity by performing an AND-like
computation, whereas complex cells achieve
greater invariance by performing an OR-like
computation. Mathematically speaking,
simple cells compute a weighted sum of
inputs from the preceding layer, according
to a preferred template or filter (e.g., an
orientation-tuned Gabor function). This is
followed by half-wave rectification so that
negative responses are set to zero. In contrast,
the OR-like function involves performing a
maximum-pooling operation (MAX ), so that
the complex cell’s response is determined by
the response of the most active simple cell
from which it receives input. Strong activa-
tion by any one of those units will suffice to
activate the complex cell, thereby achieving
an invariant preference for orientation across
local changes in spatial phase.

In the HMAX model, layers 1 and 2 of this
network consist of simple- and complex-cell
units, respectively. These AND and MAX

MAX 

View-tuned cells

Complex composite cells (C2)

Composite feature cells (S2)

Complex cells (C1)

Simple cells (S1)

weighted sum

Figure 1.17 HMAX model of object recognition. Depiction of the HMAX model consisting of repeat-
ing layers of simple units and complex units, prior to the final output layer. The model was trained on
different paperclip objects at one specific view, and then tested across a range of depth rotations. Despite
the specificity of training, the model shows reasonably good tolerance to viewpoint change following
training.
Source: From Riesenhuber and Poggio (1999). Used with permission of Nature Publishing Group.
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operations are then repeated in subsequent
layers, such that tuning for combinations of
orientations arise, as well as tuning for more
complex properties related to 2D shape. For
example, a curve line can be described as a
combination of two orientations that meet at
a junction. The final layer is then trained to
learn specific stimuli. Notably, after the net-
work is trained to discriminate 3D-rendered
computer stimuli across a limited range of
viewpoints, the model showed a reasonable
degree of invariance to changes in 3D view-
point. The modeling results suggested that a
2D image–based approach might prove effec-
tive for recognizing objects across changes
in viewpoint. Elaboration of this work has
shown that it is possible to attain greater
selectivity and invariance by creating deeper
networks with more layers and training on
a greater number of images (Serre, Wolf,
Bileschi, Riesenhuber, & Poggio, 2007).

Deep Learning Models of Object
Recognition

However, it was not until 2012 that a major
breakthrough occurred in the computational
modeling of object recognition, with the
advent of convolutional neural networks,
or CNNs (Krizhevsky, Sutskever, & Hin-
ton, 2012). CNNs are deep neural networks
that consist of much of the same architec-
ture as the HMAX model, with repeating
layers of rectified linear units followed by
maximum-pooling units. The critical advance
was the application of deep learning methods
to train these multilayer networks on massive
image datasets (LeCun, Bengio, & Hin-
ton, 2015). Deep learning has led to major
advances in multiple domains of artificial
intelligence, ranging from object recognition
to self-driving cars to grandmaster level per-
formance at the exceedingly complex game
of Go (D. Silver et al., 2016). Supervised
deep learning relies on backpropagation to

modify the weights of the network from
the top layer downward, with the goal of
minimizing error in classification perfor-
mance. Another simplifying assumption used
by CNNs is that the stacks of units in the
early layers should share a common set of
weights, such that they provide a common
set of filters or basis functions for encoding
the information in their receptive field.

In the 2012 ImageNet competition, Alex
Krizhevsky and his colleagues demonstrated
the power of CNNs, training a network on
1.2 million images to classify real-world
images according to 1,000 different object
categories. This network, now called AlexNet
(Figure 1.18A), outstripped the competition,
selecting the correct object category as one
of its top five choices about 84% of the
time on a large test dataset. Since then,
multiple research groups have pursued the
goal of attaining more accurate performance
with CNNs (He, Zhang, Ren, & Sun, 2016;
Szegedy et al., 2015), and some suggest that
machine performance is approaching the
accuracy of human performance (He et al.,
2016; Yamins et al., 2014).

Because CNNs are exceedingly complex—
AlexNet has 6 million parameters—some
have argued that the computations performed
by CNNs are akin to a black box. However,
researchers have devised various methods to
visualize the tuning preferences of individual
units of the CNN (Bach et al., 2015; Zeiler &
Fergus, 2014). Since the higher units have
highly nonlinear receptive fields, one can
only visualize the particular features of a
given image that lead to the strong excitation
of particular unit. Nevertheless, these studies
suggest that CNNs capture some of the tun-
ing properties of biological visual systems.
Lower-level units are predominantly tuned
to color or orientation, similar to neurons
in V1, whereas units in the intermediate
layers exhibit tuning for textured patterns
or combinations of features (Figure 1.18B).
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Figure 1.18 Architecture and tuning properties of a convolutional neural network. (A) Architecture of
AlexNet, a convolutional neural network that outperformed all other algorithms in the 2012 ImageNet
competition. The input layer is on the left, and neurons in each successive layer sample from just a local
region of the preceding layer. Successive stages of filtering, nonlinear rectification, and max pooling are
performed, until at the last few stages are fully convolutional. (B) Visualization of tuning preferences of
individual units of a convolutional neural network, based on a deconvolution approach to depict image
components that strong responses for units in convolutional layers 1 through 5. Color version of this
figure is available at http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: (A) From Krizhevsky, Sutskever, and Hinton (2012). (B) Images provided courtesy of Hojin
Jang and Frank Tong (copyright).
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By contrast, units at high levels of the CNN,
which have large receptive fields that span
the full array of units in the preceding layer,
respond best to complex patterns or even to
specific objects such as faces. Researchers
have compared the object tuning preferences
of inferotemporal neurons in the monkey
with units in these CNNs, and find evidence
of a strong correspondence between brain
and machine (Yamins et al., 2014). In fact,
the tuning preferences of individual IT neu-
rons can be well predicted by a weighted
combination of the responses of units at the
highest levels of a trained CNN, whereas
lower-level units provide a poorer account
of IT response preferences. Neuroimaging
studies have also found that individual voxel
responses and cortical activity patterns in
higher object-sensitive areas correspond well
with the response preferences of high-level
units in CNNs, whereas fMRI responses in
early visual areas are better described by
low-level units (Güçlü & van Gerven, 2015;
Khaligh-Razavi & Kriegeskorte, 2014).

Although this research is at an early stage,
CNNs provide the most powerful and plau-
sible model of object recognition in humans
to date. The ability to relate the response
properties of CNNs to single-unit activity
and fMRI activity suggests that this approach
can lead to greater insight into the neural
bases of object processing. For many, it may
be surprising that training on a large set of
2D images of objects, with no explicit repre-
sentation of 3D structure, can allow for the
accurate recognition of objects across varia-
tions in viewpoint as well as generalization
to novel exemplars. However, neuroscientists
have argued that the function of inferotempo-
ral cortex is to learn the appropriate mappings
that serve to untangle the representations of
different objects through a series of nonlinear
transformations (DiCarlo, Zoccolan, & Rust,
2012). Perhaps the remarkable accuracy
and flexibility of human object recognition

is simply a product of a lifetime of visual
experiences and learning opportunities.

That said, a major limitation of cur-
rent CNNs is their reliance on supervised
approaches for deep learning. Infants and
children do not receive such frequent or
explicit feedback when they encounter new
objects in the world, nor do they appear to
require nearly as many training examples.
Unsupervised networks can extract object
structure from training examples (Le et al.,
2012), but have yet to achieve the per-
formance levels comparable to supervised
networks. The ability to shift from supervised
to unsupervised approaches to train these net-
works would constitute a major advance in
deep learning and may also clarify the bio-
logical bases of visual learning. Another
limitation of current CNNs such as AlexNet
and GoogLeNet is their reliance on strictly
feedforward processing, as it is known that
top-down attentional feedback can improve
perception and object recognition perfor-
mance. It will be interesting to see if future
CNN models that incorporate higher level
neural processes such as dynamic feedback
might lead to even better performance while
shedding light on the neural computations
underlying human vision.

Face Recognition and Subordinate-
Level Discrimination

When performing a recognition task, an
object can be identified or labeled with
varying degrees of specificity. For example,
we may want to distinguish between two
distinct classes of objects, such as dogs and
cats, whereas in other cases, we may want
to make a more fine-grained distinction,
such as differentiating a pug from a bulldog.
The verbal labels that people use most often
to identify objects may provide clues as
to how they prefer to distinguish among
visual stimuli.
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According to theories of visual catego-
rization, people should be faster and more
accurate at naming objects according to their
basic-level category (Mervis & Rosch, 1981;
Palmeri & Gauthier, 2004). The basic level is
believed to maximize the within-class simi-
larity among exemplars within the category
(e.g., different breeds of dogs) while maxi-
mizing the separation between that category
and other basic-level categories (e.g., dog vs.
cat). In comparison, telling apart exemplars
from a common basic-level category requires
more fine-grained discrimination and usually
requires more processing time to determine
the subordinate-level category of an object.
Thus, when shown a picture of a dachshund,
the first thought to come to mind might be
“dog,” then perhaps “short legs,” before
it is followed by “oh, it’s a dachshund.”
Subordinate-level categorization occurs
whenever we identify a dog by its breed, a
car by its model, or a bird by its species.

While we may be predisposed to identify
common objects at the basic level, human
faces seem to constitute a special class of
stimuli that people process at the subordinate
level, with greater focus on the uniquely
distinguishing properties of each individual
face. The task of face recognition requires
particularly fine-grained discrimination, as
all faces share the same basic parts and
a common configuration. It is the subtle
variations in the local features and their
relative arrangement that distinguish one face
from another face, which the visual system
somehow learns to tell apart. Our ability to
recognize upright faces gradually improves
with experience throughout childhood and
early adulthood, up to at least one’s mid-30s
(Germine, Duchaine, & Nakayama, 2011).
One consequence of this extensive train-
ing is that we are far better at perceiving,
recognizing, and remembering faces when
presented in a familiar upright orientation
than when upside-down (Lorenc, Pratte,

Angeloni, & Tong, 2014; McKone & Yovel,
2009; Valentine, 1988). This face inversion
effect can be observed even in more basic
tasks that require detecting the presence of
a face in an ambiguous image or perceiving
an emotional expression (Figure 1.19). In
many ways, people appear to be experts at
processing upright faces, and when given
the opportunity to train at distinguishing
exemplars from another stimulus class, such
as dogs, cars, or artificially rendered objects,
they tend to show a greater cost of stimulus
inversion following training (Diamond &
Carey, 1986; Gauthier & Tarr, 1997).

The shared similarity of faces would
present a major challenge to any recognition
system. The study of face processing has
helped reveal how the visual system repre-
sents and distinguishes the variations that
occur among exemplars from this natural
stimulus class. Vision scientists have mea-
sured the 3D structure of faces, using laser
range-finding methods, and applied analytic
methods to reveal how faces naturally vary
across individuals. For example, two of the
principal components along which faces vary
in 3D shape can be roughly described in terms
of gender and adiposity (i.e., how wide or thin
a face appears) (Leopold, O’Toole, Vetter, &
Blanz, 2001). Studies of visual aftereffects
suggest that the visual system encodes faces
according to deviations from a prototype
(or the central tendency of exemplars), such
that prolonged viewing of a masculine face
will cause a gender-neutral face to appear
feminine, and vice versa (Webster, Kaping,
Mizokami, & Duhamel, 2004). Similarly,
adaptation to a thin face will cause an average
face to appear much wider. Both human neu-
roimaging studies and neuronal recordings
in monkeys provide support for the notion
that faces are encoded according to how
they deviate from an average face, as larger
deviations or caricatured faces tend to evoke
stronger responses at face-selective sites
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(A)

(B)

Figure 1.19 Examples of the effect of face inversion. (A) Thatcher illusion by Pete Thompson. Facial
features and emotions are difficult to perceive upside down. (B) Sparse images of faces, such as two-tone
Mooney images, are difficult to perceive as faces when show upside-down. Color version of this figure
is available at http://onlinelibrary.wiley.com/book/10.1002/9781119170174.
Source: (A) Adapted from Thompson (1980). Figure created by Frank Tong; used with permission of
the author.

(Leopold, Bondar, & Giese, 2006; Loffler,

Yourganov, Wilkinson, & Wilson, 2005).

The constrained nature of face stimuli

has also allowed vision scientists to apply

psychophysical procedures to determine

what features of a face are most informa-

tive for particular tasks. One such method,

called Bubbles, involves presenting randomly
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selected components of a face, across mul-
tiple spatial scales, to determine what local
features of a face are most needed to per-
form a discrimination task (Figure 1.20). This
approach can be used to map what features are
most informative for determining the gender
or emotional expression of a face (Adolphs
et al., 2005; Gosselin & Schyns, 2001).

Neural Mechanisms of Face Processing

What are the neural mechanisms that under-
lie our remarkable abilities at discriminating
and recognizing faces? One of the first
category-selective visual areas identified
in humans was the fusiform face area, or
FFA (Kanwisher et al., 1997). This cortical
region, which lies anterior to the extrastriate
visual cortex in the fusiform gyrus, responds
preferentially to human faces, animal faces,
and schematic cartoon faces, as compared
to a variety of non-face stimuli, including
hands, body parts, flowers, and a variety of
inanimate objects (Kanwisher et al., 1997;
McCarthy, Puce, Gore, & Allison, 1997;
Tong, Nakayama, Moscovitch, Weinrib, &
Kanwisher, 2000). Activity in the FFA is
strongly associated with the conscious per-
ception of faces (McKeeff & Tong, 2007;
Tong et al., 1998) and more strongly engaged
by holistic processing of upright faces (Kan-
wisher, Tong & Nakayama, 1998; Yovel &
Kanwisher, 2005). Moreover, this region can
be modulated by visual adaptation to indi-
vidual faces, suggesting that it is sensitive to
face identity (Loffler et al., 2005; Rotshtein,
Henson, Treves, Driver, & Dolan, 2005). The
causal role of the FFA in face perception
has also been shown in electrical stimulation
studies of preoperative epilepsy patients and
can impair face recognition (Allison et al.,
1994) and even induce perceptual distortions
of viewed faces (Rangarajan et al., 2014).

A more posterior face-selective region,
known as the occipital face area (OFA),
responds at an earlier latency than the FFA

and is associated with early face detection
processes (J. Liu, Harris, & Kanwisher, 2002;
Pitcher, Walsh, & Duchaine, 2011). The OFA,
which lies near the surface of the skull, can be
targeted by noninvasive transcranial magnetic
stimulation (TMS), and TMS applied to the
OFA disrupts performance on face percep-
tion tasks (Kietzmann et al., 2015; Pitcher,
Walsh, Yovel, & Duchaine, 2007). Human
neuroimaging studies commonly find another
face-selective region in the superior temporal
sulcus (STS) that responds more strongly
to stimuli associated with dynamic facial
motion, including both static and dynamic
images of facial expressions, movements of
the eyes, and movies of mouth movements
during speech (Hoffman & Haxby, 2000;
Puce, Allison, Bentin, Gore, & McCarthy,
1998). Such findings have led to the proposal
that face processing relies on a distributed
set of brain areas that include both a ventral
component and a dorsal component (Haxby,
Hoffman, & Gobbini, 2000). The FFA, which
lies more ventrally, is presumably dedicated
to processing the invariant aspects of faces
needed for identification, whereas the more
dorsal STS region serves to process the
dynamic and variable aspects of faces, such
as those that occur during facial expressions,
shifts of overt attention, and speech.

About a decade after the discovery of
these face-selective visual areas in humans,
neuroscientists devised paradigms to perform
parallel fMRI studies in alert monkeys (Tsao,
Freiwald, Tootell, & Livingstone, 2006). This
work has revealed a set of six face-selective
patches in the macaque temporal cortex
that seem to share strong homologies with
the human face-processing network (Tsao,
Moeller, & Freiwald, 2008). In the monkey,
all six patches respond more strongly to faces
than to a variety of non-face stimuli (e.g.,
bodies, fruits, man-made objects). More-
over, electrical stimulation applied to any
one of these sites leads to activation at the
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(A)

(B)

(C)

(D)

(E)

Figure 1.20 Example of the Bubbles technique. This psychophysical technique presents information
about a stimulus (A) at different frequencies (B) and locations (C) to determine what local features
and spatial scales are the most informative for performing a discrimination task. A randomly generated
composite image is presented on every trial (D). Here, Bubbles is being used for a gender judgment task,
and the reconstructed image, shown in (E), shows the most informative local features of the face in this
task.
Source: From Gosselin and Schyns (2001). Reproduced with permission of Elsevier.
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other sites, indicating that these functionally
defined face patches comprise a highly inter-
connected network (Moeller, Freiwald, &
Tsao, 2008).

Single-unit recordings from the ventral
face patches have further revealed a hierar-
chically organized shift from view-specific
to view-invariant coding (Freiwald & Tsao,
2010). In the middle face patch, which
appears to be homologous to the human FFA,
individually recorded neurons show peak
tuning preference for just a single viewpoint,
and most respond best to front views of
faces. Most of these cells are tuned to one or
only a few facial features, such as the face’s
width or aspect ratio, the distance between
the eyes, iris size, and so forth (Freiwald,
Tsao, & Livingstone, 2009). The pattern
of responses from many these neurons can
thereby provide a code for distinguishing
between individual faces. Indeed, facial
identity can be reliably decoded from their
patterns of activity, whereas information
about exemplars from other object categories
has proven unreliable (Tsao et al., 2006).
Many of these neurons also show evidence of
holistic processing, responding more strongly
to their preferred feature when it is presented
in the context of a facial outline. At the next
stage of processing, in a more anterior patch
called AL, many neurons exhibit viewpoint
symmetric tuning (i.e., faces rotated to a
similar degree to the left or right of a front-on
view), suggesting a partial degree of view-
point invariance. Finally, in the most anterior
face patch called AM, many neurons respond
well to the full range of possible face views.
Some of these neurons even show stable
preference for a specific face identity across
large changes in viewpoint. Taken together,
these findings suggest that viewpoint
invariance is achieved by first combining
view-specific inputs to achieve viewpoint
symmetric tuning, followed by the integra-
tion of these signals to achieve view-invariant

selectivity at the highest levels of the
inferotemporal cortex.

It should be emphasized that the devel-
opment of these face-selective networks
depends on both nature and nurture. Cross-
sectional testing of thousands of online par-
ticipants has revealed that people steadily
improve in their face recognition abilities
over the first 30+ years of life (Germine
et al., 2011). Also, people are expert at
distinguishing faces from their own cultural
group, but quite poor at recognizing faces
from unfamiliar cultures. This cross-race
recognition deficit seems largely attributable
to a lack of visual training. Cross-sectional
studies also suggest that after people move to
a new country, they gradually improve in their
ability to recognize faces of the initially unfa-
miliar cultural group over a prolonged period
extending up to two decades (Rhodes et al.,
2009). Taken together, these results suggest
that face recognition gradually improves with
each new face that is learned, until eventu-
ally, after decades of exposure, performance
begins to asymptote. Neuroimaging stud-
ies have found potential correlates of these
behavioral improvements. An fMRI study
comparing children (ages 7–11) and adults
found that the right FFA increases threefold
in size by adulthood, whereas the left FFA is
only modestly larger (Golarai et al., 2007).

Biological and genetic factors also have a
strong influence on face processing. Twin
studies suggest that there is a prominent her-
itable component to face recognition ability
(Wilmer et al., 2010), whereas developmen-
tal prosopagnosia has a tendency to run in
families (Duchaine, Germine, & Nakayama,
2007). Researchers are beginning to uncover
differences in cortical organization that may
account for individual differences in face re-
cognition ability, including changes in the size
of the FFA, differences in white matter tracts,
and microstructure differences (Gomez, 2015,
2017; Pinel, 2015; Saygin, 2011).
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Studies of perceptual training with non-
face objects suggest that much of the inferior
temporal cortex is highly plastic and capable
of learning new visual forms and new visual
associations. Visual expertise with a stimulus
class, such as birds, cars, or radiological
images, tends to lead to greater activity in
the FFA as well as other regions in the ven-
tral temporal cortex (Gauthier, Skudlarski,
Gore, & Anderson, 2000; Harley et al., 2009;
McGugin, Gatenby, Gore, & Gauthier, 2012).
This suggests that processing in the FFA
might not be exclusively dedicated to faces.
Intriguingly, researchers have investigated
the effects of prolonged training in monkeys
with various stimuli at different ages of onset
(Srihasam, Mandeville, Morocz, Sullivan, &
Livingstone, 2012). Monkeys were assigned
to discriminate letters, Tetris-like block
patterns, or schematic cartoon faces. Early
training with a particular stimulus type led to
functionally distinct effects, with a spatially
distinct region of selectivity emerging in the
inferotemporal cortex, whereas later training
did not. These results suggest that early
visual experience can strongly modify the
functional organization of the inferotemporal
cortex, whereas training at an older age leads
to more constrained effects, presumably
because of the functional topography that is
already in place.

CONCLUDING REMARKS
AND FUTURE DIRECTIONS

This review described how researchers have
capitalized on sophisticated behavioral, neu-
ral, and computational methods to advance
understanding of the neural mechanisms
of visual feature perception, figure-ground
perception, and the processing of visual
context. Vision research has also provided
critical techniques and powerful computa-
tional approaches for characterizing higher

cognitive functions of top-down attention
and object recognition. The progress made
since the new millennium has been truly
remarkable.

With this growing knowledge base, new
questions have emerged on the horizon. The
perception of basic features and features
in global contexts is strongly linked to the
information processing that takes place in
early visual areas. However, it remains puz-
zling as to how this detailed information is
subsequently read out by higher visual areas
for perceptual report. As visually precise
information is passed from lower to higher
areas, what information is maintained and
what information is lost or distorted? Studies
of perceptual decision making that rely on
simple binary decisions have yet to address
this thorny issue. Along related lines, what
is the role of attentional feedback in this
read-out process, and might attention have a
critical role in allowing for the flexible trans-
mission of high-fidelity information between
early visual areas and higher order areas?

Another question concerns the top-down
mechanisms of perceptual inference and
how they resemble or differ from the volun-
tary effects of top-down attention. Powerful
automatic effects of feedback have been
documented during perceptual filling-in,
figure-ground segmentation, and perceptual
grouping, indicating that higher areas send
feedback signals to early visual areas to
signify inferences made based on the broader
visual context. Such feedback effects are in
accordance with a general predictive coding
framework (Friston, 2005; Rao & Ballard,
1999), whereas other models have proposed
more specific accounts of contextual pro-
cessing (Brosch, Neumann, & Roelfsema,
2015; Craft, Schutze, Niebur, & von der
Heydt, 2007). Many well-known illusions,
such as the tilt-surround illusion, remain to
be understood at a neural level (Schwartz,
Sejnowski, & Dayan, 2009). At the same
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time, the discovery of new and surprising
illusions, such as #TheDress, point to the fact
that we have only a rudimentary idea of how
the visual system makes inferences. It will
be of considerable interest to see whether
Bayesian accounts of visual perception and
population coding, which currently focus on
more specific or abstracted problems, can
help motivate the development of neural
models that can make perceptual inferences
in generalized contexts.

Finally, we witnessed how deep con-
volutional networks, designed with an
architecture based on the visual system,
have outperformed all prior models of object
recognition. Investigations of these networks
have revealed that individual units develop
response preferences that resemble the visual
system. However, current models can also be
biased to make gross errors that no human
ever would, through simple image modifi-
cations such as the addition of adversarial
noise. Thus, current models share some but
far from all of functional properties of the
human visual system. As computer scientists
seek to achieve more accurate performance,
by training deeper networks with ever-larger
data sets, it is not clear that a more accu-
rate characterization of the visual system
will emerge. Instead, it will be important
to consider design aspects of the network’s
architecture, the learning algorithm and
its implementation, and approach taken to
training the network to understand what
attributes of deep networks may provide a
better characterization of our own visual
system (Yamins & DiCarlo, 2016).

Although convolutional neural networks
are exceedingly complex and highly non-
linear, strictly speaking they are not black
boxes, as their tuning properties can be
interrogated. This deep learning approach
to visual processing will have an impor-
tant complementary role in the quest to
understand the neural computations of our

own visual system, as they provide the best
current account of how a network of simple
units, with appropriately learned weights, can
extract structure and meaningful information
from complex natural images.
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