CHAPTER 1

Computational Modeling in Cognition

and Cognitive Neuroscience

STEPHAN LEWANDOWSKY AND KLAUS OBERAUER

Scientific reasoning rests on two levels of
inferences (see Figure 1.1). On the first level,
we draw inferential links between data and
empirical generalizations. Empirical gener-
alizations, sometimes boldly called laws, are
statements that pertain to a regular relation-
ship between observable variables. On this
level, we make inductive inferences from
data in individual studies to empirical gen-
eralizations, and deductive inferences using
established or hypothesized empirical gen-
eralizations to make predictions for further
studies. For instance, it is well established
that performance on almost any cognitive
task improves with practice, and there is
widespread agreement that this improve-
ment is best described by a power function
(Logan, 1988) or by an exponential function
(Heathcote, Brown, & Mewhort, 2000). This
regularity is sufficiently well established to
enable strong predictions for future studies
on practice effects and skill acquisition.

On the second level of inference, we
link empirical generalizations to theories.
Theories differ from empirical generaliza-
tions in that they make assumptions about
unobservable variables and mechanisms, and
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their connections to observable variables.
On this second level, we use inductive rea-
soning to infer theoretical constructs from
empirical generalizations. For
the empirical relationship between practice
and performance has been used to infer
the possibility that people are remembering
every instance of stimuli they encounter
(Logan, 1988). To illustrate, this theory pro-
poses that repeated exposure to words in a
lexical-decision task results in multiple mem-
ory traces of those words being laid down,
all of which are accessed in parallel during
further trials. With practice, the increasing
number of traces permits increasingly fast
responding because it becomes increasingly
more likely that one of the traces will be
accessed particularly quickly. (We expand on
this example later.)

Scientists use deductive reasoning to
derive predictions of empirical regularities
from theoretical assumptions. For instance,
the notion that practice effects result from
the encoding of additional memory traces
of specific stimuli gives rise to the predic-
tion that those performance benefits should
not transfer to new items that have never
been seen before. This prediction has been
confirmed (Logan & Klapp, 1991).

The two levels of inference differ in the
degree of formalization that has evolved

example,
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Figure 1.1 Two levels of inferences in science.

over time. Many decades ago data analysis
in psychology became highly formalized:
As a result, it is now nearly inconceivable
for contemporary empirical research to be
presented without some supporting statis-
tical analysis. Thus, on the first level of
inference—involving data and empirical
regularities—psychology has adapted rigor-
ous tools for reducing bias and ambiguity in
the inferential process. This process contin-
ues apace to this date, with new developments
in statistics and methodology coming online
at a rapid rate (e.g., Cramer et al., 2015;
Wagenmakers, Verhagen, & Ly, 2015).

On the second level of inference—between
theories and empirical generalizations—the
picture is less homogeneous: Although there
are several areas of enquiry in which rigorous
quantitative and computational models are
ubiquitous and indispensable to theorizing
(e.g., in decision making, psychophysics,
and categorization), in other areas more
informal and purely verbal reasoning has
retained a prominent role. When theorizing
is conducted informally, researchers derive
predictions from a theory by a mixture of
deduction, mental simulation, and plausibil-
ity judgments. The risks of such informal

reasoning about theories and their relation
to data has long been known and repeat-
edly illustrated (Farrell & Lewandowsky,
2010; Lewandowsky, 1993; Lewandowsky &
Farrell, 2011).

This chapter surveys the solution to those
risks associated with informal theorizing—
namely, the use of mathematical or compu-
tational models of memory and cognition.
We begin by showing how the use of models
can protect researchers against their own
cognitive limitations, by serving as a kind of
“cognitive prosthesis.” We next differentiate
between different classes of models, before
we discuss descriptive models, measurement
models, and explanatory models in some
detail. We then survey several cognitive
architectures, large-scale endeavors to build
models of human cognition.

MATHEMATICAL MODELS
AS COGNITIVE PROSTHESIS

Models of Choice Reaction Time Tasks

Imagine an experiment in which participants
are shown a cluster of 300 lines at various ori-
entations and their task is to decide whether



the lines slant predominantly to the left or
to the right. This is a difficult task if the
orientations of individual lines within the
cluster are drawn from a distribution with
high variance (e.g., Smith & Vickers, 1988).

The data from such “choice-reaction-time”
experiments are strikingly rich: There are two
classes of responses (correct and incorrect),
and each class is characterized by a distribu-
tion of response times across the numerous
trials of each type. To describe performance
in a choice-reaction-time experiment would
therefore involve both response accuracy
and latency, and the relationship between
the two, as a function of the experimental
manipulations (e.g., variations in the mean
orientation of the lines or in how participants
are instructed to trade off speed and accu-
racy). There are a number of sophisticated
models that can describe performance in
such tasks with considerable accuracy (S. D.
Brown & Heathcote, 2008; Ratcliff, 1978;
Wagenmakers, van der Maas, & Grasman,
2007), all of which are based on the premise
that when a stimulus is presented, not all
information is available to the decision
maker instantaneously. Instead, the models
all assume that the cognitive system gradu-
ally builds up the evidence required to make
a decision, although they differ with respect
to the precise mechanism by which this
accumulation can be modeled.

For the present illustrative example, we
assume that people sample evidence in
discrete time steps and keep summing the
evidence until a decision is reached. At
each step, a sample nudges the summed
evidence toward one decision or another
until a response threshold is reached. When
deciding whether the 300 lines are predom-
inantly slanted to the right or the left, each
sampling step might involve the processing
of a small number of lines and counting
of the left-slanted vs. right-slanted lines.
The sample would then be added to the
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sum of all previous samples, nudging the
overall evidence toward the “left” or “right”
decision. Figure 1.2 illustrates this “random
walk” model with a number of illustrative
sampling paths. Each path commences at time
zero (i.e., the instant the stimulus appears)
with zero evidence. Evidence is then sampled
until the sum of the evidence is sufficient for
a response, which occurs when the evidence
exceeds one or the other response threshold,
represented by the dashed horizontal lines
(where the top line arbitrarily represents
a “left” response and the bottom a “right”
response).

The top panel shows what happens when
the 300 lines in the stimulus are scattered
evenly to the left and right. In that case,
information is equally favorable to the two
response alternatives, and hence the sam-
pling paths are erratic and end up crossing
each threshold (roughly) equally often. We
would also expect the two response types to
have identical response times on average:
Sampling starts with zero evidence, and if
the stimulus is noninformative, then each
sample is equally likely to nudge the path
up or down. It follows that if the boundaries
for the two responses are equidistant from
the origin, response times—that is, the point
along the abscissa at which a sampling path
crosses the dashed line—should be equal.
With the small number of trials shown in the
figure this cannot be ascertained visually, but
if a large number of trials were simulated
then this fact would become quite obvious.

What would happen if the evidence
instead favored one decision over the other,
as expected when an informative stimulus is
present? Suppose most of the 300 lines were
slanting to the left; in that case most of the
evidence samples would be positive and as a
result, this so-called drift would increase the
probability of the evidence crossing the upper
boundary. The bottom panel of Figure 1.2
illustrates this situation. All but one sampling
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Figure 1.2  Graphical illustration of a simple random walk model. The top panel plots seven illustrative
sampling paths when the stimulus is noninformative. The bottom panel plots another seven sampling
paths with a drift rate toward the top boundary (representing a “left” response in the line-orientation
task). Note the difference in the horizontal scale between panels. Color version of this figure is available
at http://onlinelibrary.wiley.com/book/10.1002/9781119170174.

paths cross the “left” boundary at the top, and
only a single “right” response occurs. It is
also apparent that the speed of responding
is quicker overall for the bottom panel than
the top. This not surprising, because having
an informative stimulus permits more rapid
extraction of information than a random
cluster of 300 lines at varying orientations.

This brings us to the question of greatest
interest: When an informative stimulus is
present, what happens to the decision times
for the less likely responses—that is, “right”
responses that cross the bottom boundary—as
the drift rate increases? Suppose there are
many more trials than shown in the bottom
panel of Figure 1.2, such that there is ample
opportunity for errors (“right” responses) to
occur. How would their response latencies
compare to the ones for the correct (“left”)
responses in the same panel? Think about
this for a moment, and see if you can intuit
the model’s prediction.

We suspect that you predicted that the
decision time would be slower for the less
likely responses. The intuition that an upward
drift must imply that it will take longer for
a random walk to (rarely) reach the bottom
boundary is very powerful. You might have
thought of the erroneous responses as a
person struggling against a river current,
or you might have pictured the sampling
paths as rays emanating from the starting
point that are rotated counterclockwise
when drift is introduced, thereby producing
slower responses when the lower boundary is
accidentally crossed.

Those intuitions are incorrect. In this
model, the mean response times—and indeed
the entire distribution of response times—for
both response types are identical, irrespective
of drift rate. This property of the random
walk model has been known for decades
(Stone, 1960), but that does not keep it from
being counterintuitive. Surely that swimmer



would have a hard time reaching the bottom
against the current that is pushing her toward
the top? The swimmer analogy, however,
misses out on the important detail that the
only systematic pressure in the model is the
drift. This is quite unlike the hypothetical
swimmer, who by definition is applying her
own counterdrift against the current. The
implication of this is that paths that hit the
bottom boundary do so only by the hap-
penstance of collecting a series of outlying
samples in a row that nudge the path against
the drift. If there were additional time, then
this would merely give the path more oppor-
tunity to be bumped toward the top boundary
by the drift. It follows that the only errors the
model can produce are those that occur as
quickly as a correct response.

We argue that the behavior of this basic
random-walk model is not at all obvious from
its description. In our experience, most peo-
ple resort to analogies such as the swimmer
or the rays emanating from the origin in order
to predict how the model will behave, there-
fore almost invariably getting it wrong. This
example is a good illustration of the risks
associated with relying on mental simulation
to presage the behavior of models: Even very
simple models can fool our unaided thinking.

Models of Rehearsal in
Short-Term Memory

The potential for intuition to lead us astray
is even greater when the processes involved
are accessible to introspection. We illustrate
this with the notion of maintenance rehearsal
in short-term or working memory. From an
early age onward, most people spontaneously
rehearse (i.e., recite information subvocally
to themselves) when they have to retain infor-
mation for brief periods of time. When given
the number 9671111, most people will repeat
something like “967-11-11" to themselves
until they report (or dial) the number. There is
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no question that rehearsal exists. What is less
clear is its theoretical and explanatory status.
Does rehearsal causally contribute to recall
performance? Does it even “work”—that is,
does rehearsal necessarily improve memory?

At first glance, those questions may
appear unnecessary or indeed adventurous
in light of the seemingly well-supported link
between rehearsal and memory performance
(e.g., D. Laming, 2008; Rundus, 1971; Tan &
Ward, 2000). In a nutshell, many studies
have shown that recall can be predicted by
how often an item has been recited, and
by the position of the last rehearsal. On
closer inspection, however, those reports
all involved free recall—that is, situations
in which participants were given a list of
words to remember and were then able to
recall them in any order. This protocol dif-
fers from the serial recall that is commonly
required in short-term memory situations:
When trying to remember a phone number
(such as 9671111), there is a distinct dif-
ference between dialing 9671111 (which
earns you a pizza in Toronto) and dialing
1179611 (which gets you nowhere). Under
those circumstances, when the order of items
is important above and beyond their iden-
tity, does rehearsal support better memory
performance?

Many influential theories that are formu-
lated at a verbal level state that rehearsal
is crucial to memory even in the short
term. For example, in Baddeley’s work-
ing memory model (e.g., Baddeley, 1986;
Baddeley & Hitch, 1974), memories in a
phonological short-term store are assumed
to decay over time unless they are contin-
ually restored through rehearsal. Although
there is no logical necessity for rehearsal
to be accompanied by decay, models of
short-term or working memory that include
a rehearsal component are also presuming
that unrehearsed memories decay inexorably
over time (Baddeley, 1986; Barrouillet,
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Bernardin, & Camos, 2004; Burgess & Hitch,
1999; Daily, Lovett, & Reder, 2001; Kieras,
Meyer, Mueller, & Seymour, 1999; Page &
Norris, 1998; Oberauer & Lewandowsky,
2011). A sometimes tacit but often explicit
claim in those models is that rehearsal is
beneficial—that is, at the very least, rehearsal
is seen to offer protection against further
forgetting, and at its best, rehearsal is thought
to restore memory to its original strength.

The implications of this claim are worth
exploring: For rehearsal to restore partially
decayed memory representations to their
original strength when serial order is impor-
tant implies that the existing trace must be
retrieved, boosted in strength, and re-encoded
into the same position in the list. If errors
arise during retrieval or encoding, such that
the boosted trace is assigned to a different
position, then rehearsal can no longer be
beneficial to performance. Recall of 9671111
can only be facilitated by rehearsal if the “9”
is strengthened and re-encoded in position 1,
the “6” remains in position 2 after rehearsal,
the ““7” in position 3, and so on.

It turns out that this successful rehearsal
is difficult to instantiate in a computational
model. We recently examined the role of
rehearsal within a decay model in which items
were associated to positions, and those asso-
ciations decayed over time (Lewandowsky &
Oberauer, 2015). We found that conventional
articulatory rehearsal, which proceeds at a
pace of around 250 ms/item, rarely served
its intended purpose: Although the model
reproduced the pattern of overt rehearsals
that has been observed behaviorally (Tan &
Ward, 2008), it was unable to simulate the
associated recall patterns. Specifically, the
model performed worse with additional
time for rehearsal during encoding, whereas
the data showed that performance increases
with additional rehearsal opportunity.

Analysis of the model’s behavior revealed
that this departure from the data arose for

reasons that are not readily overcome. Specif-
ically, rehearsal turns out to introduce a large
number of “virtual” repetition errors (around
50% of all rehearsal events) into the encoded
sequence. (As no items are overtly recalled
during rehearsal, the errors are virtual rather
than actual.) This contrasts sharply with
observed recall sequences, which exhibit
repetition errors only very infrequently (i.e.,
around 3% of responses; Henson, Norris,
Page, & Baddeley, 1996). The excessive
number of repetition errors is a direct conse-
quence of the fact that rehearsal, by design,
boosts the memory strength of a rehearsed
item substantially.

The consequences of this strengthening
of memory traces are outlined in Figure 1.3,
which also outlines the model’s architec-
ture. Items are represented by unique nodes
(shown at the top of each panel) that are
associated to preexisting position markers
when an item is encoded. Multiple units
represent the position markers, and the posi-
tion markers partially overlap with each
other. At retrieval (or during rehearsal), the
position markers are used as retrieval cues.
Recall errors arise from the overlap between
markers, and also because the associations
between the position markers and items
decay over time.

Panel A shows the state of memory after
two hypothetical items have been encoded
and before rehearsal commences. Rehearsal
commences by cueing with the first set of
context markers. This cue retrieves the correct
item (panel B), permitting the strengthening
of the associations between it and the corre-
sponding context markers (panel C). When
the model next attempts to retrieve the sec-
ond item for rehearsal, the overlap between
adjacent position markers implies that the
first item is again partially cued (panel D).
Because the association of the first item to its
position markers has just been strengthened,
it may be activated more than the second item
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Figure 1.3 Effects of articulatory rehearsal on strengthening of two list items in a decay model that
includes rehearsal. Shading of circles and superimposed numbers refers to the extent of activation of
each item or context element (on an arbitrary scale), and thickness of lines indicates strength of asso-
ciation weights between an item and its context markers. Items are shown at the top and use localist
representations; context is shown in the bottom and involves distributed representations. The layers are
connected by Hebbian associations that are captured in the weights. Weights decay over time. Panel A
shows the state of memory before rehearsal commences. Both items are associated to their overlapping
context markers. Panel B: First item is cued for rehearsal by activating the first context marker. Item 1 is
most active and is hence retrieved for rehearsal. Panel C: Item 1 is re-encoded and the context-to-item
associations are strengthened (by a factor of 3 in this example). Panel D: The second item is cued for
rehearsal but Item 1 is more active because of its recent rehearsal.

Source: From Lewandowsky and Oberauer (2015). Reprinted with permission.

when the second item is cued, as is indeed
the case in panel D.

In general, when item n has just been
rehearsed, there is a high risk of retrieving
item 7 again in position n + 1. The resultant
encoding of a second copy of item n in
position n + 1 introduces a virtual repetition
error that subsequent rehearsal sweeps will
likely reinforce. This problem is an inevitable
consequence of the fact that rehearsal boosts

items one at a time, thereby introducing an
imbalance in encoding strength that often
overpowers the cueing mechanism. !

'One might wonder why rehearsal does not involve the
failsafe, nearly instant, and simultaneous amplification
of all contents of memory. This alternative conception of
rehearsal is ruled out by the fact that overt or covert artic-
ulation is necessarily sequential in nature and is known
to proceed at a relatively slow pace. It is logically impos-
sible for a slow sequential process to restore all list items.
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This analysis implies that a reflexive
verbal appeal to rehearsal in order to
explain a memory phenomenon is not an
explanation—it can only be the beginning of
a process of examination that may or may
not converge on rehearsal as an underlying
explanatory process. That process of exami-
nation, in turn, cannot be conducted outside
a computational model: Decades of verbal
theorizing about rehearsal has continued to
advance fairly undifferentiated claims about
its effectiveness that eventually turned out to
be overstated.

The Need for Cognitive Prostheses

The preceding two examples converge on two
conclusions: First, no matter how carefully
we may think about a conceptual issue, our
cognitive apparatus may fail to understand
the workings of even simple models, and it
may readily misinterpret the implications of
constructs that are specified at a verbal level.
This can occur to any researcher, no matter
how diligent and well intentioned.

There has been much emphasis recently
on improvements to the way in which sci-
ence is conducted, spurred on by apparent
difficulties to replicate some findings in psy-
chology and other disciplines (e.g., Munafo
et al., 2014; see also Chapter 19 in this
volume). Measures such as open data and
preregistration of experiments have become
increasingly popular in recognition of the
fact that scientists, like all humans, may
be prone to fool themselves into beliefs
that are not fully supported by the evidence
(Nuzzo, 2015). Researchers are not only
prone to errors and biases in interpreting
data—we argue that they are equally prone
to make mistakes in interpreting theories.
Computational models are one particularly
useful tool to prevent theoreticians from
making inconsistent assumptions about psy-
chological mechanisms, and from deriving

unwarranted predictions from theoretical
assumptions. As we show next, models can
serve this purpose in a variety of ways.

CLASSES OF MODELS

All models are comprised of an invariant
structure and variable components, known
as parameters, which adapt the structure
to a particular situation. For example, the
random-walk model considered earlier has
a fixed structural component involving the
sampling mechanism: The model is commit-
ted to repeatedly sampling evidence from
a noisy source, and to accumulate that evi-
dence over time until a decision threshold is
reached. This invariant structural component
is adapted to the data or experiment under
consideration by adjusting parameters such
as the location of the response thresholds.
For example, if experimental instructions
emphasize speed over accuracy, the response
thresholds in the model are moved closer to
the origin to produce faster (but likely less
accurate) responses, without however alter-
ing the basic sampling structure. Similarly, if
the stimuli contain a stronger signal (e.g., all
lines are slanted in the same direction), this
would be reflected in a higher drift rate but it
would not alter the sampling structure.

One way to classify models is by consider-
ing the role of data in determining a model’s
structure and parameters. For example, in
the physical sciences, a model’s structure,
as well as its parameters are specified a
priori and without reference to data. Thus,
the structure of models used for weather
or climate forecasting is determined by the
physics of heat transfer (among other vari-
ables) and their parameters are well-known
physical constants, such as the Boltzmann
constant, whose value is not in question.
Both structure and parameters are known
independently of the data and do not depend



on the data (i.e., the historical climate or
today’s weather). There are few, if any, such
well-specified models in psychology.

At the other end of the extreme, regression
models that describe, say, response times
as a function of trials in a training study,
are entirely constructed in light of the data.
Their structure—that is, the number and
nature of terms in the model—as well as
the parameters—that is, the coefficients of
those terms—are estimated from the data.
If the data are better characterized by a
curvilinear relationship, then a quadratic or
logarithmic component would be added to
the model without hesitation to improve its fit
with the data. We call those types of models
descriptive models, and although they are
most often associated with data analysis, they
do have their theoretical uses as we show in
the next section.

Most cognitive models,
somewhere in between those extremes. Their
structure is determined a priori, before the
data for an experiment are known, based on
theoretical or conceptual considerations. For
example, the random-walk model’s develop-
ment was influenced by theoretical statistics,
in particular the optimal way to conduct
a sequential hypothesis test (Wald, 1945).
The model’s structure, therefore, remains
invariant, irrespective of which data set it
is applied to (which is not to ignore that
other variants of sampling models have been
developed; e.g., Smith & Ratcliff, 2015, but
their development was not a simple result of
data fitting). We call those models theoretical
models later because their structure incor-
porates theoretical commitments that can be
challenged by data.

however, lie

Descriptive Models

We already noted that descriptive models
do not have an a priori structure that is
defined before the data are known. They may,
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therefore, appear to be mere statistical tools
that, at best, provide a summary of an empir-
ical regularity. This conclusion would be
premature: Even though descriptive models
are, by definition, devoid of a priori struc-
ture, this does not mean they cannot yield
structural insights. Indeed, one of the aims of
applying descriptive models to data may be
the differentiation between different possible
psychological structures.

To illustrate, consider the debate on
whether learning a new skill is best under-
stood as following a “Power Law” or is better
described by an exponential improvement
(Heathcote et al., 2000). There is no doubt
that the benefits from practice accrue in a
nonlinear fashion: Over time and trials, per-
formance becomes more accurate and faster.
What has been less clear is the functional
form of this empirical regularity. For decades,
the prevailing opinion had been that the effect
of practice is best captured by a “Power law”;
that is, a function that relates response speed
(RT) to the number of training trials (N);
thus, RT = N7#. The parameter f is the
learning rate, and when both sides of the
equation are transformed logarithmically,
the power function becomes a nice linear
relationship: log(RT) = —f X log N.

An alternative view, proffered by Heath-
cote et al. (2000), suggests that practice
effects are better described by an exponential
—axN  \where the parameter
a again represents a learning rate. Why
would it matter which function best describes
practice data? It turns out that the choice
of descriptive model carries implications
about the psychological nature of learning.
The mathematical form of the exponen-
tial function implies that the proportional
improvement, relative to what remains to be
learned, is constant throughout practice—no
matter how much you have already practiced,
learning continues apace. By contrast, the
mathematics of the power function imply

function: RT = e



10 Computational Modeling in Cognition and Cognitive Neuroscience

that the relative learning rate is slowing
down as practice increases. Although perfor-
mance continues to improve, the rate of that
improvement decreases with further practice.
It follows that the proper characterization of
skill acquisition data by a descriptive model,
in and of itself, has psychological implica-
tions: If the exponential function is a better
descriptor of learning, then any explanation
of practice effects has to accommodate this
by postulating a practice-invariant underlying
process. Conversely, if the power function
is a better descriptor, then the underlying
process cannot be practice-invariant.

The selection among competing func-
tions is not limited to the effects of practice.
Debates about the correct descriptive func-
tion have also figured prominently in the
study of forgetting, in particular the question
whether the rate of forgetting differs with
retention interval. The issue is nuanced, but
it appears warranted to conclude that the rate
of forgetting decelerates over time (Wixted,
2004a). That is, suppose 30% of the infor-
mation is lost on the first day, then on the
second day the loss may be down to 20% (of
whatever remains after day 1), then 10%, and
so on. Again, as in the case of practice, the
function itself has no psychological content
but its implications are psychological: The
deceleration in forgetting rate may imply that
memories are “consolidated” over time after
study (e.g., Wixted, 2004a, 2004b).

Theoretical Models

Within the class of theoretical models,
we find it helpful to differentiate further
between what we call “measurement mod-

2

els,” which capture a complex pattern of
data and replace those data by estimates of
a small number of parameters, and what we
call “explanatory models,” which seek to
provide a principled explanation of exper-

imental manipulations. As we show next,

the difference between those two types of
theoretical models revolves around the role
of the parameters.

MEASUREMENT MODELS

The problem appears simple: Suppose there
are two participants in the earlier experiment
involving the detection of the predominant
slant of a cluster of 300 lines. Suppose that
across a wide range of stimuli, participant
A performs at 89% accuracy, with a mean
response latency (for correct responses) of
1,200 ms. Participant B, by contrast, per-
forms at 82% with a mean latency of 800 ms.
Who is the better performer? Equivalently,
suppose the preceding example involved
not two participants but two experimen-
tal conditions, A and B, with the mean
across participants as shown earlier. Which
condition gives rise to better performance?

This problem does not have a straightfor-
ward solution because speed and accuracy
are incommensurate measures. We cannot
determine how many milliseconds a percent-
age point of accuracy is worth. There is no
independently known transformation that
converts accuracy into speed. We can express
response times variously in seconds, minutes,
milliseconds, or even nanoseconds, but we
cannot express response times in terms of
accuracy or vice versa. We therefore cannot
readily compare two individuals or experi-
mental conditions that differ in accuracy and
speed but in opposite directions.?

Enter the measurement model. The solu-
tion to the problem is to re-express both
accuracy and speed of responding within the
parameter space of a model that can describe
all aspects of performance in the experiment.

2If a person or condition is slower and less accurate than
another person or condition, then we can at least make an
ordinal inference about which is worse without having to
worry about scale incommensurability.



Translating Data Into Parameters

We illustrate the basic idea of reexpress-
ing complex data as parameters within the
random-walk model discussed at the outset.
We noted already that the model can provide
information about the accuracy as well as
the speed of responding, and we noted that
the drift rate was a crucial parameter that
determined which response boundary the
model would, on average, approach, and at
what speed (Figure 1.2). We will use this
type of model architecture to reexpress the
observed speed and accuracy of responding
by a participant (or in an experimental con-
dition) within the model’s parameter space.
To foreshadow, we understand the drift rate
to be an indicator of performance, as it
“characterizes the quality of evidence accu-
mulation and can be influenced by stimulus
characteristics as well as by individual differ-
ences in processing efficiency” (Schmiedek,
Oberauer, Wilhelm, Siif}, & Wittmann, 2007,
p.- 416). Hence, if person A has a greater drift
rate than person B, then we can say that A
performs the task better than B.

Measurement Models Are Falsifiable

We begin our exploration of measurement
models by revisiting one of the properties
of the random-walk model presented at the
outset. It will be recalled that the model in
Figure 1.2 predicts identical latencies for
errors and correct responses. This prediction
is at odds with the empirical fact that errors
can be either fast or slow, but are rarely equal
in speed to correct responses (Ratcliff, Van
Zandt, & McKoon, 1999). (As a first approx-
imation, fast errors occur when the subject is
under time pressure and discriminability is
high, whereas errors are slow when the task
is more difficult and time pressure is relaxed;
Luce, 1986.)

The random-walk model, in other words,
fails to capture an important aspect of the
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data. In the present context, this “failure” is
welcome because it highlights the difference
between a descriptive model and a theoretical
measurement model: A descriptive model
can never fail to capture (nonrandom) data,
because its structure can be revised on the
basis of the same data until it matches the
observations.
model, by contrast, is committed to certain
structural properties, and like the simple
random-walk model it can in principle be
falsified by a failure to fit the data.

The “failure” of the simple random-walk
model to handle error response times has
been known for over half a century (Stone,
1960), and the model has evolved con-
siderably since then. Modern theories of
choice response times have inherited the
sequential-sampling architecture from the
random-walk model, but they have aug-
mented in other important ways that enable
them to provide a convincing account of
accuracy and response times.>

A theoretical measurement

Measurement Models of Decision
Latencies

The key to the ability of sequential-sampling
architectures to handle error latencies turns
out to be trial-to-trial variability in some
parameter values. This trial-to-trial variabil-
ity differs from the noise (i.e., variability)
that is inherent in the accumulation process,
and which in Figure 1.2 showed up as the
jitter in each accumulation trajectory toward
one or the other boundary.

Trial-to-trial variability is based on the
plausible assumption that the physical and
psychological circumstances in an exper-
iment never remain invariant: Stimuli are
encoded more or less well on a given trial,
people may pay more or less attention, or they

3Those modifications and extensions have not imperiled
the model’s falsifiability (Heathcote, Wagenmakers, &
Brown, 2014; Ratcliff, 2002).



12 Computational Modeling in Cognition and Cognitive Neuroscience

may even jump the gun and start the decision
process before the stimulus is presented.

There are two parameters whose variabil-
ity across trials has been considered and has
been found to have powerful impact on the
model’s prediction: Variability in the starting
point of the random walk, and variability in
the drift rate (e.g., Ratcliff & Rouder, 1998;
Rouder, 1996).

Returning briefly to Figure 1.2, note
that all random walks originate at O on the
ordinate, instantiating the assumptions that
there is no evidence available to the subject
before the stimulus appears and that sam-
pling commences from a completely neutral
state. But what if people are pressed for time
and sample “evidence” before the stimulus
appears? In that case the starting point of the
random walk—defined as the point at which
actual evidence in the form of the stimulus
becomes available—would randomly differ
from 0, based on the previous accumulation
of (nonexistent) “evidence” that is being
sampled prematurely.

Introducing such variability in the starting
point drastically alters the model’s predic-
tions. Errors are now produced much more
quickly than correct responses (D. R. J.
Laming, 1968). This outcome accords with
the observation that under time pressure,
people’s errors are often very quick. It is easy
to see why errors are now faster than cor-
rect responses. Suppose that there is a high
drift rate that drives most responses toward
one boundary (e.g., the upper boundary as
shown in the bottom panel of Figure 1.2).
Under those conditions it requires an unlucky
coincidence for any random walk to cross
the lower boundary. The opportunity for this
unlucky coincidence is enhanced if the start-
ing point, by chance, is below the midpoint
(i.e., < 0). Thus, when errors arise, they are
likely associated with a starting point close
to the incorrect boundary and hence they
are necessarily quick. Of course, there is a

symmetrical set of starting points above the
midpoint, but those fast responses constitute a
much smaller proportion of correct responses
compared to the errors.

We next consider introducing variability
in the drift rate from trial to trial, to accom-
modate factors such as variations in encoding
strength between trials. Thus, on some simu-
lated trials the drift will be randomly greater
than on others. When this variability is intro-
duced, error responses are now slower than
those of correct responses (Ratcliff, 1978).
To understand the reasons for slow errors,
we need to realize that drift rate affects
both latency and the relative proportions of
the two response types. Suppose we have
one drift rate, call that d1, which yields a
proportion correct of 0.8 and, for the sake of
the argument, average latencies of 600 ms.
Now consider another drift rate d2, which
yields proportion correct 0.95 with a mean
latency of 400 ms. If we now suppose that
dl and d2 are (the only) two samples from
a drift rate with trial-to-trial variability, then
we can derive the latency across all trials
(presuming there is an equal number with
each drift rate) by computing the probability-
weighted average. For errors, this will yield
(.05 x 400 + .20 x 600)/.25 = 560 ms. For
correct responses, by contrast, this will
yield (0.95 x 400 + 0.80 x 600)/1.75 = 491.
(To form a weighted average we divide not
by the number of observations but by the
sum of their weights.) It is easy to generalize
from here to the case where the drift rate is
randomly sampled on each trial. Errors will
be slower than correct responses because
drift rates that lead to faster responses will
preferentially yield correct responses rather
than errors and vice versa.

When both sources of trial-to-trial vari-
ability are combined, modern random-walk
models can accommodate the observed rela-
tionship between correct and error latencies
(Ratcliff & Rouder, 1998). Specifically, a



continuous version of the random-walk
model, known as the diffusion model (e.g.,
Ratcliff, 1978), can quantitatively accom-
modate the fast errors that subjects show in
a choice task under speeded instructions, as
well as the slow errors they exhibit when
accuracy is emphasized instead. Further
technical details about this class of models
are provided in Chapter 9 in this volume.

To summarize, we have shown that theo-
retical measurement models, unlike descrip-
tive models, are in principle falsifiable by the
data (see also Heathcote, Wagenmakers, &
Brown, 2014). We therefore abandoned the
simple random-walk model—which fails
to handle error latencies—in favor of con-
temporary variants that include trial-to-trial
variability in starting point and drift rate.
Those models handle the empirically
observed relationship between correct and
error latencies, thereby allowing us to map
complex data into the relatively simple
landscape of model parameters.

Using Measurement Models to Illustrate
Performance Differences

We illustrate the utility of measurement
models by focusing on the diffusion model
(e.g., Ratcliff, 1978). The model has a long
track record of explaining variation in per-
formance, either between different groups of
people or between individuals.

For example, the literature on cognitive
aging has been replete with claims that older
adults are generally slower than young adults
on most tasks (Salthouse, 1996). This slow-
ing has been interpreted as an age-related
decline of all (or nearly all) cognitive pro-
cesses, and because many everyday tasks
entail time limitations, the decline in speed
may also translate into reduced accuracy.
Contrary to this hypothesis, when young
and old participants are compared within a
diffusion-model framework, the observed
response time differences across a number
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of decision tasks (e.g., lexical decision) are
found to be due primarily to the older adults
being more cautious than the younger adults:
What differs with age is the boundary sepa-
ration but, in many cases, not the drift rate
(Ratcliff, Thapar, & McKoon, 2010). That
is, in Figure 1.2 the horizontal dashed lines
would be further apart for older participants
than younger people, but the average slopes
of the accumulation paths in the bottom panel
would be identical across age groups. (There
are some exceptions, but for simplicity we
ignore those here.)

By contrast, when performance is com-
pared across people with different 1Qs, then
irrespective of their age, drastic differences in
drift rate are observed. Boundary separation
is unaffected by 1Q (Ratcliff et al., 2010).
Thus, whereas aging makes us more cautious,
our ability to quickly accumulate information
for a decision is determined not by age but
by our intelligence.

The impact of those two results can be
highlighted by noting that at the level of
mean response times, the effects of aging are
one of general slowing (Ratcliff, Spieler, &
Mckoon, 2000; Salthouse, 1996), as are
the effects of (lower) IQ (Salthouse, 1996;
Sheppard & Vernon, 2008). Looking at mean
response time alone might therefore suggest
that aging and (lower) IQ have similar effects.
It is only by application of a measurement
model that the striking differences become
apparent within the landscape of model
parameters.

Using Measurement Models
to Understand Neural Imaging

Measurement models have proven to be
particularly useful in the neurosciences. The
basic objective of the cognitive neurosciences
is to understand cognitive processes; how-
ever, this understanding is often hampered
because the relationship between behavioral
data and their neural correlates is typically
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opaque. For example, a correlation between
response times and activation in a certain
brain region has unclear implications without
further theory. Conversely, the failure to
observe a correlation between response times
and brain activation in regions of interest may
arise because mean differences in response
times obscure some substantive differences
in cognitive processes that become apparent
only through application of a model.

The importance of measurement models
in the neurosciences can again be illustrated
through the diffusion model. At the low-
est level of analysis, it has repeatedly been
shown that in areas known to be implicated in
decision making (lateral intraparietal cortex
and other parts of the prefrontal cortex in
monkeys and rats; for a detailed discussion
see Forstmann, Ratcliff, & Wagenmakers,
2016), activity in single neurons increases
over time to a constant maximum that is
unaffected by decision-relevant variables
such as difficulty of the choice. This observa-
tion is compatible with the idea that evidence
is accumulated until a relatively invariant
decision threshold is reached. Remarkably,
the buildup of activation can be modeled by
the evidence-accumulation process in the
diffusion model, using parameters that were
estimated from the behavioral data (Ratcliff,
Cherian, & Segraves, 2003). Thus, the accu-
mulation trajectories shown in the bottom
panel of Figure 1.2 are not just abstract rep-
resentations of a decision process but appear
to have a direct analog in neural activity.

Although the results from single-cell
recordings in animals are promising, it is
unclear whether humans approach choice
tasks in the same way as animals (Hawkins,
Forstmann, Wagenmakers, Ratcliff, &
Brown, 2015). Moreover, single-cell record-
ings provide only a microscopic snapshot
of neural activity, and the linkage between
single cells and complex behavior is often
difficult to ascertain. Those problems can be

circumvented by using functional imaging
with humans.

The use of functional magnetic reso-
nance imagery (fMRI) to augment purely
behavioral data has become almost routine
in cognitive science. Henson (2005) provides
an eloquent case for the use of fMRI data,
arguing convincingly that it can contribute to
our understanding of cognition under some
reasonable assumptions. Most relevant in the
present context is the fact that brain activity
in certain key regions has been systematically
related to parameters within decision models.
For example, if people’s time to respond is
curtailed experimentally, they become less
cautious and responses are faster but less
accurate (e.g., Forstmann et al., 2008). If that
variability in behavior can be captured by
changes in a model parameter, and if those
parameter estimates in turn are correlated
with activity in specific brain regions, then
inferences about neural substrates of decision
making become possible that could not have
been detected by analyzing the raw data
alone.

Mulder, van Maanen, and Forstmann
(2014) reviewed the available relevant stud-
ies and found that task manipulations that
affect speed and accuracy of responding
involve regions of the frontobasal ganglia
network. Specifically, a number of studies
have shown that the anterior cingulate cortex
(ACC), the pre-supplementary motor area
(pre-SMA), and striatal regions are associ-
ated with people’s setting of the decision
boundaries. It has been argued that those
regions, in particular the ACC, serve as a
“control unit to adjust the response threshold
via the striatum” (Mulder et al., 2014, p. 878).

Summary

In summary, measurement models can serve
as an intermediate conceptual layer that
bridges behavioral data with theoretical



constructs or their neural substrates via the
model’s parameters. These parameters can
serve as dependent variables in experiments
and as correlates of other behavioral or neural
variables.

The defining attribute of measurement
models is that they are applied separately
to each experimental condition or each
individual, estimating separate parameter
values for each condition and each person.
Thereby, the models translate the variabil-
ity across conditions or across individuals
from the initial, purely descriptive scales of
measurement that are often incommensurate
(e.g., milliseconds, proportion correct) into
a theoretically interpretable scale (e.g., drift
rate as a measure of information processing
efficiency).

At the same time, measurement models
do not aim to explain that variability. For
example, drift rates differ between different
set-sizes in short-term recognition tasks
(Ratcliff, 1978), and between people with
different 1Qs (Ratcliff et al., 2010), but a
measurement model cannot explain how
these differences come about—it can only
characterize them. In contrast, the aim of
explanatory models is to explain perfor-
mance differences between experimental
conditions by reproducing these differences
with a common set of parameters across
conditions.

EXPLANATORY MODELS

What does it mean to explain anything?
In modern science, an “explanation” is com-
monly interpreted as identifying causes for
an event or phenomenon of interest (Sun,
Coward, & Zenzen, 2005). In psychology
this generally implies that we seek to iden-
tify the psychological processes that cause
an observed outcome. The fact that those
processes are unobservable is not necessarily
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of concern; contemporary physics, too, relies
on unobservable constructs such as quarks,
leptons, or mesons. More specifically, when
we seek explanations within computational
models, we want those explanations to “fall
out” of the model’s structure, rather than
being the result of variations in parameter
values. The reason for this is simple: If we
estimate parameters for each condition in
an experiment, then our “explanation” for
differences between those conditions is
informed by the very data that we seek to
explain. To avoid this circularity, explanatory
models generally do not allow the estimated
parameters to vary between conditions that
are to be explained.

Explaining Scale Invariance in Memory

with
per-

We illustrate explanatory models
SIMPLE (scale-invariant
ception and learning); a memory model
that has been successfully applied to a
wide range of phenomena in short-term
and long-term memory (G. D. A. Brown,
Neath, & Chater, 2007). SIMPLE explains
accuracy of memory retrieval based on a
target item’s discriminability from other
potential recall candidates. SIMPLE’s pri-
mary claim is that list items are represented
in memory along the temporal dimension;
when we recall something, we look back
along that temporal dimension and try to pick
out the target memory from other memories
that occurred at around the same time. This
means that the separation of events in time
determines the accuracy of their recall. Items
that are crowded together in time (a specific
daily commute to work among many other
such commutes) are more difficult to recall
than isolated events (your annual holiday).
Another assumption of SIMPLE is that
the temporal dimension is logarithmically
compressed: As items recede into the past,
they become more squashed together, just

memory,
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as equidistant telephone poles appear to
move closer together as they recede into the
distance when viewed from the rear of a
moving car (Crowder, 1976). Taken together,
these two assumptions of SIMPLE give
rise to a property that is known as “scale
invariance”; that is, the model predicts that
what should determine memory performance
is the ratio of the times at which two items
are presented, not their absolute separation
in time. Specifically, two items that were
presented 2 and 1 second ago, respectively,
are as discriminable as two items that were
presented 20 and 10 seconds ago. This scale
invariance arises because any ratio of tempo-
ral distances is equivalent to a difference in
distance in logarithmic space. Specifically, in
logarithmic temporal space the separations
within the pair presented 2 and 1 seconds ago
(log(2) — log(1)) and within the items from
20 and 10 seconds ago (log(20) — log(10))
are identical.

It follows that the presumed distinctive-
ness process embodied in SIMPLE entails
the strong prediction that performance should
be invariant across different time scales, pro-
vided the ratio of retention intervals is equal.
SIMPLE is therefore committed to making
a prediction across different conditions in
an experiment: Any experimental condition
in which two items are presented 1 and 2
seconds, respectively, before a memory test
must give rise to the same performance as
a condition in which the two items are pre-
sented 10 and 20 seconds before the test. Note
how this prediction differs from the ability
of measurement models discussed earlier,
which cannot express a strong commitment
to equality between conditions. At best, mea-
surement models such as the diffusion model
or other sequential-sampling models can
make ordinal predictions, such as the expec-
tation that instructions emphasizing speed
should accelerate responding at the expense
of accuracy (but even that expectation

requires a theoretical interpretation of the
model; namely, that instructions translate
into boundary placement).

To illustrate the role of explanatory mod-
els, we present a test of this prediction of
SIMPLE that was reported by Ecker, Brown,
and Lewandowsky (2015). Their experiment
involved the presentation of two 10-word
lists that were separated in time, the first
of which had to be recalled after a varying
retention interval (the second list was also
tested, but only on a random half of the trials,
and performance on that list is of no interest
here.) The crucial manipulation involved the
temporal regime of presentation and test,
which is shown in Figure 1.4. The regime
shown in the figure instantiates the ratios
mentioned earlier: In the LL condition, the
first list (L1) was presented 480 s before the
test (we ignore the few seconds to present
L2), and 240 s before L2. In the SS con-
dition, L1 appeared 120 s before the test
and 60 s before L2. According to SIMPLE,
the temporal discriminability of L1 is there-
fore identical in both conditions because
log(480) — 1og(240) = log(120) — log(60).

ss[L [T L[] 7|

sL{L1] [L2] | 7]
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LL[L1] [L2] | 7]
Time

Figure 1.4 A schematic summary of the four
experimental conditions used by Ecker et al.
(2015). L1 and L2 denote the two study lists. T
denotes the recall test, which always targeted L1.
The temporal intervals were either 60 s (short gray
bars) or 240 s (long gray bars). The four condi-
tions are labeled SS (short L1-L2 interval, short
L2-T interval), SL (short-long), LS (long—short),
and LL (long-long).

Sourcek: From Ecker, Brown, and Lewandowsky
(2015). Reprinted with permission.
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Figure 1.5 Recall accuracy for L1 in the study by Ecker et al. (2015). Error bars represent standard
errors, and L1 and L2 refer to the first and second list presented for study, respectively. See Figure 1.4

for explanation of the temporal regime.

Source: From Ecker, Brown, and Lewandowsky (2015). Reprinted with permission.

The results of Ecker et al. (2015) are
shown in Figure 1.5. Here we are particularly
concerned with the comparison between the
SS condition (light gray bar on the left) and
the LL condition (dark gray bar on the right).
It is apparent that performance in those two
conditions is nearly identical, exactly as
predicted by SIMPLE. This result is quite
striking, given that in the LL condition, the
retention interval for L1 was 4 times greater
than in the SS condition (480 s vs. 120 s).
Any memory model that relies on absolute
durations to predict performance can be
expected to have difficulty with this result.

We conclude that SIMPLE explains the
results of the study by Ecker et al. (2015)
because it predicts that performance should
be equal across the SS and LL conditions,
and this prediction arises as a logical impli-
cation of the model’s basic assumptions.
The flipside of this explanation is that alter-
native empirical outcomes could falsify the

model—if performance had not been equal
between the SS and LL conditions, then SIM-
PLE would have great difficulty explaining
that outcome.

Explanatory Necessity Versus
Sufficiency

The fact that a model fits the data implies that
it is sufficient to explain those data. However,
it does not follow that the model is also
necessary. That is, the fact that SIMPLE suc-
cessfully predicted the SS and LL conditions
to yield equal performance does not rule out
the possibility that other models might also
explain that equality. Indeed, the existence
of such alternative models can be taken for
granted (Anderson, 1990).

This is an in-principle problem that cannot
be side-stepped by improving the quality of
the data or of the model, and at first glance
it might call into question the logic and
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utility of modeling. However, upon closer
inspection we suggest that the problem is not
quite that serious: First, the fact that many
potentially realizable alternative models exist
does not imply that any of those models
are easy to come by. Quite on the contrary!
Constructing cognitive models is an effortful
and painstaking process whose success is
not always ensured. Second, the existence of
an unknown number of potential alternative
models that reproduce empirical data patterns
does not prevent us from comparing a limited
set of known models and selecting the best
one from that set.

This model-selection process can again
be illustrated using the study by Ecker et al.
(2015).

Model Selection and Model Complexity

The broader purpose of the study by Ecker
et al. (2015) was to pit the distinctiveness
approach embodied in SIMPLE against the
notion of consolidation of memories. Con-
solidation is a presumed process that occurs
after encoding of memories and serves to
strengthen them over time—in particular dur-
ing sleep or periods of low mental activity.
Memories are said to become increasingly
resistant to forgetting as they are being
consolidated (Wixted, 2004b, 2004a).

The consolidation view is supported by
the fact that recall of a list is poorer when a
second, interfering list follows closely in time
rather than when the second list is delayed.
Miiller and Pilzecker first reported this result
more than a century ago (1900). In terms of
the design in Figure 1.4, the consolidation
view expects L1 recall to be better in condi-
tion SL than in condition LS, even though the
overall retention interval is identical across
both conditions. Indeed, Ecker et al. (2015)
obtained this result; compare the dark gray
bar on the left with the light gray bar on the
right in Figure 1.5.

However, could the consolidation view
accommodate the fact that the LL and SS
conditions yielded identical performance?
Given that L1 has less time to consolidate
in the SS condition than in the LL condi-
tion, it is unclear how the consolidation view
would accommodate these results. To explore
whether consolidation might contribute to
explaining their results, Ecker et al. (2015)
created more than 30 models that combined
the distinctiveness notion in SIMPLE with
several presumed consolidation processes.
Because consolidation as a computational
process has not been well-specified in the
literature (Ecker & Lewandowsky, 2012),
multiple different variants of consolidation
had to be compared. All variants shared,
however, one characteristic: They increased
the distinctiveness of L1 in memory after
encoding, to reflect the assumption that
memories become more retrievable over time
as they are being consolidated.

Table 1.1 shows the results for the six
top models in their study. The top entry

Table 1.1 Best-Fitting Models in Experiment 1
of Ecker et al. (2015)

N  Devi- AICc BIC

Model (pars) ance wt wt
1d SIMPLE (no 4 4569 0.33 0.38
consolidation)

2d SIMPLE (equally 4 4560 0.36 0.42
weighted dimensions,
no consolidation)

2d SIMPLE (free 5 4552 0.12 0.09
dimension weight,
no consolidation)

1d SIMPLE (linear 5 4552 0.13 0.09
consolidation)

2d SIMPLE (free 6 4548 0.04 0.02
dimension weight, linear
consolidation)

2d SIMPLE (free 7 4523 0.02 0.01

dimension weight,
nonlinear consolidation)

NoTE: 1d, one-dimensional; 2d, two-dimensional; N
(pars), number of free model parameters; Deviance,
summed deviance across all participants; AICc and BIC
wt, information criterion weights



(1d SIMPLE, no consolidation) refers to the
unmodified version of SIMPLE described
earlier: All items are represented along a
temporal dimension that is logarithmically
transformed, and retrieval is a sole function
of discriminability along that dimension. The
entries labeled 2d SIMPLE add a second
representational dimension that permits the
two lists to be further differentiated by a
change in context. That is, in addition to
time, the memory representation is organized
by the context that accompanies each list.
As before, items are retrieved based on how
easily they can be differentiated from their
neighbors, except that in this instance the
differentiation occurs in two-dimensional
space rather than along a single temporal
dimension. That is, the two lists are not
just separated along the temporal axis, but
also offset along an orthogonal abstract
context dimension that takes the same value
within each list but differs between lists.
Because the lists are offset along that sec-
ond dimension, they are separated further
from each other more than the temporal
dimension alone would suggest, similar
to the way in which the distance between
your home and a neighbor’s home a fixed
distance down the road is greater if the neigh-
bor’s driveway is excessively long. The two
dimensions are either equally weighted when
discriminability is computed, or their respec-
tive contributions can be freely estimated.
Finally, the models that contain consolida-
tion additionally enhance the discriminability
of L1 over time by sharpening its repre-
sentation in space: All items in SIMPLE
have a “fuzzy” position along the temporal
dimension (and others if they are present),
and the extent of that fuzz was gradually
decreased over time when consolidation
was present.

To interpret the results in Table 1.1, it
must be noted that the models differed with
respect to the number of parameters that
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had to be estimated from the data. The
standard SIMPLE had four parameters and
the most complex consolidation version had
seven. Although the parameters did not differ
between conditions—that is, irrespective of
the duration of the L1-L2 interval or the
retention interval, all parameter values were
the same—in general any model will accom-
modate the data with greater precision if it has
access to more parameters (for details, see
Lewandowsky & Farrell, 2011). This basic
fact is reflected in the Deviance column,
which presents the discrepancy between the
data and the model’s prediction (the scale
of the deviance measure is somewhat arbi-
trary and need not concern us here). It can
be seen that as the number of parameters
increases, the deviance is reduced—that is,
the more flexible models fit better than the
simpler ones. The most flexible model with
two dimensions and nonlinear consolidation
yields a deviance of 4,523, compared to
the unmodified SIMPLE whose deviance
is 4,560.

At first glance, one might therefore prefer
the most complex model because it fits the
data better than any of the others, and one
might therefore interpret the modeling as
providing evidence for the existence of con-
solidation in memory. This conclusion would
be premature because it does not consider the
trade-off between a model’s goodness-of-fit
(the deviance in Table 1.1) and model com-
plexity (the number of parameters). This
trade-off is often called the bias-variance
trade-off (e.g., Forster, 2000) and refers
to the necessary fact that if the model is
underspecified (i.e., not complex enough),
we will miss accounting for important effects
in the data and our model will be biased.
Conversely, if our model has too many
parameters, we will overfit the data and will
be explaining noise as well as real effects.
Thus, a good fit by itself does not support
a model’s viability if it arises from fitting
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statistical noise in addition to capturing the
real effects in the data.

Table 1.1 contains two additional
statistics—AIC weights and BIC weights—
that deal with this trade-off and permit a
more informed model selection. Both AIC
and BIC pit goodness-of-fit (represented
by the deviance) against model complexity
(estimated by the number of parameters).
Introducing more parameters will improve
the fit by reducing the deviance, but it will
also increase the size of the penalty term for
complexity. The BIC and AIC, therefore,
instantiate the principle of parsimony: to find
the best and simplest model. The chapter
by Myung and Pitt in this volume presents
the AIC and BIC in greater detail and
also addresses the issue of model selection
in depth.

Here, it suffices to point out that when a set
of models are compared, the values of AIC
and BIC can be turned into weights that rep-
resent the probabilities of each model being
the best model among the set of candidates,
given the data at hand. It is these weights
that are shown in the final two columns of
Table 1.1. The AIC and BIC weights permit
a straightforward interpretation: the two
versions of SIMPLE that do not incorporate
consolidation and do not estimate a weighting
parameter between representational dimen-
sions are the “best” models for the results
of Ecker et al. (2015). None of the mod-
els involving consolidation have a notable
chance of being the best when the trade-off
between goodness-of-fit and complexity is
considered. We therefore conclude that the
data support the role of distinctiveness rather
than consolidation in memory.

Quantitative Fit and Qualitative
Predictions

A good quantitative fit, as indexed by AIC,
BIC, and other fit indicators, is not the only

yardstick by which to assess and compare
models. A model that reproduces a large
number of findings across many different
experimental paradigms in a coarse, quali-
tative fashion arguably contributes more to
our theoretical understanding of the human
mind than a model that makes very precise,
accurate predictions in a narrow domain of
data, such as the findings from a single exper-
imental paradigm. For instance, in the field of
memory, much intellectual energy has been
invested into determining whether so-called
receiver-operating characteristic (ROC) cur-
ves from recognition tests are better fit by
signal-detection models, high-threshold
models, or dual-process models (Broder &
Schiitz, 2009; Wixted, 2007; Yonelinas &
Parks, 2007). If ever a model emerges to
win this battle, it will have conquered only
a small corner of the empirical landscape of
memory research, because the ROC curve
is just one dependent measure from one
paradigm for studying human episodic mem-
ory. More comprehensive models of memory
such as REM (Shiffrin & Nobel, 1997) or the
temporal-clustering and sequencing model
of recall (Farrell, 2012) usually do not even
take part in the competitions for quantitative
model fit, but they offer explanations for
a broad range of findings by reproducing
their qualitative pattern. There is arguably a
trade-off between achieving a good quanti-
tative account of one or a few data patterns
with a minimal set of assumptions and
parameters on the one hand, and accounting
comprehensively for a broad range of bench-
mark findings in a research area in a less
precise manner, and with a larger number of
assumptions.

Whereas sophisticated methods have
been developed to select between mod-
els that compete for quantitative fit
of a given data set (see Chapter 3 in
this volume), there exists no established
method for adjudicating between competing



comprehensive models that aim to provide
an integrated explanation for a large set of
findings in a domain, if only qualitatively.
The problem is that these models are built
to explain sets of findings that only partially
overlap. For instance, some memory models,
such as SIMPLE and the temporal-clustering
and sequencing model, account for detailed
patterns of data from recall tests but have
been applied only sparsely, if at all, to phe-
nomena from recognition tests, whereas other
models such as REM cover much ground
in recognition but have only begun to be
applied to recall. In addition, each model
has idiosyncratic strengths from successfully
predicting new findings that the competing
models cannot readily account for, and the
authors of models have a natural inclination
to emphasize the findings that their model
predicts as particularly diagnostic. A fair
competition between models that vie for a
comprehensive, integrated explanation of
findings in a broad domain of investigation
requires a consensus on which findings in that
domain count as benchmark findings that all
models should aim to explain. Sets of bench-
mark findings have been proposed in some
domains, such as eye movements in reading
(Rayner, 2009), word reading (Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001),
and immediate serial recall (Lewandowsky &
Farrell, 2008) but so far there are no estab-
lished criteria for determining which findings
qualify as benchmarks in a field.

A second important role for qualitative
model predictions is to discriminate between
models, or classes of models, that are difficult
to discriminate quantitatively. The competi-
tion between signal-detection, dual-process,
and high-threshold models of recognition
offers an example: These models all give
reasonably close quantitative fits to ROC
curves from numerous variants of item and
associative recognition experiments,
the differences between their predictions

and
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for these data are subtle. To compound the
problem, the original models in each class
(e.g., the standard equal-variance signal-
detection model) can be made much more
flexible by relaxing auxiliary assumptions,
such as the assumption that signal and noise
distribution are equal, or that signals are
normally distributed. These model classes
can nevertheless be distinguished by quali-
tative predictions that follow from their core
properties independent of auxiliary assump-
tions. For instance, high-threshold models
assume that sometimes memory simply fails,
leaving the person in a state of no memory
information at all. This assumption entails
the principle of conditional independence:
If the person is in a memory-failure state,
their behavior is independent of any memory
variable such as the strength of the memory
representation they tried to retrieve (Kellen &
Klauer, 2015; Province & Rouder, 2012; see
also Chapter 5 in this volume).*

Summary

We have shown that explanatory models
make testable predictions and are therefore
subject to falsification. We have also shown
that competing theoretical notions can be
instantiated in different models, which can
then be compared with respect to their ability
to explain the data from an experiment. The
“best” model is not always the one that fits
the data best, but it is the model that achieves
the best possible fit with the least degree
of flexibility possible. At the same time,
training our microscope exclusively onto

41t does not follow that a continuous signal-detection
model cannot also be in a state of failed memory. How-
ever, except for some special and unlikely circumstances,
the signal-detection model will always assume the pres-
ence of some residual memory, at least when averaged
across trials in an experimental condition. This residual
memory ensures that the model will violate conditional
independence, thereby permitting empirical test.
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subtle differences in quantitative model fit
can induce a short-sighted perspective on a
narrow set of phenomena on which the model
competition is played out. Searching for
new qualitative predictions that distinguish
between models can help to solve an impasse
in model selection. In the same way that
the availability of a robot does not preclude
use of a hammer when it is appropriate, there
are situations in which simple experiments
involving very plain statistics can play a
useful role. Moreover, at our present state of
ignorance, a broad, integrative explanation
of phenomena in a field of research can be
more decisive than advanced model-fitting
techniques. The perhaps broadest and most
encompassing kind of computational models
are known as cognitive architectures, to
which we turn next.

COGNITIVE ARCHITECTURES

So far we have been concerned with mod-
els that aim to explain data patterns in a
particular domain of research in cognitive
science, such as episodic memory or per-
ceptual decision making. In this section, we
turn our attention to models of the cognitive
architecture. The cognitive architecture is
conceptualized as the relatively stable system
of structures and mechanisms that under-
lies cognition in general. An architecture
model does not aim to explain a particular
pattern of behavior but rather to explain how
cognition works in general. As Anderson
(2007) puts it—quoting one of the founding
fathers of cognitive architecture models,
Allen Newell—an architecture model aims
to explain “how the human mind can occur in
the physical universe.” Hence, architectures
do not make assumptions about which repre-
sentations and processes generate behavior,
but rather describe the cognitive system in
which such representations and processes

operate, and the constraints it places on these
processes. Explanatory models of specific
processes can be built within an architecture.
To that end, architectures are implemented as
programming environments for building and
running simulations of cognitive processes.
The primary aim of architectures is to inte-
grate models of specific phenomena into a
consistent theory of the cognitive system as a
whole. As Newell (1973) commented, exper-
imental psychology is at risk of amassing an
ever-growing pile of unrelated phenomena,
and the same can be said for process models:
Even if we had a successful process model for
each and every experimental finding to date,
we would still be left with a fractionated
picture of the human mind. Architectures
aim to explain how all the mechanisms and
processes assumed in process models act
together.

Two families of architectures have been
developed, production-system architectures
and neural-network architectures. Produc-
tion systems have emerged from the
understanding of cognition as symbolic
computation that has dominated cogni-
tive science between 1950 and 1980. At
their core lies the distinction between
declarative representations—symbolic struc-
tures representing facts—and procedural
representations—rules for manipulating sym-
bolic structures, which are called productions.
Neural-network architectures aim to model
the cognitive system by modeling the brain.
They consist of networks of interacting units
that are more or less abstract, simplified
models of neuronal networks. Each family of
architectures has many members—here we
will present but one example for each family.

Production Systems: ACT-R

The ACT* and ACT-R architecture has been
developed by John Anderson and colleagues
over several decades (e.g., Anderson, 1983;
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Figure 1.6 Overview of the ACT-R architecture.

Anderson & Lebiere, 1998; Anderson, 2007).
In its current version, it consists of eight
modules (see Figure 1.6).

Four modules—two perceptual and two
motor modules—serve to interact with
the environment. Three further modules—
declarative, goal state, and problem state—
handle declarative representations for dif-
ferent purposes: The declarative module
serves as the system’s episodic and semantic
long-term memory, holding a vast number
of declarative knowledge structures; the goal
state represents the current goal, and the
problem state represents the current state of
the object of ongoing thought. Declarative
representations are chunks that represent
facts in the form of propositions. A chunk
is a structure of slots that can be filled with
elementary symbolic representations of con-
cepts or with other chunks. For instance,
arithmetic facts such as “the sum of 3 and
4 equals 77 are represented as chunks in
declarative memory. The goal-state module
holds chunks representing the system’s goals,
such as “solve equation.” The problem-state
module might hold a representation of the
current state of the equation to be solved,
such as “3x X 4 = 48.” Each module has
a buffer through which it communicates

with its environment. The buffer can hold
only one chunk at a time; only that chunk
is directly accessible to other modules.
The problem-state module is nothing but
a buffer, so its capacity is constrained to a
single chunk.

The procedural module lies at the heart of
the system. It holds a large number of pro-
ductions, which represent rules connecting
a condition to an action (where the condi-
tion and the action can consist of multiple
components). For instance, a production
involved in mental arithmetic could be: “IF
the goal is to solve the equation, and the
current state of the equation is Ax X B = C,
then divide both sides by B.” The procedural
module makes cognition happen: It compares
the current contents of all other modules’
buffers to the condition parts of all its pro-
ductions. This comparison process is a form
of pattern matching that proceeds in paral-
lel and instantaneously for all productions.
Those productions whose conditions match
all buffer contents become candidates for
execution (“firing”). Only one production
can fire at any time. Productions compete for
execution based on their utility value, which
reflects the reward history of each produc-
tion. Productions with partial matches also
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become candidates but enter the competition
with a mismatch penalty. Firing of a pro-
duction takes 50 ms and results in execution
of the action component, which could make
changes to the chunk in the problem state or
the goal state, send a retrieval request to the
declarative module, or an action command to
one of the motor buffers.

Within the ACT-R, architecture models
for individual tasks can be implemented by
specifying a set of productions and a set of
chunks in declarative memory. For instance,
an ACT-R model for solving a class of alge-
braic equations consists of a set of arithmetic
facts in declarative memory, together with a
handful of productions for reading equations
off the screen (i.e., controlling the visual
module to scan the string of symbols and
placing it into the problem state), retrieving
the necessary facts from declarative memory,
transforming equations in the problem state,
and producing an answer through one of
the motor modules. This model can be used
to simulate equation-solving behavior of
people. The simulation produces a sequence
of states in the buffers, together with pre-
dictions for their distribution of durations.
The durations of processing steps in a model
are governed by a set of assumptions about
the dynamics of the basic mechanisms of the
architecture: Only one production can fire
at any time, and its execution takes 50 ms.
Retrieval from declarative memory takes
time, and its duration—as well as its proba-
bility of success—is a function of the level of
activation conferred to the target chunk. That
level of activation depends on the chunk’s
baseline activation, which decays at a fixed
rate, and activation through associations to
retrieval cues available in the buffers at the
time of the retrieval request.

Other assumptions in the architecture
model pertain to principles of learning.
ACT-R acquires new declarative knowledge
by keeping a copy of every chunk in a buffer

in the declarative module. ACT-R acquires
new production rules by compilation of exist-
ing productions: Two productions executed
in immediate succession can be unified into
one production with a more specific set of
conditions. The new rule is initially a very
weak competitor but gains strength when it is
created again and again as its components are
repeatedly executed together with success.
ACT-R has principles for attributing success-
ful completion of a task to the productions
contributing to it, by which the utility value
of each production is updated after task
completion. In this way ACT-R learns the
relative utilities of its productions.

Many of the principles in ACT-R are
informed by rational analysis, that is, con-
siderations of optimal computation under
certain general constraints of the cognitive
system and conditions in the environment
(Anderson, 1990). For instance, the baseline
activation of chunks in declarative memory
decays over time but is increased every
time the chunk is retrieved. The resulting
baseline activation mirrors closely the prob-
ability that a piece of knowledge will be
needed, given its history of use (Anderson &
Schooler, 1991).

Process models implemented in ACT-R
make predictions for the behavioral responses
in a task, for their latencies, and—as a recent
addition—for the level of neural activity in
brain areas that serve as indicators for the
work of each module. Simulation runs of
an ACT-R model yield a profile of work
intensity of each module over time. Borst
and Anderson (2013) generated such profiles
from process models of five tasks and corre-
lated them with the BOLD signals recorded
while participants carried out these tasks.
In this way they identified for each ACT-R
module one cortical area that correlated
highest with that module’s profile of use over
time. Based on these links between mod-
ules and brain areas other process models



in ACT-R can be used to predict the time
course of BOLD signals in each area. These
predictions place further constraints on the
ACT-R process models. Nijboer, Borst, van
Rijn, and Taatgen (2016) demonstrated the
benefits of these additional constraints: They
developed a process model for a multitasking
experiment that fit the behavioral data well,
but found that it mispredicts the BOLD data.
This observation motivated a revision of the
model, upon which it also accommodated the
neural data.

Neural-Network Architectures: Spaun

The seminal work of Rumelhart and
McClelland (1986) has sparked renewed
interest in connectionist models of cogni-
tion. In these models, behavior arises from
the interaction of simple units, which can
be interpreted as model neurons or neural
populations. Each unit receives input (in
the form of scalar signals) from many other
units, carries out a nonlinear transformation
on its summed input, and sends it to other
units. Intelligent behavior arises from tuning
the connection weights—interpretable as
synaptic weights—through learning rules.
The rehearsal simulations that we reported
earlier were carried out within a connectionist
architecture.

More recently, interest has shifted toward
neural network models using more realistic
neuron models. The currently most advanced
effort toward building a neural-network
architecture is Spaun (Eliasmith et al., 2012;
Eliasmith, 2013). Spaun implements a broad
range of cognitive functions in simulated
spiking neurons. As such, Spaun is a model
of the cognitive system and a model of the
brain. It is able to carry out eight different
tasks, responding to visual stimuli—among
them symbols coding the desired task—and
controlling a mechanical arm to produce
motor responses.
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Spaun builds on the Neural Engineering
Framework (NEF), and is implemented in the
Nengo simulation framework (Bekolay et al.,
2014). The NEF (Eliasmith & Anderson,
2003) is a generic method for implementing
representations and their transformations
in populations of neurons. Representations
are conceptualized as vectors in a vector
space of arbitrary dimensionality. As a sim-
ple example, think of the orientation of an
arrow on a computer screen, represented as a
two-dimensional vector, [sin(8), cos(8)]. This
vector can be encoded in a population of neu-
rons, each with a different, randomly selected
tuning curve. A neuron’s tuning curve is a
nonlinear function relating the encoded vec-
tor state into the neuron’s firing rate. Tuning
curves differ between neurons, such that each
neuron has its own “preferred” orientation
to which it responds maximally, and they
differ in the sensitivity and specificity of their
responses. Hence, the population code of our
arrow orientation will be a pattern of firing
rates across the neurons in the population. The
orientation can be decoded by a linear combi-
nation of the firing rates of all neurons in the
population. The optimal weights for this linear
combination can be found by minimizing
the difference between the encoded orien-
tation [sin(f), cos(f)] and the decoded
orientations [sin(@), cos(#)] over all possible
values of 6. This comes down to finding the
best weights for a linear regression model,
and it can be solved analytically.

Transformations of representations can be
implemented by the same principle. Suppose,
for instance, that we want the model to men-
tally rotate a given arrow by 90 degrees to the
right. We can implement this operation by
decoding, instead of the original orientation
0, the transformed orientation ¢ = 6 + 90°.
That is, we need to find the optimal weights
for decoding ¢ from the population that is
coding 0, for all possible values of 6. Then
we connect the population coding 6 to a
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second population coding ¢, with connection
weights set to reflect the optimal decod-
ing weights for the desired transformation.
It helps to think of the operation as two steps:
The first is to decode ¢ from the population
representing 8, and the second is to encode
¢ into the second population of neurons
(in the same way as 6 was encoded into the
first population). In reality, the two steps
are wrapped into one, mediated by a single
matrix of connection weights between the
two populations. In principle, this method
allows implementing any function on vectors
in a network of spiking neurons, although
some functions (in particular addition and
subtraction) are much easier to implement
than others.

Hence, the NEF can be used as a compiler
for translating models initially developed in
vector space into neuronal space. Models in
vector space are very common on cognitive
psychology; connectionist networks, for
instance, model cognitive processes as trans-
formations of patterns of activity over sets of
units, and, mathematically, these activation
patterns are vectors with one dimension for
each unit. Many models of memory and
categorization on a more abstract level of
description, such as the Generalized Context
Model (Nosofsky, 1984), SIMPLE (G. D. A.
Brown et al., 2007), and Latent Semantic
Analysis (Landauer & Dumais, 1997), also
use representations that can be described as
vectors. The states of sequential-sampling
models of decision making are time-varying
vectors with one dimension for each accu-
mulator. In principle, the NEF enables
researchers to implement any such model
in spiking neurons. In practice, the neural
implementation does impose constraints
in two ways: First, neural computation is
only an approximation of the mathemati-
cal functions implemented in the network,
and not all functions can be approximated
equally well. Second, biologically realistic

neuron models have features such as time
constants and limited dynamic range that
have consequences for the model’s speed
and accuracy. For instance, a model of
immediate serial recall (Eliasmith, 2013,
Chapter 6.3) produced serial-position curves
much at odds with the data when simulated
in vector space, but reproduced the empirical
serial-position curves well when simulated in
spiking neurons.

The second pillar of Spaun besides
the NEF is the idea of a semantic pointer
architecture (SPA). A semantic pointer is a
high-dimensional vector representation that
fulfills the role of a symbol in production-
system architectures. To that end it must meet
two requirements: It must have meaning, and
it must be flexibly usable in a way that
endows the cognitive system with the powers
of symbolic computation. Semantic pointers
have meaning because they are compressed
representations that point to other represen-
tations. For instance, the representations of
the numbers 1 to 9 in Spaun are semantic
pointers generated through several steps of
compression of the visual input (i.e., images
of hand-written digits). The compression
can be reversed to regenerate a prototypical
visual image of a written digit. A second
route of decompression is the generation of
a pattern of motor commands for writing the
digit with the mechanical arm.

The power of symbolic computations rests
on the recursive combination of symbols
into structures, such as propositions. We can
combine representations of ‘“cat,” ‘“dog,”
and “bite” into structures representing the
fact that “the dog bit the cat” or “the cat bit
the dog,” and we can recursively use such
structures as elements in other structures,
such as “Peter saw that the dog bit the cat.”
This requires a mechanism for ad-hoc bind-
ing of semantic pointers. In Spaun, vector
representations are bound by an operation
called circular convolution (Plate, 2003).



For instance, the proposition “the dog bit the
cat” requires three bindings of concepts to
roles through circular convolution (denoted
by ®), the results of which are superimposed
(i.e., added, denoted by +):

P = AGENT ® CAT + THEME ® DOG
+ ACTION @ BITE

The elements of that structure can be
extracted by de-convolution—for instance,
the question “Who bit the dog?” can be
answered by convolving the inverse of
AGENT with P, which produces a noisy
approximation of CAT.

Circular convolution returns a new vector
of the same length as the two bound vectors,
thereby facilitating recursive binding without
increasing the demands on neural resources.
In this way, complex concepts can be formed
from simpler ones—for instance, the concept
“cat” can be created by binding compressed
representations of perceptual features of that
creature with more abstract features such as
“is a mammal,” and the resulting semantic
pointer can in turn be bound into propositions
involving cats.

Symbolic computation involves applying
rules to symbol structures—such as applying
productions to declarative knowledge chunks
in ACT-R and other production systems.
Spaun includes an action-selection mecha-
nism that implements the functionality of
productions in a spiking-neuron model of
the basal-ganglia-thalamus-cortex loop (e.g.,
Stewart, Bekolay, & Eliasmith, 2012). This
mechanism monitors semantic pointers in
several buffers and selects the action with
the highest utility in the context of these
representations. routing
representations from one buffer to another,
thereby controlling which computations are
carried out on them. The action-selection
mechanism gives Spaun the flexibility of
carrying out different tasks on the same stim-
uli depending on instructions for instance,

Actions include
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given a series of images of hand-written
digits, it can copy each digit immediately,
do a digit-span task (i.e., write down the
digits in order at the end of the list), or do
matrix reasoning (interpreting each set of
three digits as a row of a matrix, and finding
the rules governing rows and columns to
determine the ninth digit).

Relating Architectures to Data

Models need to be tested against data. To that
end, we need to determine what they predict.
Earlier we emphasized as one of the strengths
of computational models that they facilitate
the generation of unambiguous predictions.
Doing so is relatively straightforward for
models for a well-defined set of tasks and
experimental paradigms, but less so for archi-
tecture models. The assumptions defining an
architecture model do not, by themselves,
entail testable predictions. Architecture mod-
els generate predictions for behavioral or
brain data only in conjunction with process
models that are implemented in them. There-
fore, assumptions about the architecture must
be tested indirectly through tests of the pro-
cess models built in the architecture: When
an empirical finding appears to challenge one
of the assumptions about the architecture,
proponents of the architecture model can
defend the assumption by building a process
model that accommodates the finding.

For instance, ACT-R is committed to
the sequential firing of productions, which
imposes a strict bottleneck for all processes
that involve production firing. Whereas
there is much evidence for a bottleneck for
central processes (Pashler, 1994), there is
also a growing number of demonstrations
that people can—after a substantial amount
of practice—carry out two simple tasks in
parallel without dual-task costs (Hazeltine,
Teague, & Ivry, 2002; Oberauver & Kliegl,
2004; Schumacher et al., 2001).
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Anderson, Taatgen, and Byrne (2005)
demonstrated that a process model of the
task combination studied by Hazeltine et al.
(2002), together with the learning prin-
ciples of ACT-R, can achieve dual-task
performance with vanishingly small time
costs after extensive practice by compiling
multiple productions into a single pro-
duction per task, and scheduling demands
on the procedural module—as well as the
buffers of other modules that also create
bottlenecks—so that temporal overlap is
minimized. It remains to be seen whether
the results of Oberauer and Kliegl (2004),
who found that highly practiced young adults
could carry out two operations in working
memory simultaneously without costs, can
also be accommodated by ACT-R.

The preceding example shows that, strictly
speaking, it is impossible to put an architec-
ture to an empirical test: Testable predictions
always arise from the conjunction of assump-
tions about the architecture and about the
specific processes for doing a task, and the
empirical success or failure of these predic-
tions cannot be attributed unambiguously to
one or the other set of assumptions. When
such a prediction fails, it is in most cases
more rational to revise the process model
than the architecture, because revising the
architecture has more far-reaching implica-
tions: Any change to assumptions about the
architecture could sabotage the empirical
success of other process models built within
the architecture.

Yet, in a less strict sense, architecture
models are testable, if only indirectly: Con-
fidence in an architecture model increases
with the number of empirically successful
process models that were developed with
it, and decreases as the number of empir-
ical challenges mounts, and as modelers
find it difficult to develop process models
within the architectures constraints that fit
the data. Assumptions about the architecture

are related to data indirectly, mediated by
process models, but the weakness of each
such link can be compensated by a large
number of such links, because the architec-
ture must work in conjunction with many
process models. To use an analogy, the data
of each experiment pull at the architecture
model on a rubber leash: A single problem-
atic finding will not make a large impression
on the architecture, but many findings pulling
in the same direction will make a change
increasingly inevitable.

In some sense, the relation of architecture
models to specific process models is anal-
ogous to the relation between higher-level
and lower-level parameters in hierarchical
regression models: Group-level parameters
are informed by lower-level parameters (e.g.,
those characterizing individual persons), and
in turn place constraints on them. In the
same way, assumptions about the cognitive
architecture are informed by the successes
and failures of process models built within
an architecture, and the architecture in turn
places constraints on process models. Pro-
cess models built outside an architecture
are constrained only by the data (together
with considerations of parsimony and inter-
pretability). Process models built within
an architecture are also constrained by the
assumptions of the architecture model, such
as the duration of processing cycles, the
time and success chance for retrieving a
representation, and the restrictions on what
information is available for which kind of
operation at which time.

THE USE OF MODELS
IN COGNITIVE NEUROSCIENCE

Throughout this chapter we have reviewed
several applications of computational models
in cognitive neuroscience. In this section we
revisit the three ways in which models can be



related to data from neuroscience and point
to future challenges and opportunities.

First, we can search for neural correlates
of model parameters. For instance, as we
noted earlier, research has identified the
brain networks that correlate with the caution
parameter in sequential-sampling models of
perceptual decision making (Mulder et al.,
2014). Model parameters can be correlated
with neural signals over participants or over
experimental manipulations. Second, we
can search for neural correlates of cognitive
states or processes predicted by a model. This
use of models is exemplified by the recent
work with ACT-R (Anderson, 2007; Borst &
Anderson, 2013). ACT-R models predict
which hypothetical modules are active at
which time during a complex task, and these
predictions can be correlated with neural
signals over time. ACT-R models can also
be used to predict at which time modules
communicate with each other. Van Vugt
(2014) made a first step toward testing the
hypothesis that increased communication is
reflected in stronger coherence between pairs
of EEG electrodes in the theta frequency
band. On a much more fine-grained temporal
and neuronal scale, Purcell et al. (2010)
related the predicted dynamics of several
sequential-sampling models of perceptual
decision making to the spike rate of neu-
rons in the monkey frontal eye field (FEF).
They distinguished neurons whose firing
pattern reflected stimulus information and
neurons whose firing pattern reflected the
response (i.e., a saccade toward the stimulus).
The firing rates of stimulus-related neurons
were used as inputs for the models to drive
the evidence accumulation, and the time
course of accumulation in the models was
used to predict the time course of firing
rates of the response-related neurons. Purcell
et al. (2010) found that none of the standard
sequential-sampling models fit the neural
data, and therefore proposed a new variant
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in which the accumulation process was
delayed until sensory processing provided
a sufficiently strong input to overcome a
threshold.

Third, we can look for neural correlates
of the representations that a model predicts
to be used during a task. In recent years
several techniques have been developed
for decoding information about stimuli or
intended actions from multivariate patterns
of neural activity. These techniques use
signals from multiple single-cell recordings
(Georgopoulos, Schwartz, & Kettner, 1986;
Stokes et al., 2013) or much more aggre-
gated multivariate signals from fMRI, EEG,
or MEG (Chan, Halgren, Marinkovic, &
Cash, 2011; Haynes & Rees, 2006; Haynes,
2015). Decoding of information from these
signals usually involves training a pattern
classifier (e.g., an artificial neural network
or a machine-learning algorithm) to classify
patterns of neural activity into classes of
contents that the person currently processes
or holds in working memory (e.g., animate
vs. inanimate nouns, Chan et al., 2011; or
different orientations of motion; Emrich,
Riggall, LaRocque, & Postle, 2013). To the
extent that the algorithm classifies new pat-
terns not used for training with above-chance
accuracy, the neural activity patterns must
carry information about which content class
is being processed. There are multiple ways
in which multivariate pattern analyses can
be used to test model predictions about
mental representations. One approach is to
test model assumptions about the similarity
structure of representations against the sim-
ilarity matrix of neural patterns measured
while people engage these representations
(Kriegeskorte, 2011). Another approach
is to use process models to predict which
category of representation a person is using
at which interval during task performance,
and testing how well a pattern classifi-
cation algorithm can detect the predicted
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category (Polyn, Kragel, Morton, McCluey, &
Cohen, 2012).

All three approaches need to be mindful
of the risk of circularity in linking cognitive
models to neuroscience, as noted by Wixted
and Mickes (2013): When a computational
model is used to identify and interpret a
neural correlate of some construct of the
model, then that endeavor cannot at the same
time provide an empirical validation of the
model. An alternative model would result
in the detection of other correlates of its
constructs, and other interpretations of the
neural data, which would necessarily be more
consistent with that alternative model. That
is, “the validity of the interpretation lives and
dies with the validity of the cognitive theory
on which it depends” (Wixted & Mickes,
2013, p. 106).

One way out of the risk of such circularity
is to competitively test alternative models
against the same neuroscience data, in the
same way as we competitively fit models to
behavioral data. One challenge on this route
will be to decide, in a way that is fair to the
competing models, which of the myriad of
possible neuroscience variables to use: Each
model is likely to identify different neural
correlates of its constructs, thereby marking
different neural variables as relevant.

Those challenges are beginning to be
addressed. One promising development
was reported by Turner et al. (2013), who
proposed a Bayesian framework for joint
modeling of behavioral and neural data. In
their approach, a model of one’s choice is
first fit to the behavioral data and another
model to the neural data. For example, some
behavioral data on categorization might be
accommodated by the generalized context
model (Nosofsky, 1984), and the hemody-
namic response function in an fMRI might
be estimated by Bayesian means (Friston,
2002). The parameters of both models are
then combined into a single joint model

whose hyperparameters are estimated by
joint fitting of the neural and behavioral
data. Turner et al. (2013) illustrate the util-
ity of the approach by showing that the
behavioral data of individual participants
can be predicted from knowledge of the
hyperparameters estimated by fitting a joint
model to the remaining behavioral and neural
data. Turner, van Maanen, and Forstmann
(2015) extended the approach to trial-to-trial
variability in tasks that are captured by the
diffusion model. We expect this approach to
become increasingly popular in the future.

CONCLUSION

Computational models provide an important
tool for researchers in cognition and the
cognitive neurosciences. We close by high-
lighting two aspects of computational models
that we find particularly useful and exciting:
First, their role as “cognitive prosthesis.”
The field is currently undergoing a period
of critical reflection and self-examination
in light of widespread concerns about the
replicability of basic phenomena (e.g.,
Shanks et al., 2015). Part of this critical
reflection should also focus on the state
of our theorizing. We suggest that purely
verbal theorizing in cognition is increasingly
inadequate in light of the growing richness
of our data: whereas several decades ago
decision-making tasks might have yielded
only simple accuracy measures, we now
have access not only to accuracy but also
to the latencies of all response classes and
their distributions. This richness defies verbal
analysis but presents an ideal landscape for
computational modeling. Indeed, we sug-
gest that models also help avoid replication
failures because the likelihood that an exper-
iment will yield a quantitatively predicted
intricate pattern of results involving multiple
dependent variables by chance alone is surely



lower than that a study might, by randomness
alone, yield simple pairwise differences
between conditions that happen to mesh with
a verbally specified theoretical notion.

Second, we consider the increasingly
tight connection between modeling and the
cognitive neurosciences to be a particularly
promising arena. models,
explanatory models, and cognitive archi-
tectures are now either directly neurally
inspired, or they provide a conceptual bridge
between behavioral data and their neural
underpinnings. There is little doubt that this
trend will continue in the future.

Measurement
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