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CHAPTER 1

Speech Perception

FRANK EISNER AND JAMES M. MCQUEEN

INTRODUCTION

What Speech Is

Speech is the most acoustically complex type
of sound that we regularly encounter in our
environment. The complexity of the signal
reflects the complexity of the movements
that speakers perform with their tongues,
lips, jaws, and other articulators in order to
generate the sounds coming out of their vocal
tract. Figure 1.1 shows two representations
of the spoken sentence The sun melted the
snow—an oscillogram at the top, showing
variation in amplitude, and a spectrogram at
the bottom, showing its spectral character-
istics over time. The figure illustrates some
of the richness of the information contained
in the speech signal: There are modulations
of amplitude, detailed spectral structures,
noises, silences, bursts, and sweeps. Some
of this structure is relevant in short temporal
windows at the level of individual phonetic
segments. For example, the vowel in the word
sun is characterized by a certain spectral pro-
file, in particular the location of peaks in
the spectrum (called “formants,” the darker
areas in the spectrogram). Other structures
are relevant at the level of words or phrases.
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For example, the end of the utterance is char-
acterized by a fall in amplitude and in pitch,
which spans several segments. The acoustic
cues that describe the identity of segments
such as individual vowels and consonants
are referred to as segmental information,
whereas the cues that span longer stretches of
the signal such as pitch and amplitude enve-
lope and that signal prosodic structures such
as syllables, feet, and intonational phrases
are called suprasegmental.

Acoustic cues are transient and come in
fast. The sentence in Figure 1.1 is spoken at a
normal speech rate; it contains five syllables
and is only 1.3 seconds long. The average
duration of a syllable in the sentence is about
260 ms, meaning that information about syl-
lable identity comes in on average at a rate of
about 4 Hz, which is quite stable across lan-
guages (Giraud & Poeppel, 2012). In addition
to the linguistic information that is densely
packed in the speech signal, the signal also
contains a great deal of additional information
about the speaker, the so-called paralinguistic
content of speech. If we were to listen to a
recording of this sentence, we would be able
to say with a fairly high degree of certainty
that the speaker is a British middle-aged
man with an upper-class accent, and we might
also be able to guess that he is suffering from
a cold and perhaps is slightly bored as he
recorded the prescribed phrase. Paralinguistic
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2 Speech Perception
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Figure 1.1 Oscillogram (top) and spectrogram (bottom) representations of the speech signal in the sen-
tence “The sun melted the snow,” spoken by a male British English speaker. The vertical lines represent
approximate phoneme boundaries with phoneme transcriptions in the International Phonetic Alphabet
(IPA) system. The oscillogram shows variation in amplitude (vertical axis) over time (horizontal axis).
The spectrogram shows variation in the frequency spectrum (vertical axis) over time (horizontal axis);
higher energy in a given part of the spectrum is represented by darker shading.

information adds to the complexity of speech,
and in some cases interacts with how lin-
guistic information is interpreted by listeners
(Mullennix & Pisoni, 1990).

What Speech Perception Entails

How, then, is this complex signal perceived?
In our view, speech perception is not primar-
ily about how listeners identify individual
speech segments (vowels and consonants),
though of course this is an important part
of the process. Speech perception is also
not primarily about how listeners identify
suprasegmental units such as syllables and

lexical stress patterns, though this is an
often overlooked part of the process, too.
Ultimately, speech perception is about how
listeners use combined sources of segmental
and suprasegmental information to recog-
nize spoken words. This is because the
listener’s goal is to grasp what a speaker
means, and the only way she or he can do
so is through recognizing the individual
meaning units in the speaker’s utterance: its
morphemes and words. Perceiving segments
and prosodic structures is thus at the service
of word recognition.

The nature of the speech signal poses a
number of computational problems that the
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listener has to solve in order to be able to
recognize spoken words (cf. Marr, 1982).
First, listeners have to be able to recognize
words in spite of considerable variability in
the signal. The oscillogram and spectrogram
in Figure 1.1 would look very different if the
phrase had been spoken by a female ado-
lescent speaking spontaneously in a casual
conversation on a mobile phone in a noisy ski
lift, and yet the same words would need to be
recognized. Indeed, even if the same speaker
recorded the same sentence a second time, it
would be physically different (e.g., a differ-
ent speaking rate, or a different fundamental
frequency).

Due to coarticulation (the vocal tract
changing both as a consequence of previous
articulations and in preparation for upcom-
ing articulations), the acoustic realization
of any given segment can be strongly col-
ored by its neighboring segments. There is
thus no one-to-one mapping between the
perception of a speech sound and its acous-
tics. This is one of the main factors that is
still holding back automatic speech recog-
nition systems (Benzeghiba et al., 2007). In
fact, the perceptual system has to solve a
many-to-many mapping problem, because
not only do instances of the same speech
sound have different acoustic properties, but
the same acoustic pattern can result in per-
ceiving different speech sounds, depending
on the context in which the pattern occurs
(Nusbaum & Magnuson, 1997; Repp &
Liberman, 1987). The surrounding context
of a set of acoustic cues thus has important
implications on how the pattern should be
interpreted by the listener.

There are also continuous speech pro-
cesses through which sounds are added
(a process called epenthesis), reduced,
deleted, or altered, rendering a given word
less like its canonical pronunciation. One
example of such a process is given in
Figure 1.1: The /n/ of sun is realized more

like an [m], through a process called coronal
place assimilation whereby the coronal /n/
approximates the labial place of articulation
of the following word-initial [m].

Speech recognition needs to be robust in
the face of all this variability. As we will
argue, listeners appear to solve the variability
problem in multiple ways, but in particular
through phonological abstraction (i.e., cate-
gorizing the signal into prelexical segmental
and suprasegmental units prior to lexical
access) and through being flexible (i.e.,
through perceptual learning processes that
adapt the mapping of the speech signal onto
the mental lexicon in response to particular
listening situations).

The listener must also solve the segmenta-
tion problem. As Figure 1.1 makes clear, the
speech signal has nothing that is the equiv-
alent of the white spaces between printed
words as in a text such as this that reliably
mark where words begin and end. In order
to recognize speech, therefore, listeners have
to segment the quasicontinuous input stream
into discrete words. As with variability, there
is no single solution to the segmentation
problem: Listeners use multiple cues, and
multiple algorithms.

A third problem derives from the fact that,
across the world’s languages, large lexica
(on the order of perhaps 50,000 words) are
built from small phonological inventories (on
the order of 40 segments in a language such
as English, and often much fewer than that;
Ladefoged & Maddieson, 1996). Spoken
words thus necessarily sound like other spo-
ken words: They begin like other words, they
end like other words, and they often have
other words partially or wholly embedded
within them. This means that, at any moment
in the temporal unfolding of an utterance,
the signal is likely to be partially or wholly
consistent with many words. Once again, the
listener appears to solve this “lexical embed-
ding” problem using multiple algorithms.
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We will argue that speech perception
is based on several stages of processing at
which a variety of perceptual operations
help the listener solve these three major
computational challenges—the variability
problem, the segmentation problem, and the
lexical embedding problem (see Box 1.1).
These stages and operations have been
studied over the past 70 years or so using
behavioral techniques (e.g., psychophysical
tasks such as identification and discrimina-
tion; psycholinguistic procedures such as
lexical decision, cross-modal priming, and
visual-world eye tracking); and neuroscien-
tific techniques (especially measures using
electroencephalography [EEG] and magne-
toencephalography [MEG]). Neuroimaging
techniques (primarily functional magnetic
resonance imaging [fMRI]) and neuropsy-
chological approaches (based on aphasic
patients) have also made it possible to start
to map these stages of processing onto brain
regions. In the following section we will
review data of all these different types. These
data have made it possible to specify at least
three core stages of processing involved in
speech perception and the kinds of opera-
tions involved at each stage. The data also
provide some suggestions about the neural
instantiation of these stages.

As shown in Figure 1.2, initial operations
act to distinguish incoming speech-related
acoustic information from non-speech-
related acoustic information. Thereafter,
prelexical processes act in parallel to extract
segmental and suprasegmental information
from the speech signal (see Box 1.2). These
processes contribute toward solving the
variability and segmentation problems and
serve to facilitate spoken-word recognition.
Lexical processing receives input from
segmental and suprasegmental prelexical
processing and continues to solve the first
two computational problems while also
solving the lexical-embedding problem.

Box 1.1 Three Computational
Challenges

1. The variability problem
The physical properties of any given seg-
ment can vary dramatically because of a
variety of factors such as the talker’s phys-
iology, accent, emotional state, or speech
rate. Depending on such contextual factors,
the same sound can be perceived as differ-
ent segments, and different sounds can be
perceived as the same segment. The listener
has to be able to recognize speech in spite of
this variability.

2. The segmentation problem
In continuous speech there are no acoustic
cues that reliably and unambiguously mark
the boundaries between neighboring words
or indeed segments. The boundaries are often
blurred because neighboring segments tend
to be coarticulated (i.e., their pronunciation
overlaps in time) and because there is nothing
in the speech stream that is analogous to the
white spaces between printed words. The lis-
tener has to be able to segment continuous
speech into discrete words.

3. The lexical-embedding problem
Spoken words tend to sound like other spoken
words: They can begin in the same way (e.g.,
cap and cat), they can end in the same way
(e.g., cap and map), and they can have other
words embedded within them (e.g., cap in
captain). This means that at any point in
time the speech stream is usually (at least
temporarily) consistent with multiple lexical
hypotheses. The listener has to be able to
recognize the words the speaker intended
from among those hypotheses.

Finally, processing moves beyond the realm
of speech perception. Lexical processing pro-
vides input to interpretative processing,
where syntactic, semantic, and pragmatic
operations, based on the words that have been
recognized, are used to build an interpretation
of what the speaker meant.
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Figure 1.2 Processing stages in speech perception. Arrows represent on-line flow of information during
the initial processing of an utterance.

Box 1.2 Three Processing Stages

1. Segmental prelexical processing
Phonemes are the smallest linguistic units
that can indicate a difference in meaning. For
example, the words cap and cat differ by one
consonant, /p/ versus /t/, and cap and cup differ
by one vowel, /æ/ vs. / v/. Phoneme-sized seg-
ments are also perceptual categories, though
it is not yet clear whether listeners recognize
phonemes or some other units of perception
(e.g., syllables or position-specific allophones,
such as the syllable-initial [p] in pack vs. the
syllable-final [p] in cap). We therefore use
the more neutral term segments. The speech
signal contains acoustic cues to individual
segments. Segmental prelexical processing
refers to the computational processes acting
on segmental information that operate prior
to retrieval of words from long-term memory
and that support that retrieval process.

2. Suprasegmental prelexical
processing
The speech signal contains acoustic cues for a
hierarchy of prosodic structures that are larger
than individual segments, including sylla-
bles, prosodic words, lexical stress patterns,
and intonational phrases. These structures
are relevant for the perception of words.
For example, the English word forbear is

pronounced differently depending on whether
it is a verb or a noun even though the segments
are the same in both words. The difference is
marked by placing stress on the first or second
syllable, which can for example be signaled
by an increase in loudness and/or duration.
Suprasegmental prelexical processing refers
to the computational processes acting on
suprasegmental information that operate prior
to retrieval of words from long-term memory
and that support that retrieval process.

3. Lexical form processing
To understand a spoken utterance, the lis-
tener must recognize the words the speaker
intended. Lexical form processing refers
to the computational processes that lead to
the recognition of words as phonological
forms (as opposed to processes that determine
the meanings associated with those forms).
The listener considers multiple perceptual
hypotheses about the word forms that are
currently being said (e.g., cap, cat, apt, and
captain given the input captain). Output from
the segmental and suprasegmental prelexical
stages directs retrieval of these hypotheses
from long-term lexical memory. Together
with contextual constraints, it also influences
the selection and recognition of words from
among those hypotheses.
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6 Speech Perception

STAGES OF PERCEPTUAL
PROCESSING

Auditory Preprocessing

The sounds we encounter in our environment
are converted in the inner ear from physical
vibrations to electrical signals that can be
interpreted by the brain. From the ear, sound
representations travel along the ascending
auditory pathways via several subcortical
nuclei to the auditory cortex. Along the way,
increasingly complex representations in the
spectral and temporal domains are derived
from the waveform, coding aspects of the
signal such as the amplitude envelope, onsets
and offsets, amplitude modulation frequen-
cies, spectral structure, and modulations
of the frequency spectrum (Theunissen &
Elie, 2014). These representations are often
topographically organized, for example in
tonotopic “maps” that show selective sen-
sitivity for particular frequencies along a
spatial dimension (e.g., Formisano et al.,
2003). There is evidence for processing
hierarchies in the ascending auditory sys-
tem (e.g., Eggermont, 2001). For example,
whereas auditory events are represented at a
very high temporal resolution subcortically,
the auditory cortex appears to integrate events
into longer units that are more relevant for
speech perception (Harms & Melcher, 2002).
Similarly, subcortical nuclei have been found
to be sensitive to very fast modulations of the
temporal envelope of sounds, but the auditory
cortex is increasingly sensitive to the slower
modulations such as the ones that correspond
to prelexical segments in speech (Giraud &
Poeppel, 2012; Giraud et al., 2000).

The notion of a functional hierarchy
in sound processing, and speech in par-
ticular, has also been proposed for the
primary auditory cortex and surrounding
areas. A hierarchical division of the auditory
cortex underlies the processing of simple

to increasingly complex sounds both in
nonhuman primates (Kaas & Hackett, 2000;
Perrodin, Kayser, Logothetis, & Petkov,
2011; Petkov, Kayser, Augath, & Logothetis,
2006; Rauschecker & Tian, 2000) and in
humans (e.g., Binder et al., 1997; Liebenthal,
Binder, Spitzer, Possing, & Medler, 2005;
Obleser & Eisner, 2009; Scott & Wise, 2004).
Two major cortical streams for processing
speech have been proposed, extending in
both antero-ventral and postero-dorsal direc-
tions from primary auditory cortex (Hickok
& Poeppel, 2007; Rauschecker & Scott,
2009; Rauschecker & Tian, 2000; Scott &
Johnsrude, 2003; Ueno, Saito, Rogers, &
Lambon Ralph, 2011). The anterior stream
in the left hemisphere in particular has been
attributed with decoding linguistic meaning
in terms of segments and words (Davis &
Johnsrude, 2003; DeWitt & Rauschecker,
2012; Hickok & Poeppel, 2007; Scott, Blank,
Rosen, & Wise, 2000). The anterior stream
in the right hemisphere appears to be less
sensitive to linguistic information (Scott
et al., 2000), but more sensitive to speaker
identity and voice processing (Belin, Zatorre,
Lafaille, Ahad, & Pike, 2000; Perrodin et al.,
2011), as well as to prosodic speech cues,
such as pitch (Sammler, Grosbras, Anwander,
Bestelmeyer, & Belin, 2015). The subcor-
tical auditory system thus extracts acoustic
cues from the waveform that are relevant
for speech perception, whereas speech-
specific processes begin to emerge in regions
beyond the primary auditory cortex (Overath,
McDermott, Zarate, & Poeppel, 2015).

Prelexical Segmental Processing

Neural systems that appear to be specific
to speech processing relative to other types
of complex sounds are mostly localized to
the auditory cortex and surrounding regions
in the perisylvian cortex (see Figure 1.3).
Several candidate regions in the superior
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Figure 1.3 Lateral view of the left hemisphere showing the cortical regions that are central in speech
perception. A1, primary auditory cortex; TP, temporal pole; aSTG, anterior superior temporal gyrus;
pSTG, posterior superior temporal gyrus; pMTG, posterior middle temporal gyrus; SMG, supramarginal
gyrus; M1, primary motor cortex; PMC, premotor cortex; IFG, inferior frontal gyrus. Color version of
this figure is available at http://onlinelibrary.wiley.com/book/10.1002/9781119170174.

temporal cortex and the inferior parietal
cortex (Chan et al., 2014; Obleser & Eisner,
2009; Turkeltaub & Coslett, 2010) have
been shown to be engaged in aspects of
processing speech at a prelexical level of
analysis (Arsenault & Buchsbaum, 2015;
Mesgarani, Cheung, Johnson, & Chang,
2014). Neural populations in these regions
exhibit response properties that resemble
hallmarks of speech perception, such as cat-
egorical perception of segments (Liebenthal,
Sabri, Beardsley, Mangalathu-Arumana, &
Desai, 2013; Myers, 2007; Myers, Blum-
stein, Walsh, & Eliassen, 2009). Bilateral
regions of the superior temporal sulcus
have recently been shown to be selectively
tuned to speech-specific spectrotemporal
structure (Overath et al., 2015). Many pro-
cessing stages in the ascending auditory
pathways feature a topographic organization,
which has led to studies probing whether a
phonemic map exists in the superior tem-
poral cortex. However, the current evidence
suggests that prelexical units have complex,

distributed cortical representations (Bonte,
Hausfeld, Scharke, Valente, & Formisano,
2014; Formisano, De Martino, Bonte, &
Goebel, 2008; Mesgarani et al., 2014).

The main computational problems to be
addressed during prelexical processing are
the segmentation and variability problems.
The segmentation problem is not only a
lexical one. There are no reliably marked
boundaries between words in the incoming
continuous speech stream, but there are also
no consistent boundaries between individ-
ual speech sounds. Whereas some types of
phonemes have a relatively clear acoustic
structure (stop consonants, for instance, are
signaled by a period of silence and a sudden
release burst, which have a clear signature
in the amplitude envelope; fricatives are
characterized by high-frequency noise with
a sudden onset), other types of phonemes,
such as vowels, approximants, and nasals,
are distinguished predominantly by their
formant structure, which changes relatively
slowly. The final word snow in Figure 1.1
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illustrates this. There is a clear spectrotem-
poral signature for the initial /s/, whereas the
boundaries in the following sequence /no℧/
are much less clear. Prelexical processes
segment the speech signal into individual
phonological units (e.g., between the /s/ and
the /n/ of snow) and provide cues for lexical
segmentation (e.g., the boundary between
melted and the).

Recent studies on neural oscillations
have suggested that cortical rhythms may
play an important role in segmenting the
speech stream into prelexical units. Neural
oscillations are important because they mod-
ulate the excitability of neural networks;
the peaks and troughs in a cycle influence
how likely neurons are to fire. Interestingly,
oscillations in the theta range (4–8 Hz) align
with the quasiperiodic amplitude envelope
of an incoming speech signal. Giraud and
Poeppel (2012) have suggested that this
entrainment of auditory networks to speech
rhythm serves to segment the speech stream
into syllable-sized portions for analysis.
Each theta cycle may then in turn trigger
a cascade of higher-frequency oscillations,
which analyze the phonetic contents of a
syllable chunk on a more fine-grained time
scale (Morillon, Liégeois-Chauvel, Arnal,
Bénar, & Giraud, 2012).

Psycholinguistics has not yet identified
one single unit of prelexical representation
into which the speech stream is segmented.
In addition to phonemes (McClelland &
Elman, 1986), features (Lahiri & Reetz,
2002), allophones (Mitterer, Scharenborg, &
McQueen, 2013), syllables (Church, 1987),
and articulatory motor programs (Galantucci,
Fowler, & Turvey, 2006) have all been pro-
posed as representational units that mediate
between the acoustic signal and lexical rep-
resentations. There may indeed be multiple
units of prelexical representation that capture
regularities in the speech signal at differ-
ent levels of granularity (Mitterer et al.,

2013; Poellmann, Bosker, McQueen, &
Mitterer, 2014; Wickelgren, 1969). The oscil-
lations account is generally compatible with
this view, since different representations of
the same chunk of speech may exist simul-
taneously on different timescales. This line
of research in speech perception is rela-
tively new, and there are questions about
whether the patterns of neural oscillations
are a causal influence on or a consequence
of the perceptual analysis of speech. Some
evidence for a causal relationship comes
from a study that showed that being able to
entrain to the amplitude envelope of speech
results in increased intelligibility of the signal
(Doelling, Arnal, Ghitza, & Poeppel, 2014),
but the mechanisms by which this occurs are
still unclear.

Oscillatory entrainment may also assist
listeners in solving the lexical segmenta-
tion problem, since syllable and segment
boundaries tend to be aligned with word
boundaries. Other prelexical segmental
processes also contribute to lexical segmen-
tation. In particular, prelexical processing
appears to be sensitive to the transitional
probabilities between segments (Vitevitch &
Luce, 1999). These phonotactic regularities
provide cues to the location of likely word
boundaries. For example, a characteristic
of Finnish that is known as vowel harmony
regulates which kinds of vowels can be
present within the same word. This kind
of phonotactic knowledge provides useful
constraints on where in the speech stream
boundaries for particular words can occur,
and Finnish listeners appear to be sensitive
to those constraints (Suomi, McQueen, &
Cutler, 1997). Regularities concerning which
sequences of consonants can occur within
versus between syllables (McQueen, 1998),
or which sequences are more likely to be at
the edge of a word (van der Lugt, 2001), also
signal word boundary locations.
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After segmentation, the second major
computational challenge addressed at the
prelexical stage is how the perception sys-
tem deals with the ubiquitous variability
in the speech signal. Variability is caused
by a number of different sources, including
speech rate, talker differences, and contin-
uous speech processes such as assimilation
and reduction.

Speech Rate

Speech rate varies considerably within as
well as between talkers, and has a substantial
effect on the prelexical categorization of
speech sounds (e.g., Miller & Dexter, 1988).
This is especially the case for categories
that are marked by a temporal contrast, such
as voice-onset time (VOT) for stop conso-
nants. VOT is the most salient acoustic cue
to distinguish between English voiced and
unvoiced stops, and thus between words
such as cap and gap. However, what should
be interpreted as a short VOT (consistent
with gap) or a long VOT (consistent with
cap) is not a fixed duration, but depends on
the speech rate of the surrounding phonetic
context (Allen & Miller, 2004; Miller &
Dexter, 1988). Speech rate may even influ-
ence whether segments are perceived at all:
Dilley and Pitt (2010) showed that listeners
tended not to perceive the function word or
in a phrase such as leisure or time when
the speech was slowed down, whereas they
did perceive it at a normal rate. Conversely,
when the speech was speeded up, participants
tended to perceive the function word when it
was not actually part of the utterance.

Being able to adapt to changes in speaking
rate is thus crucial for prelexical processing,
and it has been known for some time that
listeners are adept at doing so (Dupoux &
Green, 1997), even if the underlying mecha-
nisms are not yet clear. There is evidence that
adaptability to varying speech rates is medi-
ated not only by auditory but also by motor

systems (Adank & Devlin, 2010), possibly by
making use of internal forward models (e.g.,
Hickok, Houde, & Rong, 2011), which may
help to predict the acoustic consequences
of faster or slower motor sequences. There
is an emerging body of research that shows
that neural oscillations in the auditory cortex
align to speech rate fluctuations (Ghitza,
2014; Peelle & Davis, 2012). It has yet to
be established whether this neural entrain-
ment is part of a causal mechanism that
tunes in prelexical processing to the current
speech rate.

Talker Differences

A second important source of variability in
speech acoustics arises from physiological
differences between talkers. Factors like body
size, age, and vocal tract length can strongly
affect acoustic parameters such as funda-
mental frequency and formant dispersion,
which are critical parameters that encode
differences between many speech sound cat-
egories. It has been known for decades that
even when vowels are spoken in isolation and
under laboratory conditions, there is a great
amount of overlap in the formant measures
(peaks in the frequency spectrum that are
critical for the perception of vowel identity)
for different speakers (Adank, Smits, & Hout,
2004; Peterson & Barney, 1952). In other
words, formant values measured when a
given speaker produces one particular vowel
may be similar to when a different speaker
produces a different vowel. Formant values
thus need to be interpreted in the context
of acoustic information that is independent
of what the speaker is saying, specifically
acoustic information about more general
aspects of the speaker’s physiology.

It has also been known for a long time that
listeners do this (Ladefoged, 1989; Lade-
foged & Broadbent, 1957), and the specifics
of the underlying mechanisms are beginning
to become clear. The perceptual system
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appears to compute an average spectrum
for the incoming speech stream that can be
used as a model of the talker’s vocal tract
properties, and also can be used as a refer-
ence for interpreting the upcoming speech
(Nearey, 1989; Sjerps, Mitterer, & McQueen,
2011a). Evidence from an EEG study (Sjerps,
Mitterer, & McQueen, 2011b) shows that
this extrinsic normalization of vowels takes
place early in perceptual processing (around
120 ms after vowel onset), which is consis-
tent with the idea that it reflects prelexical
processing. Behavioral and neuroimag-
ing evidence suggests that there are separate
auditory systems that are specialized in track-
ing aspects of the speaker’s voice (Andics
et al., 2010; Belin et al., 2000; Formisano
et al., 2008; Garrido et al., 2009; Kriegstein,
Smith, Patterson, Ives, & Griffiths, 2007;
Schall, Kiebel, Maess, & Kriegstein, 2015).
These right-lateralized systems appear to
be functionally connected to left-lateralized
systems that are preferentially engaged in
processing linguistic information, which may
indicate that these bilateral systems work
together in adjusting prelexical processing to
speaker-specific characteristics (Kriegstein,
Smith, Patterson, Kiebel, & Griffiths, 2010;
Schall et al., 2015).

Listeners not only use the talker infor-
mation that is present in the speech signal
on-line, but also integrate adaptations to
phonetic categories over longer stretches
and store these adapted representations in
long-term memory for later use (Norris,
McQueen, & Cutler, 2003). Norris et al.
demonstrated that listeners can adapt to a
speaker who consistently articulates a partic-
ular speech sound in an idiosyncratic manner.
The researchers did this by exposing a group
of listeners to spoken Dutch words and non-
words in which an ambiguous fricative sound
(/sf?/, midway between /s/ and /f/) replaced
every /s/ at the end of 20 critical words (e.g.,
in radijs, “radish”; note that radijf is not

a Dutch word). A second group heard the
same ambiguous sound in words ending in /f/
(e.g., olijf, “olive”; olijs is not a Dutch word).
Both groups could thus use lexical context
to infer whether /sf?/ was meant to be an
/s/ or an /f/, but that context should lead the
two groups to different results. Indeed, when
both groups categorized sounds on an /s/–/f/
continuum following exposure, the group
in which /sf?/ had replaced /s/ categorized
more ambiguous sounds as /s/, whereas the
other group categorized more sounds as /f/.
This finding suggests that the perceptual sys-
tem can use lexical context to learn about a
speaker’s idiosyncratic articulation, and that
this learning affects prelexical processing
later on. A recent fMRI study, using a similar
paradigm, provided converging evidence for
an effect of learning on prelexical processing
by locating perceptual learning effects to the
superior temporal cortex, which is thought to
be critically involved in prelexical decoding
of speech (Myers & Mesite, 2014). This kind
of prelexical category adjustment can be
guided not only by lexical context, but also
by various other kinds of language-specific
information, such as phonotactic regularities
(Cutler, McQueen, Butterfield, & Norris,
2008), contingencies between acoustic fea-
tures that make up a phonetic category
(Idemaru & Holt, 2011), or sentence context
(Jesse & Laakso, 2015).

A critical feature of this type of percep-
tual learning is that it entails phonological
abstraction. Evidence for this comes from
demonstrations that learning generalizes
across the lexicon, from the words heard dur-
ing initial exposure to new words heard
during a final test phase (Maye, Aslin, &
Tanenhaus, 2008; McQueen, Cutler, & Nor-
ris, 2006; Reinisch, Weber, & Mitterer, 2013;
Sjerps & McQueen, 2010). If listeners apply
what they have learned about the fricative
/f/, for example, to the on-line recognition
of other words that have an /f/ in them, this
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suggests first that listeners have abstract
knowledge that /f/ is a phonological category
and second that these abstract representations
have a functional role to play in prelexical
processing. Thus, although the nature of the
unit of prelexical representation is still an
open question, as discussed earlier, these data
suggest that there is phonological abstraction
prior to lexical access.

Several studies have investigated whether
category recalibration is speaker-specific
or speaker-independent by changing the
speaker between the exposure and test
phases. This work so far has produced mixed
results, sometimes finding evidence of gener-
alization across speakers (Kraljic & Samuel,
2006, 2007; Reinisch & Holt, 2014) and
sometimes evidence of speaker specificity
(Eisner & McQueen, 2005; Kraljic & Samuel,
2007; Reinisch, Wozny, Mitterer, & Holt,
2014). The divergent findings might be partly
explained by considering the perceptual
similarity between tokens from the exposure
and test speakers (Kraljic & Samuel, 2007;
Reinisch & Holt, 2014). When there is a high
degree of similarity in the acoustic-phonetic
properties of the critical segment, it appears
to be more common that learning transfers
from one speaker to another. In sum, there
is thus evidence from a variety of sources
that speaker-specific information in the sig-
nal affects prelexical processing, both by
using the speaker information that is avail-
able online, and by reusing speaker-specific
information that was stored previously.

Accents

Everybody has experienced regional or
foreign accents that alter segmental and
suprasegmental information so drastically
that they can make speech almost unintelli-
gible. However, although they are a further
major source of variability in the speech
signal, the way in which accents deviate from
standard pronunciations is regular; that is, the

unusual sounds and prosody tend to occur in
a consistent pattern. Listeners can exploit this
regularity and often adapt to accents quite
quickly. Processing gains have been shown to
emerge after exposure to only a few accented
sentences, as an increase in intelligibility
(Clarke & Garrett, 2004) or as a decrease in
reaction times in a comprehension-based task
(Weber, Di Betta, & McQueen, 2014).

An important question is whether the per-
ceptual system adapts to an accent with each
individual speaker, or whether an abstract
representation of that accent can be formed
that might benefit comprehension of novel
talkers with the same accent. Bradlow and
Bent (2008) investigated this question by
looking at how American listeners adapt to
Chinese-accented English. Listeners were
exposed to Chinese-accented speech coming
either from only one speaker or from several
different speakers. Following exposure, gen-
eralization was assessed in an intelligibility
task with Chinese-accented speech from an
unfamiliar speaker. Intelligibility increased in
both conditions during training, but evidence
of generalization to the novel speaker was
found only after exposure to multiple speak-
ers. This pattern suggests that the perceptual
system can form an abstract representation of
an accent when the accent is shared between
several different speakers, which can in turn
affect how speech from other speakers with
the same accent is processed. Learning also
generalized to different speech materials
that were used in training and test, which
is consistent with the notion that learned
representations of speech patterns can affect
perception at the prelexical level.

Continuous Speech Processes

Another aspect of variability tackled by
the prelexical processor is that caused by
continuous speech processes, including the
coronal place assimilation process shown
in Figure 1.1 (where the final segment of
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sun becomes [m]-like because of the fol-
lowing word-initial [m] of melted). Several
studies have shown that listeners are able to
recognize assimilated words correctly when
the following context is available (Coenen,
Zwitserlood, & Bölte, 2001; Gaskell &
Marslen-Wilson, 1996, 1998; Gow, 2002;
Mitterer & Blomert, 2003). Different pro-
posals have been made about how prelexical
processing could act to undo the effects of
assimilation, including processes of phono-
logical inference (Gaskell & Marslen-Wilson,
1996, 1998) and feature parsing (Gow, 2002;
feature parsing is based on the observation
that assimilation tends to be phonetically
incomplete, such that, e.g., in the sequence
sun melted the final segment of sun has some
features of an [m] but also some features
of an [n]). The finding that Dutch listen-
ers who speak no Hungarian show similar
EEG responses (i.e., mismatch negativity
responses) to assimilated Hungarian speech
stimuli to those of native Hungarian listeners
(Mitterer, Csépe, Honbolygo, & Blomert,
2006) suggests that at least some forms of
assimilation can be dealt with by relatively
low-level, language-universal perceptual
processes. In other cases, however, listeners
appear to use language-specific phonological
knowledge to cope with assimilation (e.g.,
Weber, 2001).

There are other continuous speech pro-
cesses, such as epenthesis (adding a sound
that is not normally there, e.g., the optional
insertion of the vowel / e/ between the /l/
and /m/ of film in Scottish English), resyl-
labification (changing the syllabic structure;
e.g., /k/ in look at you might move to the
beginning of the syllable /k et/ when it would
normally be the final sound of /l℧k/), and
liaison (linking sounds; e.g., in some British
English accents car is pronounced /ka/, but
the /r/ resurfaces in a phrase like car alarm).
Language-specific prelexical processes
help listeners cope with these phenomena.

For instance, variability can arise due to
reduction processes (where a segment is
realized in a simplified way or may even be
deleted entirely). It appears that listeners cope
with reduction both by being sensitive to the
fine-grained phonetic detail in the speech sig-
nal and through employing knowledge about
the phonological contexts in which segments
tend to be reduced (Mitterer & Ernestus,
2006; Mitterer & McQueen, 2009b).

Multimodal Speech Input

Spoken communication takes place pre-
dominantly in face-to-face interactions, and
the visible articulators convey strong visual
cues to the identity of prelexical segments.
The primary networks for integrating audi-
tory and visual speech information appear
to be located around the temporoparietal
junction, in posterior parts of the supe-
rior temporal gyrus, and in the inferior
parietal lobule (supramarginal gyrus and
angular gyrus; Bernstein & Liebenthal,
2014). The well-known McGurk effect
(McGurk & MacDonald, 1976) demonstrated
that auditory and visual cues are immedi-
ately integrated in segmental processing, by
showing that a video of a talker articulating
the syllable /ba/ combined with an auditory
/ga/ results in the fused percept of /da/. The
influence of visual processing on speech per-
ception is not limited to facial information;
text transcriptions of speech can also affect
speech perception over time (Mitterer &
McQueen, 2009a).

Visual cues can also drive auditory recal-
ibration in situations where ambiguous
auditory information is disambiguated by
visual information: When perceivers repeat-
edly heard a sound that could be either /d/
or /b/, presented together with a video of a
speaker producing /d/, their phonetic category
boundary shifted in a way that was consistent
with the information they received through
lipreading, and the ambiguous sound was
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assimilated into the /d/ category. However,
when the same ambiguous sound was pre-
sented with the speaker producing /b/, the
boundary shift occurred in the opposite direc-
tion (Bertelson, Vroomen, & de Gelder, 2003;
Vroomen & Baart, 2009). Thus, listeners can
use information from the visual modality
to recalibrate their perception of ambiguous
speech input, in this case long-term knowl-
edge about the co-occurrence of certain
visual and acoustic cues.

Fast perceptual learning processes already
modulate early stages of cortical speech
processing. Kilian-Hütten et al. (Kilian-
Hütten, Valente, Vroomen, & Formisano,
2011; Kilian-Hütten, Vroomen, & Formisano,
2011) have demonstrated that early acoustic-
phonetic processing is already influenced
by recently learned information about a
speaker idiosyncrasy. Using the visually
guided perceptual recalibration paradigm
(Bertelson et al., 2003), regions of the pri-
mary auditory cortex (specifically, Heschl’s
gyrus and sulcus, extending into the planum
temporale) could be identified whose activ-
ity pattern specifically reflected listeners’
adjusted percepts after exposure to a speaker,
rather than simply physical properties of the
stimuli. This suggests not only a bottom-up
mapping of acoustical cues to perceptual
categories in the left auditory cortex, but also
that the mapping involves the integration
of previously learned knowledge within the
same auditory areas—in this case, coming
from the visual system. Whether linguistic
processing in the left auditory cortex can be
driven by other types of information, such
as speaker-specific knowledge from the right
anterior stream, is an interesting question for
future research.

Links Between Speech Perception
and Production

The motor theory of speech perception
was originally proposed as a solution to

the variability problem (Liberman, Cooper,
Shankweiler, & Studdert-Kennedy, 1967;
Liberman & Mattingly, 1985). Given the
inherent variability of the speech signal and
the flexibility of perceptual categories, the
source of invariance may be found in articu-
latory representations instead. According to
this view, decoding the speech signal requires
recovering articulatory gestures through
mental emulation of the talker’s articulatory
commands to the motor system. The motor
theory received support following the dis-
covery of the mirror neuron system (Fadiga,
Craighero, & D’Ausilio, 2009; Galantucci
et al., 2006) and from neuroscience research
that shows effects on speech processing
during disruption of motor systems (e.g.,
Meister, Wilson, Deblieck, Wu, & Iacoboni,
2007; Yuen, Davis, Brysbaert, & Rastle,
2010). However, the strong version of the the-
ory, in which the involvement of speech motor
areas in speech perception is obligatory, is
not universally accepted (Hickok et al., 2011;
Lotto, Hickok, & Holt, 2009; Massaro &
Chen, 2008; Scott, McGettigan, & Eisner,
2009; Toni, de Lange, Noordzij, & Hagoort,
2008). The main arguments against motor
theory are that lesions in the motor cortex
do not result in comprehension deficits, that
comprehension can occur in individuals who
are unable to articulate, and that the motor
cortex is not typically activated in fMRI stud-
ies using passive-listening tasks. Behavioral
evidence against motor theory comes from an
experiment on speech shadowing (Mitterer &
Ernestus, 2008): Participants were not slower
to repeat out loud a spoken stimulus when
there was a gestural mismatch between the
stimulus and the response than when there
was a gestural match.

According to the contrasting auditory
perspective, decoding the speech signal
requires an analysis of acoustic cues that map
onto multidimensional phonetic categories,
mediated by general auditory mechanisms
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(Hickok & Poeppel, 2007; Holt & Lotto,
2010; Obleser & Eisner, 2009; Rauschecker
& Scott, 2009). A purely auditory perspec-
tive, however, fails to account for recent
evidence from transcranial magnetic stimu-
lation (TMS) studies showing that disruption
of (pre-)motor cortex can have modulatory
effects on speech perception in certain sit-
uations (D’Ausilio, Bufalari, Salmas, &
Fadiga, 2012; Krieger-Redwood, Gaskell,
Lindsay, & Jefferies, 2013; Meister et al.,
2007; Möttönen, Dutton, & Watkins, 2013).
If motor systems are not necessary for speech
perception, what might be the functionality
that underlies these modulatory effects?
It is noteworthy that such effects have been
observed only at the phoneme or syllable
level, that they appear to be restricted to situ-
ations in which the speech signal is degraded,
and that they affect reaction times rather than
accuracy (Hickok et al., 2011).

Although sensorimotor interactions in
perception are not predicted by traditional
auditory approaches, several neurobiolog-
ical models of language processing have
begun to account for perception–production
links (Guenther, Ghosh, & Tourville,
2006; Hickok, 2012; Hickok et al., 2011;
Rauschecker & Scott, 2009). From a speech
production point of view, perceptual pro-
cesses are necessary in order to establish
internal models of articulatory sequences
during language acquisition, as well as to
provide sensory feedback for error moni-
toring. There is recent evidence from fMRI
studies that the premotor cortex might facil-
itate perception, specifically under adverse
listening conditions, because activity in
motor areas has been linked to perceptual
learning of different types of degraded speech
(Adank & Devlin, 2010; Erb, Henry, Eisner,
& Obleser, 2013; Hervais-Adelman, Carlyon,
Johnsrude, & Davis, 2012). Such findings
are consistent with the idea that motor
regions provide an internal simulation that

matches degraded speech input to articulatory
templates, thereby assisting speech compre-
hension under difficult listening conditions
(D’Ausilio et al., 2012; Hervais-Adelman
et al., 2012), but direct evidence for this is
lacking at present.

Summary

The prelexical segmental stage involves
speech-specific processes that mediate
between general auditory perception and
word recognition by constructing percep-
tual representations that can be used during
lexical access. The two main computational
challenges approached at this stage are
the segmentation and variability problems.
We have argued that listeners use multiple
prelexical mechanisms to deal with these
challenges, including the detection of phono-
tactic constraints for lexical segmentation,
processes of rate and talker normalization
and of phonological inference, and engage-
ment of speech production machinery (at
least under adverse listening conditions).
The two most important prelexical mecha-
nisms, however, appear to be abstraction and
adaptation. The central goal of the prelexical
processor is to map from the episodic detail
of the acoustic input onto abstract perceptual
categories in order to be able to cope with
the variability problem and hence to facilitate
lexical access. This mapping process clearly
seems to be adaptive: Listeners tune in to
aspects of the current listening situation (e.g.,
who is/are talking, how fast they are talking,
whether they have a foreign or regional
accent). Studying perceptual learning in
particular has been valuable as a window into
how prelexical perceptual representations are
maintained and updated.

Prelexical Suprasegmental Processing

As we have already argued, speech perception
depends on the extraction of suprasegmental
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as well as segmental information. Supraseg-
mental material is used by listeners to help
them solve the lexical-embedding, variabil-
ity, and segmentation problems. As with
prelexical segmental processing, abstraction
and adaptation are the two main mechanisms
that allow listeners to solve these problems.

Words can have the same segments but
differ suprasegmentally. One way in which
the listener copes with the lexical-embedding
problem (the fact that words sound like many
other words) is thus to use these fine-grained
suprasegmental differences to disambiguate
between similar-sounding words. Italian
listeners, for instance, can use the relative
duration of segments to distinguish between
alternative lexical hypotheses that have the
same initial sequence of segments but dif-
ferent syllabification (e.g., the syllable-final
/l/ of sil.vestre, “sylvan,” differs minimally
in duration from the syllable-initial /l/ of
si.lencio, “silence”), and fragment priming
results suggest that Italians can use this acous-
tic difference to disambiguate the input even
without hearing the following disambiguat-
ing segments (i.e., the /v/ or /ε/; Tabossi,
Collina, Mazzetti, & Zoppello, 2000).

English listeners use similar subtle
durational cues to syllabic structure to
disambiguate oronyms (tulips vs. two lips;
Gow & Gordon, 1995); Dutch listeners use /s/
duration to distinguish between, for example,
een spot, “a spotlight,” and eens pot, “once
jar” (Shatzman & McQueen, 2006b); and
French listeners use small differences in the
duration of consonants to distinguish between
sequences with liaison (e.g., the word-final /r/
of dernier surfacing in dernier oignon, “last
onion”) from matched sequences without
liaison (e.g., dernier rognon, “last kidney”;
Spinelli, McQueen, & Cutler, 2003).

Durational differences across multiple
segments also signal suprasegmental struc-
ture. Monosyllabic words, for example, tend
to be longer than in the same segmental

sequence in a polysyllabic word (e.g., cap is
longer on its own than in captain; Lehiste,
1972). Experiments using a variety of tasks,
including cross-modal priming, eye track-
ing, and mouse tracking, have shown that
listeners use these durational differences
during word recognition, and thus avoid
recognizing spurious lexical candidates (such
as cap in captain; Blazej & Cohen-Goldberg,
2015; Davis, Marslen-Wilson, & Gaskell,
2002; Salverda, Dahan, & McQueen, 2003).
It appears that these effects reflect the extrac-
tion of suprasegmental structure because they
are modulated by cues to other prosodic struc-
tures. Dutch listeners in an eye-tracking study
looked more at a branch (a tak) when hearing
the longer word taxi if the cross-spliced tak
came from an original context where the
following syllable was stressed (e.g., /si/ in
pak de tak sinaasappels, “grab the branch
of oranges”) than if it was unstressed (/si/ in
pak de tak citroenen, “grab the branch of
lemons”; Salverda et al., 2003).

Listeners also make use of cues to larger
suprasegmental structures to disambiguate
between words. The presence of the onset
of a larger suprasegmental structure (e.g., an
intonational phrase) affects the pronunciation
of the segment that happens to be at that
boundary (typically by making it longer
and louder). This information can be used
during lexical form processing to disam-
biguate between several word candidates
(Keating, Cho, Fougeron, & Hsu, 2003).
Cho, McQueen, and Cox (2007) examined
temporarily ambiguous sequences in English
such as bus tickets, where words such as bust
straddle the word boundary. The word bus
was easier to recognize in the phrase bus
tickets if it had been taken from the utterance
“When you get on the bus, tickets should
be shown to the driver” (in which the /t/
was prosodically strengthened) than if it had
been taken from “John bought several bus
tickets for his family” (in which the /t/ was
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not strengthened). Christophe, Peperkamp,
Pallier, Block, and Mehler (2004) found
a similar effect in French. Words such as
chat, “cat,” were harder to disambiguate
from chagrin, “grief,” in the sequence chat
grinchaux, “grumpy cat,” if the sequence
was part of a single phrase than if a phrase
boundary occurred between the two words.

Listeners also use suprasegmental cues
to the lexical stress patterns of words dur-
ing word recognition. These cues include
pitch, amplitude, and duration differences
between stressed and unstressed syllables.
Dutch (Cutler & van Donselaar, 2001; van
Donselaar, Koster, & Cutler, 2005) and
Spanish (Soto-Faraco, Sebastián-Gallés, &
Cutler, 2001) listeners are sensitive to
differences between sequences that are seg-
mentally identical but differ in stress, and use
those differences to constrain lexical access
(e.g., Dutch listeners can distinguish between
voor taken from initially stressed voornaam,
“first name,” and voor taken from finally
stressed voornaam, “respectable”; Cutler &
van Donselaar, 2001). Dutch listeners use
the stress information as soon as it is heard
during word recognition: Eye-tracking data
show disambiguation between, for example,
oktober, “October” (stress on the second syl-
lable) and octopus, “octopus” (stress on the
first syllable) before the arrival of unambigu-
ous segmental information (the /b/ and /p/ in
this example; Reinisch, Jesse, & McQueen,
2010). Italian listeners show similar rapid
use of stress information in on-line word
recognition (Sulpizio & McQueen, 2012).

Interestingly, however, English listeners
tend to be less sensitive to stress cues than
Dutch, Spanish, and Italian listeners; across
a variety of tasks, stress effects are weak and
can be hard to find in English (Cooper, Cutler,
& Wales, 2002; Fear, Cutler, & Butterfield,
1995; Slowiaczek, 1990). This appears to be
because stress in English is primarily cued by
differences between segments (the difference

between full vowels and the reduced vowel
schwa) rather than suprasegmental stress
differences. This means that English listen-
ers are usually able to distinguish between
words using segmental information alone
and hence can afford to ignore the supraseg-
mental information (Cooper et al., 2002; see
Cutler, 2012 for further discussion). English
participants (Scarborough, Keating, Mattys,
Cho, & Alwan, 2009) and Dutch participants
(Jesse & McQueen, 2014) are also sensitive
to visual cues to lexical stress (e.g., chin or
eyebrow movements).

Obviously, suprasegmental stress infor-
mation can be used in speech perception
only in a language that has lexical stress.
Similarly, other types of suprasegmental cues
can be used only in languages that make
lexical distinctions based on those cues, but
the cross-linguistic evidence suggests that
such cues are indeed used to constrain word
recognition. Speakers of languages with lex-
ical tone, such as Mandarin and Cantonese,
for example, use tone information in word
recognition. Note that tone is sometimes
regarded as segmental, since a vowel with
one f0 pattern (e.g., a falling tone) can be
considered to be a different segment from the
same vowel with a different pattern (e.g., a
level tone). We consider tone to be supraseg-
mental here, however, because it concerns an
acoustic feature, pitch, which signals other
suprasegmental distinctions (e.g., lexical
stress). Lexical priming studies in Cantonese
suggest, for example, that tonal information
modulates word recognition (Cutler & Chen,
1997; Lee, 2007; Ye & Connine, 1999; Yip,
2001). Likewise, pitch-accent patterns in
Japanese (based on high [H] and low [L]
syllables, again cued by differences in the f0
contour) are picked up by Japanese listeners;
for example, they can distinguish between
/ka/ taken from baka [HL] versus gaka
[LH] (Cutler & Otake, 1999), and accent
patterns are used to distinguish between
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words (Cutler & Otake, 1999; Sekiguchi &
Nakajima, 1999).

The data previously reviewed all make the
same general point about how listeners solve
the lexical-embedding problem. Listeners
cope with the fact that words sound like
other words in part by using suprasegmental
disambiguating information. Suprasegmental
prelexical processing thus entails the extrac-
tion of this information so that it can be used
in lexical processing. This can be also be
considered to be a way in which listeners
solve the variability problem. Segments have
different physical realizations in different
prosodic and intonational contexts (e.g.,
they are longer, or louder, or have higher
pitch). The suggestion here is that this kind
of variability is dealt with by suprasegmental
prelexical processes, which use this informa-
tion to build phonologically abstract prosodic
structures that are then used to constrain
word recognition.

As with segmental prelexical processing,
therefore, abstraction is a key mechanism
that allows listeners to cope with variability.
Word-learning experiments provide evidence
for suprasegmental abstraction. In Shatzman
and McQueen (2006a), Dutch listeners were
taught pairs of novel words, such as bap and
baptoe, that were analogues of real pairs
such as cap and captain. The listeners had
to learn to associate the new words with
nonsense shapes. Critically, during learn-
ing, the durational difference between the
monosyllabic novel words and the same
syllable in the longer words was neutralized.
In an eye-tracking test phase, however, the
syllables had their normal duration (bap was
longer than the bap in baptoe). Even though
the listeners had never heard these forms
before, effects of the durational differences
(analogous to those found in eye tracking
with real words) were observed (e.g., listen-
ers made more fixations to the bap nonsense
shape when the input syllable was longer

than when it was shorter). This suggests that
the listeners had abstract knowledge about
the durational properties of monosyllabic
and polysyllabic words and could bring that
knowledge to bear during word recognition
the first time they heard the novel words with
those properties. A word-learning experiment
with a similar design (Sulpizio & McQueen,
2012) suggests that Italian listeners have
abstract suprasegmental knowledge about
lexical stress (about the distribution of lex-
ical stress patterns in Italian, and about the
acoustic-phonetic cues that signal stress), and
that they too can use that knowledge during
online recognition of novel words, in spite of
never having heard those words with those
stress cues ever before.

A perceptual learning experiment using
the lexically guided retuning paradigm of
Norris et al. (2003) also provides evidence
for suprasegmental abstraction. Mandarin
listeners exposed to syllables with ambigu-
ous pitch contours in contexts that biased
the interpretation of the ambiguous syllables
toward either tone 1 or tone 2 subsequently
categorized more stimuli on tone 1–tone 2
test continua in a way that was consistent
with the exposure bias (Mitterer, Chen, &
Zhou, 2011). This tendency was almost as
large for new test words as for words that had
been heard during exposure. This generaliza-
tion of learning indicates that the listeners
had adjusted phonologically abstract knowl-
edge about lexical tone. Generalization of
perceptual learning across the lexicon about
the pronunciation of syllables also indi-
cates that listeners have abstract knowledge
about suprasegmental structure (Poellmann
et al., 2014).

Suprasegmental information also has a
role to play in solving the segmentation
problem. The studies previously reviewed on
uptake of fine-grained suprasegmental cues
(Blazej & Cohen-Goldberg, 2015; Cho et al.,
2007; Christophe et al., 2004; Davis et al.,
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2002; Gow & Gordon, 1995; Salverda et al.,
2003; Spinelli et al., 2003) can all also be
considered as evidence for the role of these
cues in segmentation. The fine-grained detail
is extracted prelexically and signals word
boundaries.

But there is also another important way in
which suprasegmental prelexical processing
supports lexical segmentation. The rhythmic
structure of speech can signal the location of
word boundaries (Cutler, 1994). Languages
differ rhythmically, and the segmentation
procedures vary across languages accord-
ingly. In languages such as English and
Dutch, rhythm is stress-based, and strong
syllables (i.e., those with full vowels, which
are distinct from the reduced vowels in weak
syllables) tend to mark the locations of the
onsets of new words in the continuous speech
stream (Cutler & Carter, 1987; Schreuder &
Baayen, 1994). Listeners of such languages
are sensitive to the distinction between strong
and weak syllables (Fear et al., 1995), and
use this distinction to constrain spoken-word
recognition, as measured by studies examin-
ing word-boundary misperceptions (Borrie,
McAuliffe, Liss, O’Beirne, & Anderson,
2013; Cutler & Butterfield, 1992; Vroomen,
van Zon, & de Gelder, 1996) and in
word-spotting tasks (Cutler & Norris, 1988;
McQueen, Norris, & Cutler, 1994; Norris,
McQueen, & Cutler, 1995; Vroomen et al.,
1996; Vroomen & de Gelder, 1995). Cutler
and Norris (1988), for example, compared
word-spotting performance for target words
such as mint in mintayf (where the second
syllable was strong) and mintef (where the
second syllable was weak). They found
poorer performance in sequences such as
mintayf, and argued that this was because the
strong syllable—tayf—indicated that there
was likely to be a new word starting at the /t/,
which then made it harder to spot mint.

Languages with different rhythms are
segmented in different ways. Languages such

as French, Catalan, and Korean have rhythm
based on the syllable, and speakers of these
languages appear to use syllable-based seg-
mentation procedures (Content, Meunier,
Kearns, & Frauenfelder, 2001; Cutler,
Mehler, Norris, & Segui, 1986, 1992; Kim,
Davis, & Cutler, 2008; Kolinsky, Morais, &
Cluytens, 1995; Sebastián-Gallés, Dupoux,
Segui, & Mehler, 1992). Likewise, languages
such as Japanese and Telugu have rhythm
based on the mora, and speakers of these
languages appear to use mora-based seg-
mentation procedures (Cutler & Otake, 1994;
Murty, Otake, & Cutler, 2007; Otake, Hatano,
Cutler, & Mehler, 1993). In spite of these
differences across languages, what appears to
be common is that segmentation uses rhythm.

Summary

The prelexical suprasegmental stage acts in
parallel with the prelexical segmental stage
to construct speech-specific representations
of suprasegmental structures that can be
used to constrain and assist lexical access.
Multiple mechanisms at this stage of pro-
cessing help the listener to solve all three
major computational problems. As with
prelexical segmental processing, the key
mechanisms in suprasegmental processing
are abstraction and adaptation. There has
been relatively little work using neurosci-
entific methods to address the nature of
prelexical suprasegmental processing.

Lexical Form Processing

Although it is broadly established that
prelexical processes and representations
are instantiated in the superior temporal
lobes, there is less consensus about the
localization of lexical processing (see, e.g.,
Price, 2012). In some neurobiological mod-
els, the primary pathway from prelexical
processes to word forms and meaning is
along the antero-ventral stream (DeWitt &
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Rauschecker, 2012; Rauschecker & Scott,
2009; Scott et al., 2000; Ueno et al., 2011),
interfacing with semantic and conceptual rep-
resentations in the temporal poles (e.g., Rice,
Lambon Ralph, & Hoffman, 2015). Several
other neurobiological models postulate
that the lexicon consists of interconnected
networks containing different types of rep-
resentation such as surface forms, abstract
phonological forms, an auditory–motor inter-
face, or a semantic interface, and which are
spatially distributed across the temporal and
inferior parietal lobes (Davis, 2016; Gow,
2012; Hickok & Poeppel, 2007).

Three major lexical processing streams
have been proposed in the literature. Starting
in the mid-superior temporal cortex, one
stream runs in an antero-ventral direction
along the superior temporal gyrus, one in
a posteriodorsal direction along the tem-
poroparietal junction to the supramarginal
gyrus, and one in a posterioventral direction
via pSTG and pMTG to the posterior infe-
rior temporal gyrus. Whether all of these
streams are essential for lexical processing in
speech recognition and how they might work
together in binding different types of lexical
representations remain open questions. We
suggest that studying learning processes may
provide an opportunity to move forward in
localizing lexical processes.

Spoken-word recognition is characterized
by two key processes: the parallel evaluation
of multiple lexical hypotheses, and competi-
tion among those hypotheses. Together, these
two processes allow the listener to solve
the lexical-embedding problem. There is a
substantial body of converging evidence for
both processes.

Evidence for the simultaneous evalua-
tion of multiple word hypotheses comes,
for example, from cross-modal prim-
ing (Zwitserlood, 1989; Zwitserlood &
Schriefers, 1995), eye-tracking (Allopenna,
Magnuson, & Tanenhaus, 1998; Huettig &

McQueen, 2007; Yee & Sedivy, 2006),
and EEG experiments (van Alphen & Van
Berkum, 2010, 2012). Because words sound
like other words (i.e., because of the
lexical-embedding problem), listeners need
to consider overlapping hypotheses of many
different types. Words beginning like other
words are considered in parallel (e.g., in
Dutch, kapitaal, “capital,” when the onset
of kapitein, “captain,” is heard; Zwitser-
lood, 1989; see also Allopenna et al., 1998;
Huettig & McQueen, 2007), as are words
embedded in the onset of longer words (e.g.,
cap in captain; Davis et al., 2002; Salverda
et al., 2003; van Alphen & Van Berkum,
2010, 2012). Words embedded in the offset
of longer words are also considered when the
longer word is heard (e.g., bone in trombone;
Isel & Bacri, 1999; Luce & Cluff, 1998;
Shillcock, 1990; van Alphen & Van Berkum,
2010, 2012; Vroomen & de Gelder, 1997).
The evidence is weaker for offset embed-
dings than for onset embeddings (see, e.g.,
Luce & Lyons, 1999), presumably because
of the temporal nature of the speech signal
(there is already strong support for the longer
word before there is any support for the
offset embedding). Embedded words may be
stronger candidates for recognition when the
speech signal is higher in quality (Zhang &
Samuel, 2015). Lexical hypotheses are also
considered that span word boundaries in the
input (e.g., visite, “visits,” given the input
visi tediati, “faces bored”; Tabossi, Burani, &
Scott, 1995; see also Cho et al., 2007; Gow &
Gordon, 1995).

The strength of different hypotheses is
determined in part by their goodness of
fit to the available speech input. The pho-
netic similarity between an intended word
(e.g., cabinet; Connine, Titone, Deelman, &
Blasko, 1997) and a mispronounced nonword
(e.g., gabinet vs. mabinet vs. shuffinet)
influences how much the mispronunciation
disrupts lexical access. The more similar the
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mismatching sound and the intended sound
are, the greater the support for the intended
word (Connine et al., 1997). Once again,
there is converging evidence of this across
tasks: phoneme monitoring (Connine et al.,
1997) and cross-modal priming (Connine,
Blasko, & Titone, 1993; Marslen-Wilson,
Moss, & van Halen, 1996). The relative
intolerance of the recognition system to mis-
matching segmental information is one way
in which it deals with the lexical-embedding
problem. Words that do not fit the input very
well are not considered as serious lexical
hypotheses. This assumption is central to the
Shortlist model (Norris, 1994) and gives it
its name: Only the best matching candidates
enter the shortlist for recognition.

Selection among hypotheses appears
to be based not only on goodness of fit.
Lexical hypotheses compete with each other,
as shown by increasing response latencies
in word-recognition tasks as competition
intensifies. As the number and frequency
of similar-sounding words in the lexical
neighborhood of a word increase, it becomes
harder to recognize that word (Cluff & Luce,
1990; Luce & Large, 2001; Luce & Pisoni,
1998; Vitevitch, 2002; Vitevitch & Luce,
1998, 1999). Gaskell and Marslen-Wilson
(2002) showed, in a priming experiment, that
the number of words beginning in the same
way as a prime word (or word fragment)
influenced the size of the resulting priming
effect. There thus appears to be competition
among words that begin in the same way.
There is also competition among words start-
ing at different points in the speech input. In a
word-spotting task, listeners find it harder
to spot a word in a nonsense sequence that
is the onset of a real word (e.g., mess in
domes) and hence where there is competition
with that real word (domestic) than in a
matched nonsense sequence that is not the
onset of a real word (e.g., mess in nemess;
McQueen et al., 1994). The number of words

beginning later in the speech signal than the
target word also influences word-spotting
performance (Norris et al., 1995; Vroomen &
de Gelder, 1995).

Lexical competition plays a key role
not only in solving the lexical-embedding
problem but also in solving the segmenta-
tion problem. In the absence of any signal-
based cues to word boundaries, competition
can nevertheless produce a lexical parse
of continuous speech: The best-matching
words (wherever they may begin or end)
win the competition, and hence the input
is segmented (McClelland & Elman, 1986;
Norris, 1994; Norris, McQueen, Cutler, &
Butterfield, 1997). As previously reviewed,
however, there are multiple segmental and
suprasegmental cues to possible word bound-
aries in the continuous speech stream, and
these appear to be extracted during prelexical
processing. Possible electrophysiological
markers of lexical segmentation have been
documented (Sanders, Newport, & Neville,
2002). It appears that the relative roles of lex-
ical and signal-based factors in segmentation
change in different listening situations (e.g.,
in the context of different amounts of back-
ground noise; Mattys, White, & Melhorn,
2005; Newman, Sawusch, & Wunnenberg,
2011). Mattys et al. (2005) have suggested,
for example, that lexical knowledge (e.g.,
whether the context of a target word was
another word or a nonword) tends to matter
more in segmentation than do signal-based
segmental cues (e.g., whether segments
and their contexts were coarticulated), and
these cues in turn tend to be more impor-
tant than signal-based suprasegmental cues
(e.g., whether stimuli began with strong or
weak syllables).

How, then, might these different types
of cues and lexical constraints jointly deter-
mine segmentation? Norris et al. (1997)
proposed the possible-word constraint
(PWC) as a unifying segmentation algorithm.
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According to the PWC account, lexical
hypotheses are evaluated as to whether they
are aligned with likely word boundaries,
as cued by any of the signal-based cues.
If not, those hypotheses are disfavored.
A word is considered to be misaligned if
there is no vocalic portion between the
word’s edge (its beginning or its end) and
the location of the likely word boundary.
Cross-linguistically, a residue of speech
without a vowel cannot itself be a possible
word, and so a parse involving that residue
and a lexical hypothesis is very unlikely to be
what the speaker intended (e.g., if the input
is clamp, it is improbable than the speaker
intended c lamp because [k] on its own is
not a possible word of English). Evidence
for the PWC has now been found in many
languages, including English (Newman et al.,
2011; Norris et al., 1997; Norris, McQueen,
Cutler, Butterfield, & Kearns, 2001), Dutch
(McQueen, 1998), Japanese (McQueen,
Otake, & Cutler, 2001), Sesotho (Cutler,
Demuth, & McQueen, 2002), Cantonese
(Yip, 2004), and German (Hanulíková,
Mitterer, & McQueen, 2011). Evidence
for the PWC has also been found in Slovak
(Hanulíková, McQueen, & Mitterer, 2010), in
spite of the fact that Slovak (like other Slavic
languages) permits words without vowels
(but only for a small number of consonants,
those functioning as closed-class words;
these consonants are treated as a special case
in Slovak segmentation). The only language
tested to date for which no evidence for the
PWC has been found is Berber (El Aissati,
McQueen, & Cutler, 2012), a language that
has many words without vowels. Although
speakers of Berber appear not to use the PWC
(it would be disadvantageous for them to do
so), speakers of all other languages seem to
benefit from this segmentation algorithm.

Lexical processing also has a role to play
in solving the variability problem. Evidence
previously reviewed suggests that prelexical

processes of abstraction (about segments
and about suprasegmental structures), and
perceptual learning mechanisms acting on
those abstractions, have a major role to
play in dealing with speech variability. But
especially when the listener has to deal
with extreme forms of variability, as when
the pronunciation of a word deviates sub-
stantially from its canonical form, lexical
processing can step in. More specifically,
it appears that some pronunciation variants
of words are stored in the mental lexicon.
When Dutch listeners have to recognize that
[tyk] is a form of the word natuurlijk, “of
course,” for example, it appears they do
so by storing that form rather than through
prelexical processes that reconstruct the
canonical form (Ernestus, 2014; Ernestus,
Baayen, & Schreuder, 2002). Support for
the view that lexical storage can help deal
with pronunciation variability concerning
not only extreme forms of reduction, but also
other forms of variability (e.g., that gentle
in American English can be produced either
with a medial [nt] or with a medial nasal
flap; Ranbom & Connine, 2007), comes from
evidence of effects on word recognition of
the frequency of occurrence of particular pro-
nunciation variants (Connine, 2004; Connine,
Ranbom, & Patterson, 2008; Pitt, Dilley, &
Tat, 2011; Ranbom & Connine, 2007).

If, as discussed earlier, prelexical seg-
mental and suprasegmental processing
entails phonological abstraction, then lexical
form representations must be abstract, too,
rather than episodic in nature. Experiments
on novel-word learning also support this
view. Lexical competition between a newly
learned word and its existing phonological
neighbors can be used as an index that it
has been integrated into the mental lexi-
con (as, e.g., when the new word cathedruke
starts to compete with cathedral, slowing
responses to cathedral; Gaskell & Dumay,
2003). Different behavioral measures of
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competition (and other measures that new
words have been added to the lexicon; Leach
& Samuel, 2007) have indicated that lexical
integration tends to be a gradual process that
is enhanced by sleep (Dumay & Gaskell,
2007, 2012) and can take several days to
complete, though some data suggest it can
occur without sleep (Kapnoula & McMurray,
2015; Lindsay & Gaskell, 2013; Szmalec,
Page, & Duyck, 2012).

Integration of a new words into the lexi-
con appears to reflect transfer from initially
episodic representations to phonologically
abstract representations, as shown, for
instance, by evidence that new words learned
only in printed form (i.e., as print episodes
that have never been heard) nonetheless
start to compete with spoken words (Bakker,
Takashima, van Hell, Janzen, & McQueen,
2014). This transfer process is consistent
with the complementary learning systems
account of memory consolidation (Davis &
Gaskell, 2009; McClelland, McNaughton, &
O’Reilly, 1995). In line with that account,
the emergence of lexical competition appears
to parallel a shift from episodic memory in
medial temporal lobe structures (the hip-
pocampus in particular) to lexical memory in
neocortical structures, including the pMTG
(Davis & Gaskell, 2009; Takashima, Bakker,
van Hell, Janzen, & McQueen, 2014; see
also Breitenstein et al., 2005). Lexicaliza-
tion can also be tracked by measuring EEG
oscillatory activity: There are differences in
theta band (4–8 Hz) power between existing
words and novel words that have not been
learned, but no such differences for novel
words that have been learned the previous
day (Bakker, Takashima, van Hell, Janzen, &
McQueen, 2015).

Summary

The three major computational challenges
faced by the listener—the variability prob-
lem, the segmentation problem, and the

lexical-embedding problem—must all ulti-
mately be resolved at the stage of lexical
form processing. These problems appear
to be solved through parallel evaluation
of multiple lexical hypotheses, the use of
segmental and suprasegmental information
that constrains the lexical search to only
the most likely hypotheses and that indi-
cates the location of likely word boundaries,
and competition among those hypotheses.
The PWC is a segmentation algorithm that
appears to further modulate this competition
process. It appears that lexical form repre-
sentations are phonologically abstract rather
than episodic, and that multiple (abstract)
pronunciation variants of the same word can
be stored. In keeping with research on prelex-
ical processing, behavioral learning studies
have been especially valuable as a window
into the nature of lexical representations.
Neuroscientific studies on word learning
have the potential to help in localizing lexical
processing and representations.

FLOW OF INFORMATION: HOW DO
THE DIFFERENT STAGES TALK
TO EACH OTHER?

Thus far, we have reviewed evidence sug-
gesting that the four stages of processing
of speech perception are distinct from each
other, functionally and in terms of neural
implementation, and have discussed data that
has constrained accounts of the operations
within each of those stages. The next issue
to address is how the stages talk to each
other. There are actually several questions
here. First, we can ask whether bottom-up
information processing is serial or cascaded.
That is, do the prelexical stages complete
their work before passing information on
to lexical processing in a serial manner, or
is there continuous, cascaded information
flow? Second, are segmental processing and
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suprasegmental processing fully independent
of each other, or is there cross-talk at the
prelexical level? Third, is there feedback
of information from lexical processing to
prelexical processing?

Cascaded Processing

As already discussed, multiple lexical
hypotheses are considered in parallel during
the word-recognition process. We can there-
fore address whether segmental information
is passed serially or in cascade to lexical pro-
cessing by asking whether lexical processing
changes as a function of subsegmental
differences in the speech input. Such differ-
ences entail fine-grained acoustic-phonetic
distinctions that are perceived as falling
within segmental categories rather than those
that signal differences between categories.
If processing is serial, these subsegmental
differences should be resolved prelexically
(e.g., the perceptual decision should be taken
that a /k/ has been heard irrespective of
how prototypical a /k/ it is). In contrast, if
processing is cascaded, subsegmental differ-
ences should be passed forward to lexical
processing (e.g., differences in the good-
ness of a /k/ should influence the relative
strength of different word hypotheses at the
lexical stage).

In English, voice-onset time (VOT) is
a major acoustic-phonetic cue to the dis-
tinction between voiceless stop consonants
(e.g., /k/, with longer VOTs) and voiced
stops (e.g., /g/, with shorter VOTs). In a
priming task, Andruski, Blumstein, and
Burton (1994) observed that responses to
target words such as queen were faster
after semantically related prime words (e.g.,
king) than after unrelated words. Impor-
tantly, this priming effect became smaller
as VOT was reduced (i.e., as the /k/ became
more like a /g/, but was still identified as a
/k/). This suggests that subsegmental detail

influences lexical processing (the degree of
support for king, and hence its efficacy as a
prime, was reduced as the /k/ was shortened).
Converging evidence for cascaded processing
is provided by eye-tracking data (McMurray,
Tanenhaus, & Aslin, 2002), by other prim-
ing data (van Alphen & McQueen, 2006),
and by EEG data (Toscano, McMurray,
Dennhardt, & Luck, 2010). Toscano et al.
showed, for example, that the amplitude of
early EEG components was modulated by
changes in VOT in word-initial stops (e.g.,
/b/ and /p/ in beach–peach). Although the
amplitude of a frontal negativity at around
100 ms after stimulus onset (N1) was mod-
ulated by VOT but was unaffected by the
category distinction between /b/ and /p/, the
amplitude of a parietal positivity at around
300 ms (P3) was modulated by both factors,
suggesting that the fine-grained VOT infor-
mation was being passed forward at least to
the categorical level.

Effects of phonetic similarity on the
strength of lexical hypotheses (Connine
et al., 1993, 1997; Marslen-Wilson et al.,
1996) are also consistent with the idea that
prelexical processing is cascaded. Further
evidence comes from research showing that
fine-grained acoustic-phonetic detail can
modulate word recognition in continuous
speech, and hence help the listener deal
with the consequences of continuous speech
production processes. Across processes and
languages, fine-grained detail about the dura-
tion or spectral structure of segments helps
listeners cope with variable realizations of
those segments in particular phonological
contexts (e.g., place assimilation in English;
Gow, 2002; /t/ reduction in Dutch; Mitterer &
Ernestus, 2006; liaison in French; Spinelli
et al., 2003).

Cascaded processing can in addition
be tested by asking whether subsegmental
information interacts with lexical compe-
tition. If fine-grained phonetic information
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(subsegmental details and cues for the
resolution of the effects of continuous speech
processes) modulates the competition pro-
cess, then that information must have been
passed forward to lexical processing. There
have been several demonstrations of such
interactions. Marslen-Wilson et al. (1996),
for example, found that the effects of a
perceptual ambiguity at the segmental level
could be detected at the lexical level. Specif-
ically, word recognition was delayed when
the ambiguity was potentially consistent with
other lexical hypotheses. Van Alphen and
McQueen (2006) showed, similarly, that the
effect of VOT variability on word recognition
depended on the lexical competitor environ-
ment (i.e., whether the voiced and voiceless
interpretations of a stop consonant were both
words, were both nonwords, or were one
word and one nonword).

The interaction of subsegmental and
lexical information has been studied most
extensively in a series of experiments with
stimuli in which subsegmental cues are
mismatched by cross-splicing different
parts of spoken words (Dahan, Magnuson,
Tanenhaus, & Hogan, 2001; Marslen-Wilson
& Warren, 1994; McQueen, Norris, & Cutler,
1999; Streeter & Nigro, 1979; Whalen, 1984,
1991). Cross-splicing the initial consonant
and vowel of jog with the final consonan-
tal release of job, for example, produces
a stimulus that sounds like job, but that
contains a vowel with acoustic evidence
for an upcoming /g/. The degree to which
such cross-splicing disrupts word recognition
(as measured across a range of tasks includ-
ing lexical decision, phoneme decision, and
eye tracking) depends not only on whether
the resulting sequence is a word (e.g., job vs.
shob) but also on whether the parts used in
the cross-splicing originate from words (e.g.,
jog) or nonwords (e.g., jod).

There is also cascade of suprasegmental
information up to the lexical stage. Many of

the studies on suprasegmental prelexical
processing reviewed earlier provide evidence
of this. The suprasegmental information that
listeners use to distinguish between words
and to segment the speech stream appears
to modulate the lexical competition pro-
cess (Cho et al., 2007; Davis et al., 2002;
Reinisch et al., 2010; Salverda et al., 2003;
Shatzman & McQueen, 2006a). As with the
evidence on segmental cascade, these interac-
tions with lexical competition suggest that the
suprasegmental information is being passed
continuously forward to lexical processing.

Segmental–Suprasegmental Cross-Talk

It is important to emphasize that, although
this review has so far considered that segmen-
tal and suprasegmental prelexical processing
are distinct, there must be substantial inter-
action between the two processes (as shown
by the bidirectional arrow in Figure 1.2).
As argued by Cho et al. (2007), for example,
this is because the cues used by the two
processors can be the same. For instance,
the duration of a segment can simultane-
ously signal a segmental contrast, since
some segments are longer than others, and
a suprasegmental contrast (e.g., the loca-
tion of a word or phrase boundary). It can
also be the case that there are interdepen-
dencies between the two processors; for
example, determination of a prosodic struc-
ture based on a durational cue could depend
on knowledge about the intrinsic duration
of the segments involved (again because
some segments tend to be longer than oth-
ers). Tagliapietra and McQueen (2010), in a
cross-modal priming study on the recognition
of geminate consonants in Italian, present
evidence that the same information (the dura-
tion of the geminate consonant) is used for
both segmental analysis (“what” decisions
about whether the consonant is a singleton
or a geminate) and suprasegmental analysis
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(“where” decisions about the location of the
segment within the word). Recent research
has examined how computation of prosodic
structure may modulate perceptual decisions
about segments (Mitterer, Cho, & Kim,
2016), indicating once again the need for
segmental–suprasegmental cross-talk.

No Online Top-Down Informational
Feedback

For spoken-word recognition to succeed,
information in the incoming speech signal
must be fed forward to lexical process-
ing. As we have just seen, the bottom-up
flow of information is cascaded, and it
entails interactions between segmental and
suprasegmental prelexical processing. But is
there top-down feedback from lexical to
prelexical processing?

Demonstrations of lexical involvement
in phonemic decision making might appear
to show that this is the case. There are,
at least under certain experimental condi-
tions, lexical effects in phoneme monitoring,
including faster responses to target phonemes
in words, such as /b/ in bat, than in nonwords,
such as /b/ in bal (Cutler & Carter, 1987;
Rubin, Turvey, & Van Gelder, 1976) and
faster responses to targets in high-frequency
words than in low-frequency words (Segui &
Frauenfelder, 1986). There are also lexical
effects in phonetic categorization, again
under at least some conditions (Burton,
Baum, & Blumstein, 1989; Connine &
Clifton, 1987; Fox, 1984; Ganong, 1980;
McQueen, 1991; Miller & Dexter, 1988; Pitt
& Samuel, 1993). Listeners who are asked
to categorize ambiguous sounds (on an arti-
ficially constructed continuum between, e.g.,
/d/ and /t/) are more likely to label the sound
in a lexically consistent way (e.g., more
/d/ decisions to stimuli from a deep–teep
continuum and more /t/ decisions to stimuli
from a deach–teach continuum; Ganong,

1980). In addition to this Ganong effect,
there are lexical effects in rhyme monitor-
ing (McQueen, 1993) and there is lexical
involvement in the phonemic restoration
illusion (the tendency for listeners to hear
an illusory phoneme in a sequence where
that phoneme has been replaced by noise;
Warren, 1970). The illusion, for example,
is stronger in real-word sequences than in
nonsense-word sequences (Samuel, 1981,
1987, 1996). Once again, lexical involvement
in phonemic restoration does not appear
under all conditions (Samuel, 1996).

All of these demonstrations are consistent
with the claim that there is top-down feedback
from lexical to prelexical processing, and
they have indeed been used to support this
claim (for phonetic categorization, Ganong,
1980; for phonemic restoration, Samuel,
1981; for phoneme monitoring, Stemberger,
Elman, & Haden, 1985). Lexical feedback
could modulate prelexical phonemic process-
ing, leading to the lexical biases and reaction
time advantages observed across tasks
requiring phonemic decisions. But simple
demonstrations of lexical involvement in such
tasks are equally compatible with the view
that there is no feedback (Cutler, Mehler,
Norris, & Segui, 1987; McQueen, 1991;
Norris, McQueen, & Cutler, 2000). If phone-
mic decisions are made postlexically (as, e.g.,
in the Merge model; Norris et al., 2000), then
lexical involvement in these tasks would also
be expected.

The question about whether there is feed-
back from lexical to prelexical processing
therefore cannot be settled using metalin-
guistic tasks that test for lexical effects on
phonemic decisions. Measures are required
that test more specific predictions about feed-
back. Here we discuss three lines of research
that have attempted to do this.

First, studies have asked whether there
are not only facilitatory lexical effects in
phoneme monitoring but also inhibitory
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effects (i.e., slower responses when the
lexicon supports a different phoneme from
that in the input). If there is feedback, both
kinds of effects should be found. Frauen-
felder, Segui, and Dijkstra (1990) found
facilitatory effects in an experiment in
French (e.g., faster responses to /t/ in gladia-
teur than in the matched nonword bladiateur)
but no inhibitory effects (e.g., responses to
/t/ in vocabutaire were no slower than in
socabutaire, in spite of the fact that top-down
feedback from the word vocabulaire ought to
have been supporting /l/). Mirman, McClel-
land, and Holt (2005) showed, however,
that lexically induced inhibition can be
found, but only when the two phonemes are
more phonetically similar than /t/ and /l/.
For example, in an experiment in English,
responses to /t/ in arsenit were delayed, but
those to /t/ in abolit were not, presumably
because /t/ is more similar to the lexically
consistent, word-final /k/ in arsenic than to
the word-final /∫/ in abolish. Accounts with
feedback (McClelland & Elman, 1986) and
without feedback (Norris et al., 2000) agree
that phoneme monitoring latency should be
modulated by phonetic similarity, and both
can explain how facilitatory and inhibitory
lexical effects depend on similarity. Once
again, therefore, these data do not determine
whether there is or is not feedback.

The second approach is based on the
logic that, if there is feedback from lexical to
prelexical processing, lexical factors should
modulate the inner workings of the prelexical
processor (Elman & McClelland, 1988).
Perceptual compensation for fricative-stop
coarticulation is the tendency for listeners to
perceive ambiguous stops on a continuum
between /t/ and /k/ as /k/ after the fricative
/s/ but as /t/ after the fricative /∫/ (Mann &
Repp, 1981). This prelexical process reflects
compensation for the acoustic consequences
of fricative-stop coarticulation. Elman and
McClelland showed that compensation for

coarticulation appeared to be lexically medi-
ated. Listeners made more /k/ responses in a
sequence such as to christma[s/∫∫] [t/k]apes
(with an ambiguous fricative and ambiguous
stops) than in a sequence such as fooli[s/∫∫]
[t/k]apes. Feedback from lexical to prelexical
processing would appear to be filling in
the lexically consistent fricative (as in the
Ganong effect), but crucially this fricative
then appears to have a similar effect on the
prelexical compensation process as an unam-
biguous fricative. These findings appear to
show that there is feedback from lexical to
prelexical processing.

Given the theoretical importance of the
seminal work of Elman and McClelland
(1988), it should come as no surprise that
there have been a substantial number of
follow-up studies. Some of these studies call
into question the conclusion that there is
feedback. Transitional probabilities between
word-final fricatives and their preceding seg-
ments may provide an alternative explanation
for apparent lexical effects (Magnuson,
McMurray, Tanenhaus, & Aslin, 2003; Pitt &
McQueen, 1998). If these probabilities are
coded at the prelexical level, no feedback
is required to explain the mediated com-
pensation effect. Experiment-induced biases
may also provide an alternative reason for
the effects that again does not require feed-
back (McQueen, 2003; McQueen, Jesse, &
Norris, 2009). Effects of word length and of
perceptual grouping (Samuel & Pitt, 2003)
make it more difficult to interpret results
from this paradigm, and there are prob-
lems with the replicability of the original
effect (McQueen et al., 2009; Samuel &
Pitt, 2003).

McQueen et al. (2009) reviewed this liter-
ature and argued that there was no convincing
data for lexical–prelexical feedback from the
compensation for coarticulation paradigm. In
fact, there is data from the paradigm that sug-
gest that there is no such feedback. Lexical
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effects in decisions about the fricatives (e.g.,
more /s/ responses to christma[s/∫∫] than
to fooli[s/∫∫]) can be found without lexical
effects on the stops (i.e., no lexically medi-
ated compensatory shift in /t/–/k/ decisions)
or even in the presence of effects on the stops
opposite to those predicted by the lexical
bias (McQueen et al., 2009; Pitt & McQueen,
1998). These dissociations between fricative
and stop decisions are inconsistent with
feedback (if feedback is operating, it should
produce consistent lexical biases on both the
fricatives and the stops). The dissociations
support feedforward accounts in which the
prelexical compensation process is immune
to lexical effects, but in which lexical pro-
cessing can still influence postlexical fricative
decisions, as in Merge (Norris et al., 2000).

The third line of research on feedback
has combined the behavioral Ganong effect
with neuroimaging techniques. The logic
here is that if lexical variables can be shown
to modulate activity in prelexical processing
regions, then that modulation must be the
result of top-down feedback. Participants
in an fMRI study (Myers & Blumstein,
2008) demonstrated a lexical bias in phonetic
categorization (e.g., more /k/ responses in a
kiss–giss context than in a kift–gift context)
and a parallel effect in brain activity (the
blood-oxygenation-level dependent [BOLD]
signal in the bilateral superior temporal gyri
[STGs] varied as a function not only of
the acoustic-phonetic ambiguity of the stop
consonant but also of the lexical context). In
a similar study, Gow, Segawa, Ahlfors, and
Lin (2008) also found a behavioral Ganong
effect, and related that to the results of a
Granger causality analysis using a combina-
tion of MEG, EEG, and structural MRI data.
Time-varying activity in the supramarginal
gyrus (SMG) Granger-caused time-varying
activity in the posterior STG, 280–480 ms
after stimulus onset.

Although these findings can be taken as
evidence for feedback, this conclusion rests
on a number of assumptions. First, it rests on
the claim that the STG supports prelexical
processing but not lexical processing. As dis-
cussed earlier, the STG certainly appears to
be involved in prelexical processing. But it is
not yet known whether this is all that the STG
does (DeWitt & Rauschecker, 2012; Price,
2012; Ueno et al., 2011). Second, a prob-
lem with the Myers and Blumstein (2008)
findings (but not those of Gow et al. 2008)
is that they are based on the BOLD signal,
which reflects processes occurring over time
(until 1,200 ms after stimulus offset in this
case). The effect may therefore not reflect
online perceptual processing. Third, and
relatedly, it is not clear whether the effects
reported in both studies, even if they do
show evidence of higher-level influence on
prelexical processing, reflect online top-down
transmission of information. That is, they
may not reflect the type of feedback that we
have been discussing thus far. It is possible
that modulation of activity in the STG could
reflect other kinds of computation than online
information transmission, including feedback
for learning, feedback for attentional control,
or feedback for perceptual binding.

It would thus be premature to conclude,
on the basis of these neuroimaging studies,
in favor of feedback. The available studies
on compensation for coarticulation offer no
unambiguous support for feedback either,
and indeed provide evidence against it.
Evidence for lexical involvement in selective
adaptation effects (Samuel, 1997, 2001)
may, like that from the neuroimaging stud-
ies, reflect perceptual learning processes
rather than online information feedback (see
McQueen et al., 2009, for further discussion).
Although older findings on the absence of
inhibitory effects in phoneme monitoring
once challenged the feedback view, more
recent studies show that such effects can be
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found. On balance, then, there is no strong
empirical support for online feedback of
information from lexical to prelexical pro-
cessing (see also Kingston, Levy, Rysling, &
Staub, 2016).

There are also theoretical arguments
against this kind of feedback. As argued in
more detail by Norris et al. (2000) and Norris,
McQueen, and Cutler (2015), informational
feedback cannot benefit word recognition,
and can harm phoneme recognition. The best
a word-recognition system can do is rec-
ognize the words that are most probable
given the input (Norris & McQueen, 2008).
If processing is optimal in this way, feedback
simply cannot improve on this.

In contrast, lexical retuning of speech
perception, one of the types of perceptual
learning discussed earlier, is beneficial for
speech perception. The adjustments listeners
make, using their lexical knowledge to retune
perceptual categories, help them understand
the speaker the next time that speaker is
encountered. It is thus important to distin-
guish between feedback for learning, which
can enhance speech perception over time and
for which there is strong empirical support,
and online informational feedback, which
cannot enhance speech perception and which
lacks empirical support. It remains possible
that more convincing evidence of online feed-
back will be found in the future, but it appears
more likely that evidence will be found for
other ways in which higher-level processing
influences prelexical processing. These are
beneficial (and indeed necessary) for speech
perception, and include feedback for percep-
tual learning, processes of perceptual binding
(lining up words to their constituent sounds),
and feedback for attentional control.

Summary

The available evidence suggests that there
are constraints on flow of information in the

speech-recognition system. Bottom-up flow
of information is cascaded with respect to
both segmental and suprasegmental proper-
ties of the speech signal, and there appears
to be cross-talk between segmental and
suprasegmental processing. But although
there is evidence for top-down feedback for
perceptual learning and there is a need for
top-down feedback for binding and atten-
tional control, there appears not to be online
top-down feedback of information. That is,
the lexicon appears not to influence the
prelexical evaluation of the evidence in the
speech signal as that input is being heard.

CONCLUSION

The aim of this chapter has been to give
an account of how listeners extract words
from the speech signal, up to the point where
the system has recognized a particular word
form. We have argued that, for this to occur,
listeners need to solve three major compu-
tational problems: the variability problem
(spoken sounds and words are not acousti-
cally invariant), the segmentation problem
(discrete words need to be extracted from
a quasicontinuous speech stream) and the
lexical-embedding problem (words sound
like other words). We have presented evi-
dence on how multiple mechanisms, at
different stages in the speech-processing
hierarchy, process segmental and supraseg-
mental information in parallel in order to
solve these three problems. We have made
the case that abstraction and adaptation are
particularly important mechanisms. Listeners
build phonologically abstract representations
of the incoming speech signal, and speech
perception is adaptive (i.e., it is flexible in
response to different listening situations).

Spoken-language comprehension cer-
tainly does not end with the recognition
of word forms—the box in Figure 1.2
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labeled “interpretative processing” is a place-
holder for a range of processes that we
have not discussed, such as syntactic pro-
cessing and retrieval of concepts. Although
these processes are of course central to
speech comprehension, they are beyond
the scope of this review. It is important to
note, however, that syntactic and semantic
processing can influence word-form process-
ing. For example, contextual information
plays a key role in helping listeners recog-
nize reduced words in continuous speech
(Ernestus, 2014). Information in the sentence
context is used rapidly in the competition pro-
cess to select among possible candidate word
forms, but the bottom-up signal has priority
in determining which candidates are consid-
ered (see, e.g., Dahan & Tanenhaus, 2004;
Marslen-Wilson, 1987; Nygaard & Queen,
2008; van den Brink, Brown, & Hagoort,
2001; Zwitserlood, 1989). An important
objective for future research is to estab-
lish (and computationally implement) how
contextual constraints are combined with
signal-driven constraints on spoken-word
recognition, and in particular to specify
how form-based processes (“lexical form
processing” in Figure 1.2) interface with
syntactic, semantic, and pragmatic processes
(“interpretative processing” in Figure 1.2).
How, for example, are the representations of
the phonological forms of words bound to
representations of their meanings?

This review is limited in scope in a number
of other ways. We have not considered in
detail the time course of speech processing
(e.g., the speed with which prelexical and
lexical processing must operate such that the
listener can keep up with the speaker’s aver-
age of four syllables per second). In keeping
with the evidence on cascaded processing
reviewed earlier, speech perception appears
to be fully incremental, with information
passed rapidly and continuously forward to
interpretative processing. We have also not

considered the recognition of morphologi-
cally complex words (see, e.g., Balling &
Baayen, 2012, for a discussion) and many
of the ways in which speech perception
is tuned to the phonological properties of
the native language (see, e.g., Cutler, 2012,
for an overview of the differences between
native and nonnative listening). Clearly, a full
account of speech perception would include
both of these dimensions.

Studying the mental processes that trans-
form acoustic information in the speech
signal into linguistic meaning has for a long
time been in the domain of psycholinguistics.
As in other areas of psychology, cognitive
neuroscience has had an increasing impact
on the field over the past two decades. The
hope is of course that combining insights
from the two fields will ultimately result in
an account of how language comprehension
is instantiated in the brain. The impact of
cognitive neuroscience has varied across the
different stages of processing in speech per-
ception. Although there is important evidence
coming from neuroimaging in the domains
of auditory and prelexical processing, there
are relatively few neuroscientific studies on
suprasegmental processing.

Psychophysics and animal models have
provided a good account of how general
auditory processing extracts features from
the signal, which then form the starting
point for speech-specific computations. From
psycholinguistics we have a fair amount
of knowledge about the computations,
information flow, processing stages, and
representations that are involved in speech
perception. PET and fMRI studies have,
on a macroanatomical scale, described how
the key stages of processing map onto brain
structures, and to some extent the functional
connections between these distributed struc-
tures. But these techniques have not yet
made a large contribution to our understand-
ing of the nature of prelexical and lexical
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representations. These techniques are also
quite limited in their ability to investigate
processes, partly because of low temporal
resolution, but also because of conceptual
problems in distinguishing processes from
representations in experimental designs that
rely on cognitive subtraction. When com-
paring two conditions in a subtraction-based
design, it is often unclear whether the acti-
vations reflect a difference in processing, or
in the outcome of that processing, or both
(Obleser & Eisner, 2009).

Electrophysiological methods (EEG,
MEG) are beginning to the uncover neu-
ral mechanisms that are necessary for
decoding the temporal dynamics of speech.
We have mentioned a few examples of
how neural oscillations have been linked
to computational processes. This line of
research promises to be able to track the
processing of linguistic structures on dif-
ferent timescales (Ding, Melloni, Zhang,
Tian, & Poeppel, 2016), and to track the flow
of information between key cortical regions
with high temporal resolution (Park, Ince,
Schyns, Thut, & Gross, 2015). Although it
seems clear that speech-processing net-
works entrain to the rhythm of continuous
speech (Ding & Simon, 2014), it remains
to be established to what extent this reflects
a causal role in computational processes
such as segmentation. Through its very high
spatial and temporal resolution, electro-
corticography (ECoG) offers the ability to
study representations as well as informa-
tion flow in the speech-perception network,
and although it can only be used in spe-
cific patient populations, there are interesting
new studies coming out that confirm the
complex and distributed nature of the
speech-processing architecture in the brain
(Mesgarani et al., 2014).

Joining the concepts and models from psy-
cholinguistics with those from neuroscience
is a big challenge, not only on a technical

level, but also because they are often con-
cerned with different levels of explanation.
For example, in psycholinguistics there are
several models of spoken word recognition
that can account for a wealth of behavioral
data and have a computational implemen-
tation. A current challenge is to design a
next-generation model that combines the best
features of the existing models. There are
two broad classes of implemented models,
abstractionist and episodic. Abstractionist
models such as TRACE (McClelland &
Elman, 1986), the Distributed Cohort Model
(Gaskell & Marslen-Wilson, 1997), or Short-
list (Norris, 1994), work with abstract units
of representation (e.g., phonemes or phono-
logical word forms), which do not contain
acoustic-phonetic detail. In contrast, episodic
models such as MINERVA (Goldinger, 1998)
encode detailed memory traces about every
spoken word they encounter, but do not
include phonologically abstract prelexical
units. Although episodic models can account,
for example, for evidence that differences
in the way talkers pronounce words can
influence word recognition (Goldinger, 1998;
McLennan & Luce, 2005; Mullennix, Pisoni,
& Martin, 1989; Nygaard, Sommers, &
Pisoni, 1994) and talker-specific learning
effects in speech perception, they cannot
explain how that learning then generalizes
across the mental lexicon (McQueen et al.,
2006), even to words of other languages
(Reinisch et al., 2013). This generalization is
difficult to explain without abstract prelexical
representations that connect to all entries
in the lexicon (Cutler, Eisner, McQueen, &
Norris, 2010).

Abstractionist models have the reverse
limitation: They cannot account for the
talker-specific effects but are able to explain
generalization. The next generation of mod-
els will likely be kinds of hybrid models that
can account for abstraction (McClelland &
Elman, 1986; Norris & McQueen, 2008),
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adaptability (Kleinschmidt & Jaeger, 2015;
Yildiz, Kriegstein, & Kiebel, 2013), and
talker-specific representations (Goldinger,
1998). They would also need to incorporate
an account of how expectations about the
incoming signal are updated continuously
(Astheimer & Sanders, 2011; Gagnepain,
Henson, & Davis, 2012; Sohoglu, Peelle,
Carlyon, & Davis, 2012). These last papers
exemplify another recent trend in cognitive
neuroscience: the question about whether
perception is predictive. There is consider-
able behavioral evidence that listeners use
multiple sources of information to make
predictions about upcoming speech; as
Norris et al. (2015) argue, a goal for future
research will be to specify the mechanisms
that underlie this predictive behavior.

This chapter illustrates the current mis-
match in level of analysis between the
experimental psychology of speech per-
ception and the neuroscience of speech
perception. Neurobiological models are still
largely concerned with mapping key cortical
areas and connections on a macroanatomical
scale (e.g., Hickok & Poeppel, 2007), and
it is not easy at present to study the neural
implementation of psycholinguistic concepts
such as a phoneme or a lexical representation.
If current trends continue, however, there is
reason to be optimistic that the interaction
between experimental psychology and neu-
roscience will increase. For this interaction
to be a true two-way street, the computa-
tional and implementational levels of speech
perception will need to be linked through
functional models of speech perception.

LIST OF ABBREVIATIONS

BOLD blood-oxygenation-level
dependent

ECoG electrocorticography
EEG electroencephalography

fMRI functional magnetic resonance
imaging

MEG magnetoencephalography
MTG middle temporal gyrus
PET positron emission tomography
PWC possible-word constraint
SMG supramarginal gyrus
STG superior temporal gyrus
VOT voice-onset time
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