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PART I: AN OVERVIEW

1.I.1 INTRODUCTION

What does it mean to label systems as interdepend-
ent and interconnected complex systems of systems
(Complex SoS)? Do we measure their complexity
in terms of their subsystems’ multiple attributes
and perspectives, their functionalities and resources,
the number of shared states and decisions, resources,
decision makers, and stakeholders, or in terms of
their culture and organizational structure, etc.? Mod-
eling is an amalgamation or symbiosis of the arts and
the sciences. As the artist reconstructs images and
ideas, scenes, people, and structures, so do the mode-
lers of Complex SoS when they decompose and
restructure the subsystems “from the inside out and
from the outside in” and relate the components to
each other through their natural, physical, organiza-
tional, and functional attributes, recreating the inter-
dependent and interconnected entity. Using the
building blocks of mathematical models (to be dis-
cussed in subsequent sections) and ultimately by
exploiting the shared states and other essential

entities among the subsystems, the modeler and
other users are able to better understand Complex
SoS. The term other common/shared essential enti-
ties includes shared decisions, decisionmakers, stake-
holders, resources, organizational behavior and
norms, policies and procedures, management, cul-
ture, and others. We adopt the premise that models
are built to answer specific questions; they must be as
simple as possible and as complex as required. Thus,
modeling the natural environment and the con-
structed environment such as organizations, or a
combination thereof, represents a similar challenge.
Namely, how many perspectives of a single system
must be considered by modelers to achieve close-
to-a-holistic model(s) in response to the required
needs? And are we able to conceive of and discover
all the essential attributes, characteristics, and per-
spectives of Complex SoS? Such open-ended ques-
tions reinforce the notion that the modeling
process is a journey of discovery, imagination, and
creativity. When we think we have succeeded, we
are likely to be proven wrong. This assertion ought
to be interpreted constructively and philosophically,
but never fatalistically. In other words, the modeling
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process is an open-ended continuous journey of
learning and exploration that is characterized by suc-
cesses and failures through which progress is made
and, eventually, models are declared representative
and valuable.

What does it mean to characterize systems as Com-
plex SoS? Indeed, the emergence of the complexity
characterizing Complex SoS requires a reevaluation
of their modeling, management, and communication.
The evolution of the terms complexity and complex
systems, their differing connotations during the last
50 years, and the ways in which they have led us to
model and manage complexity are the subject of this
book. Current models for Complex SoS are insuffi-
cient because too often they rely on the same model-
ing schema used for single systems. These models
commonly fail to incorporate the complexity derived
from the networks of interdependencies and intercon-
nectedness (I-I) characterizing Complex SoS.

In their essence, most cyber–physical, organiza-
tional, and governmental enterprises, now and in the
future, belong to Complex SoS. Understanding their
complexity and being able to characterize them can
lead us to reevaluate our theory and methodologies
as applied to single systems; more specifically being
cognizant of and responsive to the emergent nature
of Complex SoS, given the Evolving Base. The Evol-
ving Base, discussed in Chapter 9, is represented by
the following dynamic shifting rules and realities for
each subsystem and for the entire Complex SoS:
(i) goals and objectives; (ii) stakeholders, decision
makers, and interest groups; (iii) organizational, polit-
ical, and budgetary baselines; (iv) reorganization and
reallocation of key personnel; (v) emergent technology
and its deployment; and (vi) requirements, specifica-
tions, delivery, users, and clients (Haimes, 2012b).

In modeling Complex SoS, holism must be equally
applied to natural and constructed environments, as
well as to human and community activities and be-
haviors. The challenge is how to model the interface
and the interplay among these activities that are not
independent; rather, their I-I are one manifestation
of Complex SoS.

The above discussion is harmonious with the philos-
opher Jacob Bronowski’s (1978) seminal statements:

The world is totally connected.Whatever explanation
we invent at any moment is a partial connection, and

its richness derives from the richness of such connec-
tions as we are able to make. (p. 96)

There is no nerve without the muscle and no muscle
without the nerve in the total animal. This is the same
statement as the one I made about the total connec-
tion of the world…. (p. 99)

Of the human senses, Bronowski argues that arts
mediated by the sense of light, like sculpture and
painting, and arts that mediated by speech and sound,
like the novel, drama, and music, dominate our out-
look. Most of the time we use vision to give us infor-
mation about the world and sound to give us
information about other people in the world. How
do we translate and build on Bronowski’s “vision”
and “sound” in our modeling of Complex SoS? What
kind of “instruments” do we need to model Complex
SoS? In modeling, we commonly build on (i) domain
knowledge, (ii) human and organizational behavior,
(iii) the role of cyber–physical infrastructure in
today’s quality of life of communities and individuals,
(iv) systems engineering theory and methodology,
(v) databases, and (vi) modeling experience, among
others. What is the role of inference and perception
in translating a system and its environment from real-
ity into an abstract vision that is built on Bronowski’s
and on other philosophers’ ideas in support of the fun-
damentals of state-space theory (Bellman and Drey-
fus, 1962, Nise, 2014)? The art and science of
modeling is but an interpretation of the common mul-
tiple perspectives of Complex SoS used by modelers,
namely, natural, physical, structural, organizational,
or human behavior.

Fundamentally, this construable process represents
a mental translation that implies a subjective cognitive
understanding of each of the multiple perspectives of
each system and their integration as a Complex SoS.
Conceivably, two different modelers would interpret
and perceive systems, subsystems, and, ultimately,
the integrated Complex SoS, differently, given the
amalgamation of the arts and sciences on which the
modeling process is built. It is here where state-space
theory contributes to harmonizing the modeling
process of Complex SoS. In particular, given the large
number of states (variables) required to model and
represent the multiple subsystems and their
multitude of perspectives, as well as the necessity
for brevity yet representativeness, modelers from
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different disciplines, and thus different perspectives,
will naturally tend to be influenced by their unique
personalities and backgrounds.

Furthermore, the large number of states that might
be generated through the iterative, learn-as-you-go
modeling process necessitates the selection of a repre-
sentative subset of shared states and other essential
entities. Recall that we define essential entities to con-
note shared/common decisions, decision makers, sta-
keholders, resources, organizational setups, and
history, among others. This selection of a minimum
number of shared states and other essential entities with
which to identify critical I-I is the first step in identifying
invaluable precursors to future impending failures.
Note that the I-I within Complex SoS constitute the
essence of the sources of risk thereto. This step con-
verts systems that heretofore were marginally con-
nected in parallel to becoming connected in series.
This process is pivotal for discovering one of themajor
sources of risk facing Complex SoS and the most
important result of modeling the I-I within and among
systems and subsystems. Working together collabora-
tively, modelers can develop better models by aug-
menting the ingenuity of other modelers and
scholars, as they collectively focus on and interpret
the genesis of the I-I characterizing the subsystems
and, eventually, the entire Complex SoS. Alterna-
tively, it is possible to envision separate modeling
efforts by multiple modelers with a subsequent
attempt to integrate the models to yield a better and
more representative set of attributes of the overall
Complex SoS. We ought to not overlook the mode-
lers’ inherent ingenuity, background, talent, experi-
ences, and innovativeness, contributing to the
iterative modeling process that is characterized by a
trial-and-error and a learn-as-you-go process. In other
words, the multipath exploration process that charac-
terizes the modeling effort necessarily implies and
even requires the intellectual creativity and energy
of modelers of Complex SoS – a process that com-
monly yields to a better representation of the model-
ing efforts.

In his book Ageless Body Timeless Mind, the phy-
sician, philosopher, and author Deepak Chopra
(1994) suggests the following three “models” of
humans: physiology, mental capacity, and spirituality.
No one would negate the notion that the human body
is an interdependent and interconnected Complex

SoS. Indeed, each organ is by itself a system of systems
composed of multiple subsystems. The basic question
is, can we model or represent a complete understand-
ing of a person when we ignore one of the above three
attributes identified byChopra? The same principle of
completeness/representativeness must apply to the
natural and constructed Complex SoS. From several
perspectives, Complex SoS are opaque. Our observa-
tions, studying and reading documents, consulting
with knowledgeable experts, and exploring and
exploiting all sources of information relevant to Com-
plex SoS are important and invaluable. Nevertheless,
this tedious and essential modeling process does not
reduce the inherent intricacy characterizing Complex
SoS. Moreover, the above solicited and collected
information ought not lead us to the illusion that what
we have observed and learned constitute the entire
reality. Rather, we ought to augment our acquired
knowledge with an endless learn-as-you-go modeling
process. Thus, our notion in this book is that the mod-
eling of Complex SoS is an intricate amalgamation of
the arts, sciences, and engineering, guided by the inge-
nuity of systems modelers. This amalgamation of the
visible and invisible, and the interplay between the
arts and the sciences in the modeling of Complex
SoS, is in many ways analogous to the architectural
design of high-rise buildings and the ultimate transla-
tion of the design into the reality of a physical struc-
ture. Indeed, architects and systems modelers share
some similarity in building on the arts and sciences
in their specialties, although each discipline uses dif-
ferent crafts in its work. Modelers of systems and
Complex SoS use the building blocks of mathematical
and simulationmodels, among others, while architects
use in their crafts of drawing and scale models to
reflect weight, force, and balance as well as aesthetics,
among other things. Both address the essential
sequence of translating their conceptual, analytical,
or other models into their ultimate realization.

Furthermore, the fact that all single systems and
Complex SoS – natural or the constructed environment
– are dynamically changing and evolving necessarily
requires consideration of the time frame in modeling,
implicitly or explicitly. Modeling such changing sys-
tems requires the use of dynamic models. This
requirement adds an enormous challenge to mode-
lers, who often revert, when possible, to steady-state
models, taking cover under the adage that “models
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must be as simple as possible, but as complex as
required.” In other words, since the essence of mod-
eling is an amalgamation of art and science, imagina-
tion, judgment, and experience, then “assumptions”
become an essential instrument that modelers use to
navigate between the grace of static simplicity and
the harshness of dynamic complexity, with the
required and challenging balance between the two.
Of course, the choice between static and dynamic
models is only one of the challenges facing modelers
of Complex SoS. Not all submodels of subsystems nec-
essarily require the same inherent characterization,
e.g. linear vs. nonlinear, static vs. dynamic, determin-
istic vs. stochastic–probabilistic, lumped parameter vs.
distributed parameter, or discrete vs. continuous.
Here again, modelers necessarily resort to the essen-
tial guidance provided by the arts and sciences,
namely, the creativity and imagination that constitute
the foundation of the modeling process. This never-
ending process of tradeoffs is necessarily resolved
with justified assumptions by the modelers and by
their ultimate users.

1.I.2 CAPTURING THE ESSENCE OF A SYSTEM
VIA MODELING

There is an unfortunate imbalance in the curricula of
most undergraduate and graduate programs in sys-
tems engineering and in industrial engineering and
operations research that is driven by a focus on system
optimization versus systemsmodeling. Such imbalance
in education and subsequent experiences could lead
to optimizing a system with a poorly constructed or
misrepresentative model. In system optimization, we
assume knowledge of the systems model under spe-
cific assumptions, where for each set of inputs we
can generate, or probabilistically estimate, the out-
puts. For example, in the context of risk management,
no effective risk management policy options can be
developed, nor can the associated tradeoffs among
all critical costs, benefits, and risks be evaluated, with-
out having constructed a model, or a set of interde-
pendent models, that represents the essence of the
system, or of the Complex SoS.

Students and other professionals often ask: “What
is systems engineering?” Indeed, systems engineer-
ing is distinguished by a practical philosophy

that advocates holism in modeling and cognition in
decision making. This philosophy is grounded in
the arts, natural and behavioral sciences, and
engineering. Hence, the systems engineering disci-
pline is supported by a complement of modeling
methodologies, tradeoffs among multiple non-
commensurate, competing, and conflicting objec-
tives, optimization and simulation techniques,
data management procedures, and decision-making
approaches. The ultimate purpose of systems engi-
neering is to (i) build an understanding of the nature
of systems and Complex SoS, their functional
behavior, and interaction with their environment;
(ii) improve the decision-making process in planning,
design, development, operation, and management;
(iii) collect appropriate databases with which to pop-
ulate the systems models; and (iv) identify, quantify,
and evaluate risks, uncertainties, and variability
within the decision-making process.

One way to gain a better understanding of systems
engineering is to consider the well-publicized ideas of
Stephen R. Covey in his best-selling book, The Seven
Habits of Highly Effective People (Covey, 1989), and
to relate these seven habits to various steps that con-
stitute systems thinking, or the systems approach to
problem solving. Covey’s journey for personal devel-
opment, as detailed in his book, has much in common
with the holistic systems concept that constitutes the
foundation of the field of systems engineering.
Viewed in parallel, the two philosophies – Covey’s
and the systems approach – have a lot in common.
Analyzing a system cannot be a selective process, sub-
ject to the single perspective of the analyst who is
responsible for deciphering the maze of disparate
databases and knowledge. Rather, a holistic approach
is one that encompasses the multiple visions and per-
spectives at play, supported by vast pools of data and
other information. Such a systemic process is impera-
tive to successfully understand and address the natu-
ral and the constructed environment, including
organizational systems, which at their core are com-
posed of interconnected, interactive, and interde-
pendent Complex SoS – the theme of this book.

Systems engineering cannot be practiced
effectively, if at all, without models – analytical,
conceptual, or simulation. Models, experiments, and
simulations are conceived and built to answer specific
questions. A mathematical model is a set of equations
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that describes and represents the essence of the real
system. The Merriam-Webster Dictionary defines
essence as “The most significant element, quality, or
aspect of a thing” (2017). The equations describe
the various aspects of the problem; they identify the
functional relationships among all of the system’s
components, elements, and its environment; they
establish measures of effectiveness and constraints
and, thus, indicate what data should be collected to
deal with the problem quantitatively. These equations
could be algebraic, differential, linear, or nonlinear or
take other forms depending on the nature of the sys-
tem being modeled.

In general, models can help us assess the conse-
quences of a course of action, given what we know,
or what we think we know, what we need to know,
or what and where additional knowledge is needed
to build a more effective model for decision making.
Furthermore, mathematical models are the impera-
tive mechanisms with which to perform quantitative
systems engineering. They are built and used to help
systems engineers, managers, and decision makers
better understand and manage a system using its rel-
evant and/or critical interdependent and intercon-
nected subsystems; namely, a Complex SoS. In the
medical sciences, for example, there are mathematical
models that use various states of the patient, e.g. tem-
perature and blood pressure, to help in a diagnosis.
Such models are important to correctly understand
the human body as a Complex SoS.

Modeling has a strong element of art because suc-
cessful models must build on the artistic traits of
experimentation, imagination, creativity, independ-
ent thinking, vision, and entrepreneurship. Systems
modelers must possess and merge values and traits
offered by both the arts and the sciences. However,
in contrast to scientific knowledge, whose validity
can and must be proven, mathematical models cannot
always be successfully subjected to such metrics. In
fact, the more complex the system to be modeled,
the lower the modeler’s ability to verify or validate
emerging models. Some scholars even argue that no
complex model can be verified or validated, which
is due, in part, to the dynamic and probabilistic char-
acteristics of all natural and constructed Complex
SoS. Heisenberg’s (1930) uncertainty principle is at
work here as well, namely, once the system’s model
is deployed, the essence of the system will change.

Models can help answer limited questions about
the behavior of systems under both steady-state con-
ditions and dynamic forced changes. The multiple
perspectives that characterize each system, and the
entire Complex SoS, require developing models that
represent the essence of the multiplicity of perspec-
tives, attributes, functions, and dimensions of the sys-
tem. Physical, chemical, biological, and other natural
laws serve as the first principles and the foundation
for such models. Although mostly necessary, these
natural laws are not sufficient for model construction
because of the intricacy of systems and of Complex
SoS. Furthermore, the influence of organizational
and other emergent forced changes (EFCs) from
within or outside the Complex SoS affects it posi-
tively or negatively. The term EFCs connotes inter-
nal or external changes that may positively or
negatively affect one system, or the entire Complex
SoS. The multiple perspectives of any system,
whether it is the human body, the environment, a
bridge, a building, or an airplane, cannot be ade-
quately modeled using a single model – a fact that
presents a challenge to modelers. Thus, what is
needed is a mechanism or a systemic framework,
with which to augment natural and physical laws with
human and organizational behavior, imagination,
inventions, innovation, entrepreneurship, out-of-
the-box thinking, and boundless experimentation.

Natural and constructed environments and organi-
zational systems are, at their core, composed of inter-
dependent and interconnected Complex SoS.
A wildlife refuge in Alaska and a large suspension
bridge over the Bosporus in Istanbul connecting
Europe with Asia are two examples of such Complex
SoS. The wildlife refuge may support ample species
with diverse life cycles; their interdependency consti-
tutes a complex ecosystem. The bridge over the Bos-
porus may be perceived merely as an infrastructure
that is constructed of steel, asphalt, cement, and light
fixtures. Nothing could be further from the truth. The
suspended cables in the bridge are 60 cm in diameter
and contain countless numbers of bundled steel wires.
Similarly, the hanging cables, the towers, the bridge
itself, and the myriad supporting invisible physical
infrastructures all constitute an interdependent and
interconnected Complex SoS. Clearly, there is a need
to understand the science and engineering that ulti-
mately determine the reliability, sustainability, and
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safety of Complex SoS, including bridges. Such under-
standing may employ expertise in civil and structural
engineering and systems engineering, the arts and
sciences, and organizational and behavioral sciences,
among other fields of study. Systems engineers are
commonly the integrators of contributions made by
experts in these diverse disciplines. Indeed, systems
integration, where Humpty Dumpty is put together
so that the system can function as intended, cannot
be successfully performed in earnest without a heavy
reliance on systems modeling.

1.I.3 A BRIEF HISTORY OF MODERN SYSTEMS
ENGINEERING

Systems engineering hasmany parents.During his dis-
tinguished career, Albert Einstein attempted to
develop a unified theory that embraced all forces of
nature as a system. Feynman et al. (1963) described
a hierarchy or continuum of physical laws as distinct
systems or disciplines that are cooperating and inter-
dependent. Modern systems foundations are attribu-
ted to various scholars. Among them is Norbert
Wiener, who in 1948 published his seminal book
Cybernetics. Wiener’s work was an outgrowth or
response to the development of computer technology,
information theory, self-regulating machines, and
feedback control. In the second edition of Cybernetics
(Wiener, 1961), Wiener commented on the work of
Leibniz:

At this point there enters an element which occurs
repeatedly in the history of cybernetics – the influ-
ence of mathematical logic. If I were to choose a
patron saint for cybernetics out of the history of sci-
ence, I should have to choose Leibniz. The philoso-
phy of Leibniz centers about two closely related
concepts – that of a universal symbolism and that of
a calculus of reasoning. From these are descended
the mathematical notation and the symbolic logic of
the present day.

Ludwig von Bertalanffy (1968) coined the term gen-
eral systems theory around 1950, which is documented
in his seminal book General System Theory:
Foundations, Development, Applications (Bertalanffy,
1976). Of particular interest (pp. 9–11):

In the last two decades we have witnessed the emer-
gence of the “system” as a key concept in scientific
research. Systems, of course, have been studied for
centuries, but something new has been added….
The tendency to study systems as an entity rather
than as a conglomeration of parts is consistent with
the tendency in contemporary science no longer to
isolate phenomena in narrowly confined contexts,
but rather to open interactions for examination and
to examine larger and larger slices of nature. Under
the banner of systems research (and its many syno-
nyms) we have witnessed a convergence of many
more specialized contemporary scientific develop-
ments. So far as can be ascertained, the idea of a “gen-
eral system theory” was first introduced by the
present author prior to cybernetics, systems engineer-
ing and the emergence of related fields …. Although
the term “system” itself was not emphasized, the his-
tory of this concept includes many illustrious names.
As “natural philosophy”, we may trace it back to
Leibniz; to Nicholas of Cusa with his coincidence of
opposites; to the mystic medicine of Paracelsus; to
Vico’s and ibn-Kaldun’s vision of history as a
sequence of cultural entities or “systems”; to the dia-
lectic of Marx and Hegel, to mention but a few names
from a rich panoply of thinkers.

Kenneth Boulding, an economist, published his
1953 work General Empirical Theory (Boulding,
1953) and claimed that it was the same as the general
systems theory advocated by Bertalanffy. The Society
for General Systems Research was organized in 1954
by the American Association for the Advancement of
Science. The society’s mission was to develop theoret-
ical systems applicable to more than one traditional
department of knowledge.

Several modeling philosophies and methods have
been developed over the years to address the com-
plexity of modeling large-scale systems and to offer
various modeling schema. In his book Methodology
for Large-Scale Systems, Sage (1977) addressed the
need for value systems that are structurally repeatable
and capable of articulation across interdisciplinary
fields that can be used to model the multiple dimen-
sions of societal problems. Blauberg et al. (1977)
pointed out that, for the understanding and analysis
of a large-scale system, the fundamental principles
ofwholeness (representing the integrity of the system)
and hierarchy (representing the internal structure of
the system) must be supplemented by the principle

6 MODELING AND MANAGING INTERDEPENDENT COMPLEX SYSTEMS OF SYSTEMS: FUNDAMENTALS, THEORY AND METHODOLOGY



of “the multiplicity of description for any system.” To
capture the multiple dimensions and perspectives of a
system, Haimes (1981) introduced Hierarchical Holo-
graphic Modeling (HHM), which is the subject of
Chapter 3 and is applied throughout this book. Recog-
nizing that a systemmay be subject to a multiplicity of
management, control, and design objectives. Zeigler
(1984) addressed such modeling complexity in his
book Multifaceted Modelling and Discrete Event Sim-
ulation. Zeigler introduced the term multifaceted “to
denote an approach to modeling that recognizes the
existence of multiplicities of objectives and models
as a fact of life” (p. 8). In his book Synectics, the Devel-
opment of Creative Capacity, Gordon (1968) intro-
duced an approach that uses metaphoric thinking as
a means to solve complex problems. Hall (1989)
developed a theoretical framework, which he termed
metasystems methodology, to capture the multiple
dimensions and perspectives of a system. Other early
seminal works in this area include Social Systems –

Planning and Complexity on societal systems and
complexity by Warfield (1976) and Systems Engineer-
ing (Sage, 1992). Sage identified several phases of
the systems engineering life cycle. His analyses
embraced multiple perspectives including the struc-
tural definition, the functional definition, and the
purposeful definition. The multiple volumes of the
Systems and Control Encyclopedia: Theory, Technol-
ogy, Applications (Singh, 1987) offer a plethora of
theories and methodologies for modeling large-scale
and complex systems. Thus, multifaceted modeling,
meta-systems, HHM, and other contributions in the
field of large-scale systems constitute the fundamen-
tal philosophy upon which systems engineering
is built.

Indeed, several modeling philosophies and meth-
ods have been developed over the last seven decades
to address the complexity of modeling large-scale sys-
tems and to offer various modeling schema. They are
included in the following volumes: Views on General
Systems Theory (Mesarović, 1964), General Systems
Theory (Macko, 1967), Systems Theory and Biology
(Mesarović, 1968), Advances in Control Systems
(Leondes, 1969), Theory of Hierarchical, Multilevel
Systems (Mesarović et al., 1970), Methodology for
Large-Scale Systems (Sage, 1977), Systems Theory:
Philosophical and Methodological Problems
(Blauberg et al., 1977),Hierarchical Analyses ofWater

Resources Systems: Modeling and Optimization of
Large-Scale Systems (Haimes, 1977), andMultifaceted
Modelling and Discrete Event Simulation (Zeigler,
1984). Haimes (1981) developed Hierarchical Holo-
graphic Modeling (HHM) for Complex SoS;
Gheorghe (1982) presented the philosophy of systems
engineering as it is applied to real-world systems.
Haimes and Macko (1973), Hall (1989), Macko and
Haimes (1978), Haimes et al. (1990), and Haimes
(2007, 2008, 2012a) developed a theoretical frame-
work to capture the multiple dimensions and perspec-
tives of a system and (Lasdon, 1991) published a
seminal book on optimization theory for large sys-
tems; indeed, Lasdon is among the pioneers who con-
tributed to decomposition and hierarchical
coordination of large-scale systems. Other works
include those by Sage (1977, 1992, 1995), Shenhar
(1994), and Sage and Rouse (1999). Eisner (1993),
Maier (1998), and Sage and Cuppan (2001) together
provide valuable insights into SoS and definitions of
emergent behavior of complex systems in the context
of SoS.

Most of the works on systems of systems have been
devoted to their organizational, functional, and struc-
tural nature. There has been comparatively little
inquiry into the problem of modeling Complex SoS,
and most of the contributions within the last two dec-
ades have focused on their description, classification,
and characterization. For example, Ottino (2003)
reviewed three major tools for quantitative modeling
and studying complex systems: nonlinear dynamics,
agent-based models, and network theory. Shalizi
(2006) reviewed the main methods and techniques
of complex systems, which include tools for analyzing
data, constructing and evaluatingmodels, andmeasur-
ing complexity. Chang and Harrington (2005) pro-
vided a comprehensive description of agent-based
models of organizations. Amaral and Ottino (2004)
described network theory and its importance in aug-
menting the framework for the quantitative study of
complex systems. Lloyd and Lloyd (2003) presented
a general method for modeling complex systems in
terms of flows of information. Page (1999) discussed
robust computational models. In an analysis of the
challenges associated with complex systems engineer-
ing, Johnson (2006) provided a comprehensive review
of emergent properties and how they affect the engi-
neering of complex systems. Bar-Yam (2003a)
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reviewed past lessons learned from problems with sys-
tems engineering historically and suggested adopting
an evolutionary paradigm for complex systems engi-
neering. Within the application of complex systems
theory to a multiscale analysis of military littoral war-
fare, Bar-Yam (2003b) suggested the necessity of con-
sidering the specific organizational and technological
requirements needed to performeffectively in a highly
complex environment. In health care, Funderburk
(2004) presented a brief survey of several formal
dynamic and/or network-based models that are rele-
vant for health-care policy development and evalua-
tion. Tivnan et al. (2007) described the formulation,
successful replication, and critical analysis of
Levinthal’s model of emergent order for economic
firms. Jamshidi (2009a, b) edited two volumes on sys-
tems of systems engineering. In the preface to the first
volume (2009a), he wrote: “The SoS [Systems of Sys-
tems] concept presents a high-level viewpoint and
explains the interactions between each of the inde-
pendent systems. However, when it comes to engi-
neering and engineering tools of SoS, we have a
long way to go. This is the main goal of this volume”
(p. ix). Indeed, Jamshidi confirmed the need for con-
certed efforts in modeling Complex SoS.

Sage and Biemer (2007) argued that no universally
accepted definition of SoS is currently available. Sage
and Cuppan (2001) built their analyses on five proper-
ties of SoS suggested byMaier (1998). During the past
decade, several disciplines have recognized the impor-
tance of addressing the management, and thus the
modeling, of their SoS including finance, health care,
defense, and physical–cyber infrastructure systems.
De Laurentis (2008), Lewe et al. (2004), Parker
(2010), and Dahmann and Baldwin (2008) all suggest
that SoS problems require a new modeling paradigm
that can account for the multiplicity of stakeholders,
objectives, interdependencies, and emergent out-
comes. Fisher (2006) argued that emergent behavior
is inherent in SoS and traditional software and sys-
tems engineering methods are inadequate for inter-
pretation of SoS. De Laurentis and Callaway (2004)
discussed the need to focus the modeling effort on
SoS interdependencies, and they suggested that the
evaluation of an individual entity at its own level is
of less importance than how it affects the higher levels
of the organization of which it is a member. Similarly,
Thissen and Herder (2003) claimed that efforts to

increase understanding at the overall SoS level are
much needed. Aktan and Faust (2003) called for the
need for SoS modeling approaches for civil engineer-
ing researchers and practitioners. They maintain that
an integrated modeling of large-scale infrastructure
SoS encompassing engineered, human, and natural
elements has been unsuccessful thus far.

The emerging roles of systems engineering in the
design, implementation, and management of Com-
plex SoS have resulted in increased interest in engi-
neering systems as SoS and as an emerging
multidiscipline. Sousa-Poza et al. (2009) and Keating
(2005) articulated several of the critical research chal-
lenges that SoS must address and identified a prelim-
inary set of critical research areas for a more
integrated research agenda. Maier and Rechtin
(2009) indicated that SoS pose specific challenges
for design and development, which are distinct from
those of conventional systems. The principal chal-
lenges include designing for social and technical equi-
librium, promoting sequential decision making for
technology, and creating system roadmaps with large
uncertainty.

Gorod, Sauser, and Boardman (2008) identified
distinguishing characteristics as a foundation onwhich
to build an effective SoS management framework.
Dahmann et al. (2011) proposed a time-sequenced,
incremental development “wave”modeling approach
using an implementers’ view of systems engineering
for SoS. In order to achieve a common purpose, an
SoS approach is essential in resolving issues involving
heterogeneous, independently operable systems. Suc-
cessful operation of SoS requires communication,
coordination, and negotiation among appropriate
individuals and groups across enterprises using an
effective protocol (De Laurentis et al., 2007).Multiple
criteria decision analysis and conflict resolution using
graph models were discussed extensively in Hipel
et al. (1993), Li et al. (2004), and Kilgour and Hipel
(2005). An application of Extensible Markup Lan-
guage (XML) to represent data communicated among
systems was proposed by Sahin et al. (2007).

The mathematical methods used in the studies of
Complex SoS include nonlinear dynamics, graph
and network theories, and agent-based modeling
and simulation (ABMS) (Barabási and Albert,
1999; Ottino, 2003; Baldwin et al., 2017). Bifurcation
and catastrophe theory (Arnold, 1994) have also
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been used to describe the behaviors of nonlinear sys-
tems. These theories focus on and classify phenom-
ena characterized by sudden shifts in behavior
arising from small changes in circumstances, analyz-
ing how the qualitative nature of equation-based
solutions depends on the parameters that appear in
the equation. Various methods and techniques used
in complex systems science can also be found in Sha-
lizi (2006), Lloyd and Lloyd (2003), and Page (1999).

The essential characteristics of Complex SoS pres-
ent serious difficulties for traditional hazard analysis
techniques (Alexander et al., 2004). Bristow et al.
(2012) argued that risk analysis of extreme events
affecting SoS should address the complex, ambiguous,
and uncertain aspects of extreme risk and the strategic
interactions among multiple participants. Investiga-
tions of several accidents of complex systems, such
as the Three Mile Island accident (Perrow, 1999),
showed that the causes of complex system failure usu-
ally include multiple component failures and their
unexpected interactions. Perrow pointed out that
the root causes of system accidents reside in the prop-
erties of complex systems themselves, rather than in
the errors that owners and operators make in running
them. It is the system’s characteristics that make it
inherently vulnerable to such accidents. Eusgeld
et al. (2011) also discussed the potential failure prop-
agation among infrastructures leading to cascade fail-
ures, and they analyzed two modeling alternatives,
comparing integrated with coupled models.

1.I.4 BUILDING BLOCKS OF MATHEMATICAL
MODELS AND THE CENTRALITY OF STATE
VARIABLES IN SYSTEMS MODELING

The systems modeling process relies on the funda-
mental building blocks of mathematical models: input,
output, state variables, decision (control) variables,
exogenous variables, uncertain and random variables,
and time frame. These are commonly augmented to
yield multiple, noncommensurate, and commonly
competing objective functions and constraints. Note
that these building blocks are not necessarily distinct
and they may overlap. For example, input and output
may be random. All good managers desire to change
the states of the systems they control in order to sup-
port better, more effective, and more efficient

attainment of the system objectives. At the same time,
these managers demand acceptable tradeoffs among
the many competing objectives but within an accept-
able time frame and cost structure. The objectives
and motivations of the stakeholders and decision
makers are to determine the desired levels of the
states of the system within an acceptable time frame
and acceptable tradeoffs. As noted earlier, a large
number of states, sub-states, and sub-sub-states char-
acterize Complex SoS. For example, the state of blood
might be characterized by white cells and red cells;
however, the states of each category can be further
subdivided. Thus, we use the term vital states to con-
note selected fundamental and indispensable states
that are central to the essence of the Complex SoS
as a whole and the associated goals, objectives, and
major decisions. As another example, to control the
production of steel requires an understanding of the
states of the steel at any instant – its temperature, vis-
cosity, and other physical and chemical properties that
characterize its quality. Similarly, to know when to
irrigate and fertilize a field, a farmer must assess the
states of soil moisture and the nutrients in the soil.
And, to treat a patient, a physician must first know
the temperature, blood pressure, and other states of
the patient’s physical health. Finally, the body and
its systems are continuously bombarded by a variety
of bacteria, viruses, and other pathogens. A more
detailed characterization and discussion of the vulner-
ability of a system as a manifestation of its states will
be introduced in Part II of this chapter in the context
of the resilience and vulnerability of Complex SoS.

Consider the following diverse examples:

• Engineers are asked to determine the safety of a
municipality’s drinking water. Can they perform
this task without determining the state of acidity
of the water and the states of turbidity, dissolved
oxygen, bacteria, and other pathogens?

• Teachers are required to nominate the top five
students in their classes for awards based on their
performance. Can they make such a selection
without having assessed the states of the prospec-
tive candidates’ knowledge, talent, competence,
aptitude, performance, and learning capabilities?

• Bus drivers are commissioned to transport musi-
cians to a tightly scheduled concert and must
guarantee that their busses are mechanically
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and otherwise reliable to ensure timely arrival at
the concert site. Can they ascertain the reliability
and functionality of their buses without knowing
the states of the latter’s fuel, oil, tire pressure, and
other mechanical and electrical components?

The above examples, and almost all other real-
world problems, share the following systems-based
fact – all are characterized at any moment by their
respective essential state variables. (The term essen-
tial states connotes theminimumnumber of state vari-
ables with which to effectively model a system or
Complex SoS.) In reality, all states are under contin-
uous change and natural, EFCs – positive and nega-
tive. We earlier defined EFCs as external or internal
forces that may negatively or positively affect specific
states of a system. The fact that the states of a system
are functions of the time frame and that most, if not
all, systems are dynamic and evolve over time, neces-
sarily implies that representative models ought to be
dynamic as well. Complying with this premise means
ideal models must be dynamic, which could be a more
elaborate task for modelers. At the same time, despite
the fact that in reality, real systems may vary over
time, not every model will require time-dependent
state variables. This is where the artistry, creativity,
good judgment, and experience of the modeler come
into play. Recall that models are built to answer spe-
cific questions and to represent the essence of the sys-
tem under consideration. Thus, if over time, small or
insignificant changes in a state of the system have no
important effect on the answers sought from the
model, then that state variable may be assumed to
be static or time independent. The decision as to
whether a state variable should be modeled as static
(constant) or dynamic (time dependent) depends on
the modeler’s ability to select the best representative
model topology (structure and form).

In fact, the art and science of systems modeling is
characterized by a never-ending tradeoff process by
modelers faced with various levels of complexity
and detail. However, since models should also be as
simple as possible yet as complex as required to
answer specific questions, tasks may also include
(i) selecting a minimumnumber of vital state variables
from each building block of the model to adequately
represent the essence of the system, (ii) determining
the required complexity of the model (e.g. topology

and parameters), and (iii) developing the required
database (as appropriate) to populate the model in
order to provide meaningful and specific answers.
All these and many more specific details, which will
be further explored in subsequent sections and chap-
ters of this book, represent real challenges in terms of
the model’s required complexity, cost, and time of
completion, its users and stakeholders, its required
databases, the needed level of testing, and, not the
least, the scope and specificity of the assumptions
made in its construction.

1.I.5 THE CENTRALITY OF THE STATES
IN MODELING COMPLEX SYSTEMS OF
SYSTEMS

Recall Chen’s (2012) succinct definition of state vari-
able: “The state x(to) of a system at time to is the infor-
mation at time to that, together with the input u(t), for
t ≥ to, determines uniquely the output y(t) for all t ≥
to.” The states of a system, commonly a multidimen-
sional vector, characterize the system as a whole
and play a major role in estimating its future behavior
for any given input. Thus, the behavior of the states of
the system, as a function of time, enables modelers to
determine, under certain conditions, its future behav-
ior for any given input or initiating event. In other
words, all systems are characterized at any moment
by their respective state (variables) and the conditions
thereof, and these conditions are subject to a contin-
uous change. In addition a modeler, who is deter-
mined to select only those state variables that
represent the critical elements of a system (i.e. essen-
tial states), must decide whether those state variables
should be modeled as static (constant) or dynamic
(time dependent), deterministic or stochastic, etc.

Given that all systems, large and small, can be char-
acterized by their states, we must also recognize the
inherent hierarchy of states, sub-states, and sub-sub-
states – a crucial attribute in systems modeling. For
example, a representative water resources system that
supplies water to a large community can be character-
izedby the statesof thewaterdistribution (groundwater
and surface water) storage, purification, and sewer sys-
tems. The data for each of the states can be further pre-
sented by sub-states. As another example, the states of
thewaterdistribution systemmaybe representedby the
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status of themain carriers, local pipes, pumps, and stor-
age tanks.With any Complex SoS, themost critical fact
to note is the relationships that exist within and among
the states of the system, which necessarily overlap the
multiple perspectives of the system represented by the
multiple models. In other words, a central role of mod-
elingComplexSoS is tounderstandtheessenceof theI-I
of the shared states and other essential entities (defined
earlier) of the Complex SoS under consideration;
namely, to comprehend, or “make a whole,” of the var-
ious attributes that characterize the multiple systems
that constitute Complex SoS. This important task can-
not be achieved without domain knowledge of the sys-
tems and carefully discovering and identifying those
states that characterize the most important aspects of
each system and of the Complex SoS as a whole. Fur-
thermore, the fact that all state variables are functions
of random and uncertain initiating events requires that
our modeling efforts take into account both epistemic
and aleatory uncertainties (Paté-Cornell, 1990, 1996;
Apostolakis, 1999; Haimes, 2016).

Consider the following definitions of the vulnera-
bility and resilience of a system Haimes (2016):

Vulnerability is the manifestation of the inherent states
of the system (e.g., physical, technical, organizational,
and cultural) that can be subjected to a natural hazard
or be exploited to adversely affect (cause harm or dam-
age to) that system. The vulnerability of a system ismul-
tidimensional, a vector in mathematical terms. (p. 56)

The resilience of a system is also a manifestation of the
states of the system and it is a vector that is time- and
threat (initiating event)-dependent. More specifically,
resilience represents the ability of the system to with-
stand a major disruption within acceptable degradation
parameters and to recover within an acceptable cost and
time. In other words, resilience is a vector state of the
system that is neither abstract nor static, nor determin-
istic. Moreover, resilience is similar to vulnerability in
that it cannot simply be measured in a single unit met-
ric; its importance lies in the ultimatemultidimensional
outputs of the system (the consequences) for any spe-
cific inputs (threats). (p. 57)

The question “What is the resilience of the Univer-
sity of Virginia?” is unanswerable without specifying
the specific threat, considering the specific likely vul-
nerable or affected states of the University of Vir-
ginia, and of the timing of the threat. Likewise,

questions on the vulnerability and resilience of a sys-
tem can be answered only when the threat (initiating
event) scenario (or a set of scenarios) is identified or
the vital states of the system and of Complex SoS are
specified. Resilience is notmerely an abstract concept;
it is a state of the system (composed of a vector of sub-
states) that may have different responses to different
inputs (threat scenarios).

This discussion of the centrality of states of the sys-
tem in modeling will be further explored in Part II of
this chapter and throughout this book and will be
related to (i) intrinsic meta-modeling coordination,
(ii) integration of the multiperspective models, and
(iii) the necessity of relying on the states of the system.
This is in contrast to relying solely on the extrinsic out-
put-to-input model coordination and integration,
which does not build explicitly on the shared (com-
mon) states and other essential entities, and the over-
lapping states among the systems and subsystems that
constitute Complex SoS.

1.I.6 THE CENTRALITY OF TIME IN MODELING
MULTIDIMENSIONAL RISK AND UNCERTAINTY

Time is central to all decisions, whether connected
implicitly or explicitly, and thus to systems model-
ing. For a pilot, the time frame may be measured
in mere seconds; for a planner, it may be years or
decades. Indeed, all real-world Complex SoS are
characterized by dynamic multiple objectives, often
noncommensurate, competing, and in conflict with
each other. Chapter 5 is devoted in its entirety to
the subject of multiple objectives. A Pareto-optimal
policy (solution) is such that improving one objec-
tive can be achieved only at the expense of degrad-
ing another objective. Pareto-optimal policies
associated with such systems models are achieved
through the manipulation of the appropriate states
of the system, and since the latter are functions of
time, the time frame becomes critical to systems
modeling. Models that are built to answer specific
questions must also be constructed to address the
question: What is the impact of current decisions
on future options, given the inevitable EFCs?
(Recall that the term emergent forced change was
defined earlier in this chapter.) Uncertainty, com-
monly viewed as the inability to determine the true
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states of a system, can be caused by incomplete
knowledge and/or by stochastic variability. Two
major sources of uncertainty in modeling affect risk
analysis (Paté-Cornell, 1990, 1996; Apostolakis,
1999; Haimes, 2016). Knowledge (epistemic) uncer-
tainty manifests itself in the selection of appropriate
model topology (structure) and model parameters,
which can be sources of ignorance (e.g. when mode-
lers lack knowledge of important interdependencies
within the states of the system and among other sys-
tems). Variability (aleatory) uncertainty applies to
all relevant and important random processes and
other random events. Uncertainty dominates most
decision-making processes and is the Achilles’ heel
for all deterministic, and most probabilistic, models.
Uncertainty on the part of the modeler often results
in the selection of an incorrect model topology
(structure) – for example, selecting a linear model
for a highly nonlinear system, thereby inaccurately
rendering its parameters, data collection, and pro-
cessing techniques. Model uncertainties will often
be introduced through human errors of both com-
mission and omission. Uncertainty analysis
becomes even more imperative in risk analysis of
the I-I of emergent Complex SoS. Sources of uncer-
tainty and lack of understanding of the complexity
associated with the subsystems of Complex SoS
would likely result in (i) adherence to unrealistic
assumptions, (ii) a lack of awareness of and
accountability to the critical I-I of the Complex
SoS under consideration, (iii) poorly selected repre-
sentative model topology and comprehensiveness,
(iv) a dated or insufficient database to populate
and calibrate the multiple subsystems models, and
(v) essential risk scenarios being poorly represented
or structured for all interdependent and intercon-
nected systems. In sum, uncertainty analysis associ-
ated with Complex SoS is probably one of the most
difficult, albeit important, tasks in the broader risk
analysis process.

An adverse initiating event is likely to yield multi-
dimensional probabilistic consequences to each sys-
tem and to the Complex SoS. These consequences
are represented by a complex multidimensional risk
function, the modeling and quantification of which
present considerable challenges. The selection of
appropriate models to represent the essence of a sys-
tem’s multiple perspectives also determines the

effectiveness of the entire risk assessment, manage-
ment, and ultimately the communication processes.
In particular, the scope and effectiveness of strategic
risk management options are implicitly and explicitly
dependent on the system perspectives that are
included (or excluded) in the ultimate modeling
efforts. In particular, a probable initiating event would
necessarily affect only sub-states of a subsystem but
not necessarily the entire Complex SoS. Thus, one
must model the different probability distribution func-
tions of consequences affecting each subsystem result-
ing from the same initiating event. Each perspective of
a system – manifested through its structure, function-
ality, the services it provides, the customers it sup-
ports, and the other systems on which it depends –

will experience specific, and likely, unique conse-
quences resulting from the same initiating event.

Recall that the complexity of SoS stems primarily
from the I-I within and among its number of systems
and subsystems. Consider, for example, the I-I among
three common cyber–physical infrastructures: elec-
tricity, communications, and water (and of course
the communities they serve). A major initiating event
that may cause the failure of the electricity system
would result in adverse consequences to the other
two cyber–physical infrastructures because of their
dependency on electricity; neither one can operate
without electricity. Clearly, there is a need to under-
stand and thus model the pathways through which
the failure of one system propagates to other intercon-
nected systems. For example, an effective risk analysis
of a Complex SoS requires a clear understanding of its
configurations to enable the identification of specific
critical failure modes. This enables the development
and deployment of effective risk mitigation and other
management strategies. Current risk models of sys-
tems that do not consider the inherent interdependen-
cies among systems are likely to be inferior to those
models that do. We emphasize throughout this book
that the I-I are best understood and modeled through
the shared states and other essential entities of the
Complex SoS as a whole. Recall that the states of
Complex SoS represent the smallest set of linearly
independent system’s outputs, such that the values
of the members of the set at time to, along with known
forcing functions, completely determine the value of
all system variables for all t ≥ to. Thus, the behavior
of the states of the system, as a function of time and
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other inputs, enables modelers and risk analysts to
determine, under certain conditions, its future behav-
ior for any given input or initiating event. Indeed, in
industrial production and management, the feedback
control process is predicated on the fact that the
smooth operation of the multiple interconnected sub-
systems is built on the knowledge of the operational
states of each subsystem at each instant.

Systems modelers face nontrivial challenges when
selecting the minimum number of states to adequately
and effectively represent (model) the subsystems under
consideration. Consider, for example, the challenges in
selecting the states in the risk modeling process for sus-
tained years of drought, including (i) availability and
quantity (states) of groundwater and surface water,
(ii) quality (states) of groundwater and surface water,
and (iii) human, livestock population, and industrial
needs for water. The above states of water quality
and quantity have direct impact on the (i) rural or
urban populations and on livestock, (ii) agriculture
and industry, and (iii) future recovery of the states of
water quality and quantity for the entire River Basin.

From the perspective of the reliability of Complex
SoS, shared states and other essential entities within
and among the subsystems represent the essence of
the I-I that characterize Complex SoS. Initiating
events affecting one or more of the interdependent
and interconnected subsystems would necessarily
increase the probability of failure of the entire SoS
(Haberlin and Haimes, 2018; Lewis and Haimes,
2018). This fundamental fact can be viewed in the
parlance of fault-tree analysis (NUREG, 1981) as
converting subsystems from being “marginally
connected,” or in parallel, to becoming “directly
connected,” or in series. The subject of fault trees will
be introduced and elaborated upon throughout this
book; also, consult the Appendix in this book.
(Chapter 13 of the fourth edition of the book Risk
Modeling, Assessment, and Management (Haimes,
2016) is devoted to fault-tree analysis.) Also,
Chapter 10 of this book presents four case studies
with a reliance on fault trees. Nuclear reactors, which
epitomize Complex SoS, have always relied on fault-
tree analysis to ensure their safety. Thus, from that
perspective, subsystems that share states and other
essential entities are most likely to be affected by
adverse initiating events. For example, this phenom-
enon is most evident in the growing use of cloud-

computing technology, where numerous hardware–
software subsystems are shared among multiple users
(Haimes et al., 2015). Similar results have been
demonstrated with I-I among cyber–physical infra-
structures. An initiating event may not affect all
shared states and other essential entities of different
subsystems of a Complex SoS in the same way. This
fact necessarily implies the following scenarios when
analyzing risk to Complex SoS: (i) When each sub-
system has different decision makers, then decisions
made to control subsystem A may affect positively or
negatively subsystem B that shares subsystem A’s
states and other essential entities. (ii) When decision
makers collaborate among themselves and coordi-
nate their decisions, this can have a positive effect
on Complex SoS and improves their overall effective-
ness and management. (iii) When different initiating
events affect one or more subsystems, the level of
shared states and other essential entities among them
can positively or negatively affect the risk manage-
ment process of the entire Complex SoS. Therefore,
modelers should recognize and exploit the shared
states and other essential entities among subsystems.
As a natural example of interdependent subsystems,
the states of the Earth and its moon relative to each
other and to the sun are known at any instant due to
shared gravitational forces. In their case, without any
initiating events affecting any of them, the states of
their celestial coordinates in space and time can be
determined.

Guiding principles for modeling Complex SoS are
presented in Chapter 9. The following Evolving Base
is a sample of emergent components of Complex SoS:
(i) goals and objectives; (ii) stakeholders, decision
makers, and interest groups; (iii) organizational, polit-
ical, and budgetary baselines; (iv) reorganization and
reallocation of key personnel; and (v) requirements,
specifications, delivery, users, and clients. Changes
to these components are common to most complex
systems, but most notably of the interdependent and
interconnectedComplex SoS, where they have amore
dominant impact. In particular, modelers ought not
overlook the likely multiple impacts of the Evolving
Base on the shared/common states and other essential
entities within and among the systems that constitute
Complex SoS.

The organizational infrastructure at all levels
of the subsystems and the systems of systems
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necessarily affects the corresponding states and sub-
states. This fundamental fact constitutes a major
driver in both the modeling and the management
of the I-I of Complex SoS. Decision-making pro-
cesses of most, if not all, organizations are charac-
terized by a state of flux, given the mobility of
executives within the organization and of incoming
leadership replacing departing personnel at all
levels. New leaders and executives to the organiza-
tion are commonly hired to infuse new ideas and
energy into the organization. A by-product of this
process can lead to a recalibration of the goals
and objectives of the subsystems, if not of the entire
organization Complex SoS.

1.I.7 SYSTEMS MODELING AND INTEGRATION

Consider the laptop computer as Complex SoS; it
has become an indispensable enabler for students,
laypersons, and professionals alike including the
writing of this book. The average laptop is
assembled from about 2000 components (subsys-
tems), each of which is designed and manufactured
to perform certain critical functions on which the
reliability and functionality of the laptop depend.
The battery alone (as one subsystem) is assembled
from multiple components and subcomponents. The
nontrivial task of integrating and connecting the
laptop’s “2000 subsystems” requires understanding
not only the functionality and role of each subsys-
tem but also its effect on the performance of other
subsystems. Without relying on systems modeling,
such systems integration of multiple subsystems of
hardware along with its software could neither be
successfully accomplished, nor would the overall
computer system’s performance be realized.

Effective systems integration of Complex SoS
requires accounting for all the system’s functions,
aspects, and components. For example, software-
intensive systems not only require the integration of
components but also understanding the functionality
that emerges from that integration. Indeed, when
two or more components are integrated, they often
deliver more than the sum of what each was intended
to deliver. Invariably, the integration adds synergy
and enhances functionality. Also, the process of risk
assessment and management is a requirement for

successful systems integration; this is especially true
for software-intensive systems.

1.I.8 STRUCTURE, STATES, AND FUNCTIONS
OF COMPLEX SYSTEMS OF SYSTEMS

Consider the “translation” of the intricate relation-
ships among structure, states, and functions of a system
as suggested by Bronowski (1978). The states of a
manufacturing system are directly influenced and
affected by an intricate mix of machines, robots, mate-
rials, humans, organizational structures, and users of
the final product, among others. And all of the above
affect the system’s functionality and thus the products
of the manufacturing Complex SoS. Conversely, the
conditions of the states of themanufacturing Complex
SoS directly affect the integrity of the structure and its
functionality. Furthermore, the I-I within and among
the different components/subsystems that character-
ize Complex SoS may take many forms and levels,
each of which defines the structure and functionality
of the resulting subsystems and ultimately the entire
Complex SoS.

The fact that, by their definition, Complex SoS are
composed of interdependent and interconnected sys-
tems and subsystems implies that their modeling pro-
vides a more holistic vision and representation than
when modeled as separate subsystems. In many ways,
once a subsystem becomes a part of Complex SoS, it
is likely to lose someormuchof its autonomyandunique
attributes and characteristics. Such changemay beman-
ifested via subsystem functionally, its role in the organ-
ization, or in thedecision-makingprocess. Inmodeling a
single systemofComplexSoS, each system thereofmust
be viewed holistically, especially when considering the
natural and constructed environment and systems invol-
ving humans and community behavior. Holism repre-
sents a challenge in how to model the interface and
the interplay between the structure of systems and the
nature of systems.

How much perception and an ability to infer do
good modelers need in order to build effective mod-
els? This includes the need to translate the reality of
Complex SoS and their environments into an
abstract vision that draws on modeling experience
and expertise, and to use and build on the funda-
mentals of state-space theory and methodology.
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In many ways, modeling can be viewed as an
interpretation by the modelers of the multiple per-
spectives of Complex SoS – natural, physical, struc-
tural, organizational, and the influence of human
behavior.

1.I.9 THE MULTIFARIOUS PERSPECTIVES AND
DIMENSIONS OF COMPLEX SYSTEMS OF
SYSTEMS

The complexity resulting from the I-I among the sys-
tems and subsystems that characterize Complex SoS
canneitherbewell-understoodnormodeledbya single
individual. To be effective, the learn-as-you-go
dynamic modeling process must be performed by a
cross-disciplinary team: one that includes systems
modelers and other individuals who possess domain
knowledge of the historical, technical, and organiza-
tional complexity as well as other characteristics and
orientations of the Complex SoS under consideration.
In the book The Wisdom of Teams, Katzenbach and
Smith (2015) identify four major attributes of an effec-
tive team: (i) a small numberofmembers; (ii)with com-
plementary experiences, perspectives, and skills;
(iii) who are committed to a common purpose and per-
formance goals; and (iv) where all members are mutu-
ally accountable. There are no specific norms that
guide the composition of modeling teams for a given
Complex SoS. Rather, the team is built with core resi-
dentmodelers selected for their expertise and ability to
contribute to the modeling process. The team is often
augmented with additional expertise as needs arise
over time.

Organizational dynamics and perspectives contri-
buting to, and part of, the flow of EFCs, are likely
to affect the states of many subsystems or the entire
Complex SoS. (Recall that the term EFC was defined
earlier as emergent forces originating from within or
outside one system, or from the entire Complex SoS,
that would affect the Complex SoS positively or nega-
tively.) Slow or fast emergent internal and external
EFCs, to which all systems and entire Complex SoS
are commonly subjected, must continuously be
accounted for in the modeling process. In particular,
the criticality of slow creeping changes that affect
the shared and other essential entities characte-
rizing Complex SoS may not receive the serious

consideration required by the modelers, stakeholders,
and other principals engaged in the process. The I-I
characterizing Complex SoS necessarily require
appropriate knowledge and awareness of the emer-
gent nature of the Complex SoS reality. In other
words, subsystem A that is affected by a specific EFC
would also affect other subsystems that share states
and other essential entities with it. This concept of inter-
dependence and interconnectedness has basic ramifi-
cations on the theory and methodologies that we
deploy in modeling and managing Complex SoS in
this book.

1.I.10 WHAT HAVE WE LEARNED FROM
OTHER CONTRIBUTORS

Reflecting on the history of modern systems theory,
and its close ties to the Gestalt psychology first intro-
duced in 1912, we can underestimate neither the intel-
lectual power of the multidisciplinary talent required
for modeling Complex SoS, nor the holistic philoso-
phy that has sustained it; thus forcing it to transcend
the arts, the humanities, and the natural, social, and
physical sciences, as well as engineering, medicine,
and law. The fact that systems engineering and sys-
tems analysis have continued to grow over the years
and contribute to other fields of study can be attribu-
ted to the fundamental premise that Complex SoS can
be understood only if all the I-I among its systems and
within its environment are also understood and
accounted for. For more than a century, particular
mathematical models, upon which systems-based the-
ory and methodologies were developed, have been
deployed in myriad large-scale projects in the natural
and constructed environments. Moreover, if we were
to identify a single concept that has dominated sys-
tems thinking and modeling, it would be state-space
theory and the Gestalt–holistic philosophy. It can be
argued that the art and science of systems modeling
have served, in many ways, as the medium through
which the holistic systems philosophy has informed
and guided not only the practice of engineering but
of a broad range of other fields. As the discipline of
systems engineering continues to develop and expand
into new domains, the need has emerged for new
organizational and modeling paradigms to represent
Complex SoS.
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1.I.11 CONCLUSIONS

No single book on complexity and Complex SoS can
do justice to, nor adequately represent, the plethora of
perspectives and the multifarious nature of Complex
SoS. And this book is of no exception. However,
not attempting to try would constitute a fatalistic fore-
sight that would be an enigma to scholarship and to
the essential quest for discovery and learning. The
vision and challenges that inspired the conception
and guided the writing of this book stem from the fol-
lowing: the need to not only define and represent but
also to analytically quantify at least one fundamental
characteristic of Complex SoS, namely, their intercon-
nectedness and interdependencies. This quest was
enabled and augmented by the vast literature onmod-
eling and optimizing (as well as in the sense of Pareto
optimality associated with multiple noncommensu-
rate, competing, and conflicting objectives), to which
this author has contributed several books and copious
technical articles since the 1960s.

1.I.12 MODELING AND MANAGING
INTERDEPENDENT COMPLEX SYSTEMS
OF SYSTEMS: BOOK OVERVIEW

As we present various methods for modeling and
managing Complex SoS, it is important to map the
course through which these theories, methodologies,
case studies, and example problems are presented in
the 15 chapters of this book, along with the Appendix.

Chapter 1: Modeling and Managing
Interdependent Complex Systems of Systems:
Fundamentals, Theory, and Methodology

This chapter is of two parts. Part I provides an over-
view of the entire 15 chapters of the book. Part II pro-
vides a comprehensive discussion on the resilience
and vulnerability of Complex SoS. The Appendix,
which follows Chapter 15, augments the textbookwith
systems engineering fundamentals that support basic
theory and methodology on Complex SoS. [The book
begins with a Foreword titled “Philosophical and His-
torical Perspectives onUnderstandingCommonalities
Characterizing Complexity”]. The following sections
present a general overview of the entire book and

15 chapters highlighting each of the succeeding
14 chapters and the Appendix.

The theme of the book advances the notion that
current models for Complex SoS are insufficient,
because too often they rely on the same modeling
schema used for single systems. These models com-
monly fail to incorporate the complexity of the net-
works of I-I characterizing Complex SoS, and
consequently the risk analysis and management
based on such models suffer. For completeness, we
redefine I-I to connote interdependencies and inter-
connectedness. Revised theoretical and methodolog-
ical foundations for understanding, modeling, and
managing risk to accommodate the unique attributes
of Complex SoS are provided by research and case
studies. The 15 chapters of this book underscore that
effective modeling of Complex SoS lies in adequately
understanding and modeling the I-I of systems man-
ifested through shared/common states and other
essential entities within and among the systems that
constitute SoS. The term essential entities connotes
shared/common, decisions, decision makers, stake-
holder, resources, organizational behavior and
norms, policies and procedures, management, cul-
ture, and others.A history of the discipline of systems
engineering and the development of systems of sys-
tems with their unique complexities provide the base
upon which to build new methods of modeling and
managing interdependent and interconnected Com-
plex SoS.

Chapter 2: Modeling, Decomposition, and
Multilevel Coordination of Complex Systems of
Systems

This chapter is of two parts. In studying Complex SoS
including their technological, societal, and environ-
mental aspects, the efforts in their modeling, as well
as in their management, are magnified and often
overwhelm the analysis. This is due to the (i) high
dimensionality (very large number of variables),
(ii) complexity (nonlinearity in the coupling and inter-
actions among the variables), and (iii) dynamic
changes and emergent behavior of the resulting mod-
els. In modeling the I-I of Complex SoS, one of the
major impediments faced by modelers from the natu-
ral and behavioral sciences, engineering, and other
professions stems from the dynamic and evolving
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nondeterministic processes that govern the interac-
tions among the system’s components. Whenever
decentralization of a complex system is needed, the
system is further decomposed to enable its effective
modeling and ultimate coordination among the sub-
systems, as well as with the corresponding decision
makers and the associated stakeholders. Part I of this
chapter expands the concept of the hierarchical-
multilevel approach, based on the decomposition of
Complex SoS, and the subsequent modeling of the
subsystems as independent at the lower levels of the
hierarchy. This innovative decentralization utilizes
the concepts of strata, layers, and echelons to enable
systems modelers to analyze and comprehend the
behavior of the subsystems at a lower level of the hier-
archy and to transmit the information obtained to
fewer subsystems at a higher level. Part II provides
a primer on the theory and practice of incorporating
probability distribution and uncertainty analysis in
modeling Complex SoS. We address Bayesian meth-
ods for risk and uncertainty analysis.

Chapter 3: Hierarchical Holographic Modeling
of Complex Systems of Systems

Hierarchical HolographicModeling (HHM) is a holistic
philosophy and proven methodology aimed at captur-
ing and representing the essence of the inherent diverse
characteristics and attributes of a system – its multiple
aspects, perspectives, facets, views, dimensions, and
hierarchies. The HHM (Haimes, 1981), which forms
the basis for this chapter, emerged from a generaliza-
tion of a Hierarchical Overlapping Coordination
method and is capable of representing fundamental
attributes of Complex SoS, which have commonly
escaped multiperspective modeling representation.

The fundamental attribute of interdependent and
interconnected Complex SoS is their inescapably mul-
tifarious nature: hierarchical noncommensurable
objectives, multiple decision makers, multiple trans-
cending aspects, and elements of risk and uncertainty.
In part, this may be a natural consequence of the fact
that most Complex SoS respond to a variety of needs
that are basically noncommensurable and may under
some circumstances openly conflict.

The HHM reflects a difference in kind from previ-
ous modeling schemas and contributes to the theory
and methodology of modeling Complex SoS. There

is a useful analogy between HHM and the capture
of images. Conventional photography captures only
two-dimensional planar representations of scenes
and is analogous to conventional mathematical mod-
eling techniques that yield “planar” models. Three-
dimensional cinematography, however, is similar to
the multidimensional schema needed to model the
multifarious attributes of interdependent and inter-
connected Complex SoS. This chapter demonstrates
the impracticality of representing, within a single
model, all the aspects of an interdependent and inter-
connected Complex SoS, which may be of interest at
any given time to its management, government regu-
lators, students, or any other stakeholder.

Chapter 4: Modeling Complex Systems of
Systems with Phantom Systems Models

In this chapter we introduce phantom systems model-
ing (PSM), a modeling paradigm that is congruent with
and responsive to the uncertain and ever-evolving
world of emergent systems. The PSM methodology/
philosophy serves as an adaptive process, a learn-as-
you-go modeling laboratory, where different scenar-
ios of need and stages of development for emergent
SoS can be explored and tested. These scenarios
build on and extend the basic theory and philosophy
of HHM by offering operational guidelines and prin-
ciples on which to model interdependent and inter-
connected Complex SoS. In PSM, methodology
and technology match, and emergent systems are
studied through PSM similar to the way other appro-
priate models are constructed for systems with differ-
ent characteristics. Equally agile and adaptive, PSM
can be continually manipulated and reconfigured in
the attempt to answer difficult emergent challenges.
Examples of PSM include difference equations
and differential equations for dynamic systems, alge-
braic equations for static systems, and probabilities
for systems that are driven by random events and
processes.

Chapter 5: Complex Systems of Systems with
Multiple Goals and Objectives

For sound and informative decision-making pro-
cesses, it is imperative that decision makers also be
provided with the tradeoff values associated with
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the respective objectives. An “optimum” solution
may exist for amodel; however, for a real-life problem
such an “optimum” depends on myriad factors, which
include the (i) specificity of each subsystem; (ii) extent
of shared states and other essential entities within and
among the subsystems; (iii) identity, perspectives, and
biases of the modelers, decision makers, and stake-
holders; (iv) credibility of the database; and (v) time
frame. Therefore, a mathematical optimum for a
model does not necessarily correspond to the “opti-
mum” for the real subsystems, nor for the Complex
SoS, because multiple decision makers, and thus per-
spectives and needs, with varied authority are associ-
ated with each subsystem and with the Complex SoS
as a whole. Each subsystem commonly represents dif-
ferent constituencies, preferences, and perspectives;
as elected, appointed, or commissioned; or as public
servants, professionals, proprietors, or associates;
and connected with a specific level of the various hier-
archies of objectives within the subsystems and the
Complex SoS as a whole. This chapter outlines meth-
ods for achieving resolution to the multiobjective
decision making associated with Complex SoS. Note
that Complex SoS commonly involve multiple deci-
sion makers and decisions or “compromised” solu-
tions are often reached through negotiation, either
through the use of group techniques of multiple-
criteria decision making (MCDM) or on an ad
hoc basis.

Chapter 6: Hierarchical Coordinated
Bayesian Modeling of Complex
Systems of Systems

In this chapter we incorporate multiple decomposi-
tions frommultiple perspectives, supported and popu-
lated with Bayesian data analysis. This modeling
theory, philosophy, and methodology integrate all
the direct and indirect relevant information from dif-
ferent levels of the hierarchies while placing more
emphasis on relevant direct data. Indeed, bymodeling
the systems and data from different perspectives (such
as viaHHM), we can fully extract and exploit informa-
tion fromdifferent dimensions via Bayesianmodeling.
In sum, we coordinate the results from different
decompositions and perform quantitative modeling
of Complex SoS supported with and enriched by mul-
tiple databases.

Chapter 7: Hierarchical-Multiobjective Modeling
and Decision Making of Complex Systems of
Systems

Many of the world’s cyber–physical critical infrastruc-
ture systems fall within the category of Complex SoS.
They are commonly composed of interdependent and
interconnected subsystems, which in their essence
constitute Complex SoS with multiple functions,
operations, and stakeholders. Emergent, large-scale
engineering systems profiled in this book such as
aviation, supply chain, the power grid, and cyber–
infrastructure systems, all pose significant challenges
to risk modeling and management. The complexity
of cyber–physical SoS is characterized by the highly
interdependent and interconnected physical, eco-
nomic, and social components that constitute a major
source of EFCs to infrastructure systems. This means
identifying relationships among different system
components and understanding their impact on the
systems so that efficient risk management strategies,
including preparedness and response planning, can
be deployed. Risk assessment, management, and com-
munications are indispensable tools within which to
evaluate the states of the system, reduce its vulnerabil-
ity, and increase its resilience to EFCs. The develop-
ment and application of risk analysis theories and
methodologies for these cyber–physical infrastructure
Complex SoS presented in Chapter 10 are key to their
effective and efficient management.

Chapter 8: Modeling Economic
Interdependencies Among Three Sectors: Supply
Chain, Electricity, and Communications

This chapter introduces the inoperability input–output
model (IIM) (Haimes and Jiang, 2001; Haimes, 2016),
which is based on the input–output model developed
by Leontief (1951a, b) for modeling the impact of
the disruption of specified sectors of the global econ-
omy. For example, supply chain, electricity, and
communications are three safety-critical sectors of
every country’s economy and key to its population’s
well-being. They literarily constitute the lifeline of
everymodern community and transcend cultural, soci-
etal, and political borders. Together, they comprise
interdependent and interconnected emergent Com-
plex SoS. Furthermore, their I-I represent significant
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universal sources of risk to the population they serve
and to the economy of every country in the world.
Tomodel the impact of their disruptionon the regional
andnational levels,we select the supply chain, towhich
Chapter 11 is devoted to in its entirety. Furthermore,
we present (via four case studies in Chapter 10) the
I-I that exist among the electricity, communications,
and water systems. We quantify the consequences
resulting from the I-I that characterize these three
safety-critical sectors (supply chain, electricity, and
communications) with the IIM. Note, however, that
in Chapter 10 we quantify, via fault-tree analyses,
the I-I among the Complex SoS by building on OR
Gates (systems connected in series) and on AND
Gates (systems connected in parallel).

Chapter 9: Guiding Principles for Modeling and
Managing Complex Systems of Systems

This chapter presents and updates guiding principles
for effective risk modeling, assessment, management,
and communication associated with interdependent
and interconnected Complex SoS. Risk analysis has
become a dominant interest and a requisite area of
expertise in almost every discipline as well as in gov-
ernment, public, and private organizations. By its
nature, risk analysis is an intricate, dynamic process –
an amalgamation of the arts and sciences – tailored
to the specific sources of risk to Complex SoS. It fol-
lows then that for any system, especially for interde-
pendent and interconnected Complex SoS, the
balance between quantitative and qualitative risk
analysis will be problem-and domain-specific. The
10 principles set forth in this chapter are intended to
guide both quantitative- and qualitative-centered risk
analyses. Meeting the challenges associated with
defining, modeling, and quantifying the multidimen-
sional risk function of a single system, and even more
importantly for interdependent and interconnected
Complex SoS, will likely be guided by the specific dis-
cipline performing such tasks, and influenced by the
specific experiences and expertise of its risk modelers
and decision makers. While the disciplines of systems
engineering and risk analysis share the wide common
denominators of philosophy, theory, methodology,
and practice, each discipline has historically evolved
along separate pathways, and thus has distinctive fol-
lowers and protocols.

Chapter 10: Modeling Cyber–Physical Complex
Systems of Systems: Four Case Studies

This chapter presents four cyber–physical case studies
following the theory and methodology developed for
Complex SoS in the previous chapters. The research
protocol in each case shares the following common
denominators, namely, that it builds on and exploits
(i) state-space theory and methodology, (ii) modeling
interdependencies and interconnectedness (I-I) via
shared states and other essential entities (decisions,
decision makers, stakeholders, resources, organiza-
tional setup, goals, and objectives, among others),
(iii) analytically quantifying via fault-tree analysis
(without the reliance on reliability) the I-I within
and among the subsystems that compose Complex
SoS, (iv) outlining the detailed methodological proc-
ess, and (v) drawing lessons learned.

Chapter 11: Global Supply Chain as Complex
Systems of Systems

The supply chain is the backbone of the global econ-
omy of every country, and its success is paramount to
the success of individual economies as well as individ-
ual businesses with which we interact daily. Declaring
the supply chain a safety-critical Complex SoS
requires an understanding of its myriad basic inter-
twined systems and subsystems, which permeate
through every country’s economy, starting with raw
and scarce material and heavy metals to abundant
processed and manufactured commodities.

Chapter 12: Understanding and Managing the
Organizational Dimension of Complex Systems
of Systems

This chapter addresses the impact of organizational
culture, vision, and the quality of leadership as critical
drivers to effective and successful performance of
interdependent and interconnected Complex SoS.
The organizational structures vary so widely, espe-
cially among the private and public sectors, that they
may be branded from their modeling perspectives as
unbounded sets. A hierarchy of multiple conflicting,
noncommensurate, and competing objectives charac-
terizes both the private and public sector organiza-
tions. Moreover, the hierarchy of objectives is
associated with the decision makers and stakeholders
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responsible for different levels of the organization’s
history,mandate, vision, and structure.Each organiza-
tional structure has specific characteristics that require
customizedmodeling efforts.This chapter alsodemon-
strates common denominators among them to enable
modelers to exploit the essential attributes thatmost, if
not all, organizational groups share.

Chapter 13: Software Engineering: The Driver of
Cyber–Physical Complex Systems of Systems

This chapter illustrates the challenges and associated
difficulties in understanding and modeling cyber–
physical Complex SoS. The historical, cultural, organ-
izational, and cognitive differences associatedwith the
conception, design, development, and integration of
cyber (software) and physical (hardware) systems
comprise the ultimate cyber–physical Complex SoS.
We often neither understand nor appreciate the two
distinctive worlds in which both software and hard-
ware are conceived, developed, and ultimately inte-
grated. When the design, development, and ultimate
integration of cyber and physical systems are executed
separately, and without a strict adherence to compat-
ibility between the two components of the cyber–
physical Complex SoS, the results are likely to contain
myriad predictable and invisible sources of risk.

Chapter 14: Community Preparedness for Risk to
Infrastructure Complex Systems of Systems

Protection of Complex SoS may include a variety of
risk-related countermeasures, such as detection, pre-
vention, hardening, and containment. These all
important risk management policy options are aimed
at increasing security. To appreciate the limitations of
these security measures when they are not balanced
with resiliency, it is important to understand the epis-
temology of infrastructure risks in terms of threats to
Complex SoS and of their vulnerability. In this chap-
ter, we understand the composite of humans, organi-
zations, and human–cyber–physical infrastructures to
constitute, in their essence, interdependent and inter-
connected Complex SoS. These include human stake-
holders as well as the multiple functions and
operations of the physical infrastructures, such as
roads and bridges, telecommunications networks,
electric power generation, oil and gas pipelines and

installations, and water treatment and supply utilities,
to cite a few. Each of these individual entities consti-
tutes a subsystem, and their integration with the other
subsystems makes up interdependent and intercon-
nected Complex SoS. The subsystems may function
autonomously despite their I-I; however, each is
susceptible to experiencing unique adverse conse-
quences resulting from an initiating event that affects
a subset or all of them. In turn, such consequences
may propagate and inflict other disastrous results.
This chapter also addresses the challenges in estab-
lishing a national preparedness system for terrorism
and natural disasters.

Chapter 15: Modeling Safety of Highway Complex
Systems of Systems via Fault Trees

Transportation is an emergent safety-critical inter-
dependent and interconnected sector of the econ-
omy, which in its essence constitutes Complex
SoS. Almost uncounted factors and sources of risk
characterize and determine the ultimate safety of
transportation on the highways. As a starting point,
we investigate the modeling of automobile safety as
a function of its design (assuming an average uni-
form level of safety characterizing all drivers). We
focus primarily on how automobile accidents occur
and address the broader challenge of quantifying
and managing the risk inherent in particular auto-
mobile designs. The highway safety of the transpor-
tation Complex SoS draws on fault trees for
assessing the risk thereto. The modeling process
of improving highway safety can be used as a pro-
totype for modeling other associated emergent
Complex SoS. For example, there were about 222
million registered drivers in the United States in
2016, and there were over 32 000 fatal motor vehicle
crashes in the United States in that year. The fre-
quency and severity of motor vehicle accidents is
of such consequence that they comprise the sixth
leading cause of death in the United States and
the number one cause of death due to injury. Cur-
rent studies reveal that researchers have made an
effective use of accident databases, simulations,
and crash testing to examine narrowly defined
factors that contribute to automobile safety. An
evaluation of the contributions of poor driver
judgment, vehicle failure, poor weather conditions,
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and other causative factors can offer insight into
steering and other failures. This can guide the
development of technologies to mitigate both the
likelihood and the consequences of the associated
failures.

Epilogue

Complexity and interdependent and interconnected
emergent complex systems of systems, the theme of
this book, have mesmerized all of us for decades: stu-
dents and philosophers, practitioners and modelers,
systems engineers and risk analysts, and other profes-
sionals engaged in this ever-growing and expanding
enterprise. Among themany drivers that continuously
redefine Complex SoS are the emergence of new tech-
nologies, notably the seemingly seamless integration
of the physical infrastructure world with the more
amorphous cyber world. Indeed, the new world in
which we live, and on which we are becoming increas-
ingly dependent, is the genesis of a new era: the era of
the Internet of Things, the era of smart cities, and the
era of robotics and automation that result in
displacing workers and drivers of vehicles.

This book focuses on emergent Complex SoS and
on the myriad associated theories, methodologies,
and practices that transcend all 15 chapters.

We expect that the readers of this book will not
only benefit from its content but also, most impor-
tantly, will build and expand on both the theory and
methodologies advanced in this book.

PART II: ON THE RESILIENCE AND
VULNERABILITY OF COMPLEX SYSTEMS
OF SYSTEMS

1.II.1 INTRODUCTION

Why do farmers irrigate their crops in nonrainy sea-
sons? And why do farmers add fertilizer to the soil?
The genesis of both questions stems from the condi-
tion of the states of soil moisture and nutrients.

Our premise is that the vulnerability and the resil-
ience are a manifestation of the states of a system,
and that a threat to a vulnerable system would neces-
sarily lead to risk.And the resulting risk is a function of
the (i) specific threat, (ii) specific state of vulnerability

of the system to the threat and (iii) specific time frame.
In otherwords, while onemay speak generically about
risk, and define risk in terms of a probable threat and
consequences to a vulnerable system, its quantification
calls for a more careful consideration that goes back
to Lowrance’s definition of “Risk as a measure of
the probability and severity of adverse effect”
(Lowrance, 1976). Furthermore, a specific threat to
a system that affectsmore than one state of that system
would likely yield multiple adverse consequences –

each is associatedwith a specific vulnerable subsystem
of the Complex SoS. This statement does not exclude
additional risks that may result from cascading effects
of the multiple vulnerabilities of Complex SoS. Refer-
ring to the above farmer’s dilemma consider moisture
and acidity as two states that represent the soil’s con-
dition. Depriving the crops of irrigation when soil
moisture is below the required level would impair
the growth of the crops in specific ways. Similarly,
depriving the soil of lime to neutralize high soil acidity
(threat) would damage the growth of the crops. In
other words, in each case, a specific threat to a vulner-
able system would yield specific probable conse-
quence (risk). (We define risk as “a measure of
the probability and severity of adverse effects”
(Lowrance, 1976).) In addition, there may be cascad-
ing effects resulting from the impact of one threat
(either lack of irrigation in non-rainy season, or lack
of adding lime) to other states of the soil. Factoring
in soil nutrients, which constitute multiple states (e.g.
one state for each critical nutrient),would further com-
plicate the quantification of themultiple risks to which
the cropsmight be subjected. In sum, a farm’s soil with
appropriate levels of moisture and nutrients can be
sufficiently resilient and to safely withstand a short
period of vulnerability to drought and a delay in add-
ing fertilizers.

Systems engineering fundamentals are the building
blocks of mathematical models and, especially, the
notion of state variables (other building blocks are
inputs and outputs, objective functions, and random,
decision, and exogenous variables). The ultimate goal
of all decisionmakers is tomake appropriate decisions
with which to manipulate the states of the system to
achieve (i) specific goals and objectives, (ii) at accept-
able tradeoffs (e.g. cost, assurance, quality, etc.), and
(iii) within an acceptable time frame. For example,
the farmer would also wish to control the states of soil
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moisture, acidity, and nutrients of the farm at an
acceptable cost and within an appropriate time frame.

The terms “system vulnerability” and “system resil-
ience” have become common in the parlance of risk
analysis and systems engineering. This evolution has
become more prevalent due to acts of terrorism, fre-
quent natural disasters commonly attributed to cli-
mate change, and other acts with adverse effects on
communities and on the natural and constructed envi-
ronment. Sadly, a significant number of archival pub-
lications continue to “dance around” the essence of
the resilience and vulnerability of a system by ignoring
the fundamental tenet that both are manifestations
of the states of the system. That is, a system’s resil-
ience and vulnerability are functions of the state of
the system, the time frame, and the initiating event
(threat). We offered the following definitions:Vulner-
ability refers to the inherent states of a given system
(e.g. physical, technical, organizational, and cultural)
that can be exploited by an adversary to adversely
affect (cause harm or damage to) that system. Intent
is the desire or motivation of an adversary to attack
a target and to cause adverse effects. Capability is
the ability and capacity to attack a target and to cause
adverse effects. Threat denotes the intent and capabil-
ity to adversely affect (cause harm or damage to) the
system by adversely changing its states. A threat with
adverse effects to a vulnerable systemmay lead to risk
(Haimes, 2006). Throughout the rest of this book, the
term threat will connote a threat with adverse effects.
Resilience, however, has been more characterized
than adequately defined in the literature.

Consider, for example, the following parochial
“definitions,” none of which refers to resilience as
a manifestation (or a function) of the states of the
system: (i) Resilience is the ability of a system to
absorb external stresses, or a system’s capability
to create foresight, to recognize, to anticipate, and
to defend against the changing shape of risk before
adverse consequences occur. (ii) Resilience refers
to the inherent ability and adaptive responses of
systems that enable them to avoid potential losses,
and capability of a system to minimize adverse con-
sequences, and (iii) to recover quickly from adverse
consequences.

In this book, and throughout our several earlier
publications, we have defined resilience of a system
as a manifestation of the states of the system. Most

critically, it is a state vector that is threat and time
dependent. Thus, resilience, in this book, also con-
notes the ability of the system to withstand a disruption
within acceptable degradation parameters and to
recover within an acceptable composite cost and time
(Haimes, 2008, 2009, 2016). Moreover, neither vul-
nerability nor resilience can be measured in a single
metric unit because the states of the system form a
multidimensional vector, and so are the multidimen-
sional consequences (the outputs) of the system for
any specific inputs (threats). Note that the conse-
quence (that is considered as part of the risk metric)
is in fact the output of the systems model, and that
the input to the system’s model is commensurate with
the concept of a threat. For example, the risk associ-
ated with a cyber attack on a cyber–physical Com-
plex SoS depends on both the resilience of the
system to the specific cyber attack and its sophistica-
tion. This is because resilience, as a function of the
states of a system, can be measured only in terms
of the specific threat (input), the system’s recovery
time, and the associated composite consequences.
Thus, different attacks would generate different con-
sequence (output) trajectories for the same resilient
system.

Consider the immunization of a population against
a major strain of flu virus termed TypeB.Assume that
the population develops resilience for multiple strains
of viruses of Type B, except for an evolving strain of
Type A. In this case, even though the population
might have resilience (immunity) for Type B, the
appearance of strain A into this population would
likely be infectious. Here again the risk to the popula-
tion from a threat is dependent on the specific type of
threat, the time frame, and the states of the system;
namely, the risk from a threat is dependent on the
resilience of the system to the specific threat, and
the ability of the (states of the) system to withstand
that specific threat.

Likewise, consider any physical infrastructure, such
as electric power, transportation, or telecommunica-
tion. In any such Complex SoS, the question “What
is the resilience of infrastructure x?” is unanswerable
because the answer implicitly depends upon knowing
the specific threat, and the states of the system, and
whether infrastructure x would recover following
any attack y within an acceptable time and composite
costs and risks. Thus, the only way such a question can
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be answerable is when the threat (or a set of threats) is
specifically identified. Indeed, the system’s resilience
is not merely an abstract attribute of the system;
rather, it is a state of the system (composed of a vector
of sub-states) for which any specific sub-state may
respond differently to different inputs (threats). For
example, a water distribution systemmay have redun-
dancy in its electric power subsystem, and thus it may
be resilient to amajor storm that would shut down one
of the power lines to the water distribution system,
leaving the other redundant line intact. On the other
hand, suppose the water distribution system is
dependent on only one main pipe to supply water to
its customers, and it is located in a region susceptible
to earthquakes. The system is resilient only to the
extent that the main pipe is functioning and it can
withstand an earthquake up to level 4 on the Richter
scale. However, the system would likely fail during an
earthquake of level 5 or 6. Here again, measuring the
resilience of the water system is actually measuring
the responses of the states of the system to the specific
threat (input) and in this case the scale of the earth-
quake. We will revisit the resilience and vulnerability
of interdependent and interconnected Complex SoS
in subsequent chapters.

One may associate a vector of resilience with each
subsystem, given no direct interdependencies exist
among the subsystems of a Complex SoS with respect
to the specific input/threat. Thus, there is a hierarchy
of resilience attributes for any natural or the con-
structed environment. For example, the human body
as a Complex SoS is made up ofmany subsystems (e.g.
the digestive, pulmonary, and auditory systems,
among others), each with a set of resilient organs
and sub-organs, where the latter depends on the states
of each organ and on the inputs (e.g. physical or bio-
logical threats). The duration of the output (e.g. a
temporary or long-term impaired, or a loss of,
functionality of specific organs or sub-organs) is a
function of the corresponding affected states. This
example reinforces the thesis that system resilience
can be measured in terms of the outputs/(responses)
given inputs/(threats) to the system. (Note that the
inputs to the system, the states of the system, and
the outputs are commonly time variant and probabi-
listic, as will be discussed subsequently.) To further
appreciate the centrality of the system’s input–output
relationship to its resilience (states of the system),

consider the fact that despite the resilience of the
human body to various physical and biological attacks
on it, its ultimate resilience depends upon the states of
the body at the time, as well as the type and strength of
such attacks.

A system may also be characterized by its specific
redundancy and robustness. Redundancy refers to
the ability of certain subsystems of a system (or of a
Complex SoS) to assume the functions of failed sub-
systems without adversely affecting the performance
of the Complex SoS itself. Of course, redundancies
constitute an integral part of all safety-critical systems.
Robustness refers to the degree of insensitivity of a
system to perturbations, or to errors in the estimates
of those parameters affecting the design choice.

1.II.2 RELATING THE CENTRALITY OF STATE
VARIABLES TO THE DEFINITIONS OF RISK,
VULNERABILITY, AND RESILIENCE

During the last several decades, the terms vulnerabil-
ity, resilience, and risk have received multiple diverse
definitions and interpretations. The fact is that all
three are related, interdependent, and interconnected
via the (i) states of the system under consideration;
(ii) initiating event, e.g. a threat, or what we generally
have called in this book EFCs to connote internal or
external forces that affect the states of the system posi-
tively or negatively; and (iii) time frame. The funda-
mental difference between the impact of EFCs on a
single system and their impact on an interdependent
and interconnected emergent Complex SoS stems
from the intrinsic characteristics of EFCs, introduced
in Part I of this chapter.

Current risk analysis of a single systemmust be fun-
damentally extended when applied to Complex SoS.
As noted in Part I of this chapter, this complexity
stems primarily from the interdependencies and inter-
connectedness (I-I) within and among the systems and
subsystems of SoS. Consider, for example, the I-I
among three common cyber–physical infrastructures:
electricity, communications, and water (and of course
the communities they serve). A major initiating event
that may cause the failure of the electricity system
would result in adverse consequences to the other
two cyber–physical infrastructures because of their
dependency on electricity; neither one can operate
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without electricity. In the parlance of risk analysis, the
states of each of the three infrastructures – electricity,
communications, and water – could be at (i) different
states of viable performance and security, (ii) vulner-
able to different EFCs, and (iii) operating in different
time frames (duration, day/night, season, etc.).
Clearly, there is a need to understand and model
the pathway through which the failure of one system
propagates to other interdependent and intercon-
nected systems of a Complex SoS. Indeed, an effective
risk analysis of Complex SoS requires a clear under-
standing of the configurations of (i) the interdepen-
dencies and interconnections of the states of the
systems that compose Complex SoS, (ii) the vulner-
abilities and resilience of each system and the
Complex SoS as a whole to specific (scenarios) of
probable EFCs, and (iii) the time frame of the risk sce-
narios. Such analyses of risk scenarios would enable
the identification of specific critical failure modes
and the development and deployment of effective risk
mitigation and other risk management strategies.
Sadly, current risk models of systems do not consider
the inherent I-I among the many systems that com-
prise Complex SoS; thus, the corresponding risk anal-
ysis is likely to be inferior to those models that do.

Recall our premise from Part I of this chapter that
the above interdependencies and interconnections of
Complex SoS are best understood, and thus modeled,
via the shared states and other essential entities within
the Complex SoS. And, that the term “essential enti-
ties” connotes shared/common decisions, decision
makers, stakeholders, resources, organizational
behavior and norms, policies and procedures, man-
agement, culture, and others. Also recall that the
states of each system, and of the Complex SoS as a
whole, play a significant role in estimating the future
behavior of the systems for any given input. We
requote here Chen’s (2012) conceptual definition of
state variables that posits that the “state x(to) of a sys-
tem at time to is the information at time to that,
together with the input u(t), for t ≥ to, determines
uniquely the output y(t) for all t ≥ to.”

The genesis of the I-I can be traced to the shared/
common states and to other shared essential entities
that characterize SoS. Similarly, Nise (2014) empha-
sizes that state variables represent the smallest set
of linearly independent system variables such that
the values of the members of the set at time to along

with known forcing functions completely determine
the value of all system variables for all t ≥ to. Thus,
the behavior of the states of the system, as a function
of time and other inputs, enables modelers and risk
analysts to determine, under certain conditions, its
future behavior for any given input or initiating event.
Indeed, in industrial production andmanagement, the
feedback control process (as an integral part of risk
management and quality control) is predicated on
the fact that the smooth operations of the multiple
interconnected subsystems are built on the knowledge
of the operational states of each subsystem at each
instant. As a simple example, to determine the relia-
bility and functionality of a car, one must know the
states of the fuel, oil, tire pressure, and the states of
other mechanical and electrical components (due to
the dynamic nature of all states).

Systems modelers face nontrivial challenges
when selecting the minimum number of states to
adequately and effectively represent (model) the
subsystems under consideration and, thus, the risk
thereto. Challenges in selecting the states in the risk
modeling process for sustained years of drought
include (i) availability and quantity (states) of
groundwater and surface water in storage,
(ii) quality (states) of groundwater and surface
water in storage, and (iii) human and livestock pop-
ulation and industrial needs for water. The above
states have a direct impact on rural or urban popu-
lations and on livestock, as well as on agriculture
and industry. These states also adversely impact
future recovery of the states of water quality and
quantity for the entire River Basin.

From the perspective of the reliability of Complex
SoS, shared states and other essential entities within
and among the subsystems represent the essence of
the I-I that characterize Complex SoS. Initiating
events affecting one or more of the interdependent
and interconnected subsystems would necessarily
increase the probability of failure of the entire SoS
(Haimes, 2018). This fundamental fact could be
viewed in the parlance of fault-tree analysis
(NUREG, 1981) as converting subsystems from being
“marginally connected,” or in parallel, to becoming
“directly connected,” or in series. Nuclear reactors,
which epitomize Complex SoS, have always relied
on fault-tree analysis to ensure their safety. From
the perspective of fault-tree analysis, subsystems that
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share states and other essential entities are most likely
to be affected by adverse initiating events. For exam-
ple, this phenomenon is most evident in the emergent
extensive use of cloud-computing technology, where
numerous hardware–software subsystems are shared
among multiple users (Haimes et al., 2015). Similar
results have been demonstrated with the I-I among
cyber–physical infrastructures. An initiating event
may affect shared states of different subsystems differ-
ently. This fact necessarily implies the following three
scenarios when analyzing risk to Complex SoS:
(i) When each subsystem has different decision
makers, then decisions made to control subsystem
A may affect positively or negatively subsystem
B that shares subsystem A’s states and other essential
entities. (ii)When decisionmakers collaborate among
themselves and coordinate their decisions, this can
have a positive effect on Complex SoS and improve
their overall effectiveness and management.
(iii) When different initiating events affect one or
more subsystems, the level of shared states and other
essential entities among them can positively or nega-
tively affect the risk management process of the entire
Complex SoS. Therefore, modelers and risk analysts
should recognize and exploit these attributes of
shared states and other essential entities among sub-
systems. As a natural example of interdependent sub-
systems, the states of the Earth and its moon relative
to each other and to the sun are known at any instant
due to shared gravitational forces. In this case, with-
out any initiating events affecting any of them, the
states of their celestial coordinates in space and time
can be determined.

Uncertainty analysis becomes even more impera-
tive in risk analysis of emergent Complex SoS. Two
major sources of uncertainty in modeling affect risk
analysis (Pate-Cornell, 1990, 1996; Apostolakis,
1999). Knowledge (epistemic) uncertainty may mani-
fest itself in faulty selection of appropriate model
topology (structure) and model parameters, due to
ignorance of the system or of the SoS under consid-
eration. Variability (aleatory) uncertainty applies to
all relevant and important events and must not be
overlooked. Sources of uncertainty dominate most
decision-making processes, especially Complex SoS,
and are the Achilles’ heel for all deterministic and
probabilistic models. Sources of uncertainty and lack
of understanding of the complexity associated with

one subsystem of SoS would likely result in
(i) adherence to unrealistic assumptions, (ii) a lack
of awareness of and accountability to the critical I-I
of the SoS under consideration, (iii) a poorly selected
representative model topology and model compre-
hensiveness, (iv) a dated or insufficient database to
populate and calibrate the multiple models, and
(v) risk scenarios essential to any risk assessment,
management, and communication process being
poorly represented or structured for all interdepend-
ent and interconnected systems. In addition, model
uncertainties are often introduced through human
errors of both commission and omission. In sum,
uncertainty analysis associated with SoS is probably
one of the most difficult, albeit important, tasks in
the broader risk analysis process.

1.II.3 SYSTEMS ENGINEERING AND RELATING
VULNERABILITY AND RESILIENCE TO THE RISK
FUNCTION

Risk analysis and systems engineering/analysis share a
common philosophical approach to problem solving,
but theydiffer in theirhistorical evolutionand technical
maturity.Both aspire to theGestalt–holistic philosophy
in their problem-solvingmethodologies. Systemsmod-
eling frameworks build on aplethoraof theories,meth-
ods, tools, techniques, and practice to provide, to the
extent possible, the instruments with which problems
are studied, assessed, understood, managed, and
solved (Haimes, 1989, 2009). Risk analysis is similar
to systemsengineering/systemsanalysis,which is predi-
cated on the centrality of the state-space theory and
practice and of their role in determining the resulting
outputs (consequences) for each input (initiating
event). Note that (i) the performance capabilities of a
system are a function of its state vector; (ii) a system’s
vulnerability and resilience vectors are each a function
of the input, its time of occurrence, and (the vector
of ) the states of the system and of the Complex SoS;
(iii) the consequences are functions of the time of the
event, the states vector of, the vulnerability, and the
resilience of the system and of the Complex SoS;
(iv) the states of a system are time dependent and
commonly fraught with variability uncertainties and
knowledge uncertainties; and (v) risk is a measure
of the probability and severity of adverse effects
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(i.e. consequences). These five premises, amongothers,
imply that risk is a vector of the same units (dimensions)
as the consequences and is a function of (i) time; (ii) the
probability of the threat (initiating event) and its specific-
ity (input); (iii) the probability of the consequences, given
the threat; (iv) the states of the system (including its per-
formance capability, vulnerability, and resilience); and
(v) the vector of the resulting consequences.

Based on the above discussion, it is appropriate to
make the time domain explicit in the questions of the
risk assessment process (developed by Kaplan and
Garrick (1981)), and to the three original questions,
namely, “What can go wrong?What is the likelihood?
What are the consequences?,” we add a fourth ques-
tion: “Over what time frame?” (Haimes, 1991).

Consider a sample of the multidimensional vector of
consequences from hurricanes Harvey and Irma that
hit the southern part of the United States in 2017: loss
of lives; displaced population; destruction of major
infrastructure Complex SoS, e.g. electrical grid, trans-
portation, and water supply; and major flooding of
homes, roads, and myriad facilities. Other conse-
quences are loss of jobs and erosion of confidence in
government and technology, among others. If we were
to develop risk scenarios for future hurricanes with an
unusually high surge of water, a similar vector of risk
components would necessarily emerge from the risk
assessment process. Since consequences are measured
through a natural vector of noncommensurate attri-
butes, the units of each element of the risk vector ought
to correspond respectively to the same units of the vec-
tor of consequences for each system that constitute a
Complex SoS. Identifying and modeling the I-I among
the myriad infrastructures, within and among the
affected populations and communities, become a chal-
lenging risk modeling and management task.

The above discussion on risk analysis implies that
significant modeling efforts are required to first evalu-
ate the vector of consequences for each threat scenario
(as functions of the threat (initiating event), the vulner-
ability and resilience of the Complex SoS and their sub-
systems, and the time of the event). Then each element
of this vector must be paired with the (i) probability of
the scenario’s occurrence or (ii) probability of the
severity of the consequences. This fundamentally com-
plex modeling and analysis process cannot be per-
formed correctly and effectively without relying on
the states of the system being studied.

The multifaceted composition of risk to Complex
SoS includes the levels of uncertainty and intensity
of the initiating events or threats, the time frame,
and the dynamic, probabilistic, and often nonlinear
natures of the states of all natural and constructed
environments on which the system’s vulnerability
and resilience depend. This intricacy cannot be mod-
eled and understood on an ad hoc basis. In other
words, we must understand, model, and define the
complexity of risk, vulnerability, and resilience in a sys-
temic way and through a methodical, theoretically
based systems approach, where the states of the system
constitute the essence of the analysis.

In sum, by projecting Heisenberg’s uncertainty
principle and Einstein’s advice on the complexity of
theories to the field of risk analysis, we assert, by para-
phrasing, that (i) to the extent that quantifying the vul-
nerability to and the resilience and risk analysis of
Complex SoS is precise, it is not real and (ii) to the
extent that quantifying the vulnerability to and the
resilience and risk analysis of Complex SoS is real,
it is not precise.

1.II.4 MODELING AND QUANTIFYING THE
CONSEQUENCES AND RISKS TO THREATENED
COMPLEX SYSTEMS OF SYSTEMS AND THEIR
VULNERABILITY AND RESILIENCE

This section builds on the premise introduced earlier
that both vulnerability and system resilience are man-
ifestations of the states of the system. In the following
modeling effort, we use an existing discrete, linear,
time-invariant, dynamic, and normally distributed sto-
chasticmodel to formulate the dynamics of the vulner-
ability and resilience of a system (Guo and Haimes,
2017). The intention is to motivate researchers and
practitioners to develop causal relationship models
with which to relate the vulnerability and resilience
of a system, and of Complex SoS, to policies and
actions made for reducing their vulnerability and
enhancing their resilience for specific threats.

The literature in systems engineering, operations
research, system dynamics, decision analysis, process
control, and risk analysis, among others, is replete
with tools and assumptions to enable analysts and
practitioners to model Complex SoS with simplified
models. The most relevant example is control
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theory, or simply process control. The characteriza-
tion and quantification of the states of a threatened
system analyzed through its high vulnerability and
low resilience, and the ultimate quantification of
the associated risk function – fall into this modeling
paradigm. As noted earlier, fundamental tradeoffs
exist between model complexity and solution feasi-
bility or simplicity. Indeed, since models ought to
be as simple as possible and as complex as required,
then the ultimate choice depends on myriad factors.
For example, most graduate curricula in systems
engineering, electrical engineering, and process con-
trol focus primarily on multidimensional, continuous
and discrete dynamic, linear – with time-invariant
coefficients – and normally distributed stochastic
models. The reason is that relatively simple closed-
form solutions for such models exist and are widely
used. What follows is a representation of the vulner-
ability and resilience of a system adopted from a sim-
plified modeling approach.

Let the state vectors of the vulnerability and resil-
ience of the system at time k be represented, respec-
tively, by Eq. (1.1):

v k = v1 k ,v2 k , and r k = r1 k ,r2 k 1 1

We consider that the dynamical changes of v(k)
and r(k) are independent of each other. This assump-
tion will enable us to use a linear dynamic model. (It
is also possible to define and add to the system of
state equations a new state variable that relates
the associated interdependency.) We represent the
dynamics of the vulnerability and resilience of the
system in the following discrete linear, time-invari-
ant, dynamic, and normally distributed stochas-
tic model.

For time (stage) k = 0, …, T − 1, system’s vulnera-
bility and resilience are expressed with the set
of Eq. (1.2):

v1 k+ 1 = a1v1 k + b11u1 k +b12u2 k +w1 k

v2 k+ 1 = a2v2 k + b21u1 k +b22u2 k +w2 k

r1 k+ 1 = a3r1 k +b31u1 k +b32u2 k +w3 k

r2 k+ 1 = a4r2 k +b41u1 k +b42u2 k +w4 k

1 2

where u1(k) represents the threat (adverse distur-
bance), u2(k) represents risk management actions,

and wi(k) for I = 1, 2, 3, 4 are independent and nor-
mally distributed random variables that represent ran-
dom variability in the states introduced into the
model. The initial conditions are represented
in Eq. (1.3):

v 0 = v0,r 0 = r0, 1 3

Model coefficients aj and bij (i = 1, 2, 3, 4; j = 1, 2)
describe the contributions from the previous system
states and system inputs to the current system states.
These coefficients can be derived from historical data
or system simulation. The time horizon is T stages
(k = 0, …, T − 1).

Let the vector of consequences y(k) of the assumed
threat to the system at time k be represented by y(k) =
[y1(k), y2(k)]; it can be described by the following set
of equations:

y1 k = c1v1 k + d1r1 k + υ1 k

y2 k = c2v2 k + d2r2 k + υ2 k
1 4

The coefficient vectors are defined as c = [c1, c2]
T

and d = [d1, d2]
T, where c and d are model coeffi-

cients and the variables υ1(k) and υ2(k) are inde-
pendent and normally distributed random
variables that represent the element of randomness
introduced into the model. The coefficients ai and
bij (i = 1, 2, 3, 4; j = 1, 2) describe the “contributions”
from the previous system states and system inputs
to the current system states. These coefficients
can be derived from historical data or from system
simulation. In short, Eqs. (1.1)–(1.4) represent vec-
tors of vulnerability, resilience, and consequences.

1.II.5 ON THE RELATIONSHIP AMONG
VULNERABILITY, RESILIENCE,
AND PREPAREDNESS

Vulnerability, resilience, and preparedness are con-
sidered integral to addressing risks associated with
Complex SoS. We noted how a natural and/or human
(e.g. a terrorist) threat at a specific time to a given sys-
tem (i) can adversely affect one ormore states of a sys-
tem, or a Complex SoS; (ii) an initiating event is
commonly multidimensional with its probability and
time frame; and (iii) where the states of a system, or
Complex SoS, are commonly represented by
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vulnerability and resilience and the probabilistic mul-
tidimensional consequences. Moreover, the level and
magnitude of the vulnerability and resilience of each
system and of the Complex SoS as a whole and conse-
quently the level andmagnitude of the associated con-
sequences all are functions of the states of the systems
and of the Complex SoS.

The mathematics and engineering literatures on
what is commonly termed state-space theory quantify
the states of a system as functions of time, inputs, and
random decision and exogenous variables, and where
the outputs (consequences) are functions of the states
of the system. Given that both the vulnerability and
resilience of a system aremanifestations of the respec-
tive states of the system, it is logical to quantify the
consequences resulting from a threat through the
states of the system.

Determining the impacts of current decisions on
future options requires a continuous quantification
of the dynamically evolving risk function. Intelli-
gence collection and analysis associated with the
tracking of EFCs to a targeted physical infrastruc-
ture, or cyber–physical infrastructure Complex
SoS, constitute an ongoing process of a commonly
adaptive, incremental risk modeling, assessment,
management, and communication. Bayesian analy-
sis (discussed extensively in Chapters 2 and 6) con-
stitutes a critically important mechanism with which
to update the probabilities of specific threats with
newly gathered intelligence. Through the theory
of scenario structuring, a large number of conceiv-
able scenarios are developed and ultimately
reduced to a group of significant and critical ones
(Haimes, 2016). Without this last step, the resources
required to invest in preparedness for a large num-
ber of scenarios would be prohibitive. The often
incoherent and inconclusive sources of information
and other intelligence on a tracked scenario require
continued reassessing and reevaluating their evolu-
tion (along with all other tracked scenarios) at each
stage of the analysis. As more intelligence and
information become available, incremental invest-
ment in risk management can be an effective policy
through which to minimize potential disasters
within the budgeted resources.

In his classic book Normal Accidents, Perrow
(1999) presents a comprehensive discussion of acci-
dents. Appreciating the interplay among terrorism,

natural hazards, and accidents is fundamental to
understanding and benefiting from the synergistic
results derived from investing for either purpose.
A well-planned and well-executed preparedness
plan can make threatened systems more resilient
against both types of events. Also, it is imperative
to understand the difference in the public percep-
tion and the psychological response to economic
impacts and other devastation resulting from acts
of terrorism versus natural hazards and accidents.
Thus, it is constructive to distinguish between the
two from sociopolitical perspectives. Indeed,
although the consequences from the two events
might be similar, the nature of the initiating events
in the case of terrorism is critical in terms of public
perception and acceptance, economic impacts (e.g.
demand reduction), and impact on public policy
and overall national security. In other words, it
can be viewed as an unacceptable risk to be unpre-
pared for certain types of terrorist attacks, as com-
pared with certain types of natural disasters,
because the sentiment of public acceptance can be
entirely different depending on the event.

One approach to measuring the resilience of an
infrastructure is to predict the trajectory of recovery
time following a catastrophic event. Namely, how long
would it take to achieve recovery from 10% to 90% of
full capability, and at what level of resources? In some
sense, cost and recovery time become synonymous
with the resilience of Complex SoS and their interde-
pendent and interconnected systems (infrastructures).
Consider, for example, the possibility of developing a
nationally shared, very secure information infrastruc-
ture dedicated to supporting critical Complex SoS.
Such a system could add resilience to the country’s
critical infrastructures, particularly utilities and finan-
cial institutions that rely heavily on secure cyberspace
to conduct their business. Furthermore, it could
potentially be a cost-effective vehicle for reducing
risks to critical interdependent infrastructures when
compared with the alternative of hardening each of
the individual infrastructures separately. Some of
the ways that such a system could be used to enhance
resilience are to support automation, distributed deci-
sion making, information sharing, remote human
monitoring and control, automated sensing and con-
trol, machine-to-machine communication, and real-
time network reconfiguration.
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In the next section, we address the prevailing poli-
cies of executives of privately owned critical infra-
structure, which lead to the tragedy of the commons
syndrome.

1.II.6 INFRASTRUCTURE
INTERDEPENDENCIES AND THE TRAGEDY
OF THE COMMONS

The I-I among infrastructure Complex SoS, such as
energy, telecommunications, banking and finance,
transportation, and human services, have been widely
acknowledged in the literature. Often recognized, but
not proactively acted upon, is the central role that the
resilience of one infrastructure plays in determining
the resilience of other interdependent infrastructures
as Complex SoS. This notion, akin to the tragedy of
the commons, highlights the role of I-I in the resilience,
and ultimate security, of Complex SoS.

Consider, for example, the importance of a resilient
water supply system. To varying degrees, the failure of
a water supply system (similar to any other intercon-
nected and interdependent system) would affect the
performance of other infrastructures. In particular,
the operation of wastewater facilities as a Complex
SoS may be hampered due to a shortage of finished
(fresh)water, emergency services may be strained,
and the generation and distribution of electrical power
may be disrupted. Furthermore, this Complex SoS is
managed by multiple government agencies at the fed-
eral, state, regional, and local levelswithmultiple stake
holders, decision makers, and conflicting and often
competing objectives. Also, these agencies have differ-
ent missions, resources, agendas, and timetables.
Finally, organizational and human errors and failures
are common and may result in dire consequences.
Thus, making a water supply infrastructure more resil-
ient would affect the performance of other interde-
pendent systems. Here is where the tragedy of the
commons must be understood in the broad infrastruc-
ture resilience context.

1.II.7 EPILOGUE

Part II of this chapter highlights the centrality of the
relationships among the vulnerability and resilience

of, and the risk to, Complex SoS. Note that all three
terms/attributes – vulnerability, resilience, and risk,
while representing different characteristics of the
Complex SoS under consideration, share the follow-
ing common denominator: All are functions of the
(i) states of the Complex SoS, (ii) initiating event/
threat, and (iii) time frame.
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