
c01.indd 01/27/2018 Page 1

WHAT’S IN THIS CHAPTER?

➤ History of the .NET web stack

➤ Explanation of all the pieces of this new .NET Core puzzle

➤ Introduction to the ASP.NET Core and the new concepts it brings

➤ Some of the new notable features of ASP.NET Core MVC

The year 2016 is a historical milestone for Microsoft’s .NET web stack, as it is the year in
which Microsoft released .NET Core, a complete open-source and cross-platform frame-
work for building applications and services. It includes ASP.NET Core and a reworked MVC
framework.

This fi rst chapter is a brief introduction to ASP.NET Core. It can be used either as a refresher
if you already have experience with this new framework or as a teaser and summary if you
haven’t seen anything yet.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the
book’s ISBN (978-1-119-18131-6), and you will fi nd the code in the chapter 1 download and
individually named according to the names throughout the chapter.

GETTING THE NAMES RIGHT

Before delving into the new framework, it is important to get all the names and version num-
bers right, as for the untrained eye it can otherwise seem just a big mess.

1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 2

ASP.NET Core
ASP.NET Core was released in 2016. It is a full rewrite of ASP.NET, completely open-source,
cross-platform, and developed without the burden of backward compatibility. Notable features are
a new execution environment, a new project and dependency management system, and a new web
framework called ASP.NET Core MVC that unifi es the programming model of both ASP.NET
MVC and WebAPI. The rest of this chapter is mainly focused on all the features of ASP.NET Core.

.NET Core
ASP.NET Core can run on the standard .NET framework (from version 4.5 onward), but in order
to be cross-platform it needed the CLR to be cross-platform as well. That’s why .NET Core was
released. .NET Core is a small, cloud-optimized, and modular implementation of .NET, consist-
ing of the CoreCLR runtime and .NET Core libraries. The peculiarity is that this runtime is made
of many components that can be installed separately depending on the necessary features, can be
updated individually, and are bin-deployable so that different applications can run on different ver-
sions without affecting each other. And, of course, it can run on OSX and Linux.

.NET Core also provides a command-line interface (referred to as .NET CLI) that is used by both
tools and end users to interact with the .NET Core SDK.

Visual Studio Code
Visual Studio Code is the cross-platform text editor developed by Microsoft for building ASP.NET
Core applications (and many other frameworks and languages) without the full-fl edged Visual
Studio. It can also be used on OSX and Linux.

Visual Studio 2017
Visual Studio 2017 introduces a completely renewed installation procedure based on “workloads” to
better tailor it to users’ needs. One of these workloads, the ASP.NET one, includes integration with
the most popular front-end tools and frameworks. This book covers them further in the upcoming
chapters.

Versions Covered in this Book
I hope that now the version and naming madness is a bit clearer. This book covers Visual Studio
2017, ASP.NET Core (and ASP.NET Core MVC), and .NET Core, but it will not cover anything
that is related to the full framework. At the end of the book, Visual Studio Code is also covered.

Figure 1-1 shows how all these components relate to each other.

A Brief History of the Microsoft .NET Web Stack ❘ 3

c01.indd 01/27/2018 Page 3

FIGURE 1-1: Diagram of the new .NET stack

A BRIEF HISTORY OF THE MICROSOFT .NET WEB STACK

Before diving into the new features of ASP.NET Core and ASP.NET Core MVC, I think it is impor-
tant to look back at the evolution of the .NET web stack and the reasons why we arrived at ASP
.NET Core and .NET Core.

ASP.NET Web Forms
In 2001, Microsoft released the .NET framework and its fi rst web framework: ASP.NET Web
Forms. It was developed for two types of users:

➤ Developers who had experience with classic ASP and were already building dynamic web
sites mixing HTML and server-side code in Jscript. They were also used to interacting with
the underlying HTTP connection and web server via abstractions provided by the core
objects.

➤ Developers who were coming from the traditional WinForm application development. They
didn’t know anything about HTML or the web and were used to building applications by
dragging UI components on a design surface.

4 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 4

Web Forms were designed to cater to both types of developers. Web Forms provided the abstractions
to deal with HTTP and web server objects and introduced the concept of server-side events to hide
the stateless nature of the web, using the ViewState. The result was a very successful, feature-rich
web framework with a very approachable programming model.

It had its limitations though:

➤ All the core web abstractions were delivered within the System.Web library, and all the other
web features depended on it.

➤ Because it was based on a design-time programming model, ASP.NET, the .NET framework
and also Visual Studio were intimately tied. For this reason, ASP.NET had to follow the
release cycle of the other products, meaning that years passed between major releases.

➤ ASP.NET only worked with Microsoft’s web server, Internet Information Services (IIS).

➤ Unit testing was almost impossible and only achievable using libraries that changed the way
Web Forms worked.

ASP.NET MVC
For a few years these limitations didn’t cause any problems, but with other frameworks and lan-
guages pushing the evolution of web development, Microsoft started to struggle to follow their
faster pace. They were all very small and focused components assembled and updated as needed,
while ASP.NET was a huge monolithic framework that was diffi cult to update.

The problem was not only a matter of release cycles. The development style also was chang-
ing. Hiding and abstracting away the complexities of HTTP and HTML markup helped a lot of
WinForm developers to become web developers, but after more than fi ve years of experience, devel-
opers wanted more control, especially over the markup rendered on pages.

In order to solve these two problems, in 2008 the ASP.NET team developed the ASP.NET MVC
framework, based on the Model-View-Controller design pattern, which was also used by many of
the popular frameworks at the time. This pattern allowed a cleaner and better separation of busi-
ness and presentation logic, and, by removing the server-side UI components, it gave complete con-
trol of the HTML markup to developers. Furthermore, instead of being included inside the .NET
framework, it was released out of band, making faster and more frequent releases possible.

Although the ASP.NET MVC framework solved most of the problems of Web Forms, it still
depended on IIS and the web abstracting library System.Web. This means that it was still not pos-
sible to have a web framework that was totally independent from the larger .NET framework.

ASP.NET Web API
Fast-forward a few years, and new paradigm for building web applications started to become wide-
spread. These were the so-called single page applications (SPAs). Basically, instead of interconnected,
server-generated, data-driven pages, applications were becoming mostly static pages where data was
displayed interacting with the server via Ajax calls to web services or Web APIs. Also, many services
started releasing APIs for mobile apps or third-party apps to interact with their data.

Another web framework was released to adapt better to these new scenarios: ASP.NET Web API.
The ASP.NET team also took this opportunity to build an even more modular component model,

.NET Core ❘ 5

c01.indd 01/27/2018 Page 5

fi nally ditching System.Web and creating a web framework that could live its own life indepen-
dently from the rest of ASP.NET and the larger .NET framework. A big role was also played by the
introduction of NuGet, Microsoft’s package distribution system, making it possible to deliver all
these components to developers in a managed and sustainable way. One additional advantage of the
break-up from System.Web was the capability to not depend on IIS anymore and to run inside cus-
tom hosts and possibly other web servers.

OWIN and Katana
ASP.NET MVC and ASP.NET Web API solved all the shortcomings of the original ASP.NET, but,
as often happens, they created new ones. With the availability of lightweight hosts and the prolifera-
tion of modular frameworks, there was the real risk that application developers would need separate
processes to handle all the aspects of modern applications.

In order to respond to this risk even before it became a real problem, a group of developers, tak-
ing inspiration from Rack for Ruby and partially from Node.js, came out with a specifi cation to
standardize the way frameworks and other additional components can be managed from a central
hosting process. This specifi cation is called OWIN, which stands for Open Web Interface for .NET.
OWIN defi nes the interface that components, be they full-fl edged frameworks or just small fi lters,
have to implement in order to be instantiated and called by the hosting process.

Based on this specifi cation, in 2014 Microsoft released Katana, an OWIN-compliant host and
server, and implemented lots of connectors to allow developers to use most of its web frameworks
inside Katana.

But some problems persisted. First of all, ASP.NET MVC was still tied to System.Web, so it could
not run inside Katana. Also, because all the frameworks were developed at different points in time,
they had different programming models. For example, both ASP.NET MVC and Web API supported
dependency injection, but differently from each other. This meant that developers using both frame-
works in the same application had to confi gure dependency injection twice, in two different ways.

The Emergence of ASP.NET Core and .NET Core
The ASP.NET team realized that there was only one way to solve all the remaining problems and at
the same time make web development on .NET possible outside of Visual Studio and on other plat-
forms. They re-wrote ASP.NET from the ground up and created a new cross-platform .NET runtime
that later came to be .NET Core.

.NET CORE

Now that it is probably more clear why ASP.NET Core came to be, it is time to take a better look at
.NET Core, the new entry point of this whole new stack. .NET Core is a cross-platform and open-
source implementation of the .NET Standard Library, and it is made of a few components:

➤ The .NET Runtime, also known as CoreCLR, which implements the basic functionalities
such as JIT Compilation, the base .NET types, garbage collection, and low-level classes

➤ CoreFX, which contains all the APIs defi ned in the .NET Standard Library, such as
Collections, IO, Xml, async, and so on

6 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 6

➤ Tools and language compilers that allow developers to build apps

➤ The dotnet application host, which is used to launch .NET Core applications and the devel-
opment tools

DEFINITION The .NET Standard Library is a formal specifi cation of all the
.NET APIs that can be used in all .NET runtimes. It basically enhances the CLR
specifi cations (ECMA 335) by also defi ning all the APIs from the Base Class
Library (BCL) that must be implemented by all .NET runtimes. The goal of
such a standard is to allow the same application or library to run on different
runtimes (from the standard framework to Xamarin and Universal Windows
Platform).

Getting Started with .NET Core
Installing .NET Core on Windows is pretty trivial, as it gets installed by selecting the .NET Core
workload when installing Visual Studio 2017. And creating a .NET Core application is just like
creating any other application with Visual Studio. Chapter 8 shows how to install .NET Core and
develop applications without Visual Studio, also on a Mac, but it is important to understand how
.NET Core applications are built because it will it make easier later to do the same without Visual
Studio or even on another operating system.

The dotnet Command Line
The most important tool that comes with .NET Core is the dotnet host, which is used to launch
.NET Core console applications, including the development tools, via the new .NET command-line
interface (CLI). This CLI centralizes all the interactions with the framework and acts as the base
layer that all other IDEs, like Visual Studio, use to build applications.

In order to try it out, just open the command prompt, create a new folder, move into this folder, and
type dotnet new console. This command creates the skeleton of a new .NET Core console appli-
cation (Listing 1-1), made of a Program.cs code fi le and the .csproj project defi nition fi le, named
as the folder in which the command was launched.

LISTING 1-1: Sample Program.cs fi le

using System;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)

Introducing ASP.NET Core ❘ 7

c01.indd 01/27/2018 Page 7

 {
 Console.WriteLine("Hello World!");
 }
 }
}

The new command can be executed using other arguments to specify the type of project to build:
console (the one we used before), web, mvc, webapi, classlib, xunit (for unit testing), and some
others that are discussed further in Chapter 8. This is also the structure of all commands of the
.NET CLI: dotnet followed by the command name, followed by its arguments.

.NET Core is a modular system, and, unlike the standard .NET framework, these modules have to
be included on a one to one basis. These dependencies are defi ned in the .csproj project fi le and
must be downloaded using another command of the .NET Core CLI: restore. Executing dotnet
restore from the command prompt downloads all the dependencies needed by the application. This
is needed if you add or remove dependencies while developing, but it’s not strictly needed immedi-
ately after creating a new application because the new command runs it automatically for you.

Now that all the pieces are ready, the application can be executed by simply typing the command
dotnet run. This fi rst builds the application and then invokes it via the dotnet application host.

In fact, this could be done manually as well, fi rst by explicitly using the build command and then
by launching the result of the build (which is a DLL with the same name of the folder where the
application has been created) using the application host: dotnet bin\Debug\netcoreapp2.0\
consoleapplication.dll (consoleapplication is the name of the folder).

In addition to building and running apps, the dotnet command can also deploy them and create
packages for sharing libraries. It can do even more thanks to its extensibility model. These topics are
discussed further in Chapter 8.

INTRODUCING ASP.NET CORE

Now that you are armed with a bit of knowledge of .NET Core tooling, you can safely transition to
Visual Studio and explore ASP.NET Core.

Overview of the New ASP.NET Core Web Application Project
As with previous version of the framework, you create a new ASP.NET Core application using the
command menu File ➪ New ➪ Project and then choosing ASP.NET Core Web Application from
the .NET Core group of projects.

Here you have several additional options, as shown in Figure 1-2:

➤ Console App: This creates a console application like the one in Listing 1-1.

➤ Class Library: This is a .NET Core library that can be reused in other projects.

➤ Unit Test Project: This is a test project running on the Microsoft MSTest framework.

➤ xUnit Test Project: This is another test project, but built using the xUnit OSS test framework.

8 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 8

FIGURE 1-2: New Project Window

At this point you get the familiar template selection window (Figure 1-3), which by default gives you
three options:

➤ Empty creates an ASP.NET Core project with the bare minimum to get you started.

➤ Web API creates an ASP.NET Core project that contains the dependencies and the skeleton
on which to build a REST web application.

➤ Web Application creates a web application built with Razor pages, which is a simpler devel-
opment paradigm that isn’t covered in this book.

➤ Web Application (Model-View-Controller) creates the full-blown project with everything you
might need in a web application.

➤ Angular, React.js, and React.js and Redux are project templates used to create single-page
applications using these frameworks.

In addition to the authentication type, you can also choose with which version of ASP.NET Core
to build the application (ASP.NET Core 1.0, 1.1, or 2.0) and whether to enable support for Docker
(this last option is covered in Chapter 7).

For this initial overview, you will select the Web Application (Model-View-Controller) template and
proceed through all the pieces of the puzzle.

Introducing ASP.NET Core ❘ 9

c01.indd 01/27/2018 Page 9

Figure 1-4 shows the all the fi les and folders added to the project, and you can see that there are
already a lot of changes compared to the traditional ASP.NET project. Apart from the Controllers
and Views folders, all the rest is different.

FIGURE 1-3: Web Application templates

Starting from the top, the fi rst new element is the Connected Services node, which contains the list
of extensions that connect to a third party remote service.

The next element is a node called Dependencies. This contains all the dependencies the application
has, which can be .NET packages (via NuGet), Bower, as shown in Figure 1-4, or NPM if you appli-
cation needs it.

A reference to Bower appears also later in the tree with the fi le bower.json, which contains the
actual confi guration of all the dependencies. These dependencies, once downloaded, will be stored
in the lib folder inside the new wwwroot folder.

The next element is the wwwroot folder, which is even represented with a different “globe” icon.
This is where all the static fi les of the application, CSS styles, images and JavaScript fi les, will be.

These fi les in the root of the project are also new additions:

➤ appsettings.json is the new location for storing application settings instead of storing
them in the appsetting element in the web.config.

➤ bower.json is the confi guration fi le for Bower dependencies.

➤ bundleconfig.json defi nes the confi guration for bundling and minifying JavaScript and
CSS fi les.

10 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 10

➤ Program.cs is where the web application starts. As mentioned earlier, the .NET Core
app host can only start console applications, so web projects also need an instance of
Program.cs.

➤ Startup.cs is the main entry point for ASP.NET Core web applications. It is used to
confi gure how the application behaves. Thus the Global.asax fi le, which was used for this
purpose before, has disappeared.

➤ web.config disappeared as it’s not needed any more.

FIGURE 1-4: The elements of the new ASP.NET Core Web Application

Of the many changes introduced in the new project template, some are on the .NET side, like the
Startup.cs, and others are in the broader web development sphere, like the introduction of Bower,
the capability to include dependencies to NPM, minifi cation, bundling, and the new approach to
publishing applications.

Chapter 5 covers Bower and NPM in more detail, while Chapter 6 describes automated builds and
publishing. The rest of this chapter is about all the changes introduced to the .NET side of things,
starting with the Startup.cs fi le.

OWIN
In order to understand the new ASP.NET Core execution model and why there is this new Startup
.cs fi le, you have to look at OWIN (Open Web Interface for .NET), the application model by which

Introducing ASP.NET Core ❘ 11

c01.indd 01/27/2018 Page 11

ASP.NET Core is inspired. OWIN defi nes a standard way for application components to interact
with each other. The specifi cation is very simple as it basically defi nes only two elements: the layers
of which an application is composed and how these elements communicate.

OWIN Layers
The layers are shown in Figure 1-5. They consist of the following:

➤ Host: The host is responsible for starting up the server and managing the process. In ASP
.NET Core this role is implemented by the dotnet host application or by IIS directly.

➤ Server: This is the actual web server, the one that receives HTTP requests and sends back the
responses. In ASP.NET Core there are a few implementations available. These include IIS,
IIS Express, and Kestrel or WebListener when the application is run within the dotnet host in
self-hosting scenarios.

➤ Middleware: Middleware is composed of pass-through components that handle all requests
before delivering them to the fi nal application. These components make up the execution
pipeline of an ASP.NET Core application and can implement anything from simple logging
to authentication to a full-blown web framework like ASP.NET MVC.

➤ Application: This layer is the code specifi c to the fi nal application, typically built on top of
one of the middleware components, like a web framework.

Application

Middleware

Server

Host

FIGURE 1-5: OWIN Layers

OWIN Communication Interface
In OWIN, all the components that are part of the pipeline communicate with each other by passing
a dictionary that contains all information about the request and server state. If you want to make
sure all middleware components are compatible, they must implement a delegate function called
AppFunc (or application delegate):

using AppFunc = Func<
 IDictionary<string, object>, // Environment
 Task>; // Done

12 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 12

This code basically says that a middleware component must have a method that receives the
Environment dictionary and returns a Task with the async operation to be executed.

NOTE The signature of AppFunc is the one defi ned by the OWIN specifi ca-
tions. While working inside ASP.NET Core, it’s rarely used as the .NET Core
API provides an easier way to create and register middleware components in the
pipeline.

A Better Look at Middleware
Even if not strictly standardized in the specifi cation yet, OWIN also recommends a way to set up the
application and register middleware components in the pipeline by using a builder function. Once
registered, middleware components are executed one after the other until the last produces the result
of the operation. At this point, middleware is executed in the opposite order until the response is
sent back to the user.

An example of a typical application built with middleware might be the one shown in Figure 1-6.
The request arrives, is handled by a logging component, is decompressed, passes through authen-
tication, and fi nally reaches the web framework (for example ASP.NET MVC), which executes the
application code. At this point the execution steps back, re-executing any post-processing steps in
middleware (for example, recompressing the output or logging the time taken to execute the request)
before being sent out to the user.

LOGGING COMPRESSION AUTH

M

V

C

REQUEST

RESPONSE

FIGURE 1-6: Execution of middleware

Anatomy of an ASP.NET Core Application
In order to better understand ASP.NET Core and its new approach to web development with .NET,
it is worthwhile to create a new ASP.NET Core project. This time you will use the Empty project
template to focus just on the minimum sets of fi les needed to start an ASP.NET Core application.

Introducing ASP.NET Core ❘ 13

c01.indd 01/27/2018 Page 13

As shown in Figure 1-7, the project tree in the Solution Explorer is almost empty in comparison to
the Web Application project template of Figure 1-4. The only elements needed are the Program.cs
and Startup.cs code fi les.

FIGURE 1-7: Empty project template

Host Builder Console Application
An ASP.NET Core application is basically a console application (Listing 1-2) that creates a web
server in its Main method.

LISTING 1-2: Program.cs

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

The BuildWebHost method is used to create the web application host using the default confi guration
and by specifying which class to use for the startup (UseStartup<Startup>).

14 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 14

The web host created uses Kestrel as the server, sets it up to integrate with IIS when needed, and
specifi es all the default confi gurations for logging and confi guration sources.

ASP.NET Core Startup Class
The confi guration of the execution pipeline of an ASP.NET Core application is done via the
Configure method of the Startup class. At its simplest this method needs a parameter of type
IApplicationBuilder to receive an instance of the application builder, which is used to assemble
together all middleware components.

Listing 1-3 shows the code of the Startup class created by the empty project template. It has two
methods, ConfigureServices and the aforementioned Configure. ConfigureServices is covered
later in this chapter, when talking about dependency injection, so you’ll focus on the Configure
method for the moment.

LISTING 1-3: Startup.cs

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 // This method gets called by the runtime. Use this method to configure the
HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
}

The important part of Listing 1-3 is the call to the app.Run method. It tells the application to run
the delegate function specifi ed in the lambda expression. In this case, this web application will
always return the text string “Hello World!”.

The Run method is used to confi gure terminal middleware, which doesn’t pass the execution to thel
next component in the pipeline. In Listing 1-3, a specifi c middleware component is also added, using
app.UseDeveloperExceptionPage(). As general rule, third-party middleware usually provides
a UseSomething method for facilitating the registration into the pipeline. Another way of adding

New Fundamental Features of ASP.NET Core ❘ 15

c01.indd 01/27/2018 Page 15

custom middleware is by calling the app.Use method, specifying the application delegate function
that should treat the request.

As you might have noticed, in Listing 1-3 the Configure method has an additional parameter:
IHostingEnvironment, which provides information on the hosting environment (including the cur-
rent EnvironmentName). You’ll see more about them in a while.

NEW FUNDAMENTAL FEATURES OF ASP.NET CORE

Together with a whole new startup model, ASP.NET Core also gained some features that previously
needed third-party components or some custom development:

➤ Easier handling of multiple environments

➤ Built-in dependency injection

➤ A built-in logging framework

➤ A better confi guration infrastructure that is both more powerful and easier to set up and use

Environments
One of the basic features available in ASP.NET Core is the structured approach for accessing infor-
mation about the environment in which the application is running. This deals with understanding
whether the environment is development, staging, or production.

This information is available inside the IHostingEnvironment parameter passed to the Configure
method. The current environment can be identifi ed by simply checking its EnvironmentName
property. For the most common environment names, there are some extension methods that make
the process even easier: IsDevelopment(), IsStaging(), and IsProduction(), and you can use
IsEnvironment(envName) for other more exotic names.

Once you have identifi ed the environment, you can add features to handle different conditions based
on the environment. For example, you can enable detailed errors to only be displayed in develop-
ment and user-friendly messages to only be displayed in production.

If differences between the environments are even more pronounced, ASP.NET Core allows dif-
ferent startup classes or confi guration methods per environment. For example, if a class named
StartupDevelopment exists, this class will be used instead of the standard Startup class when
the environment is Development. Likewise, the ConfigureDevelopment() method will be used
instead of Configure()f .

The environment is specifi ed via the environment variable ASPNETCORE_ENVIRONMENT, which can
be set in many different ways. For example, it can be set via the Windows Control Panel, via batch
scripts (especially in servers), or directly from within Visual Studio in the project properties debug
section (Figure 1-8).

16 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 16

FIGURE 1-8: Project settings

Once set via the GUI, this information is stored in the launchSettings.json fi le, as shown in
Listing 1-4.

LISTING 1-4: LaunchSettings.json

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:34933/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {

New Fundamental Features of ASP.NET Core ❘ 17

c01.indd 01/27/2018 Page 17

 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "EmptyApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:34934"
 }
 }
}

Dependency Injection
In the previous ASP.NET framework, the usage of external dependency injection libraries was left to
the goodwill of developers. ASP.NET Core not only has built-in support for it, but actually requires
its usage in order for applications to work.

What Is Dependency Injection?
Dependency injection (DI) is a pattern used to build loosely coupled systems. Instead of directly
instantiating dependencies or accessing static instances, classes get the objects they need somehow
from the outside. Typically these classes declare which objects they need by specifying them as
parameters of their constructor.

Classes designed following this approach adhere to the Dependency Inversion Principle. It states
that:

A. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

B. Abstractions should not depend on details. Details should depend on
abstractions.

Robert C. “Uncle Bob” Martin

This also means that these classes should not require concrete objects but just their abstractions, in
the form of interfaces.

The problem with systems built in this way is that, at a certain point, the number of objects to create
and to “inject” into classes can become unmanageable. To handle this, you have a factory method
that can take care of creating all these classes and their associated dependencies. Such a class is
called a container. Typically containers work by keeping a list of which concrete class they have to rr
instantiate for a given interface. Later when they are asked to create the instance of a class, they

18 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 18

look at all its dependencies and create them based on that list. In this way very complex graphs can
also be created with just one line of code.

In addition to instantiating classes, these containers, called Inversion of Control or l Dependency
Injection Containers (IoC/DI containers), can also manage the lifetime of dependencies, which
means that they also know whether they can reuse the same object or they must create another
instance every time.

NOTE This was a very brief introduction to a very wide and complicated topic.
There are numerous books on the topic, as well as lots of articles available on
the Internet. In particular I suggest the articles from Robert C. “Uncle Bob”
Martin or from Martin Fowler.

Using Dependency Injection in ASP.NET Core
Despite the relative complexity of the concept, using dependency injection in ASP.NET Core is
very easy. The confi guration of the container is done inside the ConfigureServices method of
the Startup class. The actual container is the IServiceCollection variable that is passed to the
method as a parameter named services. It is to this collection that all dependencies must be added.

There are two types of dependencies: the ones needed for the framework to work and those needed
by the application to work. The fi rst type of dependencies is usually confi gured via extension meth-
ods like AddService. For example, you can add the services needed to run ASP.NET MVC by call-
ing services.AddMvc(), or you can add the database context needed by the Entity Framework
using services.AddDbContext<MyDbContext>(...). The second type of dependencies is added by
specifying an interface and one concrete type. The concrete type will be instantiated every time the
container receives a request for the interface.

The syntax for adding the services depends on the kind of lifetime the service needs:

➤ Transient services are created every time they are requested and are typically used for
stateless lightweight services. Such services are added using services.AddTransient<IEmail
Sender,EmailSender>().

➤ Scoped services are created once per web request and are usually used to hold references
to repositories, data access classes, or any service that keeps some state that is
used for the whole duration of the request. They are registered using services

.AddScoped<IBlogRepository, BlogRepository>().

➤ Singleton services are created once, the fi rst time they are requested, and later the same
instance is reused for all following requests. Singletons are usually used to keep the status
of an application throughout all its life. Singletons are registered using services

.AddSingleton<IApplicationCache, ApplicationCache>().

A typical ConfigureServices method for an ASP.NET Core application can look like the following
snippet taken from the default project template when choosing individual user accounts:

New Fundamental Features of ASP.NET Core ❘ 19

c01.indd 01/27/2018 Page 19

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString
 ("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

Additionally, a specifi c instance can be given (and in this case this is what will always be created by
the container). For more complex scenarios a factory method can be confi gured to help the container
create instances of specifi c services.

The usage of the dependencies is even easier. In the constructor of the class, controller, or service,
just add a parameter with the type of the dependencies required. A better example is shown later in
this chapter when covering the MVC framework.

Logging
ASP.NET Core comes with an integrated logging library with basic providers that write to console
and to the debug output already confi gured as part of the setup of the default web host via the
WebHost.CreateDefaultBuilder as seen in Listing 1-2.

Logger Instantiation
The logger is injected directly using dependency injection by specifying a parameter of type
ILogger<T> in the constructor of the controllers or services. The dependency injection frame-
work will provide you with a logger whose category is the full type name (for example Wrox
.FrontendDev.MvcSample.HomeController).

Writing Log Messages
Writing messages is easily done with the extension methods provided by the built-in logging library.

_logger.LogInformation("Reached bottom of pipeline for request {path}", context.
Request.Path)
_logger.LogWarning("File not found")
_logger.LogError("Cannot connect to database")

Additional Logging Confi guration
The logger is already confi gured by default with the console and debug providers, but additional
providers and confi guration can be specifi ed.

20 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 20

All additional confi guration must be specifi ed in the Program.cs fi le, when setting up the web host,
using the ConfigureLogging method.

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging((hostingContext, logging)=>
 {
 //Here goes all configuration
 })
 .Build();

 ASP.NET Core comes with built-in providers to write to the console, the debug window, Trace,
Azure App logging, and the Event Log (only on the standard framework), but if needed third-party
logging providers like NLog or Serilog can be added as well.

For example, to add another provider like the one that writes to the Windows Event Log, logging
.AddEventLog() must be called inside the ConfigureLogging method.

Another important confi guration that must be specifi ed is the log level that you want to
write to the log fi les. This can be done for the whole application using the method logging

.SetMinimumLevel(LogLevel.Warning). In this example, only warnings, errors, or critical errors
will be logged.

Confi guration of the logging level can be more granular, taking into account the logger provider and
the category (most of the time the name of the class from which the message originates).

Say for example that you want to send all log messages to the debug provider and in the console
logger you are interested in all the messages from your own code but only in warnings or above
originating from the ASP.NET Core libraries.

This is confi gured using fi lters. They can be specifi ed via confi guration fi les, with code, or even with
custom functions.

The easiest approach is using JSON inside the standard appsettings.json
configuration file:{
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "Console": {
 "LogLevel": {
 "Microsoft.AspNet.Core": "Warning",
 "MyCode": "Information"
 }
 },
 "LogLevel": {
 "Default": "Warning",
 }
 }
}

New Fundamental Features of ASP.NET Core ❘ 21

c01.indd 01/27/2018 Page 21

Something similar can be done by calling the AddFilter method in the ConfigureLogging method
when building the web host:

logging.AddFilter<ConsoleLoggerProvider>("Microsoft.AspNet",LogLevel.Warning);
logging.AddFilter<DebugLoggerProvider>("Default",LogLevel.Information);

Both methods can be used together, and multiple fi lters can potentially apply to one single log mes-
sage. The logging framework applies the following rules to decide which fi lter to apply:

1. First it selects all the fi lters that apply to the provider and all the ones that are specifi ed with-
out the provider.

2. Then the categories are evaluated and the most specifi c is applied. For example Microsoft
.AspNet.Core.Mvc is more specifi c than Microsoft.AspNet.Core.

3. Finally, if multiple fi lters are still left, the one specifi ed as last is taken.

Confi guration
If you worked with Confi guration Settings in the standard ASP.NET framework, you know that it
could be very complicated to set up, apart from the simple scenarios.

The new confi guration framework supports different sources of settings (XML, JSON, INI, envi-
ronment variables, command-line arguments, and in-memory collections). It also automatically
manages different environments and makes it very easy to create strongly-typed confi guration
options.

The recommended approach for using the new confi guration system is to set it up when building
the web host and then read it within your application, either directly or via the new strongly-typed
option.

Setting Up the Confi guration Sources
Because the Configuration class, in its simplest form, is just a key/value collection, the setup pro-
cess consists of adding the sources from which all these key/value pairs must be read from. The
default web host builder already sets it up for you, so you just need to know where the confi guration
is read from:

➤ The fi rst source of the confi guration is the appsettings.json fi le in the root of the project.

➤ Then the confi guration is read from a fi le named appsettings.{env.EnvironmentName}

.json.

➤ The confi guration can be read from environment variables.

➤ Finally, there are also the arguments used when launching the application using the dotnet
run command.

This setup allows the default settings defi ned in the fi rst appsettings.json fi le to be overwrit-
ten in another JSON fi le whose name depends on the current environment and fi nally by a possible
environment variable set on the server or argument passed to the command-line tool that runs the

22 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 22

application. For example, paths to folders or database connection strings can be different in differ-
ent environments.

Other confi guration sources are the in-memory collection source, typically used as the fi rst source,
to provide default values for settings, and the Users Secrets source, used to store sensitive informa-
tion that you don’t want committed to a source code repository, like password or authorization
tokens.

Reading Values from Confi guration
Reading the collection is also easy. Settings are read just by using their key, for example
Configuration["username"]. If the values are from a source that allows trees of settings, like
JSON fi les, the key is to use a concatenation of all the property names, separated by :, starting from
the root of the hierarchy.

For example, to read the connection string defi ned in the setting fi le of Listing 1-5, the following key
should be used: ConnectionStrings:DefaultConnection. Sections of the settings can be accessed
in a similar way, but instead of using the simple dictionary key approach, the GetSection method
must be used. For example, Configuration.GetSection("Logging") gets the whole subsection
related to logging (which can then be passed to the logger providers instead of confi guring them by
code).

LISTING 1-5: Appsettings.json fi le of the default project template

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=(localdb)\\mssqllocaldb;Database=aspnet-ConfigSample-c18648e9-6f7a-40e6-
b3f2-12a82e4e92eb;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

Unfortunately this naive approach works only if you have access directly to the instance of the con-
fi guration class (for example, as with the Startup class). There are two options to share the confi gu-
ration with other components. The fi rst is to create a custom service that centralizes the access to
confi guration, as was done with the standard ASP.NET framework. And second, which is the new
and recommended approach, is easier to confi gure and requires no custom coding. This approach
uses Options.

Using Strongly-Typed Confi guration
Creating strongly-typed confi guration options doesn’t require much more than creating the actual
classes to hold the settings.

New Fundamental Features of ASP.NET Core ❘ 23

c01.indd 01/27/2018 Page 23

For example, say you want to access the following confi guration settings.

"MySimpleConfiguration": "option from json file",
"MyComplexConfiguration": {
 "Username": "simonech",
 "Age": 42,
 "IsMvp": true
}

All you need to do is to create two classes that map the properties in the JSON fi le one to one, as
shown in Listing 1-6.

LISTING 1-6: Options’ classes (Confi guration\MyOptions.cs)

public class MyOptions
{
 public string MySimpleConfiguration { get; set; }
 public MySubOptions MyComplexConfiguration { get; set;}
}

public class MySubOptions
{
 public string Username { get; set; }
 public int Age { get; set; }
 public bool IsMvp { get; set; }

}

All that is left now is to create the binding between the confi guration and the classes. This is done
via the ConfigureService method as shown in following snippet.

public void ConfigureServices(IServiceCollection services)
{
 services.AddOptions();
 services.Configure<MyOptions>(Configuration);
}

The AddOptions method just adds support for injecting options into a controller or service, while
the Configure<TOption> extension method scans the Configuration collection and maps its keys
to the properties of the Options classes. If the collection contains keys that do not map, they are
simply ignored.

If an option class is just interested in the values of a sub-section, for example
MyComplexConfiguration, the Configure<TOption> extension method can be called by specifying
the section to use as the confi guration root, similar to what is done when confi guring Logging:

services.Configure<MySubOptions>(Configuration.GetSection("MyComplexConfiguration"))

Now options are ready to be injected into any controller or service that requests them, via its
constructor.

24 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 24

Listing 1-7 shows a controller that accesses the option class MySubOptions by simply adding a
parameter of type IOptions<MySubOptions> to the constructor. Notice that it is not the actual
option class to be injected but an accessor for it, so when using it the Value property needs to be
used.

LISTING 1-7: HomeController using options

public class HomeController : Controller
{
 private readonly MySubOptions _options;

 public HomeController(IOptions<MySubOptions> optionsAccessor)
 {
 _optionsAccessor = optionsAccessor.Value;
 }

 public IActionResult Index()
 {
 var model = _options;
 return View(model);
 }
}

ALTERNATIVES TO IOptions

Using IOptions is the approach recommended by the ASP.NET Core team because
it opens the door to other scenarios such as automatic reload of the confi guration
on change, but some people fi nd this approach a bit too complicated.

Luckily, there are a few other alternatives, one of which is simply passing the con-
fi guration to the controllers by registering it directly in the IoC container. Most
of the code is similar to what you use with IOptions with the exception of the
ConfigureServices method and the Controller.

Instead of enabling the Options framework by calling the AddOptions method, you
can directly bind the Configuration object to the strongly-typed class and then
register it inside the IoC container.

var config = new MySubOptions();
Configuration.GetSection("MyComplexConfiguration").Bind(config);
services.AddSingleton(config);

This way the confi guration can be used directly by the controller without going
through the IOptions interface.

An Overview of Some ASP.NET Core Middleware ❘ 25

c01.indd 01/27/2018 Page 25

AN OVERVIEW OF SOME ASP.NET CORE MIDDLEWARE

So far the application you built doesn’t do a lot of work. It just always renders a text string. But you
can add more functionality simply by adding some of the middleware that has been released as part
of ASP.NET Core.

Diagnostics
The fi rst additional component you might want to add is available in the package Microsoft
.AspNetCore.Diagnostics. There is no need to manually add the package because in ASP
.NET Core 2.0 all the packages are already included as part of the Microsoft.AspNetCore.All
metapackage.

It contains a few different components that help with handling errors. The fi rst is the developer
exception page, added to the pipeline using UseDeveloperExceptionPage, which is a more power-
ful replacement of the Yellow Page of Death, as it also shows some information on the status of the
request, cookies, and headers (Figure 1-9).

FIGURE 1-9: Developer Exception Page

26 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 26

This page is useful while in development, but such detailed information should never be exposed to
the public. The Exception Handler middleware can be used to send users to a different page when
an error happens by specifying the path to which the application has to redirect:

app.UseExceptionHandler("/Error")

If a page doesn’t exist, normally the application should return an HTTP 404 status code and a page
not found warning, but ASP.NET Core won’t do so unless instructed. Luckily, it can be easily done
as you just need to add it to the pipeline using app.UseStatusCodePages().

Serving Static Files
HTML, CSS, JavaScript, and images can be served by an ASP.NET Core application by using func-
tionalities of the Microsoft.AspNetCore.StaticFiles package and by registering the middleware
using app.UseStaticFiles().

This middleware component serves all fi les under the wwwroot folder as if they were in the root path
of the application. So the /wwwroot/index.html fi le will be returned when a request for http://
example.com/index.html arrives. Optionally, other paths can be defi ned for serving folders
outside of wwwroot. The following snippet shows how to create another instance of the StaticFile
middleware that serves all fi les under MyArchive when requests for the path http://example.com/

archive arrive.

app.UseStaticFiles(new StaticFileOptions()
{
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), @"MyArchive")),
 RequestPath = new PathString("/Archive")
});

If you want to have index.html fi les served automatically without specifying their name, another
middleware component, UseDefaultFiles, must be added before any UseStaticFiles.

Other components from this package are UseDirectoryBrowser, which allows browsing of fi les
and folders, and UseFileServer, which adds all the functionality of the three other components
(but for security reasons directory browsing is disabled by default).

WARNING There are some security considerations. The UseStaticFiles
middleware doesn’t perform any check on authorization rules, so all fi les stored
under wwwroot are publicly accessible. Also, enabling directory browsing is a
security risk and should not be done in a production site. If either protection of
static assets or directory browsing are needed, it is better to store the fi les in a
folder not accessible from the web and return the results via a controller action
using ASP.NET Core MVC.

ASP.NET Core MVC ❘ 27

c01.indd 01/27/2018 Page 27

Application Frameworks
The most important middleware components are the ones that completely take over the execution
and host the code of the application. With ASP.NET Core there are two application frameworks
available:

➤ MVC is used for building web applications that render HTML and handle user interactions.

➤ Web API is used for building RESTful web services that can be consumed by either single-
page applications or by native applications on mobile or IoT devices.

These two frameworks share many concepts, and, unlike with the previous versions, the program-
ming model has been unifi ed so that there is almost no difference between the two.

ASP.NET CORE MVC

It might seem strange that a chapter titled “What’s New in ASP.NET Core MVC” of a book that’s
about frontend development with ASP.NET Core MVC doesn’t mention MVC almost till the end
of the chapter. The reason is that almost all the new features in the updated MVC framework are
related to the move from the standard ASP.NET framework to ASP.NET Core. The new startup
process, the new OWIN-based execution pipeline, the new hosting model, the built-in confi guration,
logging, and dependency injection libraries already have been covered.

This last section of the chapter covers the new features that are specifi c to the MVC framework,
starting from the new way of setting it up inside an ASP.NET Core application and how to defi ne
the routing table. Later it covers how to use dependency injection in controllers and ends with inter-
esting new features related to views: view components and tag helpers.

Using the MVC Framework inside ASP.NET Core
The easiest way to start an MVC project on ASP.NET Core is to create a new project using the Web
Application template. This will set up everything so that you can start right away with writing the
code of the application. Most of the wiring up is done inside the Startup class (Listing 1-8).

LISTING 1-8: Startup class for the Web Application template

public class Startup
{
 public Startup(IConfigurationRoot configuration)
 {
 Configuration = configuration;
 }

 public IConfigurationRoot Configuration { get; }

28 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 28

 // This method gets called by the runtime. Use this method to add services to
the container.
 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();
 }

 // This method gets called by the runtime. Use this method to configure the
HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
}

In addition to what has already been described in previous sections of this chapter (diagnostics,
error handling, and serving of static fi les), the default template adds the Mvc middleware to the pipe-
line and the Mvc services to the built-in IoC container.

While adding the Mvc middleware, routing is confi gured as well. In this case the default route is
specifi ed. It matches the fi rst segment of an URL to the controller name, the second to the action
name, and the third to the argument named id of action method. And if they are not specifi ed, the
request will be handled by the action named Index and by the controller named Home.

It doesn’t differ from the previous ASP.NET MVC framework. It’s just a different way of defi ning
the routing table. Instead of doing it inside the global.asax fi le, it is done inside the confi guration
of the middleware.

Using Dependency Injection in Controllers
Dependency injection was covered earlier in this chapter, together with how to add custom services
into the built-in container. Now you will take a look at how to use these services inside controllers
and action methods.

ASP.NET Core MVC ❘ 29

c01.indd 01/27/2018 Page 29

One of the many reasons for using an abstraction is to make it easy to test the behavior of the appli-
cation. For example, if an online shop has to display a special message on the fi rst day of spring, you
probably don’t want to wait till March 21st to make sure that application works correctly. So, in this
case, instead of depending directly on the System.DateTime.Today property, it would be wiser to
wrap it inside an external service so that it can later be replaced with a fake implementation that, for
the purpose of testing, always returns March 21st.

This is done by defi ning the interface, which in this case is very simple, and by implementing it in a
concrete class, as is done in Listing 1-9.

LISTING 1-9: IDateService interface and its implementations

public interface IDateService
{
 DateTime Today { get; }
}

public class DateService: IDateService
{
 public DateTime Today
 {
 get {
 return DateTime.Today;
 }
 }
}

public class TestDateService : IDateService
{
 public DateTime Today
 {
 get
 {
 return new DateTime(2017, 3, 21);
 }
 }
}

Once the interface and the concrete class are ready, the controller must be modifi ed to allow
injection into its constructor. Listing 1-10 shows how this is done.

LISTING 1-10: HomeController with constructor injection

public class HomeController : Controller
{
 private readonly IDateService _dateService;

 public HomeController(IDateService dateService)
 {
 _dateService = dateService;
 }

30 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 30

 public IActionResult Index()
 {
 var today = _dateService.Today;
 if(today.Month==3 && today.Day==21)
 ViewData["Message"] = "Spring has started, enjoy our spring sales!";
 return View();
 }
}

The last piece needed to tie the service and controller together is the registration of the service into
the built-in IoC Container. As previously seen, this is done inside the ConfigureServices method,
using services.AddTransient<IDateService, DateService>().

Another way of using services inside an action method is via the new [FromServices] binding
attribute. This is particularly useful if the service is used only inside one specifi c method and not
throughout the entire controller. Listing 1-10 could be rewritten using this new attribute as shown
in Listing 1-11.

LISTING 1-11: HomeController with action method parameter injection

public class HomeController : Controller
{
 public IActionResult Index([FromServices] IDateService dateService)
 {
 var today = dateService.Today;
 if(today.Month==3 && today.Day==21)
 ViewData["Message"] = "Spring has started, enjoy our spring sales!";
 return View();
 }
}

View Components
Now that you have seen the setup procedure and some new features of the controller, you will take
a look at what’s new on the View side, starting with View Components. They are in a way similar to
Partial Views, but they are more powerful and are used in different scenarios.

Partial Views are, as the name suggests, views. They are used to split a complex view into many
smaller and reusable parts. They are executed in the context of the view, so they have access to the
view model, and being just razor fi les, they cannot have complicated logic.

View Components, on the other hand, do not have access to the view model but just to the argu-
ments that are passed to it. They are reusable components that encapsulate both backend logic and a
razor view. They are therefore made of two parts: the view component class and a razor view. They
are used in the same scenarios as Child Actions, which have been removed from the MVC frame-
work in ASP.NET Core, and are reusable portions of pages that also need some logic that might
involve querying a database or web services, like sidebars, menus, and so on.

ASP.NET Core MVC ❘ 31

c01.indd 01/27/2018 Page 31

The component class inherits from ViewComponent and must implement the method Invoke or
InvokeAsync, which returns IViewComponentResult. By convention view component classes
are located in a ViewComponents folder in the root of the project, and its name must end with
ViewComponent. Listing 1-12 shows a view component class named SideBarViewComponent that
shows a list of links that need to appear in all the pages of the site.

LISTING 1-12: ViewComponents\SideBarViewComponent.cs fi le

namespace MvcSample.ViewComponents
{
 public class SideBarViewComponent : ViewComponent
 {
 private readonly ILinkRepository db;
 public SideBarViewComponent(ILinkRepository repository)
 {
 db = repository;
 }

 public IViewComponentResult Invoke (int max = 10)
 {
 var items = db.GetLinks().Take(max);
 return View(items);
 }
 }
}

As shown in the example, the view component class can make use of the dependency injection
framework just like controllers do (in this case it uses a repository class that returns a list of links).

The view rendered by the view component is just like any other view, so it receives the view model
specifi ed in the View method, and it is accessible via the @Model variable. The only detail to remem-
ber is its name. By convention, the view must be Views\Shared\Components\<ComponentName>\
Default.cshtml (so, in this example it should be Views\Shared\Components\SideBar\Default
.cshtml), as shown in Listing 1-13.

LISTING 1-13: Views\Shared\Components\SideBar\Default.cshtml

@model IEnumerable<MvcSample.Model.Link>

<h2>Blog Roll</h2>

 @foreach (var link in Model)
 {
 @link.Title
 }

32 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 32

Finally, to include the view component into a view, the @Component.InvokeAsync method must
be called, providing an anonymous class with the parameters for the view component’s Invoke
method.

@await Component.InvokeAsync("SideBar", new { max = 5})

If you used Child Actions from the previous version you will immediately notice the main differ-
ence. The parameters are provided directly by the calling method and are not extrapolated by the
route via model binding. This is because view components are not action methods, but are a whole
new element that doesn’t reuse the standard MVC execution pipeline. An added benefi t is that you
cannot expose these components by mistake to the web, like you could do with Child Actions if you
forgot to specify the [ChildOnly] attribute.

Tag Helpers
Tag helpers are a new concept introduced in ASP.NET Core MVC. They are a mash-up of standard
HTML tags and Razor HTML helpers, and they take the best part of both of them. Tag helpers
look like standard HTML tags, so there is no more switching between writing HTML and C# code.
They also have some of the server-side logic of HTML helpers, so, for example, they can read the
value of the view model and conditionally add CSS classes.

Using Tag Helpers from ASP.NET Core
For example, take a look at how to write an input textbox for a form. With HTML helpers you
would write @Html.TextBoxFor(m => m.Email), while using tag helpers the code is <input asp-
for="Email" />.The fi rst case is C# code that returns HTML, while the second case is just HTML
that is enhanced with some special attribute (asp-for in this case).

The advantage becomes more obvious when the HTML tag needs additional attributes (for example
if you want to add a specifi c class or some data-* or aria-* attributes). With HTML helpers you
would need to provide an anonymous object with all the additional attributes, while with tag help-
ers you write as if you were writing standard static HTML and just add the special attribute.

The differences become apparent by comparing the two syntaxes for a textbox that needs an addi-
tional class and for which you want to disable autocomplete. With HTML helpers it is:

@Html.TextBoxFor(m=>m.Email, new { @class = "form-control", autocomplete="off" })

The same textbox using a tag helper is:

<input asp-for="Email" class="form-control" autocomplete="off" />

Another added value of using tag helpers is the support inside Visual Studio. Tag helpers get
IntelliSense and have a different syntax highlighting.

Figures 1-10 through 1-12 show what happens when you start typing in Visual Studio a tag that
could be a tag helper. In the IntelliSense list, you can identify which tags could be tag helpers
because of the new icon (the @ sign with < > angular brackets). Once you select the tag, IntelliSense
shows all the possible attributes, again identifying the tag helpers with the new icon. Finally, when
the attribute is typed as well, Visual Studio recognizes it as a tag helper; it colorizes it differently
and also provides IntelliSense for the value of the property asp-for.

ASP.NET Core MVC ❘ 33

c01.indd 01/27/2018 Page 33

FIGURE 1-10: Identifying which tags can be tag helpers

FIGURE 1-11: Attributes for a tag

FIGURE 1-12: A well-typed attribute

34 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 34

ASP.NET Core MVC comes with many tag helpers for rendering forms but also for other tasks, such
as an Image tag helper that can also add a version number to the URL to make sure it is not cached
or an Environment tag helper for conditionally rendering different HTML fragments depending on
which environment it is.

Writing Custom Tag Helpers
In addition to the one available built-in, custom tag helpers can be easily created. They are very use-
ful when you need to output a long and repetitive piece of HTML code that changes very little from
one instance to another.

To see how to build a custom tag helper, let’s make one that automatically creates an email link
by specifying the email address. We’ll create something that converts <email>info@wrox.com</
email> to info@wrox.com.

The tag helper is a class, named <Helper>TagHelper, that inherits from TagHelper and implements
the Process or ProcessAsync methods.

Those two methods have the two following parameters:

➤ context contains the information on the current execution context.

➤ output contains a model of the original HTML and has to be modifi ed by the tag helper.

Listing 1-14 shows the full code for the tag helper.

LISTING 1-14: EmailTagHelper.cs

public class EmailTagHelper: TagHelper
{
 public override async Task ProcessAsync(TagHelperContext context,
TagHelperOutput output)
 {
 output.TagName = "a";
 var content = await output.GetChildContentAsync();
 output.Attributes.SetAttribute("href", "mailto:"+content.GetContent());
 }
}

Let’s see what the code does.

The fi rst line replaces the tag name (which in our case is email) with the one needed in the HTML
code. Since we are generating a link, it must be an a tag.

The second line gets the content of the element. This is done using the GetChildContentAsync
method, which also takes care of executing any Razor expression present.

Finally, the href attribute is set to the previously retrieved string.

Before using the newly created tag helper, we must instruct the framework where to look for tag
helpers. This is done in the _ViewImports.cshtml fi le. See Listing 1-15.

ASP.NET Core MVC ❘ 35

c01.indd 01/27/2018 Page 35

LISTING 1-15: _ViewImports.cshtml

@using MvcSample
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper "*, MvcSample"

The fi rst line is added by the default project and is needed to be able to use the built-in tag helpers,
while the second instructs the framework to look for new tag helpers in any class of the project.

Finally we can use the tag helper by typing the following:

<email>info@wrox.com</email>

In addition to this sample, Chapter 4 shows the code for a tag helper that renders a Bootstrap
component.

View Components as Tag Helpers
We’ve seen how to add a View Component in a razor view by using the InvokeAsync method. But
starting with ASP.NET Core 1.1, View Components can also be included using the same syntax as
tag helpers (and IntelliSense) by appending the prefi x vc.

With this syntax, the View Component of Listings 1-12 and 1-13 can also be instantiated using
<vc:sidebar max="5"></sidebar>, and also gets IntelliSense as shown in Figure 1-13.

FIGURE 1-13: IntelliSense on View Components

Web API
Unlike previous versions of Web API, with ASP.NET Core, Web API applications reuse all the same
features and confi gurations of MVC ones.

For example, to write an API that returns the list of links used in the side bar of Listing 1-12, you
just need to create a controller that adheres to the Web API routing conventions and that specifi es
the HTTP verbs to which each action responds. See Listing 1-16.

LISTING 1-16: LinksController.cs

[Route("api/[controller]")]
public class LinksController : Controller
{
 private readonly ILinkRepository db;
 public LinksController(ILinkRepository repository)
 {

36 ❘ CHAPTER 1 WHAT’S NEW IN ASP.NET CORE MVC

c01.indd 01/27/2018 Page 36

 db = repository;
 }

 [HttpGet]
 public IEnumerable<Link> Get()
 {
 return db.GetLinks();
 }

 [HttpGet("{id}")]
 public Link Get(int id)
 {
 return db.GetLinks().SingleOrDefault(l=>l.Id==id);
 }
}

This controller will respond to HTTP GET requests to the URL /api/Links by returning the list of
all links in JSON format, and to /api/Links/4 by returning the link whose id is 4. This behavior is
specifi ed by the Route attribute, which confi gures the name of the API method, and by the HttpGet
method, which specifi es which action to execute when the API is called with GET.

SUMMARY

ASP.NET Core introduces a new, more modern framework that encourages writing code of good
quality thanks to the built-in support for dependency injection and the easy-to-use component
model. Together with this better framework, the whole development experience got an overhaul.
New command-line-based developer tools make it possible to develop with a lighter IDE, and the
introduction of elements typical of the front-end development world like Bower, NPM, and Gulp
make the new .NET stack more appealing for developers coming from different backgrounds.

But all these changes also bring new challenges. .NET developers have to evolve and start learning
new technologies and get fl uent in other languages. The rest of the book covers in detail all these
new technologies and languages that are now required in order to be a skilled .NET web developer .

