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1
INTRODUCTION TO N-DIMENSIONAL
GEOMETRY

1.2 POINTS, VECTORS, AND PARALLEL LINES

1.2.5 Problems

A remark about the exercises is necessary. Certain questions are phrased as statements
to avoid the incessant use of “prove that”. See Problem 1, for example. Such state-
ments are supposed to be proved. Other questions have a “true–false” or “yes–no”
quality. The point of such questions is not to guess, but to justify your answer. Ques-
tions marked with ∗ are considered to be more challenging. Hints are given for some
problems. Of course, a hint may contain statements that must be proved.

1. Let S be a nonempty set in Rn. If every three points of S are collinear, then S
is collinear.

Solution. Let x1 and x2 be two distinct points in S, then there is a unique line �
passing through these two points. Now let x be an arbitrary point in S, from the
hypothesis, x1, x2, and xmust be on some line �′, and since x1 and x2 uniquely
determine the line �, we must have �′ = �. Therefore, every point x in S is on
the line �. �

3. Given that the line L has the linear equation

μ1x1 + μ2x2 = δ,
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2 INTRODUCTION TO N-DIMENSIONAL GEOMETRY

show that the point (
μ1δ

μ2
1 + μ2

2

,
μ2δ

μ2
1 + μ2

2

)

is on the line, and that the vector (−μ2, μ1) is parallel to the line.

Hint. If p is on the line and if p+ v is also on the line, then v must be parallel
to the line.

Solution. Substituting the coordinates of this point into the linear equation for
L, we see that

μ1 ·
μ1δ

μ2
1 + μ2

2

+ μ2 ·
μ2δ

μ2
1 + μ2

2

=
(μ2

1 + μ2
2)δ

μ2
1 + μ2

2

= δ,

so that the given point is on L.

Since not both μ1 and μ2 are 0, we may assume that μ1 �= 0, and let

p1 =

(
μ1δ

μ2
1 + μ2

2

,
μ2δ

μ2
1 + μ2

2

)
and p2 =

(
δ

μ1

, 0

)
,

then both p1 and p2 are on the line L, and therefore w = p1 − p2 is parallel to
L. However,

w =
μ2δ

μ1(μ
2
1 + μ2

2)
(−μ2, μ1),

so the vector v = (−μ2, μ1) is parallel to L.

Note that this follows immediately from the fact that the vector

v⊥ = (μ1, μ2)

is the normal vector to the line L. �

5. The centroid of three noncollinear points a, b, and c in Rn is defined to be

G =
1

3
(a+ b+ c).

Show that this definition of the centroid yields the synthetic definition of the
centroid of the triangle with vertices a, b, c, namely, the point at which the three
medians of the triangle intersect. Prove also that themedians do indeed intersect
at a common point.

Solution. Given a triangle with vertices a, b, c ∈ R
n, let d ∈ R

n be the mid-
point of the segment [b, c] and let Ga ∈ R

n be the point along the median ad
which is 2

3 the distance from a to d.
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INNER PRODUCT AND ORTHOGONALITY 3

Ga

a c

b

d

We have Ga = a+ 2
3(d− a), and since d = 1

2(b+ c), then

Ga = a+ 2
3 ·

1
2 (b+ c)− 2

3a = 1
3a+ 1

3b+
1
3c.

If we define Gb and Gc similarly, then we see that

Ga = Gb = Gc =
1
3(a+ b+ c),

so that the point 1
3 (a+ b+ c) lies on each of the three medians. Thus, this is

the synthetic definition of the centroid and the medians intersect at a single
point. �

1.4 INNER PRODUCT AND ORTHOGONALITY

1.4.3 Problems
In the following exercises, assume that “distance” means “Euclidean distance” unless
otherwise stated.

1. (a) The unit cube in Rn is the set of points

{x = (α1, α2, . . . , αn) : |αi| ≤ 1, i = 1, 2, . . . , n}.

Draw the unit cube in R1, R2, and R
3.

(b) What is the length of the longest line segment that you can place in the unit
cube of Rn?

(c) What is the radius of the smallest Euclidean ball that contains the unit cube
of Rn?

Solution.

(a) The unit cubes are sketched below.

0x1

x1

x2x

x2

x3

0 0
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4 INTRODUCTION TO N-DIMENSIONAL GEOMETRY

(b) If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are points in the unit cube
in Rn, then the Euclidean distance between a and b is

d(a, b) =
√
(a1 − b1)

2 + (a2 − b2)
2 + · · ·+ (an − bn)

2

where |ak| ≤ 1 and |bk| ≤ 1 for k = 1, 2, . . . , n.

The maximum distance will occur when |ak| = |bk| = 1 and bk = −ak
for k = 1, 2, . . . , n, that is, when a and b are vertices of the cube that are
diagonally opposite. In this case, the maximum distance is

dmax =
√

22 + 22 + · · ·+ 22 = 2
√
n.

(c) The smallest Euclidean ball that contains the unit cube is one that has diam-
eter equal to dmax = 2

√
n, the length of the longest line segment in the

cube. The ball is

B(0, R) = {x ∈ R
n : ||x|| ≤

√
n}

and has radius R =
√
n. �

3. Find the distance between the points (1,−2) and (−2, 3) using

(a) the �1 metric,

(b) the “sup” metric,

(c) the Euclidean metric.

Solution. If x = (1,−2) and y = (−2, 3), then

|x1 − y1| = |1− (−2)| = 3 and |x2 − y2| = |(−2)− 3| = 5.

Therefore,

(a) With the �1 metric,

||x− y||1 = |x1 − y1|+ |x2 − y2| = 3 + 5 = 8.

(b) With the “sup” metric,

||x− y||∞ = max{|x1 − y1|, |x2 − y2|} = max{3, 5} = 5.

(c) With the Euclidean metric,

||x− y||2 = (|x1 − y1|2 + |x2 − y2|2)1/2 = (32 + 52)1/2 =
√
34.

�

5. Show that a positive homothet of a closed ball is a closed ball.



Trim Size: 6in x 9in Leonard c01.tex V3 - 03/18/2016 1:53pm Page 5�

� �

�

HYPERPLANES AND LINEAR FUNCTIONALS 5

Solution. Let λ > 0, q ∈ R
n, and r > 0, we will show that

λB(q, r) = B(λq, λr).

0

q

λq

λr

r

Let x ∈ λB(q, r), then x = λz where z ∈ B(q, r), and therefore

||x− λq|| = ||λz − λq|| = λ||z − q|| ≤ λr,

so that x ∈ B(λq, λr), and

λB(q, r) ⊆ B(λq, λr).

Conversely, if x ∈ B(λq, λr), then letting z = 1
λx, we have

||z − q||2 =
1

λ
||x− λq||2 ≤

1

λ
· λr = r,

that is
1

λ
x = z ∈ B(q, r),

so that x = λz ∈ λB(q, r), and

B(λq, λr) ⊆ λB(q, r).
�

1.6 HYPERPLANES AND LINEAR FUNCTIONALS

1.6.3 Problems

In the following exercises, unless otherwise stated, assume that the closed unit ball is
the closed unit ball in the Euclidean norm.
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6 INTRODUCTION TO N-DIMENSIONAL GEOMETRY

*1. Find a hyperplane H = f−1(1) in R
4 that is tangent to the unit cube at the

point
(
1, 1

2 ,
1
3 ,

1
4

)
. Verify your answer.

Solution. Let f be the linear functional represented by p = (1, 0, 0, 0) ∈ R
4,

then the hyperplane

H = {x ∈ R
4 : f(x) = 〈p, x〉 = 1}

is tangent to the unit cube at q =
(
1, 1

2 ,
1
3 ,

1
4

)
.

To verify this, note that the point q is in H , since

f(q) = 〈p, q〉 = 1 · 1 + 0 · 1
2 + 0 · 1

3 + 0 · 1
4 = 1.

Also, for any point x = (x1, x2, x3, x4) in the cube, |xi| ≤ 1 for 1 ≤ i ≤ 4,
so that f(x) = x1 and |f(x)| ≤ 1. �

3. Find an equation for the hyperplane of

(a) Problem 2 (a),

(b) Problem 2 (b).

Solution.

(a) The hyperplane through the point (1, 3) is perpendicular to the line
through through the points (0, 0) and (1, 3). Therefore,

H = {x ∈ R
2 : f(x) = β} = {(x1, x2) : x1 + 3x2 = β}.

Since (1, 3) is on H , we have

f(1, 3) = β = 1 + 3 · 3 = 10,

and the equation of the hyperplane is

H = {(x1, x2) ∈ R
2 : x1 + 3x2 = 10}.

(b) The hyperplane tangent to the unit sphere at
(√

3
2 , 1

2

)
is perpendicular to

the line through the points (0, 0) and
(√

3
2 , 1

2

)
. Therefore,

H = {x ∈ R
2 : f(x) = β} = {(x1, x2) :

√
3
2 x1 +

1
2x2 = β}.

Since
(√

3
2 , 1

2

)
is on H , we have

f
(√

3
2 , 1

2

)
= β,
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HYPERPLANES AND LINEAR FUNCTIONALS 7

so that √
3
2 ·

√
3
2 + 1

2 ·
1
2 = β,

that is, β = 3
4 +

1
4 = 1. The equation of the hyperplane is

H = {(x1, x2) ∈ R
2 :

√
3
2 x1 +

1
2x2 = 1}.

�

5. Given the linear functional f(x1, x2) = 4x1 − 3x2, find

(a) the point x on the closed unit ball where f(x) is a maximum,

(b) the point x in the hyperplane f−1(2) that is closest to the origin,
(c) the point x in the hyperplane f−1(3) that is closest to the origin.

Solution.

(a) If x = (x1, x2) ∈ R
2, then from the Cauchy-Schwarz inequality we have

|f(x)| = |4x1 − 3x2| ≤ (42 + 32)1/2(x2
1 + x2

2)
1/2 = 5||x||2,

and so |f(x)| ≤ 5 for all x ∈ B(0, 1).

Now let x0 =
(
4
5 ,−

3
5

)
, then

||x0||2 =
((

4
5

)2
+
(
− 3

5

)2)1/2

=
(
16
25 +

9
25

)1/2
= 1,

so that x0 ∈ B(0, 1), and

f(x0) = 4
(
4
5

)
− 3

(
− 3

5

)
= 16+9

5 = 5.

Therefore, f attains its maximum on the closed unit ball B(0, 1) at x0.
(b) The hyperplane H = f−1(2) has equation

H = {(x1, x2) : 4x1 − 3x2 = 2},

and the line L through the points (0, 0) and (4,−3) is perpendicular toH
and has parametric equations

x1 = 0 + 4λ = 4λ

x2 = 0− 3λ = −3λ

for−∞ < λ < ∞. The pointx = (x1, x2) on the hyperplaneH withmin-
imum Euclidean norm; that is, the point closed to the origin, is the point
where the line L intersects H . Therefore,

f(x) = f(4λ,−3λ) = (42 + 32)λ = 2,

so that λ = 2
25 , and the closest point on H to 0 is x =

(
8
25 ,−

6
25

)
.
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8 INTRODUCTION TO N-DIMENSIONAL GEOMETRY

(c) Analogous to part (b), the point x = (x1, x2) on the hyperplane

H = f−1(3) = {(x1, x2) : 4x1 − 3x2 = 3}

closest to the origin is the point x = (4λ,−3λ) with f(4λ,−3λ) = 3.

Thus, we want
4(4λ)− 3(−3λ) = 3,

that is, λ = 3
25 .

The point on f−1(3) closest to the origin is x =
(
12
25 ,−

9
25

)
. �

7. Let f be the linear functional onR3 represented by the vector p = (3,−2,−3)
and let S be the set

S = {(1, 1,−2), (−3, 4, 1), (60, 10, 15), (−8,−2, 4), (0, 1, 1)}.

(a) Determine which points of S are on the same side of f−1(0).

(b) Which point or points of S are closest to f−1(0)?

(c) Which points of S are on the same side of f−1(8) as the origin?

(d) Find the point or points of S that are closest to f−1(8).

Solution. For each x = (x1, x2, x3) ∈ R
3, then value of f is given by

f(x) = 〈p, x〉 = 3x1 − 2x2 − 3x3,

and for x ∈ S, we have

f(1, 1,−2) = 7, f(−3, 4, 1) = −20, f(60, 10, 15) = 55,

f(−8,−2, 4) = −32, f(0, 1, 1) = −5.

(a) The points (1, 1,−2), and (60, 10, 15), are on one side of f−1(0); that is,
in the halfspace

H+ = {x ∈ R
3 : f(x) > 0},

while the points (−3, 4, 1), (−8,−2, 4), and (0, 1, 1) are on the other side;
that is, in the halfspace

H− = {x ∈ R
3 : f(x) < 0}.

(b) Since |f(0, 1, 1)| = 5, the point of S closest to f−1(0) is the point
(0, 1, 1).
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HYPERPLANES AND LINEAR FUNCTIONALS 9

(c) Only the point (60, 10, 15) is in the halfspace

K+ = {x ∈ R
3 : f(x) > 8},

while the points (1, 1,−2), (−3, 4, 1), (−8,−2, 4), and (0, 1, 1) are in the
halfspace

K− = {x ∈ R
3 : f(x) < 8}.

(d) Since |f(1, 1,−2)− 8| = 1, while |f(x)− 8| > 1 for all other points
x ∈ S, the point closest to f−1(8) is (1, 1,−2). �

9. Given that H is the hyperplane f−1(2), and given that g = 4f , find β such
that g−1(β) is exactly the same as H .

Solution. Note that the point (x, y) ∈ g−1(β) if and only if g(x, y) = β, that
is, if and only if 4f(x, y) = β.

This last equation is true if and only if f(x, y) = β
4 , that is, if and only if

(x, y) ∈ f−1
(

β
4

)
.

Taking β
4 = 2, then g−1(β) = f−1(2), so that f−1(2) = H = g−1(β), and

therefore β = 8. �

11. Let L be the line

L = {x ∈ R
n : x = μp+ (1− μ)q,−∞ < μ < ∞}

where p and q are distinct points in Rn, and let f be a linear functional on Rn

such that f(p) = 6 and f(q) = 1. Find

(a) the point where L intersects the hyperplane f−1(−2),

(b) the scalar β such that the hyperplane f−1(β) passes through the midpoint
of the line segment joining p and q.

Solution.

(a) If z = μp+ (1− μ)q is on L, then

f(z) = μf(p) + (1− μ)f(q) = 6μ+ 1− μ = 5μ+ 1 = −2,

so that μ = − 3
5 , and the hyperplane f−1(2) intersects the line L at the

point z = − 3
5p+

8
5q.

(b) We want

β = f
(
p
2 + q

2

)
= 1

2f(p) +
1
2f(q) =

6
2 +

1
2 = 7

2 ,

so that β = 7
2 . �
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10 INTRODUCTION TO N-DIMENSIONAL GEOMETRY

13. Given that H = f−1(1), where the linear functional f on R
4 is represented

by the vector p = (1, 0, 1,−1), find

(a) a line L1 through 0 that intersects H in exactly one point,

(b) a line L2 through 0 that misses H .

Solution.

(a) The vector p = (1, 0, 1,−1) is perpendicular to the hyperplane H , and
Therefore the line L1 through the origin in the direction of p intersectsH
in exactly one point.

(b) Since f(0) = 0 < 1, then 0 /∈ H .We take the vector q = (1, 0,−1, 0) and
note that

〈p, q〉 = 1 · 1 + 0 · 0 + 1 · (−1) + (−1) · 0 = 0

and the vector q is perpendicular to p. Thus, 0 and q are in f−1(0),
so the line L2 through 0 and q lies entirely in f−1(0) and so misses
H = f−1(1). �

15. If the hyperplane H = f−1(α) intersects the straight line L in exactly one
point, then for every scalar β, the hyperplane Hβ = f−1(β)

intersects L in exactly one point.

Hint. Conclude that this must happen because of what we know from
Problems 12 and 14.

Solution. If the line L missesHβ , then L lies in a hyperplane parallel toHβ ,
which is parallel toH . This contradicts the fact that L intersectsH in exactly
one point. If the line L intersects Hβ in more than one point, then L lies in
Hβ , which is parallel toH , again, a contradiction. Therefore, L intersectsHβ

in exactly one point. �

17. Prove Theorem 1.6.3.

Solution. The theorem states that if f and g are linear functionals onRn repre-
sented, respectively, by the vectors a and b, then f + g and λf are represented,
respectively, by the vectors a+ b and λa.

Clearly, for x ∈ R
n, we have

(f + g)(x) = f(x) + g(x) = 〈a, x〉+ 〈b, x〉 = 〈a+ b, x〉,

so f + g is represented by the vector a+ b.

Similarly, for x ∈ R
n and λ ∈ R, we have

(λf)(x) = λf(x) = λ〈a, x〉 = 〈λa, x〉,

so λf is represented by the vector λa. �
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HYPERPLANES AND LINEAR FUNCTIONALS 11

19. Show that a hyperplane in Rn has a unique point of minimum norm.

Solution. Let H be the hyperplane

H = {x ∈ R
n : 〈p, x〉 = α}

where p ∈ R
n, with p �= 0 and α ∈ R. We may assume that α > 0, otherwise,

replace p by −p.

Let L be the line

L = {x ∈ R
n : x = λp,−∞ < λ < ∞},

and let p0 be the point where L intersects H .

Since p0 ∈ H , we have 〈p, p0〉 = α, and since p0 ∈ L, we have p0 = λp for
some λ ∈ R, so that

〈p, p0〉 = λ〈p, p〉 = λ||p||22.

Therefore, λ = α
||p||22

, and p0 =
α

||p||22
· p.

We claim that p0 is the unique point of minimum norm in H . To see this,
suppose that p1 is any point of H with p1 �= p0.

0

H

p
0

p
1

p

Since the vector p1 − p0 ∈ H is orthogonal to the vector p0, from the
Pythagorean Theorem, we have

||p1||22 = ||p1 − p0||22 + ||p0||22,

and since p1 �= p0, then ||p1 − p0||2 > 0, so that

||p1||22 > ||p0||22.
�

21. Show that if f is a linear functional on Rn and f is represented by the vector
p ∈ R

n, then

||p|| = max{f(x) : x ∈ B} = max{〈p, x〉 : x ∈ B},
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12 INTRODUCTION TO N-DIMENSIONAL GEOMETRY

where B is the closed unit ball in Rn.

Solution. If x ∈ R
n, then from the Cauchy-Schwarz inequality we have

f(x) = 〈p, x〉 ≤ ||p|| ||x||,

and therefore
f(x) ≤ ||p||

for all x ∈ B.

Now let x0 =
p
||p|| , so that ||x0|| = 1 and x0 ∈ B. However,

f(x0) = 〈x0, p〉 =
1

||p|| 〈p, p〉 =
||p||2
||p|| = ||p||,

so that f attains its maximum value on the closed unit ball B at x0, and

||p|| = max{f(x) : x ∈ B}.
�

23. Develop a general formula for the point q on the hyperplane

Hβ = {x ∈ R
n : 〈p, x〉 = β}

that is closest to the point x0. Assume that p �= 0.

Solution. From the previous problem the procedure is clear. Since the vector
p is orthogonal toHβ , we only have to find the point where the line L through
x0 parallel to p intersects Hβ . Thus, we want to find q ∈ L ∩Hβ .

Now, q is on L if and only if q = x0 + λ p for some scalar λ, and q ∈ H if
and only if 〈p, q〉 = β, that is, if and only if

〈p, x0 + λ p〉 = β.

Thus, we want
〈p, x0〉+ λ 〈p, p〉 = β,

that is,

λ =
β − 〈p, x0〉

||p||2 .

Therefore, the point q on the hyperplane Hβ which is closest to the point
x0 is

q = x0 +
β − 〈p, x0〉

||p||2 p.

�


