INTRODUCTION TO N-DIMENSIONAL
GEOMETRY

1.2 POINTS, VECTORS, AND PARALLEL LINES

1.2.5 Problems

A remark about the exercises is necessary. Certain questions are phrased as statements
to avoid the incessant use of “prove that”. See Problem 1, for example. Such state-
ments are supposed to be proved. Other questions have a “true—false” or “yes—no”
quality. The point of such questions is not to guess, but to justify your answer. Ques-
tions marked with * are considered to be more challenging. Hints are given for some
problems. Of course, a hint may contain statements that must be proved.

1. Let S be a nonempty set in R™. If every three points of S are collinear, then S
is collinear.

Solution. Let x; and x, be two distinct points in .S, then there is a unique line ¢
passing through these two points. Now let = be an arbitrary point in S, from the
hypothesis, 1, x5, and  must be on some line ¢, and since z; and x, uniquely
determine the line ¢, we must have ¢’ = £. Therefore, every point z in S is on
the line £. o

3. Given that the line L has the linear equation

Ty + poly = 0,
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show that the point
( 10 fo0 )
w3+ 3 e+

is on the line, and that the vector (—p,, 11, ) is parallel to the line.

Hint. If p is on the line and if p + v is also on the line, then v must be parallel
to the line.

Solution. Substituting the coordinates of this point into the linear equation for
L, we see that

o0 d _ (pi+p)s
Vg T pd e 33 ’

so that the given point is on L.

Since not both i, and pu, are 0, we may assume that 1, # 0, and let

1110 2 > < 4 )
p = 9 and p = ) 0 )
! @%w%ﬁ+% T\

then both p, and p, are on the line L, and therefore w = p; — p, is parallel to
L. However,

w——JQ——Fuu)
- 29 M1 /)
p (113 + p13)

so the vector v = (—p,, ;) is parallel to L.

Note that this follows immediately from the fact that the vector

vy = (g, Ho)

is the normal vector to the line L. O

. The centroid of three noncollinear points a, b, and ¢ in R” is defined to be
1
G= 3 (a+b+c).

Show that this definition of the centroid yields the synthetic definition of the
centroid of the triangle with vertices a, b, ¢, namely, the point at which the three
medians of the triangle intersect. Prove also that the medians do indeed intersect
at a common point.

Solution. Given a triangle with vertices a, b, ¢ € R™, let d € R" be the mid-
point of the segment [b, ¢] and let G, € R™ be the point along the median ad
which is % the distance from a to d.
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We have G, = a + 3(d — a), and since d = (b + c), then
G,=a+32 -3(b+c)—32a=1a+ b+ 3c
If we define G, and G, similarly, then we see that

Ga:Gb:Gc:%(a—i_b"'C)»

so that the point %(a + b+ ¢) lies on each of the three medians. Thus, this is
the synthetic definition of the centroid and the medians intersect at a single
point. O

1.4 INNER PRODUCT AND ORTHOGONALITY

1.4.3 Problems
In the following exercises, assume that “distance” means “Euclidean distance” unless
otherwise stated.

1. (a) The unit cube in R™ is the set of points
{z=(ay, 09, ..., 00,) || <1,i=1,2, ... ,n}.

Draw the unit cube in R', RZ, and R3.

(b) What is the length of the longest line segment that you can place in the unit
cube of R™?

(¢) What is the radius of the smallest Euclidean ball that contains the unit cube
of R™?

Solution.

(a) The unit cubes are sketched below.
z3
T2

x1
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(b) Ifa = (ay,ay, ...,a,)andb = (by, by, ...,b,) are points in the unit cube

rvn

in R™, then the Euclidean distance between a and b is

d(a,b) = /(a, — b))* + (ay — by)> + -+ + (a, — b,)?

where |a;| < land |b,| <1lfork=1,2,... n.
The maximum distance will occur when |a;| = |b,| = 1 and b, = —aqy,
fork =1,2, ... ,n,thatis, when a and b are vertices of the cube that are

diagonally opposite. In this case, the maximum distance is

Qo = V22 + 224 +22 = 2/n
(c¢) The smallest Euclidean ball that contains the unit cube is one that has diam-
eter equal to d,. = 24/n, the length of the longest line segment in the
cube. The ball is
B(O,R) ={z € R" : |z|| < V/n}
and has radius R = v/n. O

3. Find the distance between the points (1, —2) and (—2, 3) using
(a) the ¢, metric,
(b) the “sup” metric,
(c) the Euclidean metric.

Solution. If x = (1,—2) and y = (-2, 3), then
oy =yl = 1= (=2)[ =3 and |z, —y,| =[(-2) = 3| =5.

Therefore,

(a) With the ¢, metric,
lz —ylly = oy =yl + |2y — 9ol =3+ 5=38.
(b) With the “sup” metric,
Il = yllo = max{lz; =y, [y — yp|} = max{3,5} = 5.
(c) With the Euclidean metric,

[z —ylly = (Jo; — 1/1‘2 + |2y — yz|2)1/2 = (32 + 52)1/2 = V34

5. Show that a positive homothet of a closed ball is a closed ball.
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Solution. Let A > 0,q € R", and r > 0, we will show that

AB(q,7) = B(\g, \r).

£
0

Let x € AB(q,r), then z = \z where z € B(q,r), and therefore
lz = Aqll = Az = Aql| = Allz — ql| < Ar,

so that z € B(\g, Ar), and

AB(q,7) C B(\g, A\r).

Conversely, if z € B(\g, Ar), then letting 2 = +x, we have

INA
>l = =

1
Iz =ally = Sz = Aglly < 5 - Ar =,

that is

%m =z € B(q,7),

so that z = Az € AB(q, 1), and
B(Ag, Ar) € AB(q, 7).

1.6 HYPERPLANES AND LINEAR FUNCTIONALS
1.6.3 Problems

In the following exercises, unless otherwise stated, assume that the closed unit ball is
the closed unit ball in the Euclidean norm.
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*1. Find a hyperplane H = f~!(1) in R* that is tangent to the unit cube at the

point (1, %, %, i) Verify your answer.

Solution. Let f be the linear functional represented by p = (1,0,0,0) € R%,
then the hyperplane

H={reR: f(2) = (pa) = 1)
is tangent to the unit cube at ¢ = (1, 3, 3, 1)-

To verify this, note that the point ¢ is in H, since
fla={pg=1-1+0-1+0-4+0-2 =1

Also, for any point x = (2, x4, x4, z,) in the cube, |z,| <1 for 1 <i <4,
so that f(z) = z; and |f(x)] < L. O

3. Find an equation for the hyperplane of

(a) Problem 2 (a),
(b) Problem 2 (b).

Solution.

(a) The hyperplane through the point (1,3) is perpendicular to the line
through through the points (0, 0) and (1, 3). Therefore,

H={zeR: f(z)=F}={(z,2) : @ + 32, = B}
Since (1, 3) is on H, we have
f(1,3)=8=1+3-3=10,
and the equation of the hyperplane is
H = {(x,,z,) € R* : z, + 3z, = 10}.
(b) The hyperplane tangent to the unit sphere at (é, %) is perpendicular to
the line through the points (0, 0) and (@, %) Therefore,

H={zeR: f(z) =8} = {(z),2) : L, + Lz, = p}.

Since (?, %) is on H, we have

r(88) =8
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so that

5

D=

that is, 5 = % + % = 1. The equation of the hyperplane is
H = {(vy,z,) € R* : ‘/75331 + 3xy =1}

5. Given the linear functional f(z,,z,) = 4z, — 3z, find

(a) the point x on the closed unit ball where f(x) is a maximum,
(b) the point x in the hyperplane f~!(2) that is closest to the origin,
(c) the point z in the hyperplane f~!(3) that is closest to the origin.

Solution.

(@) If z = (x,,2,) € R?, then from the Cauchy-Schwarz inequality we have
|/ (@)] = 42, = 3y| < (42 + 3" (aF +23)"/? = 5]z,

and so | f(z)| < 5 forallz € B(0,1).
Now let z, = (%,f%),then

Izl = (1) + (=3)°) "= (2 +$)"* =1,
so that z, € B(0, 1), and
e =4(1) =3 (-3) = 52 =5

Therefore, f attains its maximum on the closed unit ball B(0, 1) at z,.
(b) The hyperplane H = f~!(2) has equation

H={(x,2y) : 4o, — 3x, = 2},

and the line L through the points (0, 0) and (4, —3) is perpendicular to H
and has parametric equations

2y =0+ 4X = 4\
2y =0— 3\ =—3\

for —oo < A < oo. The point & = (1, x5) on the hyperplane H with min-
imum Euclidean norm; that is, the point closed to the origin, is the point
where the line L intersects H. Therefore,

f(x) = f(4X\, —3)\) = (4* + 35\ = 2,

so that A = 22—,, and the closest point on H to 0 is 7 = (2§, —
5 5

).

Sle
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(c) Analogous to part (b), the point = (x,,x,) on the hyperplane
H = f"(3) = {(z,2,) : 4oy — 3z, = 3}
closest to the origin is the point = (4, —3)\) with f(4\, —3)) = 3.
Thus, we want

4(4X) — 3(=3)) = 3,

that is, A = 5.
i)
2 9

The point on f~!(3) closest to the origin is 2 = (32, — 3¢ ). O

7. Let f be the linear functional on R? represented by the vector p = (3, —2, —3)

and let S be the set
S={(1,1,-2),(-3,4,1),(60,10,15), (—8,—2,4),(0,1,1)}.

(a) Determine which points of S are on the same side of f~1(0).
(b) Which point or points of S are closest to f~1(0)?

(c) Which points of S are on the same side of f~!(8) as the origin?
(d) Find the point or points of S that are closest to f~1(8).

Solution. For each x = (11, 74, z5) € R?, then value of f is given by
f(z) = (p,x) = 3zy — 225 — 3z,
and for z € S, we have

f(1,1,-2)=7, f(-3,4,1) =—20, f(60,10,15) = 55,
f(—8,-2,4) =-32, f(0,1,1) = —5.

(a) The points (1,1, —2), and (60, 10, 15), are on one side of f~1(0); that is,
in the halfspace
H, ={z eR®: f(z) >0},

while the points (—3,4, 1), (=8, —2,4),and (0, 1, 1) are on the other side;
that is, in the halfspace

H ={zcR®: f(z) <0}

(b) Since [f(0,1,1)] =5, the point of S closest to f~1(0) is the point
(0,1,1).
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11.

(c) Only the point (60, 10, 15) is in the halfspace
K, ={zecR: f(z) > 8},
while the points (1,1, —2), (—=3,4,1), (—8,—2,4),and (0, 1, 1) are in the
halfspace
K ={zcR: f(x) <8}

(d) Since |f(1,1,—2) — 8| =1, while |f(x) — 8] > 1 for all other points
x € S, the point closest to f~1(8) is (1,1, —2). O

. Given that H is the hyperplane f~!(2), and given that g = 4f, find 3 such

that g~1(3) is exactly the same as H.

Solution. Note that the point (z,y) € g~ (3) if and only if g(z,y) = j3, that
is, if and only if 4 f (x,y) = 3.

This last equation is true if and only if f(z,y) = % that is, if and only if
(z,y) € f! (%)

Taking % =2, then g~ '(B) = f71(2), so that f7}(2) = H = g '(8), and
therefore 5 = 8. O

Let L be the line
L={zeR":z=pup+(1—p)g,—o0 < p< oo}

where p and ¢ are distinct points in R™, and let f be a linear functional on R™
such that f(p) = 6 and f(¢) = 1. Find

(a) the point where L intersects the hyperplane f~1(—2),

(b) the scalar 3 such that the hyperplane f~!(3) passes through the midpoint
of the line segment joining p and q.

Solution.

(a) If z = pup + (1 — p)g is on L, then

f)=pfp)+ M —p)flg) =6p+1-—p=>5n+1=-2,

so that p = —%, and the hyperplane f~'(2) intersects the line L at the

point z = —%p—&- %q.
(b) We want

so that 5 = % O
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13.

15.

17.
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Given that H = f~!(1), where the linear functional f on R* is represented
by the vector p = (1,0, 1, —1), find

(a) aline L, through O that intersects H in exactly one point,

(b) aline L, through 0 that misses H.

Solution.

(a) The vector p = (1,0,1,—1) is perpendicular to the hyperplane H, and
Therefore the line L, through the origin in the direction of p intersects H
in exactly one point.

(b) Since f(0) =0 < 1,then0 ¢ H. We take the vector ¢ = (1,0, —1,0) and
note that

o) = 1140041 (1) 4 (-1)-0=0

and the vector ¢ is perpendicular to p. Thus, 0 and ¢ are in f~1(0),
so the line L., through 0 and ¢ lies entirely in f~1(0) and so misses

H = f1(1). O

If the hyperplane H = f~!(«) intersects the straight line L in exactly one
point, then for every scalar 3, the hyperplane Hg = f “1B)

intersects L in exactly one point.

Hint. Conclude that this must happen because of what we know from
Problems 12 and 14.

Solution. 1f the line L misses H g, then L lies in a hyperplane parallel to H g,
which is parallel to H. This contradicts the fact that L intersects  in exactly
one point. If the line L intersects H in more than one point, then L lies in
H 8> which is parallel to H, again, a contradiction. Therefore, L intersects H 3
in exactly one point. O

Prove Theorem 1.6.3.

Solution. The theorem states that if f and g are linear functionals on R repre-
sented, respectively, by the vectors a and b, then f + g and A\ f are represented,
respectively, by the vectors a + b and \a.

Clearly, for x € R", we have

(f +9)(x) = f(2) + g(x) = (@, 2) + (b,x) = (a + b, x),

so f + g is represented by the vector a + b.

Similarly, for z € R™ and A € R, we have
(AN)(z) = Af(z) = Ma,z) = (Aa, z),

so \f is represented by the vector Aa. d
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19.

21.

Show that a hyperplane in R™ has a unique point of minimum norm.

Solution. Let H be the hyperplane
H={zecR": ({pz)=a}

where p € R", with p # 0 and o € R. We may assume that o« > 0, otherwise,
replace p by —p.

Let L be the line
L={zeR":2z=Ap,—00 <)< o0},

and let p,, be the point where L intersects H.

Since p, € H, we have (p,p,) = a, and since p, € L, we have p, = Ap for
some \ € R, so that

(,po) = AMp.p) = lpl3.
Therefore, A = B’ and p, = W P

We claim that p,, is the unique point of minimum norm in H. To see this,
suppose that p; is any point of H with p; # p,.

Since the vector p; —p, € H is orthogonal to the vector p,, from the
Pythagorean Theorem, we have

IpylI3 = llpy — poll3 + lIpoll3,

and since p; # p,, then ||p; — pylls > 0, so that

P13 > llpoll-
O

Show that if f is a linear functional on R™ and f is represented by the vector
p € R™, then

lpl| = max{f(z) : @ € B} = max{(p,z) : x € B},



12

23.
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where B is the closed unit ball in R".

Solution. If x € R™, then from the Cauchy-Schwarz inequality we have

f(@) = (p, ) <pl ],

and therefore

f@) <llpl
forall z € B.
Now let z, = ﬁ, so that |z,|| = 1 and x, € B. However,
1 el
f@g) = (&g, p) = o (p,p) = T = |2l
’ ’ (il lIpll

so that f attains its maximum value on the closed unit ball B at x,,, and

Ilpl| = max{f(z) : = € B}.

Develop a general formula for the point ¢ on the hyperplane
Hy={z € R": (p,2) = B}

that is closest to the point x,. Assume that p # 0.

Solution. From the previous problem the procedure is clear. Since the vector
pis orthogonal to H 3, we only have to find the point where the line L through
x, parallel to p intersects Hg. Thus, we want to find ¢ € L N Hg.

Now, ¢ is on L if and only if ¢ = 2, + A p for some scalar A, and ¢ € H if
and only if (p, q) = 3, that is, if and only if

Thus, we want
<p,$0> + )‘ <p7p> = 67

that is,
)\ _ ﬁ B <p7 x0> .
I

Therefore, the point ¢ on the hyperplane Hg which is closest to the point

T, 1S
! /8 - <pa'r0>

q=xy+
o2



