
�

� �

�

1 ParaDrop: An Edge Computing
Platform in Home Gateways

SUMAN BANERJEE,1 PENG LIU,1,2 ASHISH PATRO,1 and
DALE WILLIS1

1Department of Computer Sciences, University of Wisconsin-Madison,
Madison, WI, USA
2Pennsylvania State University, State College, PA, USA

1.1 INTRODUCTION

The last decade has seen a rapid diversification of computing platforms, devices, and
services. For example, desktops used to be the primary computing platform until the
turn of the century. Since then, laptops and more recently handheld devices such as
laptops and tablets have been widely adopted. Wearable devices and the Internet of
things (IoT) are the latest trends in this space. This has also led to widespread adoption
of the “cloud” as a ubiquitous platform for supporting applications and services across
these different devices.

Simultaneously, cloud computing platforms, such as Amazon EC2 and Google
App Engine, have become a popular approach to provide ubiquitous access to ser-
vices across different user devices. Third-party developers have come to rely on cloud
computing platforms to provide high quality services to their end users, since they
are reliable, always on, and robust. Netflix and Dropbox are examples of popular
cloud-based services. Cloud services require developers to host services, applica-
tions, and data on off-site data centers. But, due to application-specific reasons, a
growing number of high quality services restrict computational tasks to be colocated
with the end user. For example, latency-sensitive applications require the backend ser-
vice to be located to a user’s current location. Over the years, a number of research
threads have proposed that a better end-user experience is possible if the computation
is performed close to the end user. This is typically referred to as “edge computing”
and comes in various flavors including: cyber foraging [1], cloudlets [2], and more
recently fog computing [3].

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L



�

� �

�

14 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

This chapter presents a unique edge computing framework, called ParaDrop,
which allows developers to leverage one of the last bastions of persistent computing
resources in the end customer premises: the gateway (e.g., the Wi-Fi access point
(AP) or home set-top box). Using this platform, which has been fully implemented
on commodity gateways, developers can design virtually isolated compute con-
tainers to provide a persistent computational presence in the proximity of the
end user. The compute containers retain user state and also move with the users
as the latter changes their points of attachment. We demonstrate the capabilities
of this platform by demonstrating useful third-party applications, which utilize
the ParaDrop framework. The ParaDrop framework also allows for multitenancy
through virtualization, dynamic installation through the developer API, and tight
resource control through a managed policy design.

1.1.1 Enabling Multitenant Wireless Gateways and Applications
through ParaDrop

A decade or two ago, the desktop computer was the only reliable computing plat-
form within the home where third-party applications could reliably and persistently
run. However diverse mobile devices, such as smartphones and tablets, have depre-
cated the desktop computer since, and today persistent third-party applications are
often run in remote cloud-based servers. While cloud-based third-party services have
many advantages, the rise of edge computing concepts stems from the observation
that many services can benefit from a persistent computing platform, right in the
end-user premises.

With end-user devices going mobile, there is one remaining device that provides all
the capabilities developers require for their services, as well as the proximity expected
from an edge computational framework. The gateway—which could be a home Wi-Fi
AP or a cable set-top box provided by a network operator—is a platform that is con-
tinuously on and due to its pervasiveness is a primary entry point into the end-user
premises for such third-party services.

We want to push computation onto the home gateways (e.g., Wi-Fi APs and cable
set-top boxes) for the following reasons:

• The home gateways can handle it—modern home gateways are much more
powerful than what they need to be for their networking workload. What is
more if you are not running a Web server out of the house, your gateway sits
dormant majority of the time (when no one is home using it).

• Utilizing computational resources in the home gateway gives us a footprint
within the home to devices that are starved for computational resources, namely,
IoT devices. Using ParaDrop, developers can piggyback their IoT devices onto
the AP without the need for cloud services OR a dedicated desktop!

• Every household connected to the Internet by definition must contain an Internet
gateway somewhere in the house. With these devices sitting around, we can use
them to their full potential.



�

� �

�

INTRODUCTION 15

• Pervasive Hardware: Our world is quickly moving toward households only hav-
ing mobile devices (tablets and laptops) in the home that are not always on or
always connected. Developers can no longer rely on pushing software into the
home without also developing their own hardware too.

A Developer-Centric Framework. In this chapter, we examine the requirements of
services in order to build an edge computing platform, which enables developers to
provide services to the end user in place of a cloud computing platform. A focus on
edge computation would require developers to think differently about their applica-
tion development process; however we believe there are many benefits to a distributed
platform such as ParaDrop. The developer has remained our focus in the design and
implementation of our platform. Thus, we have implemented ParaDrop to include a
fully featured API for development, with a focus on a centrally managed framework.
Through virtualization, ParaDrop enables each developer access to resources in a way
as to completely isolate all services on the gateway. A tightly controlled resource
policy has been developed, which allows fair performance between all services.

1.1.2 ParaDrop Capabilities

ParaDrop takes advantage of the fact that resources of the gateway are underutilized
most of the time. Thus each service, referred to as a chute (as in parachute), borrows
CPU time, unused memory, and extra disk space from the gateway. This allows ven-
dors an unexplored opportunity to provide added value to their services through the
close proximity footprint of the gateway.

Figure 1.1 shows ParaDrop system running on real hardware, the “Wi-Fi home
gateway,” along with two services to motivate our platform: “security camera” and
“environment sensors.” ParaDrop has been implemented on PC engines ALIX 2D2
single board computer running OpenWrt “Barrier Breaker” on an AMD Geode
500 MHz processor with 256 MB of RAM. This low-end hardware platform was
chosen to showcase ParaDrop’s capabilities with existing gateway hardware.

We have emulated two third-party developers who have migrated their services
to the ParaDrop platform to showcase the potential of ParaDrop. Each of these ser-
vices contains a fully implemented set of applications to capture, process, store, and
visualize the data from their wireless sensors within a virtually isolated environment.
The first service is a wireless environmental sensor designed as part of the Emonix
research platform [4], which we refer to as “EnvSense.” The second service is a wire-
less security camera based on a commercially available D-Link DCS 931L webcam,
which we call “SecCam.” Leveraging the ParaDrop platform, the two developer ser-
vices allow us to motivate the following characteristics of ParaDrop:

• Privacy. Many sensors and even webcams today rely on the cloud as the only
storage mechanism for generated data. Leveraging the ParaDrop platform, the
end user no longer must rely on cloud storage for the data generated by their
private devices and instead can borrow disk space available in the gateway for
such data.



�

� �

�

16 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

Wi-Fi home 
gateway

CPU DISK

ParaDrop

MEM

Security
camera

Environment
sensors

Figure 1.1 The fully implemented ParaDrop platform on the Wi-Fi home gateway, which
shares its resources with two wireless devices including a security camera and environment
sensor.

• Low Latency. Many simple processing tasks required by sensors are performed
in the cloud today. By moving these simple processing tasks onto gateway hard-
ware, one hop away from the sensor itself, a reliable low-latency service can be
implemented by the developer.

• Proprietary Friendly. From a developer’s perspective, the cloud is the best
option to deploy their proprietary software because it is under their complete
control. Using ParaDrop, a developer can package up the same software
binaries and deploy them within the gateway to execute in a virtualized
environment, which is still under their complete control.

• Local Networking Context. In the typical service implemented by a developer,
the data is consumed only by the end user yet stored in the cloud. This requires
data generated by a security camera in the home to travel out to a server some-
where in the Internet and upon the end user’s request travel back from this server
into the end-user device for viewing. Utilizing the ParaDrop platform, a devel-
oper can ensure that only data requested by the end user is transmitted through
Internet paths to the end-user device.

• Internet Disconnectivity. Finally, as services become more heterogeneous, they
will move away from simple “nice to have” features into mission critical, life
saving services. While generally accepted as unlikely, a disconnection from the
Internet makes a cloud-based sensor completely useless and is unacceptable for
services such as health monitoring. In this case, a developer could leverage the
always-on nature of the gateway to process data from these sensors, even when
the Internet seems to be down.



�

� �

�

IMPLEMENTING SERVICES FOR THE PARADROP PLATFORM 17

1.2 IMPLEMENTING SERVICES FOR THE PARADROP PLATFORM

The primary component of ParaDrop is the virtual machine called a chute (short for
parachute) because the framework uses it to install services across different APs. Each
developer can deploy many chutes (Figure 1.2) to their AP, thanks to a low-overhead
virtualization technology: Linux containers (LXC). These chutes allow for fully iso-
lated use of computational resources on the AP. As you design and implement ser-
vices on your AP, you can, and should, separate these services into unique chutes.
Figure 1.3 shows an example chute configuration specified in the Chute.struct file.

There are several primary concerns of the ParaDrop platform including installation
procedure, API, and networking configuration.

Dynamic Installation. In order to allow end users to easily add services to their
gateway, each service should have the ability to be dynamically installed. This pro-
cess is possible through the virtualization environment of each chute. When an end
user wishes to add a service to their home, they simply register an account with the
developer. Using the ParaDrop API, the developer links the user’s account with their
gateway. If the service utilizes a wireless device, the gateway can fully integrate with
the device without any interference from the end user.

ParaDrop API. The focus of ParaDrop is to enable third-party developers to provide
high quality services to their users. In order to enable this, a seamless API was devel-
oped, based on a RESTful paradigm, which allows the developer to have complete
control over the configuration of their chutes.

Developers can use the API to query and monitor the status of the Paradrop plat-
form:

• Persistent State: Users (type, permissions, etc.), chutes (description, resource
requirements, etc.), and gateways (configuration, accessories, location, etc.)

• Real-Time State: Running status of chutes and gateway

eth0

eth0

wlan0

eth1

WAN Services LAN

Host firewall

Figure 1.2 The dashed box shows the block diagram representation of a “chute” installed
on a ParaDrop-enabled access point. Each chute hosts a stand-alone service and has its own
network subnet.



�

� �

�

18 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

"disk": {
"size": 123456

},
"net": {

"wan": {
"type": "wan",
"intfName": "eth0",
"ipaddr": "10.100.10.1",
"netmask": "255.255.255.0"

},
"wifi": {

"type": "wifi",
"intfName": "eth1",
"ipaddr": "10.100.11.1",
"netmask": "255.255.255.0",
"ssid": "Virtual0",
"encryption": "psk2",
"key": "wifi1234"

}

Figure 1.3 An example Chute.struct file, which is used to specify the key configuration
parameters of a chute that hosts a stand-alone service. Parameters such as CPU, memory, disk
requirements, and network configurations are specified as JSON key–value pairs. ParaDrop
provides chute configuration templates to developers, which can customized based on appli-
cation requirements.

Developers can also use the API to control the system:

• Publish a chute to the store or remove a chute from the store.

• Register/unregister a gateway.

• Install, start, and revoke a chute on one or many gateways.

As services evolve, the API will provide all the capabilities required without the
need for modification to the configuration software. This is possible through the use
of a JSON-based data back end, which allows abstract configuration and control over
each chute.

Network Setup. The networking topology of a dynamic, virtualized environment
controlled by several entities is very complex. In order to maintain control over the
networking aspects of the gateway, we leveraged an SDN paradigm. All configura-
tion related to networking between the chutes and the gateway is handled through a
cloud service, which is interfaced by the developers and network operators. The use
of SDN is what allows developers to transparently redirect the user’s request to their
Web services from within the gateway.



�

� �

�

DEVELOP SERVICES FOR PARADROP 19

Resource Policy. The multitenancy aspects of ParaDrop require tight policy control
over the gateway and its limited resources. Currently the major resources controlled
by ParaDrop include CPU, memory, and networking. Using the API, the developer
specifies the type of resources they require depending on the services they implement.
Through the management interface, the network operator can dynamically adjust the
resources provided to each chute. These resources are adjusted first by a request sent
to the chute, and, if not acted upon, then by force through the virtualization framework
tools.

1.3 DEVELOP SERVICES FOR PARADROP

IoT is becoming a huge part of the networking world. Yet many IoT devices rely on
back end services that must traverse the Internet to utilize their full potential. Using
ParaDrop, we can pull that intelligence back into the AP.

1.3.1 A Security Camera Service Using ParaDrop

In this section, we present a walk-through about using a Wi-Fi-based video camera
with a ParaDrop AP to implement a security camera service called SecCam.

The SecCam service is based on a commercially available wireless IP camera,
where we took the role of developer to fully implement the service.

For this service, we require networking interfaces to communicate with the
webcam and the Internet, as well as ample storage for images. To augment storage
resources on ParaDrop gateways, we add a flash card to the gateway device, which
provides GBs of storage.

The applications for SecCam allow for motion detection from the webcam,
user-defined alerts, and visualization of the detected images. The motion detection
component is a Python-based program with user-defined characteristics such as
threshold of motion, time of day, and rate of detection. Visualization of the motion is
implemented as a PHP-based Web page, which is hosted within the SecCam chute.

This example in the section creates a chute for the “SecCam” service with the
following end result:

• Create the SecCam SSID. This SSID provides an isolated Wi-Fi network and
subnet to the security cameras. This is designed so that devices purchased by
end users do not have to be programmed when they arrive at the house (they
can be flashed with a default SSID and password by the company). This subnet
will not have internet access and any network traffic be consumed by the chute.

• Image Capture Service. The service will run a simple Python program to capture
images from an IP camera, calculate differences to detect motion, and store
those images to disk. The images stored to disk will then be visualized using a
Web server, which runs inside the chute.



�

� �

�

20 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

"disk": {
"size": 123456

},
"net": {

"wan": {
"type": "wan",
"intfName": "eth0",
"ipaddr": "10.100.10.1",
"netmask": "255.255.255.0"

},
"wifi": {

"type": "wifi",
"intfName": "eth1",
"ipaddr": "10.100.11.1",
"netmask": "255.255.255.0",
"ssid": "SecCam",
"encryption": "psk2",
"key": "noOneCanHackThis"

}

Figure 1.4 The primary Chute.struct component for the SecCam chute.

{
"name":"www",
"path":"/srv/www",
"location":"@paradrop.server(seccam/srv.tar.gz)",
"sha1":"526bb8cb52458aad4043c56980cd238551b46b7e",
"todo":"EXTRACT"

}, {
"name":"root",
"path":"/root",
"sha1":"1633ea1d6351929cc2c8717d1611dcb41681b585",
"location":"@paradrop.server(seccam/seccam.py)"

}

Figure 1.5 The Chute.files component lists the files required for the SecCam chute.

1.3.1.1 Defining the SecCam Chute Chute.struct. As discussed earlier, we first
need to define the primary Chute.struct component first for our awesome SecCam
chute (Figure 1.4).

Chute.files. For a chute, the Chute.files component lists any files that must exist on
the chute’s disk in order for it to operate properly. This can include things like bash
scripts, Python programs, PHP code, etc.

The rules in Figure 1.5 show files required for our SecCam application. The
“www” attribute specifies Web server PHP code to download seccam/srv.tar.gz from



�

� �

�

DEVELOP SERVICES FOR PARADROP 21

an examples directory on the ParaDrop server to the chute’s root file system (FS).
Similarly the “root” attribute downloads seccam.py to /root. The “sha1” values let
the code running on ParaDrop to verify it properly downloading the code into the
chute before it launches.

Chute.resource. As much as possible, ParaDrop tries to be a lean virtualized plat-
form (hence our use of LXC over more traditional virtualization methods). For this
reason, we explicitly make the developer define and be aware of the resources they
will require for their chute.

These resources are broken down into three categories:

1. CPU. The CPU shares devoted to this chute, in most cases the default value,
will be fine; if you know the chute will not perform CPU intensive tasks or you
want to lower the priority of the tasks it will perform, you can lower the CPU
value, by default it is 1024 (meaning equal sharing between all chutes).

2. Memory. The AP we have implemented for ParaDrop contains 2 GB of DDR3
memory, so compared with a typical AP memory will not be hard to come by.
The default value for memory should typically be fine, but keep in mind: the
memory value is a hard limit; if you define it to be too low, your chute’s kernel
may not even fully boot due to out-of-memory (OOM) issues.

3. Networking. The final resource to be defined for chutes is any network through-
put requirements of the chute. These are specified in kbps for both upload and
download for each interface in the chute. If you are designing a chute with low
priority but its use is primarily a virtual router, rather than lowering the CPU
resources (which will not greatly affect throughput rates), you should lower the
overall throughput provided to the interface instead.

Figure 1.6 shows the Chute.resource component for the SecCam chute. We choose
the default CPU and memory configuration and specify a high-bandwidth limit to
allow high-volume video traffic from the Wi-Fi camera.

Chute.runtime. The Chute.runtime component specifies what operations will be
performed within the chute itself. We refer to these as the runtime rules (Figure 1.7).
The webhosting runtime attribute creates an instance of uhttpd with the arguments
specified. The DHCP server runtime macro sets up a default DHCP server inside the
chute so that future security cameras can connect to it properly.

Chute.traffic. In many situations, the chute you are implementing will need to
interface with devices that for any number of reasons may not be associated to your

"cpu": "@resource.cpu.DEFAULT",
"memory": ’@resource.memory.DEFAULT’,
"wan": {"down": 25000, "up": 10000},
"wifi": {"down": 25000, "up": 10000}

Figure 1.6 The Chute.resource component specifies the resource consumption limits for the
SecCam chute.



�

� �

�

22 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

{
"name": "webhosting",
"program": "uhttpd",
"args": "-p 80 -i .php=/usr/bin/php-cgi -h /srv/www"

}, {
"name": "DHCP Server",
"program": "@net.runtime.dhcpserver"

}

Figure 1.7 The Chute.runtime component for the SecCam chute.

{
"name": "Web",
"description": "Allows the chute to provide a webserver

on WAN",
"rule": "@net.traffic.redirect(@net.host.lan:*:5000,

wifi:10.100.13.1:80)"
}, {
"name": "HostSSH",
"description": "Allows the host stack access to SSH",
"rule": "@net.traffic.redirect(@net.host.lan:*:5001,

wifi:10.100.13.1:22)"
}

Figure 1.8 The Chute.traffic component allows users to access data within the SecCam chute.

chute’s network directly (via a Wi-Fi interface). In these cases for security purposes,
the ParaDrop platform allows the developer to implement traffic rules. These rules are
implemented in the host networking stack’s firewall rules and allow for things like
a computer on the host LAN network to access a particular port within a deployed
chute (called port forwarding in firewall land).

For the SecCam application, the images are stored within the chute but need to
be accessible to users on the LAN network. The Web rule allows the user connected
on the LAN network to access Web pages hosted by a uhttpd Web server running
inside a chute. The host SSH rule allows the user to SSH into the chute from his
laptop (mainly for debugging) connected to the LAN network by using the default
ParaDrop SSID (Figure 1.8).

1.3.2 An Environmental Sensor Service Using ParaDrop

Since the wireless environmental sensor was fully implemented as a part of the
Emonix research platform, we only need to migrate the service, rather than rewrite
it to fit ParaDrop platform. The original service runs in a cloud server to collect data
from the sensors, process and store the data, and visualize the data. After identifying
the resources required to run the service, we can develop a chute for it so that the



�

� �

�

REFERENCES 23

service can run in ParaDrop gateways, which are close to the sensors. As the steps
to develop a chute for it are the same as the SecCam application, we do not discuss
them in detail here.

REFERENCES

1. R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang. The case for
cyber foraging. In Proceedings of the 10th Workshop on ACM SIGOPS European Workshop,
EW 10, pages 87–92, New York, NY, USA, 2002. ACM.

2. M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

3. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the inter-
net of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

4. N. Klingensmith, D. Willis, and S. Banerjee. A distributed energy monitoring and analytics
platform and its use cases. In Proceedings of the Fifth ACM Workshop on Embedded Systems
For Energy-Efficient Buildings, BuildSys’13, pages 5:1–5:8, New York, NY, USA, 2013.
ACM.


