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1
INTRODUCTION, CLASSIFICATION,
SHORT HISTORY, AUXILIARY
RESULTS, AND METHODS

Generally speaking, a functional equation is a relationship containing an
unknown element, usually a function, which has to be determined, or at least
partially identifiable by some of its properties. Solving a functional equation
(FE) means finding a solution, that is, the unknown element in the relationship.
Sometimes one finds several solutions (solutions set), while in other cases the
equation may be deprived of a solution, particularly when one provides the
class/space to which it should belong.

Since a relationship could mean the equality, or an inequality, or even the
familiar “belongs to,” designated by =, ∈, ⊂ or ⊆, the description given ear-
lier could also include the functional inequalities or the functional inclusions,
rather often encountered in the literature. Actually, in many cases, their theory
is based on the theory of corresponding equations with which they interact.
For instance, the selection of a single solution from a solution set, especially
in case of inclusions.

In this book we are mainly interested in FEs, in the proper/usual sense.
We send the readers to adequate sources for cases of related categories, like
inequalities or inclusions.
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2 INTRODUCTION

1.1 CLASSICAL AND NEW TYPES OF FEs

The classical types of FEs include the ordinary differential equations (ODEs),
the integral equations (IEs) of Volterra or Fredholm and the integro-differential
equations (IDEs). These types, which have been thoroughly investigated
since Newton’s time, constitute the classical part of the vast field of FEs, or
functional differential equations (FDEs).

The names Bernoulli, Newton, Riccati, Euler, Lagrange, Cauchy (analytic
solutions), Dini, and Poincaré as well as many more well-known mathemati-
cians, are usually related to the classical theory of ODE. This theory leads to a
large number of applications in the fields of science, engineering, economics,
in cases of the modeling of specific problems leading to ODE.

A large number of books/monographs are available in the classical field
of ODE: our list of references containing at least those authored by Halanay
[237], Hale [240], Hartman [248], Lefschetz [323], Petrovskii [449], Sansone
and Conti [489], Rouche and Mawhin [475], Nemytskii and Stepanov [416],
and Coddington and Levinson [106].

Another classical type of FEs, closely related to the ODEs, is the class of
IEs, whose birth is related to Abel in the early nineteenth century. They reached
an independent status by the end of nineteenth century and the early twenti-
eth century, with Volterra and Fredholm. Hilbert is constituting his theory of
linear IEs of Fredholm’s type, with symmetric kernel, providing a successful
start to the spectral theory of completely continuous operators and orthogonal
function series.

Classical sources in regard to the basic theory of integral equations include
books/monographs by Volterra [528], Lalesco [319], Hilbert [261], Lovitt
[340], Tricomi [520], Vath [527]. More recent sources are Corduneanu [135],
Gripenberg et al. [228], Burton [80, 84], and O’Regan and Precup [430].

A third category of FEs, somewhat encompassing the differential and the
IEs, is the class of IDEs, for which Volterra [528] appears to be the originator.
It is also true that E. Picard used the integral equivalent of the ODE ẋ(t) =
f (t,x(t)), under initial condition x(t0) = x0, Cauchy’s problem, namely

x(t) = x0 +

∫ t

t0

f (s,x(s))ds,

obtaining classical existence and uniqueness results by the method of succes-
sive approximations.

A recent reference, mostly based on classical analysis and theories of DEs
and IEs, is Lakshmikantham and R. M. Rao [316], representing a rather com-
prehensive picture of this field, including some significant applications and
indicating further sources.
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The extended class of FDEs contains all preceding classes, as well equa-
tions involving operators instead of functions (usually from R into R). The
classical categories are related to the use of the so-called Niemytskii operator,
defined by the formula (Fu)(t) = f (t,u(t)), with t ∈ R or in an interval of R,
while in the case of FDE, the right-hand side of the equation

ẋ(t) = (Fx)(t),

implies a more general type of operator F. For instance, using Hale’s notation,
one can take (Fx)(t) = f (t,x(t),xt), where xt(s) = x(t+ s), −h ≤ s ≤ 0 repre-
sents a restriction of the function x(t), to the interval [t−h, t]. This is the finite
delay case. Another choice is

(Fx)(t) = (Vx)(t), t ∈ [t0,T],

where V represents an abstract Volterra operator (see definition in Chapter 2),
also known as causal operator.

Many other choices are possible for the operator F, leading to various
classes of FDE. Bibliography is very rich in this case, and exact references will
be given in the forthcoming chapters, where we investigate various properties
of equations with operators.

The first book entirely dedicated to FDE, in the category of delay type (finite
or infinite) is the book by A. Myshkis [411], based on his thesis at Moscow
State University (under I. G. Petrovskii). This book was preceded by a sur-
vey article in the Uspekhi Mat. Nauk, and one could also mention the joint
paper by Myshkis and Eĺsgoĺtz [412], reviewing the progress achieved in this
field, due to both authors and their followers. The book Myshkis [411] is the
first dedicated entirely to the DEs with delay, marking the beginnings of the
literature dealing with non-traditional FEs.

The next important step in this direction has been made by N. N. Krasovskii
[299], English translation of 1959 Russian edition. In his doctoral thesis (under
N. G. Chetayev), Krasovskii introduced the method of Liapunov functionals
(not just functions!), which permitted a true advancement in the theory of
FDEs, especially in the nonlinear case and stability problems. The research
school in Ekaterinburg has substantially contributed to the progress of the the-
ory of FDEs (including Control Theory), and names like Malkin, Barbashin,
and Krasovskii are closely related to this progress.

The third remarkable step in the development of the theory of FDE has been
made by Jack Hale, whose contribution should be emphasized, in respect to
the constant use of the arsenal of Functional Analysis, both linear and non-
linear. A first contribution was published in 1963 (see Hale [239]), utilizing
the theory of semigroups of linear operators on a Banach function space.
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This approach allowed Hale to develop a theory of linear systems with finite
delay, in the time-invariant framework, dealing with adequate concepts that
naturally generalize those of ODE with constant coefficients (e.g., character-
istic values of the system/equation). Furthermore, many problems of the theory
of nonlinear ODE have been formulated and investigated for FDE (stability,
bifurcation, and others (a.o.)). The classical book of Hale [240] appears to be
the first in this field, with strong support of basic results, some of them of
recent date, from functional analysis.

In the field of applications of FDE, the book by Kolmanovskii and
Myshkis [292] illustrates a great number of applications to science (includ-
ing biology), engineering, business/economics, environmental sciences, and
medicine, including the stochastic factors. Also, the book displays a list of
references with over 500 entries.

In concluding this introductory section, we shall mention the fact that the
study of FDE, having in mind the nontraditional types, is the focus for a
large number of researchers around the world: Japan, China, India, Russia,
Ukraine, Finland, Poland, Romania, Greece, Bulgaria, Hungary, Austria,
Germany, Great Britain, Italy, France, Morocco, Algeria, Israel, Australia and
the Americas, and elsewhere.

The Journal of Functional Differential Equations is published at the Col-
lege of Judea and Samaria, but its origin was at Perm Technical University
(Russia), where N. V. Azbelev created a school in the field of FDE, whose
former members are currently active in Russia, Ukraine, Israel, Norway, and
Mozambique.

Many other journals are dedicated to the papers on FDE and their appli-
cations. We can enumerate titles like Nonlinear Analysis (Theory, Methods &
Applications), published by Elsevier; Journal of Differential Equations; Jour-
nal of Mathematical Analysis and Applications, published by Academic
Press; Differentsialuye Uravnenja (Russian: English translation available);
and Funkcialaj Ekvacioj (Japan). Also, there are some electronic journals
publishing papers on FDE: Electronic Journal of Qualitative Theory of Dif-
ferential Equations, published by Szeged University; EJQTDE, published by
Texas State University, San Marcos.

1.2 MAIN DIRECTIONS IN THE STUDY OF FDE

This section is dedicated to the description of various types of problems aris-
ing in the investigation of FDE, at the mathematical side of the problem as
well as the application of FDE in various fields, particularly in science and
engineering.
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A first problem occurring in relationship with an FDE is the existence
or absence of a solution. The solution is usually sought in a certain class
of functions (scalar, vector, or even Banach space valued) and “a priori”
limitations/restrictions may be imposed on it.

In most cases, besides the “pure” existence, we need estimates for the
solutions. Also, it may be necessary to use the numerical approach, usually
approximating the real values of the solution. Such approximations may have
a “local” character (i.e., valid in a neighborhood of the initial/starting value of
the solution, assumed also unique), or they may be of “global” type, keeping
their validity on the whole domain of definition of the solution.

Let us examine an example of a linear FDE, of the form

ẋ(t) = (Lx)(t)+ f (t), t ∈ [0,T], (1.1)

with L : C([0,T],Rn) → C([0,T],Rn) a linear, casual continuous map, while
f ∈ C([0,T],Rn). As shown in Corduneanu [149; p. 85], the unique solution of
equation (1.1), such that x(0) = x0 ∈ Rn, is representable by the formula

x(t) = X(t,0)x0 +

∫ t

0
X(t,s) f (s)ds, t ∈ [0,T]. (1.2)

In (1.2), the Cauchy matrix is given, on 0 ≤ s ≤ t ≤ T , by the formula

X(t,s) = I +
∫ t

s
k̃(t,u)du, (1.3)

where k̃(t,s) stands for the conjugate kernel associated to the kernel k(t,s), the
latter being determined by the relationship

∫ t

0
(Lx)(s)ds =

∫ t

0
k(t,s)x(s)ds, t ∈ [0,T]. (1.4)

For details, see the reference indicated earlier in the text.
Formula (1.2) is helpful in finding various estimates for the solution x(t) of

the initial value problem considered previously.
Assume, for instance, that the Cauchy matrix X(t,s) is bounded on 0 ≤ s ≤

t ≤ T by M, that is, |X(t,s)| ≤ M; hence |X(t,0)| ≤ m ≤ M, then (1.2) yields
the following estimate for the solution x(t):

|x(t)| ≤ m |x0|+M
∫ T

0
|f (s)|ds, (1.5)
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with T <∞ and f continuous on [0,T]. We derive from (1.5) the estimate

sup
0≤t≤T

|x(t)| ≤ m |x0|+M |f |L1 , (1.6)

which means an upper bound of the norm of the solutions, in terms of data.
We shall also notice that (1.6) keeps its validity in case T =∞, that is, we

consider the problem on the semiaxis R+. This example shows how, assum-
ing also f ∈ L1(R+,Rn), all solutions of (1.1) remain bounded on the positive
semiaxis.

Boundedness of all solutions of (1.1), on the positive semiaxis, is also
assured by the conditions |X(t,0)| ≤ m, t ∈ R+, and

∫ t

0
|X(t,s)|ds ≤ M, |f (t)| ≤ A <∞, t ∈ R+.

The readers are invited to check the validity of the following estimate:

sup
t≥0

|x(t)| ≤ m |x0|+AM, t ∈ R+. (1.7)

Estimates like (1.6) or (1.7), related to the concept of boundedness of solu-
tions, are often encountered in the literature. Their significance stems from the
fact that the motion/evolution of a man-made system takes place in a bounded
region of the space. Without having estimates for the solutions of FDE, it is
practically impossible to establish properties of these solutions.

One of the best examples in this regard is constituted by the property of
stability of an equilibrium state of a system, described by the FDE under inves-
tigation. At least, theoretically, the problem of stability of a given motion of a
system can be reduced to that of an equilibrium state. Historically, Lagrange
has stated a result of stability for the equilibrium for a mechanical system,
in terms of a variational property of its energy. This idea has been devel-
oped by A. M. Liapunov [332] (1857–1918), who introduced the method
of an auxiliary function, later called Liapunov function method. Liapunov’s
approach to stability theory is known as one of the most spectacular develop-
ments in the theory of DE and then for larger classes of FDE, starting with
N. N. Krasovskii [299].

The comparison method, on which we shall rely (in Chapter 3), has brought
new impetus to the investigation of stability problems. The schools created
by V. V. Rumiantsev in Moscow (including L. Hatvani and V. I. Vorotnikov),
V. M. Matrosov in Kazan, then moved to Siberia and finally to Moscow, have
developed a great deal of this method, concentrating mainly on the ODE case.
Also, V. Lakshmikantham and S. Leela have included many contributions in
their treaty [309]. They had many followers in the United States and India,
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publishing a conspicuous number of results and developments of this method.
One of the last contributions to this topic [311], authored by Lakshmikantham,
Leela, Drici, and McRae, contains the general theory of equations with causal
operators, including stability problems.

The comparison method consists of the simultaneous use of Liapunov func-
tions (functionals), and differential inequalities. Started in its general setting
by R. Conti [110], it has been used to prove global existence criteria for ODE.
In short time, the use has extended to deal with uniqueness problems for
ODE by F. Brauer [75] and Corduneanu [114, 115] for stability problems.
The method is still present in the literature, with contributions continuing
those already included in classical references due to Sansone and Conti [489],
Hahn [235], Rouche and Mawhin [475], Matrosov [376–378], Matrosov and
Voronov [387], Lakshimikantham and Leela [309], and Vorotnikov [531].

A historical account on the development of the stability concept has
been accurately given by Leine [325], covering the period from Lagrange
to Liapunov. The mechanical/physical aspects are emphasized, showing the
significance of the stability concept in modern science. The original work of
Liapunov [332] marks a crossroad in the development of this concept, with
so many connections in the theory of evolutionary systems occurring in the
mathematical description in contemporary science.

In Chapter 3, we shall present stability theory for ODE and FDE, particu-
larly for the equations with finite delay. The existing literature contains results
related to the infinite delay equations, a theory that has been originated by
Hale and Kato [241]. An account on the status of the theory, including sta-
bility, is to be found in Corduneanu and Lakshmikantham [167]. We notice
the fact that a theory of stability, for general classes of FDE, has not yet been
elaborated. As far as special classes of FDE are concerned, the book [84] by
T. Burton presents the method of Liapunov functionals for integral equations,
by using modern functional analytic methods. The book [43] by Barbashin,
one of the first in this field, contains several examples of constructing
Liapunov functions/functionals.

The converse theorems in stability theory, in the case of ODE, have
been obtained, in a rather general framework, by Massera [373], Kurzweil
[303], and Vrkoč [532]. Early contributions to stability theory of ODE were
brought by followers of Liapunov, (see Chetayev [103] and Malkin [356]). In
Chapter 3, the readers will find, besides some basic results on stability, more
bibliographical indications pertaining to this rich category of problems.

As an example, often encountered in some books containing stability
theory, we shall mention here the classical result (Poincaré and Liapunov)
concerning the differential system ẋ(t) = A(t)x(t), t ∈ R+, x : R+ → Rn,
and A : R+ → L(Rn,Rn) a continuous map. If we admit the commutativity
condition
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A(t)
∫ t

0
A(s)ds =

(∫ t

0
A(s)ds

)
A(t), t ∈ R+, (1.8)

then the solution, under initial condition x(0) = x0, can be represented by

x(t,x0) = x0 e
∫ t

0 A(s)ds, t ≥ 0. (1.9)

From this representation formula one derives, without difficulty, the following
results:

Stability of the solution x = θ = the zero vector in Rn is equivalent to
boundedness, on R+, of the matrix function

∫ t
0 A(s)ds.

Asymptotic stability of the solution x = θ is equivalent to the condition

lim
t→∞

e
∫ t

0 A(s)ds = O = the zero matrix. (1.10)

Both statements are elementary consequences of formula (1.8). The defi-
nitions of various types of stability will be done in Chapter 3. We notice here
that the already used terms, stability and asymptotic stability, suggest that the
first stands for the property of the motion to remain in the neighborhood of
the equilibrium point when small perturbations of the initial data are occur-
ring, while the second term tells us that besides the property of stability (as
intuitively described earlier), the motion is actually “tending” or approaching
indefinitely the equilibrium state, when t →∞.

Remark 1.1 The aforementioned considerations help us derive the celebrated
stability result, known as Poincaré–Liapunov stability theorem for linear
differential systems with constant coefficients.

Indeed, if A(t) ≡ A = constant is an n× n matrix, with real or complex
coefficients, with characteristic equation det(λ I−A) = 0, I = the unit matrix
of type n×n, then we denote by λ1,λ2, . . . ,λk its distinct roots (k ≤ n). From
the elementary theory of DEs with constant coefficients, we know that the
entries of the matrix eA t are quasi-polynomials of the form

k∑
j=1

eλj t pj(t), (1.11)

with pj(t), j = 1,2, . . . ,k, some algebraic polynomials.
Since the commutativity condition (1.8) is valid when A(t)≡ A = constant,

there results that (1.10) can hold if and only if the condition

Reλj < 0, j = 1,2, . . . ,k, (1.12)
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is satisfied. Condition (1.12) is frequently used in stability theory, particularly
in the case of linear systems encountered in applications, but also in the case
of nonlinear systems of the form

ẋ(t) = Ax(t)+ f (t,x(t)), (1.13)

when f —using an established odd term—is of “higher order” with respect to x
(say, for instance, f (t,x) = x

3
2 sin t).

We will conclude this section with the discussion of another important prop-
erty of motion, encountered in nature and man-made systems. This property is
known as oscillation or oscillatory motion. Historically, the periodic oscilla-
tions (of a pendulum, for instance) have been investigated by mathematicians
and physicists.

Gradually, more complicated oscillatory motions have been observed, lead-
ing to the apparition of almost periodic oscillations/vibrations. In the third
decade of the twentieth century, Harald Bohr (1887–1951), from Copenhagen,
constructed a wider class than the periodic one, called almost periodic.

In the last decade of the twentieth century, motivated by the needs of
researchers in applied fields, even more complex oscillatory motions have
emerged. In the books by Osipov [432] and Zhang [553, 554], new spaces
of oscillatory functions/motions have been constructed and their applications
illustrated.

In case of the Bohr–Fresnel almost periodic functions, a new space has been
constructed, its functions being representable by generalized Fourier series of
the form

∞∑
k=1

ak ei(αt2+βk t), t ∈ R, (1.14)

with ak ∈ C and α,βk ∈ R, k ≥ 1.
In the construction of Zhang, the attached generalized Fourier series has the

form

∞∑
k=1

ak ei qk(t), t ∈ R, (1.15)

with ak ∈ C, k ≥ 1, and qk ∈ Q(R), Q(R) denoting the algebra of polynomial
functions of the form

q(t) =
m∑

j=1

λj t
αj for t ≥ 0, (1.16)
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and q(t) = −q(−t) for t < 0; λj ∈ R, while α1 > α2 > · · · > αm > 0 denote
arbitrary reals.

The functions (on R) obtained by uniform approximation with generalized
trigonometric polynomials of the form

Pn(t) =
n∑

k=1

ak ei qk(t) (1.17)

are called strong limit power functions and their space is denoted by
SLP(R,C).

A discussion of these generalizations of the classical trigonometric series
and attached “sum” are presented in Appendix. The research work is getting
more and more adepts, contributing to the development of this third stage in
the history of oscillatory motions/functions.

In order to illustrate, including some applications to FDEs, the role of
almost periodic oscillations/motions, we have chosen to present in Chapter 4
only the case of APr-almost periodic functions, r ∈ [1,2], constituting a
relatively new class of almost periodic functions, related to the theory of oscil-
latory motions. Their construction is given, in detail, in Chapter 4, as well as
several examples from the theory of FDEs.

Concerning the first two stages in the development of the theory of oscil-
latory functions, the existing literature includes the treatises of Bary [47] and
Zygmund [562]. These present the main achievements of the first stage of
development (from Euler and Fourier, to contemporary researchers). With
regard to the second stage in the theory of almost periodic motions/functions,
there are many books/monographs dedicated to the development, following
the fundamental contributions brought by Harald Bohr. We shall mention
here the first books presenting the basic facts, Bohr [72] and Besicovitch [61],
Favard [208], Fink [213], Corduneanu [129,156], Amerio and Prouse [21], and
Levitan [326], Levitan and Zhikov [327]. These references contain many more
indications to the work of authors dealing with the theory of almost periodic
motions/functions. They will be mentioned in Section 4.9.

As an example of an almost periodic function, likely the first in the literature
but without naming it by its name, seems to be due to Poincaré [454], who dealt
with the representations of the form

f (t) =
∞∑

k=1

ak sinλk t, t ∈ R. (1.18)

Supposing that the series converges uniformly to f on R (which situation can
occur, for instance, when

∑∞
k=1 |ak| < ∞), Poincaré found the formula for
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the coefficients ak, introducing simultaneously the concept of mean value of a
function on R:

M{f}= lim
�→∞

(2�)−1
∫ �

−�

f (t)dt. (1.19)

This concept was used 30 years later by H. Bohr, to build up the theory of
almost periodic functions (complex-valued). The coefficients were given by
the formula

ak = lim
�→∞

(2�)−1
∫ �

−�

f (t) sinλk t dt. (1.20)

1.3 METRIC SPACES AND RELATED CONCEPTS

One of the most frequent tools encountered in modern mathematical analysis is
a metric space, introduced at the beginning of the twentieth century by Maurice
Fréchet (in his Ph.D. thesis at Sorbonne). This concept came into being after
G. Cantor laid the bases of the set theory, opening a new era in mathematics.
The simple idea, exploited by Fréchet, was to consider a “distance” between
the elements of an abstract set.

Definition 1.1 A set S, associated with a map d : S × S → R+, is called a
metric space, if the following axioms are adopted:

1) d(x,y)≥ 0, with = only when x = y;

2) d(x,y) = d(y,x), x,y ∈ S;

3) d(x,y)≤ d(x,z)+d(z,y), x,y,z ∈ S.

Several consequences can be drawn from Definition 1.1. Perhaps, the most
important is contained in the following definition:

Definition 1.2 Consider a sequence of elements/points {xn; n ≥ 1} ⊂ S. If

lim
n→∞

d(xn,x) = 0, (1.21)

then one says that the sequence {xn; n ≥ 1} converges to x in S.
Then x is called the limit of the sequence.

It is common knowledge that the limit of a convergent sequence in S is
unique.

Since the concept of a metric space has gained wide acceptance in Math-
ematics, Science and Engineering, we will send the readers to the book of
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Friedman [214] for further elementary properties of metric spaces and the
concept of convergence.

It is important to mention the fact that the concept of convergence/limit
helps to define other concepts, such as compactness of a subset M ⊂ S.
Particularly, the concept of a complete metric space plays a significant role.

Definition 1.3 The metric space (S,d) is called complete, if any sequence
{xn; n ≥ 1} satisfying the Cauchy condition, “for each ε > 0, there exists an
integer N = N(ε), such that d(xn,xm) < ε for n,m ≥ N(ε), is convergent in
(S,d).”

Definition 1.4 The metric space (S,d) is called compact, according to
Fréchet, iff any sequence {xn; n ≥ 1} ⊂ S contains a convergent subsequence
{xnk ; k ≥ 1}, that is, such that limk→∞ d(xnk ,x) = 0, for some x ∈ S.

Definition 1.4 leads easily to other properties of a compact metric space.
For instance, the diameter of a compact metric space S is finite: sup{d(x,y);
x,y ∈ S}<∞. Also, every compact metric space is complete.

We rely on other properties of the metric spaces, sending the readers to the
aforementioned book of Friedman [214], which contains, in a concise form,
many useful results we shall use in subsequent sections of this book. Other
references are available in the literature: see, for instance, Corduneanu [135],
Zeidler [551], Kolmogorov and Fomin [295], Lusternik and Sobolev [343],
and Deimling [190].

Almost all books mentioned already contain applications to the theory of
FEs, particularly to differential equations and to integral equations. Other
sources can be found in the titles referenced earlier in the text.

The metric spaces are a particular case of topological spaces. The latter
represent a category of mathematical objects, allowing the use of the con-
cept of limit, as well as many other concepts derived from that of limit (of
a sequence of a function, limit point of a set, closure of a set, closed set, open
set, a.o.)

If we take the definition of a topological space by means of the axioms for
the family of open sets, then in case of metric spaces the open sets are those
subsets A of the space S, defined by the property that any point x of A belongs
to A, together with the “ball” of arbitrary small radius r, {y : d(x,y)< r}.

It is easy to check that the family of all open sets, of a metric space S, verifies
the following axioms (for a topological space):

1. The union of a family of open sets is also an open set.

2. The intersection of a finite family of open sets is also an open set.

3. The space S and the empty set ∅ belong to the family of open sets.
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Such a family, satisfying axioms 1, 2, and 3, induces a topology τ on S. Return-
ing to the class of metric spaces, we shall notice that the couple (S,d) is
inducing a topology on S and, therefore, any property of topological nature
of this space is the product of the metric structure (S,d). The converse prob-
lem, to find conditions on a topological space to be the product of a metric
structure, known as metrizability, has kept the attention of mathematicians for
several decades of the past century, being finally solved. The result is known
as the theorem of Nagata–Smirnov.

Substantial progress has been made, with regard to the enrichment of a met-
ric structure, when Banach [39] introduced the new concept of linear metric
space, known currently as Banach space.

Besides the metric structure/space (S,d), one assumes that S is a lin-
ear space (algebraically) over the field of reals R, or the field of complex
numbers C. Moreover, there must be some compatibility between the metric
structure and the algebraic one. Accordingly, the following system of axioms
is defining a Banach space, denoted (S,‖·‖), with ‖·‖ a map from S into R+,
x →‖x‖, called a norm.

I. S is a linear space over R, in additive notation.

II. S is a normed space, that is, there is a map, from S into R+, x → ‖x‖,
satisfying the following conditions:

1) ‖x‖ ≥ 0 for x ∈ S, ‖x‖= 0 iff x = θ;

2) ‖ax‖= |a| ‖x‖, for a ∈ R, x ∈ S;

3) ‖x+ y‖ ≤ ‖x‖+‖y‖ for x,y ∈ S.

It is obvious that d(x,y) = ‖x− y‖, x,y ∈ S, is a distance/metric on S.

III. (S,d), with d defined earlier, is a complete metric space.

Also, traditional notations for a Banach space, frequently encountered in liter-
ature, are (B,‖·‖) or (X,‖·‖), in the latter case, the generic element of X being
denoted by x.

The most commonly encountered Banach space is the vector space Rn

(or Cn), the norm being usually defined by

‖x‖= (|x1|2 + |x2|2 + · · ·+ |xn|2)
1
2

and called the Euclidean norm. Another norm is defined by ‖x‖1 =
max(|x1|, |x2|, . . . , |xn|).

Both norms mentioned previously lead to the same kind of convergence in
Rn, because ‖x‖1 ≤ ‖x‖ ≤ √

n ‖x‖1, x ∈ B. This is the usual convergence on
coordinates, that is, lim(x1,x2, . . . ,xn) = (limx1, limx2, . . . , limxn).
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A special type of Banach space is the Hilbert space. The prototype has been
constructed by Hilbert, and it is known as �2(R), or �2(C), space. This fact
occurred long before Banach introduced his concept of space in the 1920s.
The �2-space appeared in connection with the theory of orthogonal function
series, generated by the Fredholm–Hilbert theory of integral equations with
symmetric kernel (in the complex case, the condition is k(t,s) = k(s, t)). It
is also worth mentioning that the first book on Hilbert spaces, authored by
M. Stone [508], shortly preceded the first book on Banach space theory,
Banach [39], 1932. The Banach spaces reduce to Hilbert spaces, in the real
case, if and only if the rule of the parallelogram is valid:

‖x+ y‖2
+‖x− y‖2

= 2(‖x‖2
+‖y‖2

), x,y ∈ B. (1.22)

Of course, the parallelogram involved is the one constructed on the vectors x
and y as sides.

What is really specific for Hilbert spaces is the fact that the concept of
inner product is defined for x,y ∈ H, as follows: it is a map from H×H into R
(or C), such that

1) < x,y >=< y,x >;

2) < x,x >≥ 0, the value 0 leading to x = θ;

3) < ax+by,z >= a < x,z >+b < y,z >, with a,b ∈ R, x,y,z ∈ H.

In the complex case, one should change 1) to < x,y >=< y,x >, 2) remains
the same, and 3) must be changed accordingly.

If one starts with a Banach space satisfying condition (1.22), then the inner
product is given by

< x,y >=
1
4
(‖x+ y‖2 −‖x− y‖2

), x,y ∈ B. (1.23)

Conditions 1), 2), and 3), stated in the text, can be easily verified by the product
< x,y > given by formula (1.23).

A condition verified by the inner product is known as Cauchy inequality,
and it looks

|< x,y > | ≤ ‖x‖ ‖y‖ , x,y ∈ H. (1.24)

It is easily obtained starting from the obvious inequality ‖x+ay‖2 ≥ 0, which
is equivalent to ‖x‖2

+ 2a < x,y > +a2 ‖y‖2 ≥ 0, which, regarded as a
quadratic polynomial in a, must take only nonnegative values. This would be
possible only in case the discriminant is nonpositive, that is, | < x,y > |2 ≤
‖x‖2 ‖y‖2, which implies (1.24). Using (1.24), prove that ‖x+ y‖≤ ‖x‖+‖y‖,
for any x,y ∈ H.
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In concluding this section, we will define another special case of linear met-
ric spaces, whose metric is invariant to translations. These spaces are known
as linear Fréchet spaces. We will use them in Chapter 2.

If instead of a norm, satisfying conditions II and III in the definition of
a Banach space, we shall limit the imposed properties to ‖x‖ ≥ 0, accepting
the possibility that there may be elements x 
= θ, we obtain what is called a
semi-norm. One can operate with a semi-norm in the same way we do with
a norm, the difference appearing in the part that the limit of a convergent
sequence is not necessarily unique.

Here precisely, the semi-norm is defined by the means of the following
axioms related to a linear space E:

1) ‖x‖ ≥ 0 for x ∈ E;

2) ‖ax‖= |a|‖x‖, a ∈ R, x ∈ E;

3) ‖x+ y‖ ≤ ‖x‖+‖y‖, x,y ∈ E.

In order to define a metric/distance on E, we need this concept: a family of
semi-norms on E is called sufficient, if and only if from |x|k = 0, k ≥ 1, there
results x = θ ∈ E.

By means of a countable family/sequence of semi-norms, one can define
on E the metric by

d(x,y) =
∞∑

j=1

2−j |x− y|j
1+ |x− y|j

, x,y ∈ E. (1.25)

Indeed, d(x,y) ≥ 0 for x,y ∈ E and d(x,y) = 0 imply |x− y|j = 0, j ≥ 1.
Hence, x − y = θ, which means that the distance between two elements is
zero, if and only if the elements coincide. The symmetry is obvious while
the triangle inequality for d(x,y) follows from the elementary inequality for
nonnegative reals, |a+b|(1+ |a+b|)−1 ≤ |a|(1+ |a|)+ |b|(1+ |b|).

It is interesting to mention the fact that d(x,y) is bounded on E×E by 1,
regardless of the (possible) situation when each |x|j, j ≥ 1 is unbounded on E.
This is related to the fact that a metric d(x,y), on E, generates another bounded
metric d1(x,y) = d(x,y)[1 + d(x,y)]−1, with the same kind of convergence
in E.

1.4 FUNCTIONS SPACES

Since our main preoccupation in this book is the study of solutions of vari-
ous classes of FEs (existence, uniqueness, and local or global behavior), it is
useful to give an account on the type of functions spaces we will encounter
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in subsequent chapters. As proceeded in the preceding sections, we will not
provide all the details, but we will indicate adequate sources available in the
existing literature.

We shall dwell on the spaces of continuous functions on R, or intervals in R,
using the notations that are established in literature. Generally speaking, by
C(A,B) we mean the space of continuous maps from A into B, when continuity
has a meaning. An index may be used for C, in case we have an extra property
to be imposed. This is a list of spaces, consisting of continuous maps, we shall
encounter in the book.

C([a,b],Rn) will denote the Banach space of continuous maps from [a,b]
into Rn, with the norm

|x|C = sup{|x(t)|; t ∈ [a,b]}, (1.26)

where | · | is the Euclidean norm in Rn. This space is frequently encountered
in problems related to FEs, especially when we look for continuous solutions.
But even in case of ODEs, the Cauchy problem ẋ = f (t,x), x(t0) = x0, the
proof is conducted by showing the existence of a continuous solution to the
integral equation x(t) = x0 +

∫ t
t0

f (s,x(s))ds. Of course, the differentiability
of x(t) follows from the special form of the integral equation, equivalent to
Cauchy problem, within the class of continuous functions. A basic property
of the space C([a,b],Rn), necessary in the sequel, is the famous criterion of
compactness, for subsets M ⊂ C, known under the names of Ascoli-Arzelà
criterion of compactness in C([a,b],Rn): necessary and sufficient conditions,
for the compactness of a set M ⊂ C([a,b],Rn) are the boundedness of M and
the equicontinuity of its elements on [a,b].

The first property means that for the set, M, there exists a positive number,
μ, such that f ∈ M implies |f (t)| ≤ μ, t ∈ [a,b].

The second property means the following: for any ε > 0, there exists δ =
δ(ε)> 0, such that |f (t)− f (s)|< ε for |t− s|< δ, t,s ∈ [a,b], f ∈ M. It is also
called equi-uniform continuity.

Proofs can be found in many textbooks, including Corduneanu [123]. The
book by Kolmogorov and Fomin [295] contains the criterion but also an inter-
esting proof of Peano’s existence for Cauchy’s problem, without transforming
the problem into an integral equation, as a direct application of Ascoli-Arzela’s
result.

Let us notice that the compactness result of Ascoli–Arzelà is actually
concerned with the concept of relative compactness.

What happens when the interval [a,b] is replaced by [a,b), or even [a,∞)?
The supremum norm used in (1.26) cannot be considered on the semi-open
interval [a,b) or on the half-axis [a,∞).
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In this case, in order to obtain a distance between maps defined on [a,∞),
the case [a,b), b < ∞, being totally similar to the half-axis, we shall make
recourse to the semi-norms

|x(t)|k = sup{|x(t)|; t ∈ [a,a+ k], k ≥ 1}, (1.27)

which obviously form a sufficient family. On the linear space of continuous
maps, from [a,∞) into Rn, we have the sufficient family of semi-norms defined
by (1.27). Therefore, we can apply formula (1.25), which in this case becomes

d(x,y) =
∞∑

k=1

2−k
{
|x(t)− y(t)|k [1+ |x(t)− y(t)|k]−1

}
, (1.28)

with |x(t)|k defined by (1.27).
Therefore, the linear space of continuous maps, from [a,∞) into Rn, is a

metric space. The property of completeness is the result of the fact that each
|x(t)|k is a norm on the restricted space, C([a,a+ k],Rn), and this (plus conti-
nuity) implies the completeness of the space under discussion, which shall be
denoted by C([a,∞),Rn) and sometimes by Cc([a,∞),Rn), the index denot-
ing that the convergence induced by the metric is uniform on compact sets in
[a,∞).

In summary, a metric structure as indicated earlier, is better—and natural—
for C([a,∞),Rn), even though normed space (Banach structures are possible
and useful for “parts” of C([a,∞),Rn).

We shall present now a class of Banach function spaces, denoted
Cg(R+,Rn), where g : R+ → (0,∞) is a continuous function, whose role is
to serve as a weight for the concept of boundedness. Namely, Cg(R+,Rn) is
defined by

Cg(R+,R
n) = {x; R+ → Rn continuous

and such that |x(t)| ≤ Ax g(t), t ∈ R+, Ax > 0}. (1.29)

The norm in Cg(R+,Rn) is given by

|x|Cg = sup

{
|x(t)|
g(t)

; t ∈ R+

}
. (1.30)

Obviously, |x|Cg = infAx, with Ax in (1.29). It is shown (see, for instance, Cor-
duneanu [120]) that Cg(R+,Rn) is a Banach space, with the norm given by
(1.30). The special case g(t) ≡ 1 on R+ leads to the space of bounded func-
tions on R+, with values in Rn, the norm being the supremum norm. This space
of bounded continuous functions on R+ is denoted by BC(R+,Rn). It con-
tains as subspaces several important Banach spaces, from R+ into Rn, such



“c01” — 2016/2/15 — 15:16 — page 18 — #18

18 INTRODUCTION

as the space of functions with limit at ∞, limt→∞ x(t) = x∞ ∈ Rn, which is
encountered when we deal with the so-called transient solutions to FEs. This
space is usually denoted by C�(R+,Rn), and it is isomorphic and isometric to
the space C([0,1],Rn). Prove this statement! The subspace of C�(R+,Rn), for
which limt→∞ x(t) = θ is denoted C0(R+,Rn), and it is the space of asymptotic
stability (each motion, described by elements of C0(R+,Rn), tends to the equi-
librium point x∞ = θ). We will also deal with the subspace of space BC(R,Rn),
known as the space of almost periodic functions on R, with values in Rn (Bohr
almost periodicity). It is denoted by AP(R,Rn) and contains all continuous
maps from R into Rn, such that they can be uniformly approximated on R by
vector trigonometric polynomials: for each ε > 0 and x ∈ AP(R,Rn), there
exists vectors a1,a2, . . . ,an ∈ Rn and reals λ1,λ2, . . . ,λm, such that∣∣∣∣∣x(t)−

m∑
k=1

ak eiλk t

∣∣∣∣∣< ε, t ∈ R. (1.31)

Inequality (1.31) shows that x ∈ AP(R,Rn) is as close as we want from oscil-
latory functions. For the classical types of almost periodic functions, see the
books authored by Bohr [72], Besicovitch [61], Favard [208], Levitan [326],
Corduneanu [129, 156], Fink [213], Amerio and Prouse [21], Levitan and
Zhikov [327], Zaidman [547], and Malkin [355]. Appendix to this book will be
dedicated to some new developments (not necessarily continuous functions).

We shall continue to enumerate function spaces, this time, having in mind
the measurable functions/elements. These spaces of great importance in the
development of modern analysis have appeared at the beginning of the past
century, primarily due to Lebesgue’s discovery of measure theory. Actually,
the first function spaces amply investigated in the literature are known as
Lebesgue’s spaces or Lp-spaces.

The space Lp(R,Rn), p ≥ 1, is the linear space of all measurable maps
from R into Rn, such that

∫
R |x(s)|p ds <∞, the ds representing the Lebesgue

measure on R. The norm of this space is

|x|Lp =

{∫
R
|x(s)|p ds

} 1
p

, 1 ≤ p <∞. (1.32)

The case p =∞ is characterized by

|x|L∞ = ess-sup
t∈R

|x(t)|<∞. (1.33)

The theory of these Banach spaces, whose elements are, in fact, equiva-
lence classes of functions (i.e., two functions are equivalent, if and only if they
coincide, except on set of points of Lebesgue measure zero) is largely diffused
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in many books/textbooks available. Let us indicate only Yosida [541], Lang
[320], and Amann and Escher [20].

Let us consider now the problem of compactness (or relative compactness)
in the space Lp([a,b],Rn), providing a useful result (Riesz):

Let M ⊂ Lp([a,b],Rn), 1 < p < ∞, be a subset; necessary and sufficient
conditions for the (relative) compactness of M are as follows:

(1) M is a bounded set in Lp, that is, |x|Lp ≤ A <∞, for each x ∈ Lp;

(2) lim
∫ b

a |x(t+h)− x(t)|p dt = 0 as h → 0.

We notice the fact that x(t+h) must be extended to be zero, outside [a,b].
There are other criteria of compactness in Lp-spaces, due to Kolmogorov

a.o. See, for instance, the items mentioned already, in this section, or
Kantorovich and Akilov [274].

Some results concerning Lp-spaces, with a weight function, have been
obtained by Milman [399], in connection with stability theory for integral
equations.

Also, Kwapisz [305] introduced and applied to integral equations
normed spaces of measurable functions, with a mixed norm, such as x →
sup{g(t)

∫ t
0 |x(s)|ds}, on finite intervals or on the semiaxis R+. Such spaces

are useful when fixed-point theorems are used for existence of solutions to
FEs. (See Kwapisz [304, 305]).

From the Lp-spaces theory, many other classes of measurable functions have
been constructed, with important applications to the theory of FEs. An exam-
ple, frequently appearing in literature, are the spaces Lp

loc. These spaces occur
naturally when dealing with global existence of solutions.

For instance, the space L2
g(R,R

n) will consist of all measurable maps from
R into Rn, such that x ∈ L2

g is determined by∫
R

g(t) |x(t)|2 dt <∞, (1.34)

where g(t) is measurable from R to R+. The norm adequate for this space is,
obviously,

x →
{∫

R
g(t) |x(t)|2 dt

} 1
2

. (1.35)

By using various weight functions g, one can achieve more generality in regard
to the behavior/global properties of the solution.

Finally, we will mention the definition of L2
loc(R,R

n). This is a linear met-
ric space (Fréchet), which belongs to the larger class of linear locally convex
topological spaces.
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In order to obtain the linearly invariant distance function for L2
loc(R,R

n),
which consists of all locally integrable maps from R into Rn, that is, such that
each integral ∫

|t|≤k
|x(s)|2 dt <+∞, k ≥ 1,

we will use a formula similar to (1.28).
Since

|xk|=
{∫

|t|≤k
|x(s)|2 ds

} 1
2

, k ≥ 1,

is a semi-norm, the distance function on L2
loc(R,R

n) will be given (by
definition)

d(x,y) =
∞∑

k=1

2−k|x− y|k (1+ |x− y|k)−1. (1.36)

The convergence in L2
loc(R,R

n) is, therefore, the L2-convergence on each finite
interval of R (or, on each compact set in R).

This definition for L2
loc(R,R

n) can be extended from Rn to Hilbert spaces,
or even to Banach spaces.

The variety of function spaces encountered in investigating the solutions
of functional differential equations is considerable, and we do not attempt to
give a full list. We will mention one more category of function spaces, con-
taining the Lp-spaces, for the sake of their frequent use in the theory of FDE.
Apparently, these spaces have been first used by N. Wiener. Their definition
and systematic use is given in Massera–Schäffer [374].

The space M(R+,Rn) consists of all locally measurable functions on R+,
such that

|x|M = sup
t∈R+

{∫ t+1

t
|x(s)|ds

}
<∞.

The space M0(R+,Rn) ⊂ M(R+,Rn) with the same norm contains only those
elements for which

sup

{∫ t+1

t
|x(s)|ds

}
→ 0 as t →∞.

Such functions are important in connection with the concept of almost
periodicity and other applications in the theory of FDE.
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1.5 SOME NONLINEAR AUXILIARY TOOLS

The development of Functional Analysis has brought to the investigation of
various classes of FEs, such as integral equations, for instance, but later to
the theory of partial differential equations, many tools and methods. Volterra,
who started the systematic investigation of integral equations in the 1890s,
considered the problem of existence for these equations as the inversion of
an integral operator (generally nonlinear). At the beginning of the twentieth
century, Fredholm created the theory of linear integral equations, with special
impact on the spectral side. Hilbert went further in this regard, contributing
substantially to the birth of the theory of orthogonal series, related to sym-
metric/hermitian kernels of the Fredholm type equations. Due to remarkable
contributions from Fréchet, Riesz (F and M), and other mathematicians, the
new field of functional analysis (i.e., dealing with spaces/classes whose ele-
ments are functions) made substantial progress, but it was centered around the
linear problems.

Starting with the third decade of the twentieth century, essentially nonlin-
ear results have appeared in the literature. One of the first items in nonlinear
functional analysis is the theory (or method) of fixed points, generally speak-
ing for nonlinear operators/maps. The history takes us back to Poincaré and
Brouwer, when only finite dimensional (Euclidean) spaces were involved. The
problem of fixed points was considered by mathematicians starting the third
decade of the twentieth century, during which period both best known results
have been obtained.

The contraction mapping principle was the first tool, due to Banach in the
case of what we call now Banach spaces. The case of complete metric spaces,
as it is usually encountered nowadays, is due to V. V. Nemytskii (Uspekhi Mat.
Nauk, 1927). This principle, usually encompassing all the results that can be
obtained by the iteration method (successive approximations), can be stated as
follows:

Let (S,d) denote a complete metric space and T : S → S a map, such that

d(Tx,Ty)≤ ad(x,y), x,y ∈ S, (1.37)

for fixed a, 0 ≤ a < 1. Then, there exists a unique x∗ ∈ S, such that Tx∗ = x∗.
The proof of this statement is based on the iterative process

xk+1 = Txk, k ≥ 0, x0 ∈ S, (1.38)

the initial term x0 being arbitrarily chosen in S. One easily shows that
{xk; k≥0} is a Cauchy sequence in (S,d), whose limit is x∗. The uniqueness
follows directly by application of (1.37).
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Proofs are available in many books on Functional Analysis or FEs (see, for
instance, Corduneanu [120, 135]).

Let us mention that an estimate for the “error” is easily obtained, namely

d(x∗,xk)≤ ak (1−a)−1 d(x0,Tx0), k ≥ 1. (1.39)

The fixed point theorem due to Schauder is formulated for Banach spaces
and can be stated as follows:

Let B be a Banach space (over reals) and T : B → B a continuous
map/operator such that

TM ⊂ M, (1.40)

with M ⊂ B a closed convex set, while TM is relatively compact. Then, there
exists at least a fixed point of T , that is, Tx∗ = x∗ ∈ M.

The definition of a convex set, say M, is x,y ∈ M implies ax+(1−a)y ∈ M,
for each a ∈ (0,1).

For a proof of the Schauder fixed-point result, see the proof of a more
general result (the next statement) in Corduneanu [120]. Schauder–Tychonoff
fixed point theorem. Let E be a locally convex Hausdorff space and x → Tx a
continuous map, such that

TK ⊂ A ⊂ K ⊂ E, (1.41)

where K denotes a convex set, A being compact. Then, there exists at least one
x∗ ∈ A ⊂ K, such that Tx∗ = x∗.

Both fixed point results formulated already imply the relative compact-
ness of the image TK ⊂ A, and we mention the fact that uniqueness does not,
generally, hold.

The set of fixed points of a map, under appropriate conditions, satisfies
certain interesting and useful properties, such as compactness, convexity, and
others.

We invite the readers to check the property of compactness, under afore-
mentioned conditions. Another fixed-point result, known as the Leray–
Schuader Principle also involves the concept of compactness of the operator,
but also the idea of an “a priori” estimate for searched solution. Namely, one
considers the equation

x = Tx, x ∈ B, (1.42)

with B a Banach space and T : B → B a compact operator (i.e., taking
bounded sets in B, into relatively compact sets). One associates to (1.42) the
parameterized equation
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x = λTx, λ ∈ [0,1], (1.43)

assuming that (1.43) is solvable in B for each λ ∈ [0,1). Moreover, each
solution x satisfies the “a priori” estimate

|x|B ≤ K <∞, λ ∈ [0,1), (1.44)

where K is a fixed number. Then, equation (1.42), which corresponds to λ= 1
in (1.43), possesses a solution in B.

The proof of the principle can be found in Brézis [77] and Zeidler [550,551],
including also some applications.

Several other methods/principles in functional analysis are known and
widely applied in the study (particularly, in existence results) of various classes
of FEs. We will mention here the method based on monotone operators (see
Barbu [45], Deimling [190], and Zeidler [551]).

The definition of a strongly monotone operator A : H → H, with H a Hilbert
space, is

< Ax−Ay,x− y >H≥ m |x− y|2H, x,y ∈ H,

for some m > 0. A very useful result can be stated as follows:
Consider in H the equation

Ax = y, (1.45)

with A : H → H strongly monotone. Further, assume A satisfies on H the
Lipschitz condition

|Au−Av|H ≤ L |u− v|H. (1.46)

Then, for each y ∈ H, Equation (1.45) has a unique solution x ∈ H.
The proof of this result can be found in Zeidler [550], and it is done by

means of Banach fixed point (contraction).
An alternate statement of the solvability property of (1.45), for any y ∈ H,

is obviously the property of A to be onto H (or surjective).
A somewhat similar result, still working in a Hilbert space H, can be stated

as follows: Equation (1.45) is solvable for each y ∈ H, when A is continuous,
monotone, that is,

< Ax−Ay,x− y >H ≥ 0, x,y ∈ H, (1.47)

and coercive

lim < Ax,x >H |x|−1
H =∞, as |x| →∞. (1.48)
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See the proof, under slightly more general conditions, in Deimling [190] or
Barbu and Precupanu [46].

All aforementioned references, in regard to monotone operators, contain
applications to various types of FEs.

Other methods/procedures leading to the existence of solutions of various
classes of FEs are based on diverse form of the implicit functions theorem
(in Banach spaces and Hilbert Spaces); see Zeidler [550].

When we deal with FDE with finite delay, which we will consider in
Chapters 2 and 3, we use another constructive method called the step method.
We briefly discuss this method, which is frequently used to construct solutions
to FDE of the form

ẋ(t) = F(t,x(t),x(t−h)), x ∈ Rn, (1.49)

with h > 0 the delay, or time delay. In order to make the first step in construct-
ing the solution, it is necessary, assuming the initial moment is t = 0, to know
x(t) on the interval [−h,0]. In other words, one has to associate to (1.49) the
initial condition x(t) = φ(t), t ∈ [−h,0]. Using the notation xt(s) = x(t+ s),
s ∈ [−h,0], this condition can be written in the form

x0(t) = φ(t), t ∈ [−h,0]. (1.50)

If we assign the initial function φ from a certain function space, say
C([−h,0],Rn), then equation (1.49) becomes an ODE, on the interval [0,h]:

ẋ(t) = F(t,x(t),φ(t−h)), t ∈ [0,h], (1.51)

and the initial condition at t = 0 will be

x(0) = φ(0). (1.52)

The second step, after finding, from (1.51) to (1.52), x(t) on [0,h] will require
to solve the ODE (1.49) on [h,2h], starting at x(h), as found from x(t), on [0,h].

The process continues and, at each step, one finds x(t), on an interval
[mh,(m+1)h], m ≥ 1, solving the ODE (1.49),

ẋ(t) = F(t,x(t),x(t−h)), t ∈ [mh,(m+1)h], (1.53)

under initial condition at mh, as determined from the preceding step. In this
way, the solution x(t) of (1.49), appears as a chain, say

x1(t),x2(t), . . . ,xm(t), . . . (1.54)
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each term in (1.54) being found from (1.53), for different values of m, taking as
initial value for xm(t), the final value of xm−1(t), m≥ 1. In this way, one obtains
a continuous solution on [−h,T) for (1.49), where T denotes the largest value
of T , such that the solution is defined (T = ∞, when the solution is global
on R+).

The method of integration by steps has several variants, and in order to
make it more convenient for numerical purposes, one uses the construction of
the chain by means of the recurrent equation

ẋm+1(t) = F(t,xm(t),xm−1(t−h)), m ≥ 1,

which allows making each step by performing a single quadrature.
It is remarkable that the step method allows investigation of global prob-

lems, such as stability. See Kalmar-Nagy [273] for illustration.

1.6 FURTHER TYPES OF FEs

The mathematical literature has been enriched, by other types of FEs than
those usually encountered in the classical period. We have in mind, particu-
larly, the various classes of discrete equations, the fractional-order differential
equations and the difference equations. Discrete equations have been largely
investigated. Modern computers have been used to perform computational pro-
cedures on those equations, which have represented mathematical models with
large number of variables and calculations.

It is true that some FEs, pertaining to the aforementioned types, have been
involved in research (may be only sporadically) and we can mention here
a cycle of papers due to Bochner [68–71] from 1929 to 1931, who investi-
gated the almost periodicity of some classes of equations with differential,
integral and difference operations. A very simple example is, for instance,
the FE

ẋ(t)+ax(t−h)+
∫ t

0
A(t− s)x(s)ds = f (t),

for which an initial condition would be of the form x0(t) = φ(t), t ∈ [−h,0],
h > 0. See also Hale and Lunel [242].

In this section, we will only illustrate some types of equations belonging to
those three categories mentioned above and state some results available in the
literature.

Let us start by introducing some examples of discrete equations, by pro-
viding the necessary concepts leading to their solution belonging to various
spaces of sequences.
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One example is constructed by the space s = s(N,Rn) or S(Z,Rn) of all
sequences ξ = {xk; xk ∈ Rn, k ≥ 1}. These sequences form a Fréchet space,
either real or complex, with the distance (compare with (1.36)),

d(ξ,η) =
∞∑

k=1

2−k|ξk −ηk|(1+ |ξk −ηk|)−1. (1.55)

In case of sequences on Z, the sum must be considered from −∞ to +∞.
Within the space s, one can consider several sequence spaces, such as the

space of all bounded sequences sb(N,Rm), respectively, sb(Z,Rm), with the
supremum norm, its subspaces of almost periodic sequences or s�(N,Rm)
which consists of all elements ξ of s�(N,Rm), such that limξk as n →∞ exists
(finite!), (convergent sequences) or the subspace, traditionally denoted by
c0(N,Rm), containing only those elements from s�(N,Rm) for which limξk =
θ ∈ Rm, the null vector of Rm. Obviously, these concepts make sense when ξ
belongs to a Banach space, in particular to Hilbert space �2(N,Rm).

Let E be a real Banach space and consider the operator equation, in discrete
form

(Lx)(n) = (Gx)(n), n ∈ N, (1.56)

where L denotes a linear operator on E, while G stands for a nonlinear operator
on E. Equation (1.56) is a neutral one (it means, not solved in respect to the
unknown element x). Under some conditions, we can reduce (1.56) to a normal
form, namely

x(n) = (Fx)(n), n ∈ N, (1.57)

which can be treated easier. Moreover, equations like (1.57) have caught
the attention of researchers long time ago, the number of results being
considerably higher than in case of (1.56).

If L has a bounded inverse operator on E, a situation warranted by the
condition

|Lx|E ≥ m |x|E, ∀x ∈ E, m > 0, (1.58)

then equation (1.56) is equivalent to (1.57), with F = L−1G. The term
equivalent must be understood in the sense they have the same solutions
(if any).

We assume that the “nonlinear” operator G satisfies the Lipschitz
continuity:

|Gx−Gy|E ≤ K |x− y|E, K > 0, x,y ∈ E. (1.59)
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Since F = L−1 G, we find easily

|Fx−Fy|E = |L−1(Gx−Gy)|E ≤ m−1 K |x− y|E, (1.60)

since |L−1|E ≤ m−1 (if in (1.58) we let x = Ly, y ∈ E, then we obtain |Ly|E ≤
m−1|y|E). From (1.60) one obtains for x,y ∈ E,

|Fx−Fy|E ≤ m−1 K |x− y|E, (1.61)

which implies the property of contraction (Banach) when

K < m. (1.62)

Therefore, equation (1.57) has a unique solution in E. This property is then
true for (1.56).

We will now apply this existence result, to obtain conditions for the exis-
tence of a solution x = (x1,x2, . . . ,xm, . . .) in one of the spaces (of sequences)
listed in the text, say �2(N,Rn). It is known that this is the space Hilbert used for
constructing the infinite dimensional analysis (and geometry!). It is the pro-
totype of separable Hilbert spaces (containing a countable subset, everywhere
dense in it). Namely, we consider the infinite system of quasilinear equations

xk =

∞∑
j=1

akj xj + fk(x), k ≥ 1, (1.63)

where akj are real numbers and x → fk(x), k ≥ 1, are maps from E into itself.
Obviously, (1.63) can be rewritten in concise form as

x = Ax+ f (x), (1.64)

with A the double infinite matrix

A = (aij), i, j = 1,2, . . .

and f (x) = (f1(x), f2(x), . . . , fm(x), . . .). It is quite obvious that (1.64) is of the
same form as (1.57). Hence, we have to look for conditions assuring the con-
traction, on �2, of the operator on the right-hand side of (1.64). First, we shall
assume an inequality of the form

∞∑
k=1

∞∑
j=1

|akj|2 ≤ α2 <∞. (1.65)
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This guarantees that the operator A in (1.64) is bounded on �2(N,Rn).
Concerning the nonlinear term f (x), we assume that

∞∑
k=1

|fk(x)|2 <∞, x ∈ �2(N,Rn), (1.66)

and the Lipschitz conditions hold

|fk(x)− fk(y)| ≤ βk |x− y|, x,y ∈ �2,

with

∞∑
k=1

βk
2 = β2 <∞. (1.67)

The assumptions (1.65)–(1.67), allows us to write (with the �2-norm)

|Ax+ f (x)−Ay− f (y)|= |A(x− y)+ f (x)− f (y)|
≤ |A(x− y)|+ |f (x)− f (y)|
≤ (α+β)|x− y|,

which implies the contraction of the operator x → Ax+ f (x) on �2(N,Rn), as
soon as

α+β < 1. (1.68)

We can conclude that, under assumptions (1.65)–(1.68), the infinite system
(1.63) (or (1.64)) has a unique solution in the space �2(N,Rn). This solution
consists of a sequence of vectors x(k), k ≥ 1, in the Hilbert space �2(N,Rn).

This discussion provides an elementary example of the kind of problems
that may occur in applications. The discrete equations are adequate for treat-
ment by means of the electronic computers. The literature in this field is very
rich and various aspects and problems can be found in Collatz [108].

The following remark is related to condition (1.66). Namely, if (1.66) holds
for an element y ∈ �2, then it will be valid for any x ∈ �2. This is a consequence
of the obvious inequality

|fj(x)|2 ≤ 2(|fj(y)|2 +β2
j |x− y|2), j ≥ 1,

relying also on (1.67).
Another remark is that x ∈ �2(N,Rn) implies xm → θ ∈ Rn, which implies

the fact that only a finite number of coordinates of the solution can provide
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sufficient information about it (with regard to the numerical treatment of the
problems).

We invite the readers to obtain the existence of a solution of the equation

Δf (x,m) = g(x,m), m ≥ 0, (1.69)

where Δf (x,m) = f (xm+1,m+ 1)− f (xm,m), the sequence xm, m ≥ 0, being
constructed recurrently with an arbitrary c0 ∈ sb(N,Rn). In other words, we
need conditions to obtain the existence of a bounded sequence {xm; m ≥ 0} ⊂
sb(N,Rn) for equation (1.69), which is of a neutral type. One uses the
supremum norm.

The following conditions assure the existence of a unique solution:

1) f : N ×Rn → Rn is such that the equation

f (u,m) = v ∈ Rn

has a unique solution, say um ∈ Rn, for each v;

2) f satisfies the condition

|f (u,m)| ≥ h(|u|), m ≥ 1,

with h(r), 0 ≤ r < ∞, monotonically increasing, while h−1(r) has
sublinear growth,

h−1(r)≤ αr+β, r ≥ 0, α,β > 0;

3) g : N ×Rn → Rn satisfies

|g(u,m)| ≤ cm |u|, n ≥ 0, u ∈ Rn,

where the series
∑∞

k=1 ck is convergent.

Then, equation (1.69) has a unique solution in sb(N,Rn), for each initial
choice x0 ∈ Rn.

Details of the proof can be found in the paper by Corduneanu [146], together
with other existence results.

Let us notice, with regard to the discrete FEs, that a rich literature is avail-
able. We mention some of the best known sources/books, in which a large
variety of such equations (frequently including recurrent ones) is treated, with
both classical or modern tools. Mickens [395], Kelley and Peterson [284], and
Pinney [451].
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The difference equations are adequate to be treated as discrete ones, as in
above shown examples, or they can be considered in the class of equations
with continuous argument. Let us look at the very elementary example of the
equation x(t+1) = 2x(t), on the real axis R. Then, looking for an exponential
solution x(t) = at, a > 0, one finds that each function of the form x(t) = c2t,
with c ∈ R, is a solution depending on the continuous argument t ∈ R.

This second manner of looking at solutions depending on a continuous argu-
ment had enjoyed early attention in the literature, and we shall now dwell on
these types of solutions. Following Shaikhet [493], we shall consider the scalar
difference equation, somewhat simplified, namely

x(t+h0) = F(t,x(t),x(t−h1), . . . ,x(t−hm)), (1.70)

on the semiaxis t > t0 −h0, under initial conditions

x(s) = φ(s), s ∈ S = [t0 −h0 − max
1≤k≤m

(hk, t0)]. (1.71)

In (1.71), x ∈ R, hk > 0, 1 ≤ k ≤ m, φ : S → R being the initial datum, usually
continuous. The following growth condition is imposed on F:

|F(t,x0,x1, . . . ,xm)| ≤
m∑

j=0

aj |xj|, (1.72)

with aj ∈ R+ \{0}, j = 0,1, . . . ,m.
We shall denote by x(t; t0,φ) the solution of (1.70), (1.71). It is obtained by

the step method, first on [t0, t0 + h0], by substituting φ to x on the right-hand
side, then on [t0 + h0, t0 + 2h0], substituting x(t) already found on [t0, t0 + h0]
on the right-hand side, and so on. This process uniquely determines x(t), for
t > t0 −h0.

Now we will anticipate on the concept of stability, which will be defined
and developed in Chapter 3. More precisely, we shall formulate as follows the
definitions of stability and asymptotic stability of the solution x = 0 of (1.70).

We notice first, on behalf of assumption (1.72), that x = 0 is a solution
of (1.70).

Stability of x = 0 means that to each ε > 0, t0 ≥ 0, there corresponds δ =
δ(ε, t0)> 0, such that

|x(t; t0,φ)|< ε for t ≥ t0, (1.73)

provided |φ|c = sups∈S |φ(s)|< δ(ε, t0).
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Asymptotic stability means stability, and additionally,

lim
t→∞

x(t : t0,φ) = 0, (1.74)

for all φ, such that |φ|c < η(t0).
We are now able to formulate a stability result for the zero solution of the

difference equation (1.70), which is an example of an equation with difference
and continuous argument.

Theorem 1.1 Assume the existence of a functional (Liapunov type) V(t) =
V(t,x(t),x(t− t1), . . . ,x(t− tm)), nonnegative and such that, for some positive
c1,c2,p, one has

V(t)≤ c1 sup
s≤t

|x(s)|p, t ∈ [t0, t0 +h0), (1.75)

ΔV(t) = V(t+h0)−V(t)≤ c2 |x(t)|p, t ≥ t0. (1.76)

Then x = 0 is a stable solution for equation (1.70).

Proof. The conditions (1.75), (1.76) and the nonnegativity of V(t) imply

V(t)≥ c2 |x(t)|p, t ≥ t0, (1.77)

V(t)≤ V(t−h0)≤ V(t−2h0) . . .≤ V(s), t ≥ t0, (1.78)

with s = t−
[

t−t0
h0

]
h0 ∈ [t0, t0 +h], which implies

sup
s∈[t0,t0+h0]

V(s)≤ c1 sup
t≤t0+h0

|x(t)|p. (1.79)

After taking into account (1.70)–(1.72), we obtain for t ≤ t0 +h0,

|x(t)|= |F(t,x(t), . . .)| ≤ a0 |φ(t− t0)|+
m∑

j=1

aj |φ(t− t0 −hj)|

≤

⎛
⎝ m∑

j=0

aj

⎞
⎠ |φ|c

= A |φ|c, (1.80)

where A =
∑m

j=0 |aj|> 0, which leads easily to the inequality

c2 |x(t)|p ≤ c1 Ap |φ|pc , t ≥ t0, (1.81)

relying also on (1.77)–(1.80).



“c01” — 2016/2/15 — 15:16 — page 32 — #32

32 INTRODUCTION

The inequality (1.81), obtained for the solution x(t) = x(t; t0,φ), shows that
the stability is assured.

Moreover, imposing a rather restrictive condition, namely A < 1, the solu-
tion x= 0 of equation (1.70) is asymptotically stable. To obtain this conclusion,
one should rely on (1.81) and A < 1, which leads to the inequality

|x(t)| ≤ A[
t−t0

h0
] |φ|c, t ≥ t0, (1.82)

which assures (1.74) because [ t−t0
h0

]→∞ as t →∞. Of course [ . ] denotes the
integer part function. This inequality is obtained following the same steps as
in case of deriving (1.80).

It is adequate to notice the fact that, in Shaikhet [493], one finds further
similar results of stability, or integrability, as well as some procedures to con-
struct Liapunov functions for difference equations. See also Kolmanovskii and
Shaikhet [294], for related results.

In concluding this section, we will briefly illustrate some results and meth-
ods in the case of another class of FEs that came relatively recently under the
scrutiny of researchers. We have in mind the class of fractional differential
equations. The literature is rather vast, and we notice the apparition of a frac-
tional calculus, for instance the one based on Caputo’s concept of a fractional
order derivative. This concept, similar to that known as Riemann–Liouville
fractional-order derivative, implies the use of the operation of integration.
Therefore, there is a rather close connection between the fractional differential
equations and the (singular) integral or IDEs. It is worth mentioning that this
new direction of research has been brought into actuality by its engineering
applications (see, for instance, Caputo [88]).

An important distinction should be made when we deal with difference
equations and look for solutions, which depend on a continuous variable or
a discrete variable. Let us look again at the very simple equation, x(t+ 1) =
2x(t), we considered earlier, in this section, for which x(t) = c2t is a family
of continuous solutions on R, while regarded as a discrete one, the result is
that each geometric progression {2c,22c, . . . ,2mc, . . .} is a solution, defined
on the positive integers. Apparently, the discrete variable is preferred in many
papers, due to the fact that its results are most adequately handled by digital
machines. And this aspect is stressed by the new tendency in mathematical
modeling, with emphasis on discrete models.

Returning now to the class of fractional differential equations, based on
the concept of fractional-order derivative, we will notice that its roots are
in the work of the nineteenth century well known mathematicians Liouville
and Riemann. Probably attracted by the beauty and usefulness of Euler’s Γ
(gamma) function, they discovered the fractional derivative of a function (also
the fractional integral), which can be defined by means of Euler’s function.
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The Riemann–Liouville derivative, of (fractional) order q, of a function f :
R+\{0}→ R is given by the formula

Dq
0+ f (t) =

1
Γ(n−q)

(
d
dt

)n∫ t

0

f (s)ds
(t− s)q+1−n

, n = [q]+1, (1.83)

where [q] means the integer part of q.
The fractional derivative, introduced more recently by Caputo, is repre-

sented by the formula

Dα
c f (t) =

1
Γ(n−α)

∫ t

0
(t− s)−α+n−1 f (n)(s)ds, (1.84)

with n = [α] + 1. It is assumed that f (t) is n times differentiable on
R+ \{0}.

There are other types of fractional derivatives, with frequent use, espe-
cially in applications. See the books by Miller and Ross [397] and Das [187],
in which details and applications are provided. We shall illustrate the type
of results obtained in the literature (both mathematical, i.e., theoretic and
applied). The following result is taken from recent papers of Cernea [95, 96]
stating the existence of continuous selections for initial value problems of
the form

Dα
c x(t) ∈ F(t,x(t)), a.e. on [0,T], (1.85)

under initial conditions

x(0) = x0, x′(0) = x1,

with α ∈ (1,2], F : [0,T]× R → P(R) a set valued map whose values are
parts/subsets of R. Moreover, it is assumed that x0,x1 
= 0. The following
hypotheses are assumed:

H1. The map F : [0,T]×R → P(R) has nonempty closed set-values and is
measurable in L([0,T])×B(R), where B denotes Borel measurability.

H2. There exists L(·)∈ L1([0,T],R+, such that a.e. on t ∈ [0,T], the Lipschitz
type condition

dH(F(t,x),F(t,y))≤ L(t) |x− y|, (1.86)

for (t,x),(t,y) ∈ [0,T]×R, where dH denotes the Pompeiu–Hausdorff
distance in P(R).
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H3. Let S be a separable metric space, and a,b : S → R, c : S → (0,∞) con-
tinuous maps. There exist continuous mappings g,p : S → L1([0,T],R),
and y : S → C([0,T],R), such that

(Dy(s))αc (t) = g(s)(t), d(g(s)(t), F(t,y(s)(t))≤ p(s), (1.87)

a.e. for t ∈ [0,T], s ∈ S.

In order to state the existence result, we need to introduce the following
notation

Iαf (t) =
∫ t

0

(t− s)α−1

Γ(α)
f (s)ds, α > 0, (1.88)

where f : [0,∞)→ R is locally Lebesgue integrable. This integral is known as
the fractional integral of order α > 0.

Let us now define the auxiliary function

ξ(s) = (1−|Iα L(t)|−1
c ) [|a(s)− y(s)(0)|+T|b(s)− y′(s)(0)|

+ c(s)+ |Iα p(s)|c], s ∈ S. (1.89)

The following result is an answer to the existence problem, formulated already,
for (1.85):

Theorem 1.2 Under assumptions H1, H2, and H3, the existence of a solution
to problem (1.85), under assigned initial conditions, is assured, in a sense to
be specified below, if we impose the extra condition

|Iα L(t)|c < 1. (1.90)

The meaning of solution is as follows: There exists a mapping x(·) : S →
C([0,T],R), such that for any s ∈ S, x(s)(·) is a solution of the problem

Dα
c z(t) ∈ F(t,z(t)), z(0) = a(s), z′(0) = b(s),

satisfying

|x(s)(t)− y(s)(t)| ≤ ξ(s), (t,s) ∈ [0,T]×S, (1.91)

with y and ξ defined by (1.87) and (1.89), respectively.

The proof can be found in Cernea [95] and relies on a rather sophisticated
construction. It is just a sample on how demanding this kind of problems are.
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We are concluding this introductory Chapter, whose main purpose is to
familiarize the reader with some concepts and methods we will use in the book,
as well as summarily approaching some topics that will not be covered in the
coming chapters (mainly, types of FEs, old or new, that are in the attention of
many researchers).

At the same time, we want to emphasize the fact that other concepts, like
equations on time scale, or equations with several independent variables, will
not be represented in our presentation. The vastness of the mathematical and
science and engineering production in this field is certainly one of the reasons
we had to limit ourselves to a number of topics, namely existence, estimates,
stability, and oscillations.

Some pertinent references for this section of the introductory chapter are
Miller and Ross [397], Das [187], Kilbas, Srivastava and Trujillo [285],
Pinney [451], Kelley and Peterson [284], Mickens [395], Abbas, Benchohra
and N’Guérékata [2], and Diethelm [196].

More references/sources, concerning the topics summarily discussed in
Section 1.6, can be found in those quoted the aforementioned references.
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