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1.1 Introduction

General-purpose DSP processors, application-specific processors [1], and
algorithm-specific processors are used to implement different types of DSP sys-
tems or subsystems. General-purpose DSP processors are programmable and
therefore, provide maximum flexibility and reusability. They are typically used
in applications involving complex and irregular algorithms while application-
specificprocessors provide lowerunit cost andhigher performance for a specific
application, particularly when the volume of production is high. The highest
performance and lowest unit cost is obtained by using algorithm-specific pro-
cessors. The drawback is the restricted or even lack of flexibility, and very often
the nonrecurring engineering (NRE) cost could be very high.
The throughput requirement in most real-time DSP applications is generally

fixed, and there is no advantage of an implementation with throughput than
that design to minimize the chip area, and power consumption. Now in a
CMOS implementation with higher throughput than required, it is possible to
reduce the power consumption by lowering the supply voltage and operating
the system at lower frequency [2].

1.2 Addition and Subtraction

The operation of adding two or more numbers is the most fundamental arith-
metic operation, since most other operations in one or another way are based
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Figure 1.1 Addition of two binary numbers.

on addition. The operands of concern here are either two’s-complement or
unsigned representation.
Most DSP applications use fractional arithmetic instead of integer arithmetic

[3]. The sum of two 𝑤-bit numbers is a (𝑤 + 1)-bit number while the product
of two 𝑤-bit binary numbers is a 2𝑤-bit number. In many cases and always
in recursive algorithms the resulting number needs to be quantized to a 𝑤-bit
number. Hence, the question is which bits of the result are to be retained. In
fractional arithmetic, the input operands as well as the result are interpreted as
being in the range [0, 1], that is,

𝑥 =
𝑤∑
𝑖=1
𝑥𝑖2−𝑖 (1.1)

for unsigned numbers and in the range [−1, 1], that is,

𝑥 = −𝑥0
𝑤∑
𝑖=1
𝑥𝑖2−𝑖 (1.2)

for signed numbers in two’s-complement representation. For convenience, we
let 𝑤 denote the number of fractional bits and one additional bit is used for a
signed representation.
We use the graphic representation shown in Figure 1.1 to represent the

operands and the sum bits with the most significant bit to the left.

1.2.1 Ripple-Carry Addition

Ripple-carry addition is illustrated in Figure 1.2. A ripple-carry adder performs
addition of two numbers; adds the bits of the same significance and the carry-
bit from the previous stage sequentially using a full adder (FA), and propagates
the carry-bit to the next stage. Obviously, the addition takes𝑤 addition cycles,
where duration of each clock cycle is the time required by an FA to complete
the addition of three bits. This type of adder can add both unsigned and two’s-
complement numbers.
Themajor drawbackwith the ripple-carry adder is that theworst-case delay is

proportional to theword length.Also, typically, the ripple-carry adder produces
many glitches since the full adder cells need to wait for the correct carry input.
This situation is improved if the delay for the carry bit is smaller than that of
the sum bit [4].
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Figure 1.2 Ripple-carry adder.
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Figure 1.3 Bit-serial (a) adder and (b) subtractor.

Alternatively, all pairs of bits of the same significance can be added simul-
taneously and then the carries are added using some efficient scheme. Many
additional schemes have been proposed. For more details, we refer to, for ex-
ample, Reference [5].
It is also possible to perform addition in constant time using redundant

number systems such as signed-digit or carry-save representations [6]. An
alternative is to use residue number systems (RNS), which split the carry-chain
into several shorter ones [7].

1.2.2 Bit-Serial Addition and Subtraction

Bit-serial addition and subtraction of numbers in a two’s-complement repre-
sentation can be performedwith the circuits shown in Figure 1.3. A pair of input
bits of operands 𝑋 and 𝑌 are fed to the circuit in the least-significant-bit-first
order, and the carry generated during at any given cycle is returned as input
of the circuit during the next clock cycle. Since the carries are saved from one
bit position to the next, the circuits of Figures. 1.3a and b are called carry-save
adder and carry-save subtractor, respectively. At the start of the addition, the
D flip-flop is reset (set) for the adder (subtractor), respectively.
Figure 1.4 shows two latency models for bit-serial adders. The leftmost is

suitable for static CMOS and the rightmost for dynamic (clocked) logic styles.
The time to add two 𝑤-bit numbers is 𝑤 or 𝑤 + 1 clock cycles. However, the
throughput rate of computationwould not be affected by this additional latency
of one clock cycle since the two successive sum values computed in an interval
is 𝑤 cycles.
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Figure 1.4 Latency models for a bit-serial adder.
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Figure 1.5 Digit-serial adder with digit-size 𝑑
obtained from unfolding a bit-serial adder.

1.2.3 Digit-Serial Addition and Subtraction

In case of digit-serial processing [8–11] a group of bits (called a digit) of input
words are processed at a time. From speed and power consumption points of
view, it is advantageous to process several bits at a time. The number of bits
processed in a clock cycle is referred to as the digit size.
Figure 1.5 shows a digital-serial adder, where 𝑑 is the digit size. The D-flip-

flop transfers the output carry. In case of subtraction of a two’s-complement
number, the negative value is instead added by inverting the bits and setting
the carry flip-flop during the addition of the least significant digit.
Most of the principles used for bit-serial arithmetic can easily be extended to

digit-serial arithmetic.
The bit-serial and digit-serial arithmetic circuits require less chip area and

therefore their equivalent switched capacitance and leakage current are rela-
tively low compared with word-level circuits [3,12].

1.3 Multiplication

Multiplication of two numbers can be realized into the following two main
steps:
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1. Partial product generation where partial product is the result of multiplica-
tion of a bit of the multiplier with the multiplicand.

2. Accumulation of the partial products.

In the following subsections, we discuss various techniques to simplify and
speed-up the summation of the partial products.

1.3.1 Partial Product Generation

In unsigned binary number representation, bit-wise multiplications can be
written as

𝑍 = 𝑋𝑌 =
𝑤∑
𝑖=1
𝑥𝑖2−𝑖

𝑤∑
𝑗=1

𝑦𝑗2−𝑗 =
𝑤∑
𝑖=1

𝑤∑
𝑗=1

𝑥𝑖𝑦𝑗2−𝑖−𝑗 (1.3)

This leads to a partial product array as shown in Figure 1.6. The partial product
generation can be readily realized using AND gates.
For two’s-complement representation, the result is very similar to that in

Figure 1.6, except that the sign-bit causes some of the bits to have negative
weight. This can be seen from

𝑍 = 𝑋𝑌

=

(
−𝑥0 +

𝑤∑
𝑖=1
𝑥𝑖2−𝑖

)(
−𝑦0 +

𝑤∑
𝑗=1

𝑦𝑗2−𝑗
)

= 𝑥0𝑦0 − 𝑥0
𝑤∑
𝑗=1

𝑦𝑗2−𝑗 − 𝑦0
𝑤∑
𝑖=1
𝑥𝑖2−𝑖 +

𝑤∑
𝑖=1

𝑤∑
𝑗=1

𝑥𝑖𝑦𝑗2−𝑖−𝑗 (1.4)

The corresponding partial product matrix is shown in Figure 1.7.

Figure 1.6 Partial products for unsigned binary numbers.
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Figure 1.7 Partial products for two’s-complement numbers.

1.3.2 Avoiding Sign-Extension (the Baugh andWooleyMethod)

Addition of any two numbers in two’s-complement representation requires
that the word lengths are equal. Hence, it is necessary to sign-extend the MSB
of partial products in Figure 1.7 to obtain the same word length for all rows.
To avoid this the computation resulting from sign-extension, it is possible

to perform the summation from top to bottom and perform sign-extension of
the partial results to match the next row to be added. However, if we want to
add the partial products in an arbitrary order using a multioperand adder, the
following technique, proposed by Baugh and Wooley [13], can be used.
Note that for a negative partial product, we have −𝑝 = 𝑝 − 1. Hence, we can

replace all partial products with negativeweight with an inverted version. Then,
we need to subtract a constant value from the result. Since there will be several
constants, one from each negative partial product, we can sum these up and
form a single compensation vector to be added.When this is applied we get the
partial product array as shown in Figure 1.8 as

𝑍 = 𝑥0𝑦0 +
𝑤∑
𝑗=1

𝑥0𝑦𝑗2−𝑗 −
𝑤∑
𝑗=1

2−𝑗 +
𝑤∑
𝑖=1
𝑦0𝑥𝑖2−𝑖 −

𝑤∑
𝑖=1

2−𝑖

+
𝑤∑
𝑖=1

𝑤∑
𝑗=1

𝑥𝑖𝑦𝑗2−𝑖−𝑗

= 𝑥0𝑦0 +
𝑤∑
𝑗=1

𝑥0𝑦𝑗2−𝑗 +
𝑤∑
𝑖=1
𝑦0𝑥𝑖2−𝑖 +

𝑤∑
𝑖=1

𝑤∑
𝑗=1

𝑥𝑖𝑦𝑗2−𝑖−𝑗

−
(
2 − 2−𝑤+1

)
(1.5)

1.3.3 Reducing the Number of Partial Products

There are several methods for reducing the number of partial products. A
technique to reduce the number of partial products using small ROM-based
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Figure 1.8 Partial products for two’s-complement numbers without sign-extension.

Table 1.1 Rules for the radix-4 modified Booth encoding.

𝑥𝟐𝑘𝑥𝟐𝑘+1𝑥𝟐𝑘+𝟐 𝑟𝑘 𝑑𝟐𝑘𝑑𝟐𝑘+𝟏

000 0 00
001 1 01
010 1 01
011 2 10
100 −2 1̄0
101 −1 01̄
110 −1 01̄
111 0 00

multipliers is found in Reference [14]. Other methods are based on number
representation or encoding of one of the operands. It is possible to reduce
the number of nonzero positions by using a signed-digit representation, for
example, canonical signed digit (a CSD) representation to obtain a minimum
number of nonzeros. However, the drawback is that the conversion from two’s-
complement to CSD involves carry-propagation [15]. Furthermore, the worst
case is that half of the positions are nonzero, and, hence, one would still need
to design the multiplier to deal with this case.
Instead, it is possible to derive a signed-digit representation that is not

necessarily minimal, but has at most half of the positions being non-zero.
This is referred to modified Booth encoding [16,17] and is often described
as being a radix-4 signed-digit representation where the recoded digits 𝑟𝑘 ∈
{−2, −1, 0, 1, 2}.
The logic rules for performing the modified Booth encoding are based on

the idea of finding strings of ones and replace them as 011...11 = 100...01,
illustrated in Table 1.1. From this, one can see that there is at most one nonzero
digit in each pair of digits

(
𝑑2𝑘𝑑2𝑘+1

)
.

Now, to perform the multiplication, we must be able to possibly negate and
multiply the operandwith 0, 1, or 2.As discussed earlier, the negation is typically
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Figure 1.9 Partial products for radix-4-modified Booth encoding.

performed by inverting the bits and add a one in the column corresponding to
the LSB position. The partial product array for a multiplier using the modified
Booth encoding is shown in Figure 1.9. From this, it can be seen that each row
now is one bit longer and that the least significant position contains two bits,
where the additional bit is used for negation.

1.3.4 Reducing the Number of Columns

The result of multiplication is usually quantized to be represented with fewer
bits. To reduce the complexity of the multiplication of such cases it has been
proposed to perform the quantization at the partial product generation stage
and partial product summation stage [18]. This is commonly referred to as
fixed-widthmultiplication referring to the fact that (most of) the partial product
rows have the same width. Simply truncating the partial products will result in
a rather large error. Several methods have therefore been proposed to reduce
the error by introducing compensating terms [19,20].

1.3.5 Accumulation Structures

The problem of summing up the partial products can be solved in the following
three general ways:

1. Sequential accumulation, where a row or a column of partial products are
accumulated in each cycle.

2. Array accumulation, which gives a regular structure.
3. Tree accumulation, which gives the smallest logic depth but in general an

irregular structure.

1.3.5.1 Add-and-Shift Accumulation
In multipliers based on add-and-shift, the partial products are successively
accumulated in 𝑤 cycles for 𝑤-bit operands. During each cycle a new partial
product is added with the current sum of partial products divided by two. In
most number systems dividing by two can be implemented by a shift of the bits.
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Figure 1.10 Baugh–Wooley array multiplier.

Themultiplication time becomes large if two’s-complement representation and
ripple-carry adders are used. Redundant number representation is therefore
used to alleviate the carry propagation problem. We will defer the discussion
of add-and-shift multipliers based on bit-serial and digit-serial realizations to
Section 1.3.6.

1.3.5.2 Array Accumulation
Array multipliers use an array of almost identical cells for generation and accu-
mulation of the partial products. Figure 1.10 shows a realization of the Baugh–
Wooley array multiplier [13], leading to a multiplication time proportional
to 2𝑤.
The array multiplier is a highly regular structure resulting in short wire

lengths between the logic circuits, which is important for high-speed design
in nanometer processes where wiring delay gives a significant contribution to
the overall delay. However, in a process where cell delay dominates wire delay,
the logic depth of the design is more important than regularity. In the array
multiplier the logic depth is(𝑤), where𝑤 is the inputword length. In the adder
tree multiplier, which is discussed in Section 1.3.5.3, the depth is (log(𝑤)).
Even for short word lengths, this leads to a significant shorter delay.

1.3.5.3 Tree Accumulation
The array structure provides a regular structure, but at the same time the delay
grows linearly with theword length. All the partial product generationmethods
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in Figures 1.6–1.9 provide a number of partial products that can be accumulated
in arbitrary order.
The first approach is to use as many full adders as possible to reduce as many

partial products as possible. Then, we add as many half adders as possible to
minimize the number of levels and try to shorten theword length for the vector-
merging adder. This kind of approach is followed in theWallace tree proposed
in Reference [21]. The main drawback of this approach is the excessive use of
half adders. Dadda [22] instead proposed that full adders and half adders should
only be used if required to obtain a number of partial products equal to a value
in the Dadda series. The value of position 𝑛 in the Dadda series is themaximum
number of partial products that can be reduced using 𝑛 levels of full adders.
The Dadda series starts {3, 4, 6, 9, 13, 19, …}. The benefit of this is that the
number of half adders is significantly reduced while still obtaining a minimum
number of levels.
However, the length of the vector-merging adder increases in case of Dadda

reduction trees. A compromise between these two approaches is the ‘reduced
area’ heuristic [23], which is similar to the Wallace tree, since as many full
adders as possible are introduced in each level. Half adders are on the other
hand only introduced if they are required to reach a number of partial products
corresponding to the Dadda series, or if exactly two partial products have
the same least significant weight. In this way a minimum number of stages is
obtained, while at the same time both the length of the vector-merging adder
and the number of half adders are kept small.
To illustrate the operation of the reduction tree approaches we use dot

diagrams, where each dot corresponds to a bit of the partial product to be
added. Bits with the same weight are placed in the same column and bits in
adjacent columns are either of one position higher or one position lowerweight,
with higher weights toward left. The bits are manipulated by using either full
or half adders. The operation of these are illustrated in Figure 1.11.
The reduction schemes are illustrated for anunsigned6 × 6-bitmultiplication

in Figure 1.12. The complexity results are summarized in Table 1.2. It should
be noted that the positioning of the results in the next level is resulting partial
products done based on ease of illustration. From a functional point of view,
this step is arbitrary, but it is possible to optimize the timing by carefully
utilizing different delays of the sum and carry outputs of the adder cells [24].
Furthermore, it is possible to reduce the power consumption by optimizing the
interconnect ordering [25].

(b)(a)

Inputs

Result

Figure 1.11 Operation on bits in a dot diagram with (a) full adder
and (b) half adder.
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(b)(a) (c)

Stage 1

Stage 2

Stage 3

Stage 4

Stage 1

Stage 2

3

4

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1.12 Reduction trees for a 6 × 6-bit multiplier: (a) Wallace, (b) Dadda, and
(c) Reduced area.

Table 1.2 Complexity of the three reduction trees in Figure 1.12.

Tree structure Full adders Half adders VMA length

Wallace 16 13 8
Dadda 15 5 10
Reduced area 18 5 7

The reduction trees in Figure 1.12 do not provide any regularity. This means
that the routing is complicated and may become the limiting factor in an
implementation. Reduction structures that provide a more regular routing, but
still a small number of stages, include the overturned-stairs reduction tree [26]
and the HPM tree [27].

1.3.5.4 Vector-Merging Adder
The role of the vector-merging adder is to add the outputs of the reduction
tree. In general, any carry-propagation adder can be used. However, the signals
corresponding to different bits of input to the vector-merging adders are typ-
ically available after different delays after the arrival of input to the multiplier.
It is possible to derive carry-propagation adders that utilize this different signal
arrival times to optimize the adder delay [28].

1.3.6 Serial/Parallel Multiplication

Serial/parallel multipliers are based on the add-and-shift principle where the
multiplicand, 𝑥, arrive serially while the multiplier, 𝑎 is available in bit-parallel
format. Several forms of serial/parallel multipliers have been proposed [29].
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AND AND AND AND AND

Figure 1.13 Serial/parallel multiplier based on carry-save adders. The box containing
“AND” refers to AND gate throughout this chapter.

They differ mainly by the order in which bit-products are generated and added
and in the way subtraction is handled.
The generation of partial products are handled by the AND gates shown in

Figure 1.13. The first partial products correspond to the first row of partial
products in Figure 1.6. Thus, in the first time slot, we add the partial products,
𝑎 × 𝑥𝑤 to the initially cleared accumulator. Next, the D flip-flops are clocked
and the sum-bits from the FAs are shifted by one bit to the right; each carry-bit
is saved to be used in the next clock cycle: the sign-bit is copied; and the LSB of
the product is produced as output bit. These operations correspond to dividing
the accumulator contents by 2. Note that the value in the accumulator is in
redundant form and that carry propagation is not needed.
In the following clock cycle, the next bit of 𝑥 is used to form the next partial

product and added to the value in the accumulator, and the value in the accu-
mulator is again divided by 2. This process continues for 𝑤 clock cycles, until
the sign bit 𝑥0 is reached, whereupon a subtraction must be done instead of an
addition.
During the first 𝑤 clock cycles, the least significant part of the product is

computed and the most significant is stored in the D flip-flops. In the next
𝑤𝑐 − 1 clock cycles, we apply zeros to the input so that themost significant part
of the product is shifted out of themultiplier. Hence, themultiplication requires
𝑤 +𝑤𝑐 − 1 clock cycles. Two successive multiplications must therefore be
separated by𝑤 +𝑤𝑐 − 1 clock cycles. Note that the accumulation of the partial
products is performed using a redundant representation, which do not require
carry propagation. The redundant value stored in the accumulator in carry save
format is converted to a nonredundant representation in the last FA.
An alternative and better solution is to copy the sign-bit in the first multiplier

stage as shown in Figure 1.14. The first stage, corresponding to the sign-bit in
the coefficient, is replaced by a subtractor. In fact, only an array of half-adders
is needed since one of the input bits to the 1-bit adders is zero.
The subtraction of the bit-products required for the sign-bit in the se-

rial/parallel multiplier can be avoided by extending the input by 𝑤𝑐 − 1 copies
of the sign-bit. After 𝑤 clock cycles the most significant part of the product is
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AND AND AND AND AND

Figure 1.14 Modified serial/parallel multiplier.

AND AND AND AND AND

Figure 1.15 Serial/parallel multiplier with sign extension-circuit.

stored in theDflip-flops. In the next𝑤𝑐 clock cycles the sign bit of𝑥 is applied to
themultiplier’s input. This is accomplished by the sign extension-circuit shown
in Figure 1.15. The sign extension-circuit consists of a latch that transmits all
bits up to the sign-bit and thereafter latches the sign-bit. For simplicity, we
assume that 𝑤 = 5 bits and 𝑤𝑐 = 5 bits.
The product is

𝑦 = 𝑎 × 𝑥 = 𝑎 ×

(
−𝑥0 +

5∑
𝑘=1

𝑥𝑘2−𝑘
)

(1.6)

but the multiplier computes

𝑦 = 𝑎

(
𝑥024 + 𝑥023 + 𝑥022 + 𝑥021 + 𝑥020 +

5∑
𝑘=1

𝑥𝑘2−𝑘
)

= 𝑎

(
𝑥024 + 𝑥023 + 𝑥022 + 𝑥021 + 𝑥021 − 𝑥020 +

5∑
𝑘=1

𝑥𝑘2−𝑘
)

= 𝑎𝑥0
(
24 + 23 + 22 + 21 + 21

)
+ 𝑎 × 𝑥

= 𝑎𝑥025 + 𝑎 × 𝑥 (1.7)
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Throughput

Latency

Figure 1.16 Latency and throughput for a multiplication 𝑦 = 𝑎 × 𝑥 using bit-serial
arithmetic with least significant bit (LSB) first.

The first term above contributes an error in the desired product. However,
there will not be any error in the 𝑤 +𝑤𝑐 − 1 least-significant bits since the
error term only contributes to the bit positions with higher significance.
A bit-serial multiplication takes at least 𝑤 +𝑤𝑐 − 1 clock cycles. However,

two successive multiplications can partially be overlapped to increase the
throughput [3]. These serial/parallel multipliers using this technique can be
designed to perform one multiplication every max{𝑤,𝑤𝑐} clock cycles. La-
tency and throughput for a multiplication using bit-serial arithmetic with least
significant bit (LSB) first is illustrated in Figure 1.16.
A major advantage of bit-serial over bit-parallel arithmetic is that it signifi-

cantly reduces chip area. This is done in two ways. First, it eliminates the need
of wide buses and simplifies the wire routing. Second, by using small processing
elements, the chip itself becomes smaller and requires shorter wiring. A small
chip can support higher clock frequencies and is therefore faster.
Bit-serial multiplication can be done either by processing the least significant

or themost significant bit first. The former is themost common since the latter
is more complicated and requires the use of so-called redundant arithmetic.
The latency of a multiplication is equal to the number of fractional bits in the

coefficient. For example, a multiplication with a coefficient 𝑤𝑐 = (1.0011)2C
will have a latency corresponding to four clock cycles. A bit-serial addition or
subtraction has in principle zero latency while a multiplication by an integer
may have zero or negative latency. But, the latency in a recursive loop is always
positive, since the operations must be performed by causal PEs. In practice, the
latency may be somewhat longer, depending on the type of logic that is used to
realize the arithmetic operations, as will be discussed shortly.
Here, we define two latency models for bit-serial arithmetic. Two latency

models for a bit-serial adder are shown in Figure 1.4. In model 0, which can
be used to model a static CMOS logic style without pipelining of the gates,
the latency is equal to the gate delay at a full adder. In model 1, which can
be used to model a dynamic CMOS logic style, or a static CMOS logic style
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Latency Latency

D

Figure 1.17 Latency models for a serial/parallel multiplier.

with pipelining at the gate level, the full adder, followed by a D flip-flop, causes
the latency to become one clock cycle. Model 1 generally results in faster bit-
serial implementations, due to the shorter logic paths between the flip-flops in
successive operations [30].
For low-complexity implementation of a serial/parallel multiplier, bit-serial

adders may be used. The corresponding latency models for a serial/parallel
multiplier are shown in Figure 1.17. Denoting the number of fractional bits of
the coefficient𝑤𝑐 , the latencies become𝑤𝑐 for latency model 0, and𝑤𝑐 + 1 for
latency model 1.
A digit-serial multiplier, which accumulate several bits in each stage, can

be obtained either via unfolding of a bit-serial multiplier or via folding of a
bit-parallel multiplier [10]. The execution time is ⌈𝑤∕𝑑⌉ clock cycles for a
digit-serial adder. For a serial/parallel multiplier, it is ⌈𝑤∕𝑑⌉ + ⌈𝑤𝛼∕𝑑⌉ clock
cycles, where𝑤 and𝑤𝛼 are the data and coefficient word lengths, respectively.

1.4 Sum-of-Products Circuits

Multimedia and communication applications involve real-time audio and
video/image processing which very often require sum-of-products (SOP) com-
putation. The SOP of two𝑁-point vectors is given by

𝑦 =
𝑁∑
𝑖=1
𝑎𝑖𝑥𝑖 (1.8)

SOP is a commonoperations inmostDSP applications, for example, IIR andFIR
filters and correlation. Sum-of-product is also referred to as inner products of
two vectors. Most digital signal processors are optimized to perform multiply-
accumulate operations.
When 𝑁 is large or varies, it is not a constant, the SOP given by Eq. (1.8) is

computed sequentially using amultiply-accumulate circuit (MAC) by repeating
the MAC operation shown in Figure 1.18𝑁 times.
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Figure 1.18 Multiplier-accumulator.

Typically, the multiplier is realized by modified radix-4 Booth’s algorithm
(MBA) [16,31], a carry-save adder (CSA) tree to add the partial products, and
a final adder, similar to the multipliers discussed in a previous section.
The delay of a Wallace tree is proportional to (log(𝑁)), where 𝑁 is the

number of inputs. However, the throughput is limited by the long critical path
for multiplication. (4:2) or (7:3) compressors may therefore be used to reduce
the number of outputs in each step. Typically, the accumulations are combined
with the adder tree that compresses partial products, for example, it is possible
to use two separate 𝑁∕2-bit adders instead of one 𝑁-bit adder to accumulate
the𝑁-bit MAC result.
It is instructive to study themultiplier-accumulator in more detail. Typically,

in the first stage some form of Booth encoding is used to reduce the number
of partial products. The adder and multiplier are usually realized by carry-
select or carry-save adders, as throughput is of utmost importance. In addition,
pipelining is often used to increase the throughput further.
The adder must be operated 𝑁 × 1 times, which will be expensive if we use

a conventional techniques with carry propagation. However, using carry-save
adders (CSA), we eliminate the need for carry propagation, except of the last
addition. In the intermediate steps we use a redundant number representation
with separate sum and carry words. A CSA is a 3:2 compressor, that is, a full
adder.Hence, the intermediate results are represented by a sumand carryword.
In the final step, however, we most often need to use a nonredundant rep-

resentation for the further processing of the SOP. This step involves a vector-
merging adder, whichmay be realized using any of the previously discussed fast
adders.
The multiplier typically consists of a partial-product generation stage and an

adder-tree. Often Booth encoding is used to reduce the number of partial prod-
ucts. A Wallace carry-save adder-tree is typically used for long word lengths,
while overturned-stairs may be better for shorter word length due to the more
regular wire routing.
The resulting realization is shown in Figure 1.19, where the dashed box

indicates that parts that use a redundant carry-free representation. Note that
the output bits (sum and carry words) of the accumulator register can be
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Figure 1.19 Carry-save multiplier-accumulator.

AND AND AND AND AND

Figure 1.20 Serial/parallel multiplier-accumulator.

partially merged into the adder-tree of the multiplier. It is favourable to insert
the sum and carry bits as early as possible in the tree in order to fully exploit
the compressors. It may even be favourable to use 4:2 compressors.

1.4.1 SOP Computation

Alternatively, SOP can be realized by serial/parallel multiplier with an addi-
tional input that allows computations of the type 𝑦 = 𝑎 × 𝑥 + 𝑧 (is shown in
Figure 1.20). The extra input allows a value 𝑧 to be added at the same level
of significance as 𝑥. A multiplier-accumulator is obtained if the output 𝑦 is
truncated/rounded to the same word length as 𝑥 and added to the subsequent
multiplication. A full precision multiplier-accumulator is obtained if the part
of 𝑦 that is truncated is saved and used to set the sum D flip-flops instead of
resetting them at the start of a multiplication.
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1.4.2 Linear-Phase FIR Filters

Multiplier-accumulator processing elements are suitable for implementing
linear-phase FIR filters, where Eq. (1.8) can be rewritten like

𝑦 =
𝑁∕2∑
𝑖=1

𝑎𝑖
(
𝑥𝑖 ± 𝑥𝑁−𝑖

)
(1.9)

where we have assumed that 𝑁 is even. This requires pre-addition of the two
delayed input samples. This addition can be incorporated into the adder-tree
of the multiplier.
FIR filters realized in the transposed direct form can be implemented by

replacing the accumulator register with a register bank that stores the values in
the delay elements.

1.4.3 Polynomial Evaluation (Horner’s Method)

A related case to SOP is the evaluation of a polynomial, or a series expansion,
using Horner’s method1. An expression of the form

𝑦 =
𝑁∑
𝑖=1
𝑎𝑖𝑥

𝑖 (1.10)

is rewritten

𝑦 =
(
…

(((
0 + 𝑎𝑁

)
𝑥 + 𝑎𝑁−1

)
𝑥 + 𝑎𝑁−2

)
𝑥 +…+ 𝑎1

)
𝑥 (1.11)

Figure 1.21 shows how the generic MAC processor can be modified to eval-
uate Eq. (1.11). Also in this case can the addition be incorporated into the
adder-tree of the multiplier.

1.4.4 Multiple-Wordlength SOP

Different applications could have different requirements on accuracy and
dynamic range. For example, it is desirable to use the same hardware to process
both music and images, but it may be inefficient if the image processing is
dominant, since the former require a word length in the range 16–24 bits,
while for the latter it is often sufficient with eight bits. However, it is possible to
segment a carry-save multiply-accumulate processor with a long word length.
For example, a 64 × 64-bit SOP processor may be segmented to simultaneously
perform either two 32 × 32-bit, four 16 × 16-bit, or eight 8 × 8-bit SOP

1 William Horner, 1819. In fact, this method was derived by Isaac Newton in 1711.
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Figure 1.21 Carry-save realization of Horner’s method.

products, However, this requires that some additions circuitry to be inserted
into the adder-tree to separate input and outputs of different segments.

1.5 Squaring

Squaring is a special case ofmultiplication, which is relevant since the complex-
ity can be significantly reduced compared to a general multiplication. Squar-
ing finds applications in, for example polynomial evaluation through Estrin’s
method, see Section 1.7.2, integer exponentiation, and in certain DSP algo-
rithms such as spectrum analysis.

1.5.1 Parallel Squarers

The partial product array for a six-bit squarer using unsigned multiplication as
in Figure 1.6 is shown in Figure 1.22. It can be noted that each partial product
𝑥𝑖𝑥𝑗 appears twice when 𝑖 ≠ 𝑗. Hence, it is possible to replace these two partial
products with one partial product in the column with next higher significance.
This results in the folded partial product array illustrated in Figure 1.23. Here,
it is also utilized that 𝑥𝑖𝑥𝑖 = 𝑥𝑖, so no gates are needed to compute those partial
products.
It can be noted from Figure 1.23 that the middle column will always contain

the most partial products. To reduce the maximum number of partial products
it is possible to apply the identity from Reference [32]

𝑥𝑖 + 𝑥𝑖𝑥𝑖+1 = 2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖𝑥𝑖+1 (1.12)

This results in the partial product array shown in Figure 1.24.
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Figure 1.22 Partial products for a six-bit squarer.

Figure 1.23 Folded partial products for a six-bit squarer.

Figure 1.24 Partial products for a six-bit squarer after applying Eq. (1.12) to reduce the
maximum number of partial products in a column.

Figure 1.25 Partial products for a six-bit squarer after applying Eq. (1.13) to reduce the
number of partial products.

A method for reducing the number of partial products at the expense of
slightly more complicated partial product generation was suggested in Ref-
erence [33]. Here, it is noticed that the partial products 𝑥𝑖𝑥𝑖+1, 𝑥𝑖𝑥𝑖+2, and
𝑥𝑖+1𝑥𝑖+2 can never be all at the same time, and, hence, the following identity
can be applied:

2𝑥𝑖𝑥𝑖+1 + 𝑥𝑖𝑥𝑖+2 + 𝑥𝑖+1𝑥𝑖+2 = 2𝑏𝑖,𝑖+1,𝑖+2 + 𝑎𝑖,𝑖+1,𝑖+2 (1.13)

where the expressions for 𝑏𝑖,𝑖+1,𝑖+2 and 𝑎𝑖,𝑖+1,𝑖+2 are straightforward to derive.
The resulting partial product array is shown in Figure 1.25. Both methods
discussed above can be adapted to be used for signed squarers.
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1.5.2 Serial Squarers

Toderive a suitable algorithmsequentially computing the square𝑥2 of anumber
𝑥, we will first discuss the special case where 𝑥 is a fractional, unsigned binary
number as in Eq. (1.1) [34,35]. Now, let the function 𝑓 (𝑥) represent the square
of the number 𝑥, that is,

𝑓 (𝑥) = 𝑥2 (1.14)

The computation of 𝑓 (𝑥) can be carried out in 𝑤 iterations by repeatedly
squaring the sum of the most significant bit of a number and the other bits of
that number. In the first step, 𝑓 (𝑥) is decomposed into the square of the most
significant bit of 𝑥 with a rest term and a remaining term.

𝑓1 = 𝑓

(
𝑤∑
𝑘=1

𝑥𝑘2−𝑘
)

=

(
𝑤∑
𝑘=1

𝑥𝑘2−𝑘
)2

=

(
𝑥12−1 +

𝑤∑
𝑘=2

𝑥𝑘2−𝑘
)2

= 𝑥12−2 + 𝑥120
𝑤∑
𝑘=2

𝑥𝑘2−𝑘 + 𝑓

(
𝑤∑
𝑘=2

𝑥𝑘2−𝑘
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑓2

(1.15)

In the next step, 𝑓2 = 𝑓 (𝑥 − 𝑥1) is decomposed in the same manner into the
square of the most significant bit of 𝑥 − 𝑥1 with sum of other terms, resulting
finally with a remaining square 𝑓3 = 𝑓 (𝑥 − 𝑥1 − 𝑥2). The scheme is repeated
as long as there are bits left to process. Examining this scheme we find that in
order to input a bit-serial word 𝑥 with the least significant bit first, we have to
reverse the order of the iterations in the scheme above. The iterative algorithm
then can be written as

𝑓𝑗 = Δ𝑗 + 𝑓𝑗+1 (1.16)

where

𝑗 = 𝑤, 𝑤 − 1, … , 1 (1.17)

Δ𝑗 = 2−2𝑗𝑥𝑗 + 21−𝑗𝑥𝑗
𝑤∑

𝑘=𝑗+1
𝑥𝑘2−𝑘 (1.18)

In each iteration 𝑗 we accumulate the previous term 𝑓𝑗+1 and input the next
bit 𝑥𝑗 . If 𝑥𝑗 = 1, then we add the square of the bit weight and the weights of the
bits that have arrived prior to bit 𝑥𝑗 shifted left (1 − 𝑗) positions. Examination
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Figure 1.26 Serial squarer for unsigned numbers.

of the bit weights accumulated in each iteration reveals that the sum converges
toward the correct square with at least one bit in each step, going from the
least-significant bit toward more significant bits in the result.
An implementation of the algorithm above is shown in Figure 1.26. It uses a

shift-accumulator to shift the accumulated sum to the right after each iteration.
Thus, left-shifting of the stored 𝑥𝑖’s are avoided and the addition of the squared
bit weight of the incoming 𝑥𝑗 is reduced to a shift to the left in each iteration.
The implementation consists of𝑤 regular bit-slices, which make it suitable for
hardware implementation.
The operation of the squarer in Figure 1.26 is as follows: All D flip-flops

and SR flip-flops are assumed to be cleared before the first iteration. In the
first iteration, the control signal 𝑐0 is high while the remaining control signals
are low. This allows the first bit 𝑥(0) = 𝑥𝑤 to pass the AND gate on top of
the rightmost bit-slice. The value 𝑥𝑤 is then stored in the SR flip-flop of the
same bit-slice for later use. Also, 𝑥𝑤 is added to the accumulated sum via the
OR gate in the same bit-slice. The least significant output bit 𝑦(0) = 𝑦2𝑤 then
becomes available at the output after pure gate delays. Then a shift to the left
follows.
The following iterations are carried out in the same manner, with the input

bits 𝑥(𝑖) = 𝑥𝑤 − 𝑖 in sequence along with one of the control signals 𝑐𝑖 high,
respectively. During the iterations, the result bits 𝑦(𝑖) = 𝑦2𝑤−𝑖 will become
available at the output. Then, 𝑥(𝑖) has to be zero-extended𝑤 locations to access
the bits stored in the accumulator. The last control signal clr is used to clear
the SR flip-flops before the squaring of next operand can take place.
To adapt the squarer to the case of a two’s-complement number as in Eq.

(1.2), we sign-extend a two’s-complement number to at least 2𝑤 − 1 bits and
do not clear the SR flip-flops until the next computation is to take place. Then,
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≥ ≥ ≥
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Figure 1.27 Serial squarer for two’s-complement numbers.

the squarer computes

𝑦 =
𝑤∑
𝑗=1

𝑥02𝑗+1
𝑤∑
𝑘=1

𝑥𝑘2−𝑘 +

(
𝑤∑
𝑘=0

𝑥𝑘2−𝑘
)2

= 𝑥02𝑤+1
𝑤∑
𝑘=1

𝑥𝑘2−𝑘 +

(
−𝑥0 +

𝑤∑
𝑘=1

𝑥𝑘2−𝑘
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥2

(1.19)

Here, we can see that the result will contain an error in the accumulated
sum. But, since this error exists only in bits of higher significance than the
desired result, this error will not affect the desired output result. Further, if
we sign extend the input signal with more than 2𝑤 − 1 bits, the error will be
scaled accordingly, and staywithin the squarer. An implementation of a squarer
for two’s-complement numbers is shown in Figure 1.27. The only drawback
compared to the squarer in Figure 1.26, is that we now need to clear the error
in the accumulator before the next squaring can take place.

1.5.3 Multiplication Through Squaring

It is possible to multiply two numbers by using only squarers. This primarily
finds applications in memory-based computations as storing the square of a
number require significantly less memory compared to storing the product of
two numbers. The product of two numbers, 𝑎 and 𝑏, can be computed as [36]

𝑎 × 𝑏 = (𝑎 + 𝑏)2 − (𝑎 − 𝑏)2

4
(1.20)

Alternative expressions are also available.
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Figure 1.28 Complex multipliers based on (a) Eq. (1.21), (b) Eq. (1.22), (c) Eq. (1.23), and
(d) lifting for reversible transforms.

1.6 Complex Multiplication

Multiplication of complex numbers is a time and area consuming arithmetic
operation. It is required in many applications, for example, in a fast Fourier
transform (FFT) processor for use in an orthogonal frequency-division multi-
plex (OFDM) system. Multiplication of complex numbers can also be consid-
ered into two cases: when both the multiplier and multiplicand are variable or
when only the multiplicand is variable.

1.6.1 ComplexMultiplication Using Real Multipliers

Consider the complex multiplication 𝑧 = 𝑘 × 𝑥, where 𝑥 is the multiplicand,
𝑥 = 𝑎 + 𝑗𝑏 and 𝑘 is the multiplier, 𝑘 = 𝑐 + 𝑗𝑑. We have

𝑧 = (𝑐 + 𝑗𝑑)(𝑎 + 𝑗𝑏) = (𝑐𝑎 − 𝑑𝑏) + 𝑗(𝑑𝑎 + 𝑐𝑏) (1.21)

A direct realization of Eq. (1.21) requires four multipliers and two
adders/subtractors as shown in Figure 1.28a.
We may rewrite Eq. (1.21) as follows:

𝑧𝑅 = 𝑐𝑎 − 𝑑𝑏
𝑧𝐼 = (𝑐 + 𝑑)(𝑎 + 𝑏) − 𝑐𝑎 − 𝑑𝑏 (1.22)

which requires only three real multiplications and five real additions. An alter-
native version is

𝑧𝑅 = 𝑐(𝑎 + 𝑏) − (𝑐 + 𝑑)𝑏
𝑧𝐼 = 𝑐(𝑎 + 𝑏) − (𝑐 − 𝑑)𝑎 (1.23)

which also requires only three real multiplications and five real additions. In
fact, there exist several such expressions with only three multiplications [37].
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Inmany applications, for example, FFT, themultiplier, 𝑐 + 𝑗𝑑, is constant and
𝑐 ± 𝑑 can be precomputed. This reduces a complexmultiplication to only three
real multiplications and three/four real additions, as shown in Figure 1.28b
and c, for Eqs (1.22) and (1.23), respectively. Obviously, multiplications by ±1
and ±𝑗 are easily implemented. In addition, further savings can be made for
multipliers of the form±𝑐 ± 𝑗𝑐 since the complexmultiplication reduces to two
real additions of 𝑎 and 𝑏 with different signs and two real multiplications by 𝑐.
This case applieswhen cos(𝑛𝜋∕4) ± 𝑗 sin(𝑛𝜋∕4) and 𝑛 =odd.This simplification
allows an eight-point DFT to be realized by using only four real multiplications.
Hence, a complex multiplication requires three real multiplications and some
additions. A more efficient technique is based on distributed arithmetic where
only two units are required, which from chip area, throughput, and power
consumption points of view are comparable to two real multipliers [3].

1.6.2 Lifting-Based ComplexMultipliers

In many transforms and other applications, the complex multiplication is a
rotationwithanangle𝛼, that is,𝑘 = 𝑐 + 𝑗𝑑 = cos(𝛼) + 𝑗 sin(𝛼). First, it shouldbe
noted thatwhen cos(𝛼) and sin(𝛼) are represented in abinary representation, the
magnitude of the complex number can never be exactly one (unless 𝛼 = 𝑛𝜋∕2
rad). This in turn means that the inverse rotation can never be exact, there will
always be a gain and/or angle error. To get around this, a lifting-based complex
multiplier can be used [38]. The lifting-based complex multiplication is written
in matrix form as

[
𝑧𝑅

𝑧𝐼

]
=
[
𝑐 −𝑑
𝑑 𝑐

] [
𝑎

𝑏

]
=
[cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

] [
𝑎

𝑏

]
=

[
1 cos(𝛼)−1

sin(𝛼)
0 1

][ 1 0
sin(𝛼) 1

][1 cos(𝛼)−1
sin(𝛼)

0 1

][
𝑎

𝑏

]
(1.24)

=
[1 𝑒
0 1

] [1 0
𝑑 1

] [1 𝑒
0 1

] [
𝑎

𝑏

]
(1.25)

where

𝑒 = cos(𝛼) − 1
sin(𝛼)

= 𝑐 − 1
𝑑

(1.26)
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The inverse rotation can similarly be written as[cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

]−1
=
([1 𝑒

0 1

] [1 0
𝑑 1

] [1 𝑒
0 1

])−1

=
[1 𝑒
0 1

]−1 [1 0
𝑑 1

]−1 [1 𝑒
0 1

]−1
=
[1 −𝑒
0 1

] [ 1 0
−𝑑 1

] [1 −𝑒
0 1

]
(1.27)

Now, independent of what the values 𝑑 and 𝑒 are after quantization, the
forward and reverse rotations will always cancel exactly. However, it should be
noted that evaluating the three matrix multiplications leads to[1 𝑒

0 1

] [1 0
𝑑 1

] [1 𝑒
0 1

]
=
[1 + 𝑑𝑒 𝑒(𝑑𝑒 + 2)

𝑑 1 + 𝑑𝑒

]
(1.28)

and that the sin (𝛼) terms of the resulting rotation are different, although similar
since 𝑑 ≈ −𝑒(𝑑𝑒 + 2).
The lifting-based complex multiplier can be efficiently realized using three

multiplications and three additions as shown in Figure 1.28d. However, a po-
tential drawback from an implementation perspective is that all operations are
sequential.

1.7 Special Functions

The need of computing non-linear functions arises in many different applica-
tions. The straightforward method of approximating an elementary function is
of course to just store the values in a look-up table typically leads to large tables,
even though the resulting area from standard cell synthesis grows slower than
the number of memory bits [39]. Instead, it is of interest to find ways to approx-
imate elementary functions using a trade-off between arithmetic operations
and look-up tables. In addition, the CORDIC algorithm, which is discussed in
a separate chapter, is an efficient approach for computing certain functions.
For a more thorough explanation of these and other methods, the readers may
refer to Reference [40] and other chapters of this book.

1.7.1 Square Root Computation

Computing the square root is commonly performed in one of two different
iterative ways, by computing one digit per iteration or by iterative refinement
of a temporary result. The methods used are similar to division algorithms
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because the computation of square root can be seen as dividing the radicand,
𝑥, with the square root, 𝑧 =

√
𝑥, as, 𝑧 = 𝑥∕𝑧.

1.7.1.1 Digit-Wise Iterative Square Root Computation
Whileonly thebinary (radix-2) case is consideredhere, generalizations tohigher
radices can be performed. Assuming 0 < 𝑋 < 1 and using a “reminder” after
the 𝑖th iteration, 𝑟𝑖, initialized to the radicand, 𝑟0 = 𝑋, and a partially computed
square root

𝑍𝑖 =
𝑖∑

𝑘=1
𝑧𝑘2−𝑘 (1.29)

one digit of the result, 𝑧𝑖, is determined in iteration 𝑖. After each iteration, we
have

𝑋 = 𝑍𝑖𝑍𝑖 + 2−𝑖𝑟𝑖 (1.30)

Clearly, if 2−𝑖𝑟𝑖 is smaller than 2−𝑖+1𝑟𝑖−1, the result 𝑍𝑖 will be more accurate
than 𝑍𝑖−1. In general, the iteration for square root extraction is

𝑟𝑖 = 2𝑟𝑖−1 − 𝑧𝑖
(
2𝑍𝑖−1 + 𝑧𝑖2−𝑖

)
= 2𝑟𝑖−1 − 2𝑍𝑖−1𝑧𝑖 − 𝑧2𝑖 2

−𝑖 (1.31)

Schemes similar to restoring, nonrestoring, and SRT division can be defined
for selecting the next digit [41]. For the quotient digit selection scheme similar
to SRT division, the square root is usually restricted to 1∕2 ≤ 𝑧 < 1, which
corresponds to 1∕4 ≤ 𝑥 < 1. The selection rule is then

𝑧𝑖 =
⎧⎪⎨⎪⎩

1, 1
2 ≤ 2𝑟𝑖−1

0, −1
2 ≤ 2𝑟𝑖−1 <

1
2

−1, 2𝑟𝑖−1 < −1
2

(1.32)

Meaning that only the first few bits of 2𝑟𝑖−1 must be inspected to determine
the correct digit of the result. Note that the normalization, 1∕4 ≤ 𝑥 < 1, always
gives 𝑧1 = 1 and, hence, 𝑟1 = 2𝑥 − 1

2 .

1.7.1.2 Iterative Refinement Square Root Computation
The Newton–Raphson method for solving equation systems can be applied for
square root computations. The Newton–Raphson recurrence is

𝑥𝑖+1 = 𝑥𝑖 −
𝑓
(
𝑥𝑖
)

𝑓 ′
(
𝑥𝑖
) (1.33)
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and the equation to solve in this case is 𝑓 (𝑧) = 𝑧2 − 𝑥 = 0. This gives the
recurrence

𝑧𝑖+1 =
1
2

(
𝑧𝑖 +

𝑥

𝑧𝑖

)
(1.34)

Hence, each iteration requires a division, an addition, and a bit-shift.
Instead, it turns out that it is more efficient to compute the reciprocal square

root 𝜌 = 1∕
√
𝑥. Solving the equation 𝑓 (𝜌) = 1∕𝜌2 − 𝑧, the recurrence for this

computation is

𝜌𝑖+1 = 𝜌𝑖
(1
2
(
3 − 𝜌2

𝑖
𝑥
))

(1.35)

Each iteration now requires a square, two multiplications, subtraction from
a constant, a bit-shift. Although there are more computations involved, the
operations are simpler to implement compared to a division. The first estimate,
𝜌0, can be read from a table. Then, for each iteration, the error is reduced
quadratically.
The square root can then easily be determined from the reciprocal square

root as 𝑧 = 𝑥𝜌.

1.7.2 Polynomial and Piecewise Polynomial Approximations

It is possible to derive a polynomial 𝑝(𝑥) that approximates a function 𝑓 (𝑥) by
performing a Taylor expansion for a given point 𝑑 as

𝑝(𝑥) =
∞∑
𝑘=0

𝑓 (𝑘)(𝑑)
𝑘!

(𝑥 − 𝑑)𝑘 (1.36)

When the polynomial is restricted to a certain number of terms it is often
better to optimize the polynomial coefficients, as there are some accuracy to be
gained. To determine the best coefficients is an approximation problem where
typically there are more constraints (number of points for the approximation)
than variables (polynomial order). This problem can be solved for a minimax
solution using, for example, Remez’s exchange algorithm or linear program-
ming. For a least square solution the standard method to solve overdetermined
systems can be applied. The result will be a polynomial of order𝑁

𝑝(𝑥) =
𝑁∑
𝑘=0

𝑎𝑘𝑥
𝑘 (1.37)

The polynomial approximations can be efficiently and accurately evaluated
using Horner’s method, discussed in Section 1.4.3. Hence, there is no need
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to compute any powers of 𝑋 explicitly and a minimum number of arithmetic
operations are used.
The drawback of Horner’s method is that the computation is inherently

sequential. An alternative is to use Estrin’s method [40], where 𝑥2 is used in
a tree structure for increasing the parallelism and reducing the critical path.
Estrin’s method for polynomial evaluation can be written as

𝑝(𝑥) =
(
𝑎3𝑥 + 𝑎2

)
𝑥2 +

(
𝑎1𝑥 + 𝑎0

)
(1.38)

for a third-order polynomial. For a seventh-order polynomial, it becomes

𝑝(𝑥) =
((
𝑎3𝑥 + 𝑎2

)
𝑥2 +

(
𝑎1𝑥 + 𝑎0

))
𝑥4 +

((
𝑎3𝑥 + 𝑎2

)
𝑥2 +

(
𝑎1𝑥 + 𝑎0

))
(1.39)

As can be seen, Estrin’s method also maps well to MAC-operations.
The required polynomial order depends very much on the actual function

that is approximated [40]. An approach to obtain a higher resolution despite
using a lower polynomial order is to use different polynomials for different
ranges. This is referred to as piecewise polynomials. An 𝐿 segment𝑁th-order
piecewise polynomial with segment breakpoints 𝑥𝑙, 𝑙 = 0, 1, … , 𝐿 − 1 can be
written as

𝑝(𝑥) =
𝑁∑
𝑘=0

𝑎𝑘,𝑙
(
𝑥 − 𝑥𝑙

)𝑘
, 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑙+1 (1.40)

From an implementation point of view, it is often practical to have 2𝑘 uni-
form segments and let the 𝑘most significant bits determine the segmentation,
as these directly forms the segment number 𝑙. However, it can be shown that
in general the total complexity is reduced for nonuniform segments. An illus-
tration of a piecewise polynomial approximation is shown in Figure 1.29 where
uniform segments and a parallel implementation of Horner’s method is used
for the polynomial evaluation.

Figure 1.29 Piecewise polynomial approximation using uniform segmentation based on
the 𝑘most significant bits.
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