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Introduction

It is the mark of an instructed mind to rest satisfied with that degree of precision which

the nature of the subject admits, and not to seek exactness where only an approximation
of the truth is possible.

Aristotle, 384-322 B.C.

Ancient Greek philosopher

Precision is not truth.
Henri E. B. Matisse, 1869-1954
Impressionist painter

All traditional logic habitually assumes that precise symbols are being employed. It is
therefore not applicable to this terrestrial life but only to an imagined celestial existence.
Bertrand Russell, 1923

British philosopher and Nobel Laureate

We must exploit our tolerance for imprecision.
Lotfi Zadeh, 1973
Professor, Systems Engineering, UC—Berkeley

The preceding quotes, all of them legendary, have a common thread. That thread represents the
relationship between precision and uncertainty. The more uncertainty in a problem, the less
precise we can be in our understanding of that problem. It is ironic that the oldest quote is attrib-
uted to the philosopher who is credited with the establishment of Western logic—a binary logic
that admits only the opposites of true and false, a logic that does not admit degrees of truth in
between these two extremes. In other words, Aristotelian logic does not admit imprecision in
truth. However, Aristotle’s quote is so appropriate today; it is a quote that admits uncertainty.
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2 Fuzzy Logic with Engineering Applications

It is an admonishment that we should heed; we should balance the precision we seek with the
uncertainty that exists. Most engineering texts do not address the uncertainty in the information,
models, and solutions that are conveyed within the problems addressed therein. This text
is dedicated to the characterization and quantification of uncertainty within engineering
problems such that an appropriate level of precision can be expressed. When we ask ourselves
why we should engage in this pursuit, one reason should be obvious: achieving high levels of
precision costs time or money or both. Are we solving problems that require precision? The
more complex a system is, the more imprecise or inexact is the information that we have to
characterize that system. It seems, then, that precision and information and complexity are
inextricably related in the problems we pose for eventual solution. However, for most of
the problems that we face, the quote credited to Professor Zadeh suggests that we can do a better
job in accepting some level of imprecision.

It seems intuitive that we should balance the degree of precision in a problem with the
associated uncertainty in that problem. Hence, this text recognizes that uncertainty of various
forms permeates all scientific endeavors, and it exists as an integral feature of all abstractions,
models, and solutions. Hence, the intent of this book is to introduce methods to handle
one of these forms of uncertainty in our technical problems, the form we have come to call
fuzziness.

The Case for Imprecision

Our understanding of most physical processes is based largely on imprecise human reasoning.
This imprecision (when compared to the precise quantities required by computers) is nonethe-
less a form of information that can be quite useful to humans. The ability to embed such reason-
ing in hitherto intractable and complex problems is the criterion by which the efficacy of fuzzy
logic is judged. Undoubtedly, this ability cannot solve problems that require precision, prob-
lems such as shooting precision laser beams more than tens of kilometers in space; milling
machine components to accuracies of parts per billion; or focusing a microscopic electron beam
on a specimen the size of a nanometer. The impact of fuzzy logic in these areas might be years
away, if ever. But not many human problems require such precision, problems such as parking
a car, backing up a trailer, navigating a car among others on a freeway, washing clothes,
controlling traffic at intersections, judging beauty contestants, and a preliminary understanding
of a complex system.

There are many simple examples in our culture that illustrate the lack of necessity for
precision in much of what we do. There is a joke that is a good illustration about the lack
of information contained in a precise number (Paulos, 1995). “A natural history museum
guard told a visitor that the dinosaur on exhibit was 90,000,006 years old. Upon questioning
about the specific number he used, the guard explained that he was told the dinosaur was
90,000,000 years old when he was hired, six years before! One can easily see the folly in adding
a precise number to an imprecise number.

Another example follows us on a daily basis (Rocha, Massad, and Pereira, 2005). In food
preparation the older manuals provide recipes that are appropriate enough for cooking
delectable foods. A typical recipe calls for “about a cup” of this, a “few tablespoons” of that,
a “smidgen” of something, “four or five” slices of something else, a “couple of medium-sized”
other things and “seasoning to taste.” The recipe goes on to state that this will produce “about
four servings.” This vagueness and ambiguity is not objectionable, but the arithmetic that
comes from it is. In italicized print at the end of this older recipe, it’s affirmed that the content
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Introduction 3

of the ingredients contains 761 calories, 428 milligrams of sodium, and 22.6 grams of fat per
serving. It is inconceivable that these numbers are so precise, and that they could be consistent,
in any way, with the recipe the way it is written.

As another example in literature, Marcel Proust was a famous French neuroscientist who
wrote about our memories. The style of his sentences was often verbose. In his book about
Proust, Jonah Lehrer (2007), states, “Proust covers vast distances within the space of periods
(one sentence is 356 words long), and often begins with the obscure detail (the texture of a
napkin or the noise of water in the pipes) and ends with an inductive meditation on all things.”
The reader would be reasonable to inquire, of what value in this statement is the precision of
356 words?

Requiring precision in engineering models and products translates to requiring high cost
and long lead times in production and development. For other than simple systems, expense
is proportional to precision: more precision entails higher cost. When considering the use
of fuzzy logic for a given problem, an engineer or scientist should ponder the need for
exploiting the tolerance for imprecision. Not only does high precision dictate high costs,
but it also entails low tractability in a problem. Articles in the popular media illustrate the
need to exploit imprecision. Take the “traveling sales rep” problem, for example. In this
classic optimization problem, a sales representative wants to minimize total distance traveled
by considering various itineraries and schedules between a series of cities on a particular
trip. For a small number of cities, the problem is a trivial exercise in enumerating all the
possibilities and choosing the shortest route. As the number of cities continues to grow,
the problem quickly approaches a combinatorial explosion impossible to solve through an
exhaustive search, even with a computer. For example, for 100 cities there are 100 x 99 x
98 x 97 x ... x2x 1, or about 10%°°, possible routes to consider! No computers exist today
that can solve this problem through a brute-force enumeration of all the possible routes. There
are real, practical problems analogous to the traveling sales rep problem. For example, such
problems arise in the fabrication of circuit boards, in which precise lasers drill hundreds of
thousands of holes in the board. Deciding in which order to drill the holes (where the board
moves under a stationary laser) so as to minimize drilling time is a traveling sales rep problem
(Kolata, 1991).

Thus, algorithms have been developed to solve the traveling sales rep problem in an opti-
mal sense; that is, the exact answer is not guaranteed but an optimum answer is achievable;
the optimality is measured as a percent accuracy, with 0% representing the exact answer and
accuracies larger than zero representing answers of lesser accuracy. Suppose we consider a
signal routing problem analogous to the traveling sales rep problem in which we want
to find the optimum path (i.e., minimum travel time) between 100,000 nodes in a network
to an accuracy within 1% of the exact solution; this requires significant CPU time on a
supercomputer. If we take the same problem and increase the precision requirement a mod-
est amount to an accuracy of 0.75%, the computing time approaches a few months! Now
suppose we can live with an accuracy of 3.5% (quite a bit more accurate than most problems
we deal with), and we want to consider an order-of-magnitude more nodes in the network,
say 1,000,000; the computing time for this problem is on the order of several minutes
(Kolata, 1991). This remarkable reduction in cost (translating time to dollars) is solely
the result of the acceptance of a lesser degree of precision in the optimum solution.
Can humans live with a little less precision? The answer to this question depends on the
situation, but for the vast majority of problems we deal with every day the answer is a
resounding yes.
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4 Fuzzy Logic with Engineering Applications

A Historical Perspective

From a historical point of view, the issue of uncertainty has not always been embraced within the
scientific community (Klir and Yuan, 1995). In the traditional view of science, uncertainty rep-
resents an undesirable state—a state that must be avoided at all costs. This was the state of sci-
ence until the late nineteenth century when physicists realized that Newtonian mechanics did not
address problems at the molecular level. Newer methods, associated with statistical mechanics,
were developed, which recognized that statistical averages could replace the specific manifest-
ations of microscopic entities. These statistical quantities, which summarized the activity of
large numbers of microscopic entities, could then be connected in a model with appropriate
macroscopic variables (Klir and Yuan, 1995). Now, the role of Newtonian mechanics and its
underlying calculus, which considered no uncertainty, was replaced with statistical mechanics,
which could be described by a probability theory—a theory that could capture a form of uncer-
tainty, the type generally referred to as random uncertainty. After the development of statistical
mechanics there has been a gradual trend in science during the past century to consider the influ-
ence of uncertainty on problems and to do so in an attempt to make our models more robust in the
sense that we achieve credible solutions and at the same time quantify the amount of uncertainty.

Of course, the leading theory in quantifying uncertainty in scientific models from the late
nineteenth century until the late twentieth century had been the probability theory. However,
the gradual evolution of the expression of uncertainty using probability theory was challenged,
firstin 1937 by Max Black with his studies in vagueness and then with the introduction of fuzzy
sets by Zadeh (1965). Zadeh’s paper had a profound influence on the thinking about uncertainty
because it challenged not only probability theory as the sole representation for uncertainty but
also the foundations on which probability theory was based: classical binary (two-valued) logic
(Klir and Yuan, 1995).

Probability theory dominated mathematics of uncertainty for more than five centuries.
Probability concepts date back to the 1500s, to the time of Cardano when gamblers recognized
the rules of probability in games of chance. The concepts were still much in the limelight in
1685, when the Bishop of Wells wrote a paper that discussed a problem in determining the
truth of statements made by two witnesses who were both known to be unreliable to the extent
that they tell the truth only with probabilities, p; and p,, respectively. The Bishop’s answer to
this was based on his assumption that the two witnesses were independent sources of informa-
tion (Lindley, 1987).

Probability theory was initially developed in the eighteenth century in such landmark trea-
tises as Jacob Bernoulli’s Ars Conjectandi (1713) and Abraham de Moivre’s Doctrine of
Chances (1738). Later in that century, a small number of articles appeared in the periodical
literature that would have a profound effect on the field. Most notable of these were Thomas
Bayes’s “An essay towards solving a problem in the doctrine of chances” (1763) and Pierre
Simon Laplace’s formulation of the axioms relating to games of chance, “Memoire sur la prob-
abilite des causes par les evenemens” (1774/1986). Laplace, only 25 years old at the time he
began his work in 1772, wrote the first substantial article in mathematical statistics before the
nineteenth century. Despite the fact that Laplace, at the same time, was heavily engaged in
mathematical astronomy, his memoir was an explosion of ideas that provided the roots for mod-
ern decision theory, Bayesian inference with nuisance parameters (historians claim that Laplace
did not know of Bayes’s earlier work), and the asymptotic approximations of posterior distri-
butions (Stigler, 1986).
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By the time of Newton, physicists and mathematicians were formulating different theories of
probability. The most popular ones remaining today are the relative frequency theory and the
subjectivist or personalistic theory. The latter development was initiated by Thomas Bayes
(1763), who articulated his powerful theorem for the assessment of subjective probabilities.
The theorem specified that a human’s degree of belief could be subjected to an objective, coher-
ent, and measurable mathematical framework within subjective probability theory. In the early
days of the twentieth century a formal framework for a conditional probability theory was
developed.

The twentieth century saw the first developments of alternatives to probability theory and to
classical Aristotelian logic as paradigms to address more kinds of uncertainty than just the ran-
dom kind. Jan Lukasiewicz developed a multivalued, discrete logic (circa 1930). In the 1960s,
Arthur Dempster (1967) developed a theory of evidence, which, for the first time, included an
assessment of ignorance, or the absence of information. In 1965, Lotfi Zadeh introduced his
seminal idea in a continuous-valued logic that he called fuzzy set theory. Glenn Shafer
(1976) extended Dempster’s work to produce a complete theory of evidence dealing with infor-
mation from more than one source, and Lotfi Zadeh illustrated a possibility theory resulting
from special cases of fuzzy sets. Later, in the 1980s, other investigators showed a strong rela-
tionship between evidence theory, probability theory, and possibility theory with the use of
what was called fuzzy measures (Klir and Wierman, 1996), and what is now being termed
monotone measures.

Uncertainty can be thought of in an epistemological sense as being the inverse of informa-
tion. Information about a particular engineering or scientific problem may be incomplete,
imprecise, fragmentary, unreliable, vague, contradictory, or deficient in some other way
(Klir and Yuan, 1995). When we acquire more and more information about a problem, we
become less and less uncertain about its formulation and solution. Problems that are character-
ized by little information are said to be ill-posed, complex, or not sufficiently known. These
problems are imbued with a high degree of uncertainty. Uncertainty can be manifested in many
forms; it can be fuzzy (not sharp, unclear, imprecise, approximate), it can be vague (not spe-
cific, amorphous), it can be ambiguous (too many choices, contradictory), it can be of the form
of ignorance (dissonant, not knowing something), or it can be a form resulting from natural
variability (conflicting, random, chaotic, unpredictable). Many other linguistic labels have been
applied to these various forms, but for now these shall suffice. Zadeh (in Ross, Booker, and
Parkinson, 2002) posed some simple examples of these forms in terms of a person’s statements
about when they shall return to a current place in time. The statement “I shall return soon” is
vague, whereas the statement “I shall return in a few minutes” is fuzzy; the former is not known
to be associated with any unit of time (seconds, hours, days), and the latter is associated with an
uncertainty that is at least known to be on the order of minutes. The phrase, “I shall return within
2 minutes of 6 PM” involves an uncertainty that has a quantifiable imprecision; probability
theory could address this form.

Vagueness can be used to describe certain kinds of uncertainty associated with linguistic
information or intuitive information. Examples of vague information are that the data quality
is “good” or that the transparency of an optical element is “acceptable.” Moreover, in terms of
semantics, even the terms vague and fuzzy cannot be generally considered synonyms, as
explained by Zadeh (1995, p. 275): “usually a vague proposition is fuzzy, but the converse
is not generally true.”
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6 Fuzzy Logic with Engineering Applications

Discussions about vagueness started with a famous work by the philosopher Max Black.
Black (1937) defined a vague proposition as a proposition where the possible states (of the
proposition) are not clearly defined with regard to inclusion. For example, consider the prop-
osition that a person is young. Because the term young has different interpretations to
different individuals, we cannot decisively determine the age(s) at which an individual is
young compared with the age(s) at which an individual is not considered to be young.
Thus, the proposition is vaguely defined. Classical (binary) logic does not hold under these
circumstances, therefore we must establish a different method of interpretation.

Max Black, in writing his 1937 essay “Vagueness: An exercise in logical analysis,” first
cites remarks made by the ancient philosopher Plato about uncertainty in geometry and then
embellishes on the writings of Bertrand Russell (1923) who emphasized that “all traditional
logic habitually assumes that precise symbols are being employed.” With these great thoughts
as a prelude to his own arguments, he proceeded to produce his own, now-famous quote:

It is a paradox, whose importance familiarity fails to diminish, that the most highly developed and
useful scientific theories are ostensibly expressed in terms of objects never encountered in experi-
ence. The line traced by a draftsman, no matter how accurate, is seen beneath the microscope as a
kind of corrugated trench, far removed from the ideal line of pure geometry. And the “point-planet”
of astronomy, the “perfect gas” of thermodynamics, or the “pure-species” of genetics are equally
remote from exact realization. Indeed the unintelligibility at the atomic or subatomic level of the
notion of a rigidly demarcated boundary shows that such objects not merely are not but could not be
encountered. While the mathematician constructs a theory in terms of “perfect” objects, the experi-
mental scientist observes objects of which the properties demanded by theory are and can, in the
very nature of measurement, be only approximately true.

Much later, in support of Black’s work, Quine (1981) states:

Diminish a table, conceptually, molecule by molecule: when is a table not a table? No stipulations
will avail us here, however arbitrary. If the term ‘table’ is to be reconciled with bivalence, we must
posit an exact demarcation, exact to the last molecule, even though we cannot specify it. We must
hold that there are physical objects, coincident except for one molecule, such that one is a table and
the other is not.

de Finetti (1974), publishing in his landmark book Theory of Probability, gets his readers’
attention quickly by proclaiming, “Probability does not exist; it is a subjective description of a
person’s uncertainty. We should be normative about uncertainty and not descriptive” (p. x). He
further emphasizes that the frequentist view of probability (objectivist view) “requires individ-
ual trials to be equally probable and stochastically independent” (p. x). In discussing the dif-
ference between possibility and probability, he states: “The logic of certainty furnishes us with
the range of possibility (and the possible has no gradations); probability is an additional notion
that one applies within the range of possibility, thus giving rise to graduations (‘more or less’
probable) that are meaningless in the logic of uncertainty” (p. 218). de Finetti gives us warn-
ings: “The calculus of probability can say absolutely nothing about reality,” and in referring to
the dangers implicit in attempts to confuse certainty with high probability, he states:

We have to stress this point because these attempts assume many forms and are always dangerous.
In one sentence: to make a mistake of this kind leaves one inevitably faced with all sorts of
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fallacious arguments and contradictions whenever an attempt is made to state, on the basis of
probabilistic considerations, that something must occur, or that its occurrence confirms or
disproves some probabilistic assumptions (p. 215).

In a discussion about the use of such vague terms as very probable or practically certain,
or almost impossible, de Finetti states:

The field of probability and statistics is then transformed into a Tower of Babel, in which only the
most naive amateur claims to understand what he says and hears, and this because, in a language
devoid of convention, the fundamental distinctions between what is certain and what is not, and
between what is impossible and what is not, are abolished. Certainty and impossibility then become
confused with high or low degrees of a subjective probability, which is itself denied precisely by
this falsification of the language. On the contrary, the preservation of a clear, terse distinction
between certainty and uncertainty, impossibility and possibility, is the unique and essential precon-
dition for making meaningful statements (which could be either right or wrong), whereas the
alternative transforms every sentence into a nonsense (p. 213).

The Utility of Fuzzy Systems

Several sources have shown and proven that fuzzy systems are universal approximators
(Kosko, 1994; Ying et al., 1999). These proofs stem from the isomorphism between two
algebras—an abstract algebra (one dealing with groups, fields, and rings) and a linear algebra
(one dealing with vector spaces, state vectors, and transition matrices)—and the structure of a
fuzzy system, which comprises an implication between actions and conclusions (antecedents
and consequents). The reason for this isomorphism is that both entities (algebra and fuzzy sys-
tems) involve a mapping between elements of two or more domains. Just as an algebraic func-
tion maps an input variable to an output variable, a fuzzy system maps an input group to an
output group; in the latter these groups can be linguistic propositions or other forms of fuzzy
information. The foundation on which fuzzy systems theory rests is a fundamental theorem
from real analysis in algebra known as the Stone—Weierstrass theorem, which was first devel-
oped in the late nineteenth century by Weierstrass (1885), then simplified by Stone (1937).

In the coming years it will be the consequence of this isomorphism that will make fuzzy
systems more and more popular as solution schemes, and it will make fuzzy systems theory
aroutine offering in the classroom as opposed to its previous status as a “new, but curious tech-
nology.” Fuzzy systems, or whatever label scientists eventually come to call it in the future, will
be a standard course in any science or engineering curriculum. It contains all of what algebra
has to offer, plus more, because it can handle all kinds of information not just numerical
quantities.

Although fuzzy systems are shown to be universal approximators to algebraic functions, it is
not this attribute that actually makes them valuable to us in understanding new or evolving
problems. Rather, the primary benefit of fuzzy systems theory is to approximate system behav-
ior in which analytic functions or numerical relations do not exist. Hence, fuzzy systems have
high potential to understand the systems that are devoid of analytic formulations: complex sys-
tems. Complex systems can be new systems that have not been tested; they can be systems
involved with the human condition such as biological or medical systems; or they can be social,
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economic, or political systems, in which the vast arrays of inputs and outputs could not all pos-
sibly be captured analytically or controlled in any conventional sense. Moreover, the relation-
ship between the causes and effects of these systems is generally not understood but often can
be observed.

Alternatively, fuzzy systems theory can have utility in assessing some of our more conven-
tional, less complex systems. For example, for some problems exact solutions are not always
necessary. An approximate, but fast, solution can be useful in making preliminary design deci-
sions; or as an initial estimate in a more accurate numerical technique to save computational
costs; or in the myriad situations in which the inputs to a problem are vague, ambiguous, or not
known at all. For example, suppose we need a controller to bring an aircraft out of a vertical
dive. Conventional controllers cannot handle this scenario because they are restricted to linear
ranges of variables; a dive situation is highly non-linear. In this case, we could use a fuzzy
controller, which is adept at handling nonlinear situations albeit in an imprecise fashion, to
bring the plane out of the dive into a more linear range, then hand off the control of the aircraft
to a conventional, linear, highly accurate controller. Examples of other situations in which exact
solutions are not warranted abound in our daily lives. For example, in the following quote from
a popular science fiction movie,

C-3PO: Sir, the possibility of successfully navigating an asteroid field is approximately 3,720 to 1!
Han Solo: Never tell me the odds!
Characters in the movie Star Wars: The Empire Strikes Back (Episode V), 1980.

we have an illustration of where the input information (the odds of navigating through an aster-
oid field) is useless, so how does one make a decision in the presence of this information?

Hence, fuzzy systems are useful in two general contexts: (1) in situations involving highly
complex systems whose behaviors are not well understood and (2) in situations where an
approximate, but fast, solution is warranted.

As pointed out by Ben-Haim (2001), there is a distinction between models of systems and
models of uncertainty. A fuzzy system can be thought of as an aggregation of both because it
attempts to understand a system for which no model exists, and it does so with information
that can be uncertain in a sense of being vague, or fuzzy, or imprecise, or altogether lacking.
Systems whose behaviors are both understood and controllable are of the kind which exhibit a
certain robustness to spurious changes. In this sense, robust systems are ones whose output
(such as a decision system) does not change significantly under the influence of changes in
the inputs because the system has been designed to operate within some window of uncertain
conditions. It is maintained that fuzzy systems too are robust. They are robust because the
uncertainties contained in both the inputs and outputs of the system are used in formulating
the system structure itself, unlike conventional systems analysis that first poses a model, based
on a collective set of assumptions needed to formulate a mathematical form, then uncertainties
in each of the parameters of that mathematical abstraction are considered.

The positing of a mathematical form for our system can be our first mistake, and any sub-
sequent uncertainty analysis of this mathematical abstraction could be misleading. We call this
the optimist’s dilemma: find out how a chicken clucks by first “assuming a spherical chicken.”
Once the sphericity of the chicken has been assumed, there are all kinds of elegant solutions that
can be found; we can predict any number of sophisticated clucking sounds with our model.
Unfortunately, when we monitor a real chicken it does not cluck the way we predict. The point
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being made here is that there are few physical and no mathematical abstractions that can be
made to solve some of our complex problems, so we need new tools to deal with complexity;
fuzzy systems and their associated developments can be one of these newer tools.

The power of fuzzy logic in terms of its impact on research and commercial markets is with-
out debate. Thousands of researchers are working with fuzzy logic and producing patents and
research papers. According to a report (Singh et al., 2013) on the impact of fuzzy logic as of
March 4, 2013, there were 26 research journals on the theory or applications of fuzzy logic,
there were 89,365 publications on theory or applications of fuzzy logic in the INSPEC data-
base, there were 22,657 publications on theory or applications of fuzzy logic in the MathSciNet
database, there were 16,898 patent applications and patents issued related to fuzzy logic in the
United States, and there were 7,149 patent applications and patents issued related to fuzzy logic
in Japan. The number of research contributions and commercial applications is growing daily
and is growing at an increasing rate.

Limitations of Fuzzy Systems

However, this is not to suggest that we can now stop looking for additional tools to evaluate
imprecision or to assess methods for achieving approximate but credible solutions to complex
problems. Realistically, even fuzzy systems, as they are posed now, can be described as shallow
models in the sense that they are primarily used in deductive reasoning. This is the kind of
reasoning in which we infer the specific from the general. For example, in the game of tic-
tac-toe, there are only a few moves for the entire game; we can deduce our next move from
the previous move and our knowledge of the game. It is this kind of reasoning that we also
called shallow reasoning, because our knowledge, as expressed linguistically, is of a shallow
and meager kind. In contrast to this is the kind of reasoning that is inductive, where we infer the
general from the particular; this method of inference is called deep, because our knowledge is of
a deep and substantial kind—a game of chess would be closer to an inductive kind of model.
We should understand the distinction between using mathematical models to account for
observed data and using mathematical models to describe the underlying process by which
the observed data are generated or produced by nature (Arciszewski, Sauer, and Schum,
2003). Models of systems where the behavior can be observed, and whose predictions can only
account for these observed data, are said to be shallow because they do not account for
the underlying realities. Deep models, those of the inductive kind, are alleged to capture the
physical process by which nature has produced the results we have observed. In his Republic
(360 B.c./1991), Plato suggests the idea that things that are perceived are only imperfect copies
of the true reality that can only be comprehended by pure thought. Plato was fond of mathem-
atics, and he saw in its precise structure of logic idealized abstraction and separation from the
material world. He thought of these things being so important that above the doorway to his
Academy was placed the inscription “Let no one ignorant of mathematics enter here.” In Plato’s
doctrine of forms, he argued that the phenomenal world was a mere shadowy image of the eter-
nal, immutable real world, and that matter was docile and disorderly governed by a mind that
was the source of coherence, harmony, and orderliness. He argued that if man was occupied
with the things of the senses, then he could never gain true knowledge. In his work the Phaedo,
he declares that as mere mortals we cannot expect to attain absolute truth about the universe, but
instead must be content with developing a descriptive picture—a model (Barrow, 2000).
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Centuries later, Galileo was advised by his inquisitors that he must not say that his mathem-
atical models were describing the realities of nature, but rather that they simply were adequate
models of the observations he made with his telescope (Drake, 1957); hence, that they were
solely deductive. In this regard, models that only attempt to replicate some phenomenological
behavior are considered shallow models or models of the deductive kind, and they lack the
knowledge needed for true understanding of a physical process. The system that emerges under
inductive reasoning will have connections with both evolution and complexity. How do
humans reason in situations that are complicated or ill-defined? Modern psychology tells us
that as humans we are only moderately good at deductive logic, and we make only moderate
use of it. Bu, we are superb at seeing or recognizing or matching patterns—behaviors that con-
fer obvious evolutionary benefits. In problems of complication then, we look for patterns, and
we simplify the problem by using these to construct temporary internal models or hypotheses or
schemata to work with (Bower and Hilgard, 1981). We carry out localized deductions based on
our current hypotheses and we act on these deductions. Then, as feedback from the environ-
ment comes in, we may strengthen or weaken our beliefs in our current hypotheses, discarding
some when they cease to perform, and replacing them as needed with new ones. In other words,
where we cannot fully reason or lack full definition of the problem, we use simple models to fill
the gaps in our understanding; such behavior is inductive.

Some sophisticated models may, in fact, be a complex weave of deductive and inductive
steps. But even our so-called “deep models” may not be deep enough. An illustration of this
comes from a recent popular decision problem, articulated as the El Farol problem by Arthur
(1994). This problem involves a decision-making scenario in which inductive reasoning is
assumed and modeled, and its implications are examined. El Farol is a bar in Santa Fe,
New Mexico, where on one night of the week in particular there is popular Irish music offered.
Suppose N bar patrons decide independently each week whether to go to El Farol on this certain
night. For simplicity, we set N = 100. Space in the bar is limited, and the evening is enjoyable if
things are not too crowded, specifically, if fewer than 60% of the possible 100 are present.
There is no way to tell the number coming for sure in advance, therefore a bar patron
goes—deems it worth going—if he expects fewer than 60 to show up or stays home if he
expects more than 60 to go; there is no need that utilities differ much above and below 60.
Choices are unaffected by previous visits; there is no collusion or prior communication among
the bar patrons and the only information available is the number who came in past weeks. Of
interest is the dynamics of the number of bar patrons attending from week to week.

There are two interesting features of this problem. First, if there was an obvious model that all
bar patrons could use to forecast attendance and on which to base their decisions, then a deduct-
ive solution would be possible. But no such model exists in this case. Given the numbers attend-
ing in the recent past, a large number of expectational models might be reasonable and
defensible. Thus, not knowing which model other patrons might choose, a reference patron
cannot choose his in a well-defined way. There is no deductively rational solution, that is,
no “correct” expectational model. From the patrons’ viewpoint, the problem is ill-defined
and they are propelled into a realm of induction. Second, any commonality of expectations gets
disintegrated: if everyone believes few will go, then all will go. But this would invalidate that
belief. Similarly, if all believe most will go, nobody will go, invalidating that belief. Expect-
ations will be forced to differ, but not in a methodical, predictive way.

Scientists have long been uneasy with the assumption of perfect, deductive rationality in
decision contexts that are complicated and potentially ill-defined. The level at which humans
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can apply perfect rationality is surprisingly modest. Yet, it has not been clear how to deal with
imperfect or bounded rationality. From the inductive example given in the El Farol problem, it
would be easy to suggest that as humans in these contexts we use inductive reasoning: we
induce a variety of working hypotheses, act on the most credible, and replace hypotheses with
new ones if they cease to work. Such reasoning can be modeled in a variety of ways. Usually,
this leads to a rich psychological world in which peoples’ ideas or mental models compete for
survival against other peoples’ ideas or mental models, a world that is both evolutionary and
complex. And, although this seems the best course of action for modeling complex questions
and problems, this text reveals a few ideas about models which go beyond those of the rule-
based kind. These are briefly introduced in Chapter 12 (genetically evolved fuzzy cognitive
maps and fuzzy agent-based models).

The Illusion: Ignoring Uncertainty and Accuracy

A slight variation in the axioms at the foundation of a theory can result in huge changes
at the frontier.

Stanley P. Gudder, 1988

Author, Quantum Probability

The uninitiated often claim that fuzzy set theory is just another form of probability theory in dis-
guise. This statement, of course, is simply not true. Gaines (1978) does an eloquent job of
addressing this issue. Historically, probability and fuzzy sets have been presented as distinct the-
oretical foundations for reasoning and decision making in situations involving uncertainty. Yet,
when one examines the underlying axioms of both probability and fuzzy set theories, the two
theories differ by only one axiom in a total of 16 axioms needed for a complete representation!
Gaines established a common basis for both forms of logic of uncertainty in which a basic uncer-
tainty logic is defined in terms of valuation on a lattice of propositions. Addition of the axiom of
the excluded middle to the basic logic gives a standard probability logic. Alternatively, addition
of arequirement for strong truth-functionality gives a fuzzy logic. The quote by Stanley Gudder is
quite instructive in this case: probability theory and fuzzy set theory each satisfy a different set of
axioms; hence, neither theory should be held to the standards of the others’ axiomatic constraints.

Basic statistical analysis is founded on probability theory or stationary random processes,
whereas most experimental results contain both random (typically noise) and nonrandom pro-
cesses. One class of random processes—stationary random processes—exhibits the following
three characteristics: (1) The sample space on which the processes are defined cannot change
from one experiment to another; that is, the outcome space cannot change. (2) The frequency of
occurrence, or probability, of an event within that sample space is constant and cannot change
from trial to trial or experiment to experiment. (3) The outcomes must be repeatable from
experiment to experiment. The outcome of one trial does not influence the outcome of a
previous or future trial. There are more general classes of random processes than the class
mentioned here. However, fuzzy sets are not governed by these characteristics.

Stationary random processes are those that arise out of chance, in which the chances repre-
sent frequencies of occurrence that can be measured. Problems like picking colored balls out of
an urn, coin and dice tossing, and many card games are good examples of stationary random
processes. How many of the decisions that humans must make every day could be categorized
as random? How about the uncertainty in the weather, is this random? How about your
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uncertainty in choosing clothes for the next day, or which car to buy, or your preference in
colors, are these random uncertainties? How about the risk in whether a substance consumed
by an individual now will cause cancer in that individual 15 years from now, is this a form of
random uncertainty? Although it is possible to model all of these forms of uncertainty with
various classes of random processes, the solutions may not be reliable. Treatment of these
forms of uncertainty using fuzzy set theory should also be done with caution. One needs to
study the character of the uncertainty and then choose an appropriate approach to develop a
model of the process. Features of a problem that vary in time and space should be considered.
For example, when the weather report suggests that there is a 60% chance of rain tomorrow,
does this mean that there has been rain on tomorrow’s date for 60 of the last 100 years? Does it
mean that somewhere in your community 60% of the land area will receive rain? Does it mean
that 60% of the time it will be raining and 40% of the time it will not be raining? Humans often
deal with these forms of uncertainty linguistically, such as, “It will likely rain tomorrow.”
And, with this crude assessment of the possibility of rain, humans can still make appropriately
accurate decisions about the weather.

Random errors will generally average out over time or space. Nonrandom errors, such as
some unknown form of bias (often called a systematic error) in an experiment, will not gen-
erally average out and will likely grow larger with time. The systematic errors generally arise
from causes about which we are ignorant, for which we lack information, or that we cannot
control. Distinguishing between random and nonrandom errors is a difficult problem in many
situations, and to quantify this distinction often results in the illusion that the analyst knows the
extent and character of each type of error. In all likelihood, nonrandom errors can increase with-
out bounds. Moreover, variability of the random kind cannot be reduced with additional infor-
mation, although it can be quantified. By contrast, nonrandom uncertainty, which too can be
quantified with various theories, can be reduced with the acquisition of additional information.

It is historically interesting that the word statistics is derived from the now-obsolete term
statist, which means an expert in statesmanship. Statistics were the numerical facts that statists
used to describe the operations of states. To many people, statistics, and other recent methods to
represent uncertainty such as evidence theory and fuzzy set theory, are still the facts by which
politicians, newspapers, insurance sellers, and other broker occupations approach us as poten-
tial customers for their services or products! The air of sophistication that these methods pro-
vide to an issue should not be the basis for making a decision; it should be made only after a
good balance has been achieved between the information content in a problem and the proper
representation tool to assess it.

Popular lore suggests that the various uncertainty theories allow engineers to fool themselves
in a highly sophisticated way when looking at relatively incoherent heaps of data (computa-
tional or experimental), as if this form of deception is any more palatable than just plain ignor-
ance. All too often, scientists and engineers are led to use these theories as a crutch to explain
vagaries in their models or in their data. For example, in probability applications the assumption
of independent random variables is often assumed to provide a simpler method to prescribe
joint probability distribution functions. An analogous assumption, called noninteractive sets
(see Chapter 2 in Ross, 2004), is used in fuzzy applications to develop joint membership func-
tions from individual membership functions for sets from different universes of discourse.
Should one ignore apparently aberrant information or consider all information in the model
whether or not it conforms to the engineers’ preconceptions? Additional experiments to
increase understanding cost money, and yet, they might increase the uncertainty by revealing
conflicting information. It could best be said that statistics alone, or fuzzy sets alone, or
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evidence theory alone, are individually insufficient to explain many of the imponderables
that people face every day. Collectively they could be powerful. A poem by Cunningham
(1971) titled “Meditation on Statistical Method” provides a good lesson in caution for any
technologist pondering the thought that ignoring uncertainty (again, using statistics because
of the era of the poem) in a problem will somehow make its solution seem more accurate.

Plato despair!

We prove by norms
How numbers bear
Empiric forms,

How random wrongs
Will average right

If time be long

And error slight;

But in our hearts
Hyperbole

Curves and departs
To infinity.

Error is boundless.

Nor hope nor doubt,
Though both be groundless,
Will average out.

Uncertainty and Information

Information is the resolution of uncertainty.
Claude Shannon, twentieth century mathematician

Only a small portion of knowledge (information) for a typical problem might be regarded as
certain or deterministic. Unfortunately, the vast majority of the material taught in engineering
classes is based on the presumption that knowledge involved is deterministic. Most processes
are neatly and surreptitiously reduced to closed-form algorithms: equations and formulas.
When students graduate, it seems that their biggest fear upon entering the real world is “for-
getting the correct formula.” These formulas typically describe a deterministic process, one
where there is no uncertainty in the physics of the process (i.e., the right formula) and there
is no uncertainty in the parameters of the process (i.e., the coefficients are known with impun-
ity). It is only after we leave the university, it seems, that we realize we were duped in academia
and that the information we have for a particular problem virtually always contains uncertainty.
For how many of our problems can we say that the information content is known absolutely,
that is, with no ignorance, no vagueness, no imprecision, or no element of chance? Uncertain
information can take on many different forms. There is uncertainty that arises because of com-
plexity, for example, the complexity in the reliability network of a nuclear reactor. There is
uncertainty that arises from ignorance, from various classes of randomness, from the inability
to perform adequate measurements, from lack of knowledge, or from the fuzziness inherent in
our natural language.
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The nature of uncertainty in a problem is an important point that engineers should ponder
before their selection of an appropriate method to express the uncertainty. Fuzzy sets provide
a mathematical way to represent vagueness and fuzziness in humanistic systems. For example,
suppose you are teaching your child to bake cookies and you want to give instructions about
when to take the cookies out of the oven. You could say to take them out when the temperature
inside the cookie dough reaches 375° F, or you could advise your child to take them out when
the tops of the cookies turn light brown. Which instruction would you give? Most likely, you
would use the second of the two instructions. The first instruction is too precise to implement
practically; in this case precision is not useful. The vague term light brown is useful in this
context and can be acted on even by a child. We all use vague terms, imprecise information,
and other fuzzy data just as easily as we deal with situations governed by chance, where prob-
ability techniques are warranted and useful. Hence, our sophisticated computational methods
should be able to represent and manipulate a variety of uncertainties. Other representations of
uncertainties resulting from ambiguity, nonspecificity, beliefs, and ignorance are introduced in
Chapter 13. The one uncertainty that is not addressed in this text is the one termed unknown.
The statement by a recent U.S. politician, is an interesting diversion that suggests why a method
to quantify unknownness is perhaps a bit premature.

The Unknown

As we know,

There are known knowns.

There are things we know we know.
We also know

There are known unknowns.

That is to say

We know there are some things

We do not know.

But there are also unknown unknowns,
The ones we don’t know

We don’t know.

—Feb. 12, 2002, Donald Rumsfeld, U.S. Secretary of Defense

Fuzzy Sets and Membership

The foregoing sections discuss the various elements of uncertainty. Making decisions about
processes that contain nonrandom uncertainty, such as the uncertainty in natural language,
has been shown to be less than perfect. The idea proposed by Lotfi Zadeh suggested that
set membership is the key to decision making when faced with uncertainty. In fact, Zadeh made
the following statement in his seminal paper of 1965:

The notion of a fuzzy set provides a convenient point of departure for the construction of a
conceptual framework which parallels in many respects the framework used in the case of ordinary
sets, but is more general than the latter and, potentially, may prove to have a much wider scope
of applicability, particularly in the fields of pattern classification and information processing.
Essentially, such a framework provides a natural way of dealing with problems in which the source
of imprecision is the absence of sharply defined criteria of class membership rather than the
presence of random variables (p. 339).
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As an example, we can easily assess whether someone is taller than 6 feet. In a binary sense,
the person either is or is not, based on the accuracy, or imprecision, of our measuring device.
For example, if “tall” is a set defined as heights equal to or greater than 6 feet, a computer would
not recognize an individual of height 5'11.999” as being a member of the set “tall.” But how
do we assess the uncertainty in the following question: Is the person nearly 6 feet tall? The
uncertainty in this case is the result of the vagueness or ambiguity of the adjective nearly.
A 511" person could clearly be a member of the set of “nearly 6 feet tall” people. In the first
situation, the uncertainty of whether a person, whose height is unknown, is 6 feet or not is bin-
ary; the person either is or is not, and we can produce a probability assessment of that prospect
based on height data from many people. But the uncertainty of whether a person is nearly 6 feet
is non-random. The degree to which the person approaches a height of 6 feet is fuzzy. In reality,
“tallness” is a matter of degree and is relative. Among peoples of the Tutsi tribe in Rwanda and
Burundi, a height for a male of 6 feet is considered short. So, 6 feet can be tall in one context and
short in another. In the real (fuzzy) world, the set of tall people can overlap with the set of
not-tall people, an impossibility when one follows the precepts of classical binary logic (this
is discussed in Chapter 5).

This notion of set membership, then, is central to the representation of objects within a
universe by sets defined on the universe. Classical sets contain objects that satisfy precise
properties of membership; fuzzy sets contain objects that satisfy imprecise properties of
membership, that is, membership of an object in a fuzzy set can be approximate. For example,
the set of heights from 5 to 7 feet is precise (crisp); the set of heights in the region around
6 feet is imprecise, or fuzzy. To elaborate, suppose we have an exhaustive collection of
individual elements (singletons) x, which make up a universe of information (discourse),
X. Further, various combinations of these individual elements make up sets, say A, on the
universe. For crisp sets, an element x in the universe X is either a member of some crisp
set A or not. This binary issue of membership can be represented mathematically with the
indicator function,

_ 1, xeA .
m0=1y (1)

where the symbol y A(x) gives the indication of an unambiguous membership of element x in set
A, and the symbols € and ¢ denote contained in and not contained in, respectively. For our
example of the universe of heights of people, suppose set A is the crisp set of all people with
5.0 <x<7.0 feet, shown in Figure 1.1a. A particular individual, x;, has a height of 6.0 feet. The
membership of this individual in crisp set A is equal to 1, or full membership, given symbol-
ically as ya(x;) = 1. Another individual, say x,, has a height of 4.99 feet. The membership of
this individual in set A is equal to 0, or no membership, hence y(x;) =0, also seen in
Figure 1.1a. In these cases the membership in a set is binary, either an element is a member
of a set or it is not.

Zadeh extended the notion of binary membership to accommodate various “degrees of mem-
bership” on the real continuous interval [0, 1], where the endpoints of 0 and 1 conform to no
membership and full membership, respectively, just as the indicator function does for crisp sets,
but where the infinite number of values in between the endpoints can represent various degrees
of membership for an element x in some set on the universe. The sets on the universe X that can
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(a) (b)

1 1
1 1
1 1
1 1
1 1
0 5 6 7 x

Figure 1.1 Height membership functions for (a) a crisp set A and (b) a fuzzy set H.

accommodate “degrees of membership” were termed by Zadeh as fuzzy sets. Continuing further
on the example on heights, consider a set H consisting of heights near 6 feet. Because the prop-
erty near 6 feet is fuzzy, there is no unique membership function for H. Rather, the analyst must
decide what the membership function, denoted yyy, should look like. Plausible properties of this
function might be (1) normality (u(6) = 1), (2) monotonicity (the closer H is to 6, the closer iy
is to 1), and (3) symmetry (numbers equidistant from 6 should have the same value of uy)
(Bezdek, 1993). Such a membership function is illustrated in Figure 1.1b. A key difference
between crisp and fuzzy sets is their membership function; a crisp set has a unique membership
function, whereas a fuzzy set can have an infinite number of membership functions to represent
it. For fuzzy sets, the uniqueness is sacrificed, but flexibility is gained because the membership
function can be adjusted to maximize the utility for a particular application. It should be noted
that a crisp set is a special case of a fuzzy set; it is a fuzzy set with no ambiguity on its
boundaries.

James Bezdek (1993) provided one of the most lucid comparisons between crisp and fuzzy
sets. It bears repeating here. Crisp sets of real objects are equivalent to, and isomorphically
described by, a unique membership function, such as y in Figure 1.1a. But there is no set-
theoretic equivalent of “real objects” corresponding to y. Fuzzy sets are always functions,
which map a universe of objects, say X, onto the unit interval [0, 1]; that is, the fuzzy set
H is the function py that carries X into [0, 1]. Hence, every function that maps X onto [0,
1]is a fuzzy set. Although this statement is true in a formal mathematical sense, many functions
that qualify on the basis of this definition cannot be suitable fuzzy sets. But, they become
fuzzy sets when, and only when, they match some intuitively plausible semantic description
of imprecise properties of the objects in X.

The membership function embodies the mathematical representation of membership in a set,
and the notation used throughout this text for a fuzzy set is a set symbol with a tilde underscore,
say A, where the functional mapping is given as

pp(x) €[0,1], (1.2)

~

and the symbol y, (x) is the degree of membership of element x in fuzzy set A. Therefore, y1, (x)

is a value on the unit interval that measures the degree to which element x belongs to fuzzy set
A; equivalently, p, (x) = degree to which x € A.
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Chance versus Fuzziness

Suppose you are a basketball recruiter and are looking for a “very tall” player for the center
position on a men’s team. One of your information sources tells you that a hot prospect in Ore-
gon has a 95% chance of being taller than 7 feet. Another of your sources tells you that a good
player in Louisiana has a high membership in the set of “very tall” people. The problem with the
information from the first source is that it is a probabilistic quantity. There is a 5% chance that
the Oregon player is not taller than 7 feet and could, conceivably, be someone of extremely
short stature. The second source of information would, in this case, contain a different kind
of uncertainty for the recruiter; it is a fuzziness resulting from the linguistic qualifier very tall
because if the player turned out to be shorter than 7 feet tall there is still a high likelihood that he
would be quite tall.

Another example involves a personal choice. Suppose you are seated at a table on which rest
two glasses of liquid. The liquid in the first glass is described to you as having a 95% chance of
being healthful and good. The liquid in the second glass is described as having a 0.95 mem-
bership in the class of “healthful and good” liquids. Which glass would you select, keeping in
mind that the first glass has a 5% chance of being filled with nonhealthful liquids, including
poisons (Bezdek, 1993)?

What philosophical distinction can be made regarding these two forms of information?
Suppose we are allowed to measure the basketball players’ heights and test the liquids in
the glasses. The prior probability of 0.95 in each case becomes a posterior probability of
1.0 or 0; that is, either the player is or is not taller than 7 feet and the liquid is either benign
or not. However, the membership value of 0.95, which measures the extent to which the play-
er’s height is taller than 7 feet or the drinkability of the liquid is “healthful and good,” remains
0.95 after measuring or testing. These two examples illustrate clearly the difference in the infor-
mation content between chance and fuzziness.

This brings us to the clearest distinction between fuzziness and chance. Fuzziness describes
the lack of distinction of an event, whereas chance describes the uncertainty in the occurrence
of the event. The event will occur or not occur; but is the description of the event clear enough
to measure its occurrence or nonoccurrence? Consider the following geometric questions,
which serve to illustrate our ability to address fuzziness (lack of distinctiveness) with certain
mathematical relations. The geometric shape in Figure 1.2a can resemble a disk, a cylinder, or a

() (b)

d
4
1
. ,/’Cylinder_s
-1
O 0

Figure 1.2 Relationship between (a) mathematical terms and (b) fuzzy linguistic terms.

=
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rod depending on the aspect ratio of d/h. For d/h < 1, the shape of the object approaches a long
rod; in fact, as d/h — O the shape approaches a line. For d/h >> 1, the object approaches the
shape of a flat disk; as d/h — oo the object approaches a circular area. For other values of this
aspect ratio, for example, for d/h =~ 1, the shape is typical of what we would call a right circular
cylinder (see Figure 1.2b).

The geometric shape in Figure 1.3a is an ellipse, with parameters a and b. Under what con-
ditions of these two parameters will a general elliptic shape become a circle? Mathematically,
we know that a circle results when a/b = 1, and hence this is a specific, crisp geometric shape.
We know that when a/b < 1 or a/b > 1, we clearly have an elliptic shape, and as a/b — o0, a
line segment results. Using this knowledge, we can develop a description of the membership
function to describe the geometric set we call an approximate circle. Without a theoretical
development, the following expression describing a Gaussian curve (for this membership
function all points on the real line have nonzero membership; this can be an advantage or
disadvantage depending on the nature of the problem) offers a good approximation for the
membership function of the fuzzy set “approximate circle,” denoted C:

ug(g)=exp{—3(g—l)1 (1.3)

Figure 1.3b is a plot of the membership function given in Equation (1.3). As the elliptic ratio
alb approaches a value of unity, the membership value approaches unity; for a/b =1, we have
an unambiguous circle. As a/b — oo or a/b — 0, we get a line segment; hence, the membership
of the shape in the fuzzy set C approaches zero because a line segment is not similar in shape to
a circle. In Figure 1.3b, we see that as we get farther from a/b =1 our membership in the set
“approximate circle” gets smaller and smaller. All values of a/b, which have a membership
value of unity, are called the prototypes; in this case a/b=1 is the only prototype for the set
“approximate circle,” because at this value it is exactly a circle.

Suppose we were to place in a bag a large number of generally elliptical two-dimensional
shapes and ask the question: What is the probability of randomly selecting an “approximate
circle” from the bag? We would not be able to answer this question without first assessing
the two different kinds of uncertainty. First, we would have to address the issue of fuzziness

(a) (b)
M g
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b = height 0 ) _
0 1.0 a
b

Figure 1.3 The (a) geometric shape and (b) membership function for an approximate circle.
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in the meaning of the term approximate circle by selecting a value of membership, which we
would be willing to call the shape an approximate circle; for example, any shape with a mem-
bership value above 0.9 in the fuzzy set “approximate circle” would be considered a circle.
Second, we would have to know the proportion of the shapes in the bag that have membership
values above 0.9. The first issue is one of assessing fuzziness and the second relates to the
frequencies required to address questions of chance.

Intuition of Uncertainty: Fuzzy versus Probability

Itis instructive to see how the propagation of uncertainty in a simple nonlinear model can reveal
vast differences in the results between a probability model and a fuzzy model, and whether
these would conform to our intuition. Suppose we have the simple model, y=sin(x), and
we know that the input parameter, x, is uncertain. We want to model the uncertainty in the input
x using a probability density function and also to model the uncertainty in x using a fuzzy
membership function. It is important that these two functions look the same, geometrically.
Figure 1.4 shows the modeling issues, and results. In Figure 1.4a, the uncertainty in the input
is modeled as a uniform probability density function; each element in the universe of the input
has equal frequency of occurrence. In Figure 1.4b, the uncertainty in the input is modeled as a
fuzzy membership function; here each element in the universe of the input (—n/2 to +n/2) has an
equal membership of unity.

To show how the uncertainty in the output, y, is determined we make use of two standard
propagation approaches. In probability theory this propagation from uncertainty in the input to
uncertainty in the output is made by using what is called derived distributions (Benjamin and
Cornell, 1970). In fuzzy set theory, the propagation of uncertainty in the input to uncertainty in
the output is developed using the extension principle (Zadeh, 1975). For our model, we have the
propagation model, y = sin (x); we define the uncertainty in the input by a function f(x), and we
define the uncertainty in the output by a function f{y). In probability theory we will use the
uniform density function, f(x) = 1/x, to model the input uncertainty. Using the derived distri-
bution method, we get the calculus relation,

FWdv=()dy=—ds (1.4

Equation (1.4) then becomes, when considering both monotonically increasing and decreas-
ing functions,

1
= — 1.

10V =10 e (1)

Now, we define the inverse function of the output, y, as
y=sinx; hence, x=sin"'y (1.6)

Combining Equation (1.6) with Equation (1.5) yields,
d[sin™'y] L+ d[1/siny] 1 1 1

y)=f(sin"ly }‘ =f(sin" "y " =f(x =— 1.7
i e e B N T B
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(a) Probability
/z
pr(x)
—n/2 0 w2 X
(b) Fuzzy
1.0
H(x)
/2 0 m2 X
(©) pr(y) Probability
1 I
1 1
1 1
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Figure 1.4 Comparison of probability and fuzzy approaches to uncertainty propagation and intuitive
understanding of results: (a) input x is uniformly distributed, (b) input x is a fuzzy set with no ambiguity,
(c) output y is distributed as a saddle function, and (d) output y is a fuzzy set with no ambiguity.
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Now, we want to evaluate Equation (1.7) for the output at the points y=0 and y=1,

O =/ 0) | =1 1= (180
(1) =5(=D=sin™ ()| | = oo (1.8b)

As can be seen in Figure 1.4c the derived output probability density function for y is a saddle
function (see Equation 1.7). As seen in Figure 1.4d the output for the fuzzy case is a uniform
membership function, which looks just like the input membership function; this fuzzy result
comes from Zadeh’s extension principle which is illustrated in detail in Chapter 12 for a har-
monic function. The extension principle is used extensively in the area of fuzzy arithmetic,
which is briefly summarized in Chapter 12 of this text.

With regard to the problem just addressed in Figure 1.4 and Equations (1.4 to 1.8) we now
encounter the following question. Based on knowing that the input is an uncertain function that
is equally frequent at any value in the universe of the input, which of the approaches seems
more intuitive? In the case of the probabilistic model, the output with the lowest density value
(f(y) = 1/m) occurs at the mean value (x = 0) of the input, and the highest density of the output
(o0) occurs at the extremes (y= =1) of the output (see Figure 1.4c). In the fuzzy model, the
same uncertainty in the input results in the same uncertainty in the output (see Figure 1.4d).
It might be clear to the reader which of these models is more intuitive, but at the very least
it shows how some models can produce counterintuitive results!

Sets as Points in Hypercubes

There is an interesting geometric analog for illustrating the idea of set membership (Kosko,
1992). Heretofore, we have described a fuzzy set A defined on a universe X. For a universe
with only one element, the membership function is defined on the unit interval [0, 1]; for a
two-element universe, the membership function is defined on the unit square; and for a
three-element universe, the membership function is defined on the unit cube. All of these situ-
ations are shown in Figure 1.5. For a universe of n elements, we define the membership on the
unit hypercube, I" = [0, 1]".

The endpoints on the unit interval in Figure 1.5a, and the vertices of the unit square and the
unit cube in Figure. 1.5b and c, respectively, represent the possible crisp subsets, or collections,
of the elements of the universe in each figure. This collection of possible crisp (nonfuzzy)
subsets of elements in a universe constitutes the power set of the universe. For example, in
Figure 1.5c the universe comprises three elements, X = {x;, x», x3}. The point (0, 0, 1) represents
the crisp subset in three-space, where x; and x, have no membership and element x3 has full
membership, that is, the subset {x3}; the point (1, 1, 0) is the crisp subset where x; and x, have
full membership and element x; has no membership, that is, the subset {x;, x,}; and so on
for the other six vertices in Figure 1.5¢. In general, there are 2" subsets in the power set of a
universe with n elements; geometrically, this universe is represented by a hypercube in n-space,
where the 2" vertices represent the collection of sets constituting the power set. Two points in
the diagrams bear special note, as illustrated in Figure 1.5c. In this figure the point (1, 1, 1),
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Figure 1.5 “Sets as points” (Kosko, 1992): (a) one-element universe, (b) two-element universe,
(c) three-element universe.

where all elements in the universe have full membership, is called the whole set, X, and the point
(0, 0, 0), where all elements in the universe have no membership, is called the null set, @.

The centroids of each of the diagrams in Figure 1.5 represent single points where the mem-
bership value for each element in the universe equals % For example, the point (%, %) in
Figure 1.5b is in the midpoint of the square. This midpoint in each of the three figures is a spe-
cial point; it is the set of maximum “fuzziness.” A membership value of % indicates that the
element belongs to the fuzzy set as much as it does not, that is, it holds equal membership
in both the fuzzy set and its complement. In a geometric sense, this point is the location in
the space that is farthest from any of the vertices and yet equidistant from all of them. In fact,
all points interior to the vertices of the spaces represented in Figure 1.5 represent fuzzy sets,
where the membership value of each variable is a number between 0 and 1. For example, in
Figure 1.5b, the point (i, %) represents a fuzzy set where variable x; has a 0.25 degree of mem-
bership in the set and variable x, has a 0.75 degree of membership in the set. It is obvious by
inspection of the diagrams in Figure 1.5 that, although the number of subsets in the power set is
enumerated by the 2" vertices, the number of fuzzy sets on the universe is infinite, as repre-
sented by the infinite number of points on the interior of each space.
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Finally, the vertices of the cube in Figure 1.5c are the identical coordinates found in the
value set, V{P(X)}, developed in Example 2.4 of the next chapter.

Summary

This chapter has discussed models with essentially two different kinds of information: fuzzy
membership functions, which represent similarities of objects to nondistinct properties, and
probabilities, which provide knowledge about relative frequencies. The value of either of these
kinds of information in making decisions is a matter of preference; popular, but controversial,
contrary views have been offered (Ross et al., 2002). Fuzzy models are not replacements for
probability models. As seen in Figure 1.1, every crisp set is fuzzy, but the converse does not
hold. An example (Fig. 1.4) was given that illustrates that the choice of an uncertainty model
can lead to some strange counterintuitive results, and the reader is cautioned to exercise judg-
ment in the selection of the most appropriate model that conforms to the actual uncertainty
present in the problem. The idea that crisp sets are special forms of fuzzy sets was illustrated
graphically in the section on sets as points, in which crisp sets are represented by the vertices of
aunit hypercube. All other points within the unit hypercube, or along its edges, are graphically
analogous to a fuzzy set. Fuzzy models are not that different from more familiar models.
Sometimes they work better, and sometimes they do not. After all, the efficacy of a model
in solving a problem should be the only criterion used to judge that model. Lately, a growing
body of evidence suggests that fuzzy approaches to real problems are an effective alternative
to previous, traditional methods.
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Problems

1.1 Develop a reasonable membership function for the following fuzzy sets based on moving
vehicles on a freeway for the speed range of 0-75 mph.
a. Fast
b. Moderate
c. Slow

1.2 A region experiences three seasons during a year. Each of those seasons last for four
months starting with winter, then spring, and summer. Develop a membership function
for the winter and the summer season on a scale of calendar months.

1.3 For the cylindrical shapes shown in Figure 1.2, develop a membership function for each
of the following shapes using the ratio d/h, and discuss the reason for any overlapping
among the three membership functions:
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a. Rod
b. Cylinder
c. Disk

1.4  The question of whether a glass of water is half-full or half-empty is an age-old philo-
sophical issue. Such descriptions of the volume of liquid in a glass depend on the state of
mind of the person asked the question. Develop membership functions for the fuzzy sets
“half-full,” “full.” and “half-empty” using a scale of percent of total volume. Assume
the maximum volume of water in the glass is Vjy. Discuss whether the terms half-full and
half-empty should have identical membership functions. Does your answer solve this
ageless riddle?

1.5  The pH level for a drinking water standard should be between 6 and 8.5. Draw a rea-
sonable membership function for drinking water with an optimum pH standard value on
a scale of 0-14.

1.6  To generate electricity, a turbine should rotate “at least at a speed of 40 rpm.” Draw a
membership function to show the effect of speed on generating electricity using
a. Crisp membership function
b. Fuzzy membership function

1.7  According to Hooke’s law: within the elastic limit, stress is directly proportional to
strain. A mild steel shows this behavior for a stress up to 335 MPa. Draw both crisp
and fuzzy membership functions showing that “mild steel” is within the elastic limit.

1.8  Develop algorithms for the following membership function shapes:
a. Triangular
b. Trapezoid
c. Gaussian

1.9  Water can be classified into three states: solid (ice), liquid (water), and gas (water
vapor). These three states are functions of temperature. Draw membership functions
for these three states of water in terms of their temperature; use either Celsius or
Fahrenheit for your temperature scale.

1.10 A circular column loaded axially is assumed to be eccentric when the load is acting 5%
off the axis, depending on the diameter of the column, d. As shown in Figure P1.10 we

—+
]

D g

Figure P1.10
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have the following conditions: e¢/d=0.05 eccentric; e/d <0.05 not very eccentric;
e/d >0.05 very eccentric. Develop a membership function for “eccentricity” on the scale
of e/d ratios.

1.11 If the level of water in a dam is below 110 m height it is said to be a “safe” height. But
if the level rises to more than 120 m, which is considered as “dangerous” height, then
immediate opening of a gate is required. Draw a membership function for a “safe”
water level.

1.12  Probability distributions can be shown to exist on certain planes that intersect the
regions shown in Figure 1.5. Draw the points, lines, and planes on which probability
distributions exist for the one-, two-, and three-element cases shown in Figure 1.5.

0002764553.3D 26 19/8/2016  2:47:26 PM



