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Electrical Analysis – Terminology
and Theorems

This first chapter is an introduction to some of the basic definitions and terms you must understand in
order to perform electrical analysis with efficiency and speed. By electrical analysis, I imply finding
the various relationships that characterize a particular electrical network. To excel in this field, as in
any job, you need to master a few tools. Obviously, they are innumerable and I am sure you have
learned a plethora of theorems during your student life. Some names now seemdistant simply because
you never had a chance to exercise them. Or you actually did but implementation was so obscure and
complex that you left quite a few of them aside. This situation often happens in an engineer’s life
where real-case experience helps clean up what you have learned at school to only retain techniques
that worked well for you. Sometimes, when what you know fails to deliver the result, it is a good
opportunity to learn a new procedure, better suited to solve your current case. In this chapter, I will
review some of the founding theorems that I extensively use in the examples throughout this book.
However, before tackling definitions and examples, let us first understand what the term transfer
function designates.

1.1 Transfer Functions, an Informal Approach
Assume you are in the laboratory testing a circuit encapsulated in a box featuring two connectors: one
for the input, the second for the output.You donot knowwhat is inside the box, despite the transparent
case in the picture! You now inject a signal with a function generator to the input connector and
observe the output waveformwith an oscilloscope. Using the right terminology, you drive the circuit
input and observe its response to the stimulus. The input waveform represents the excitation denoted
u and it generates a response denoted y. In other words, the excitation variable propagates through the
box, undergoes changes in phase, amplitude, perhaps induces distortion etc. and the oscilloscope
reproduces the response on its screen.

The waveform displayed by the oscilloscope is a time-domain graph in which the horizontal axis x
is graduated in seconds while the vertical axis y indicates the signal amplitude (positive or negative).
Its dimension depends on the observed variable (volts, amperes and so on). The input waveform is
denoted in lower case as it is an instantaneous signal, observed at a time – the instant t – u(t). A similar
notation applies to the output signal, y(t). In Figure 1.1, you see a low duty ratio square-wave injected
in the box engendering a rather distorted waveform on the output.
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This ringing signal tells us that the box could associate resonant elements, probably capacitors and
inductors but notmuchmore than that. If we change the excitation, what type of shapewill we obtain?
Knowing what is inside the box will let us predict its response to various types of excitation signals.

There are several available ways to characterize an electrical linear circuit. One of them is called
harmonic analysis. The input signal is replaced by a sinusoidal waveform and you observe how the
stimulus propagates through the box to form the response. This is shown in Figure 1.2:

The excitation level must be of reasonable amplitude – understand small – so that the response
signal is not distorted. The input signal dc biasmust also be set accounting for the physical constraints
imposed by the active circuit so that upper- or lower-rail saturation is avoided. In other words, the box
internal circuitry is not overdriven and remains linear during the analysis. Linearity is confirmed if the
output signal is sinusoidal with the same frequency as the input sine and only varies in amplitude and
phase while you ac-sweep the network. This is a so-called small-signal analysis. In the Laplace
domain, you perform such harmonic analysis when you set s � jω in which ω � 2π f represents the
angular frequency expressed in radians per seconds (rads/s). Laplace analysis with s � jω applies to
linear circuits only.

Should you increase the input signal amplitude or change the operating bias point, slewing or
clipping may happen. In this case, you explore the box large-signal or nonlinear response. This is a
characterization different than the small-signal approach and it offers another insight into the circuit
operation. Let us keep linear and once the right input amplitude is found, i.e. a signal of comfortable
amplitude is observed on the oscilloscope screen, the frequency is varied step by step while output
amplitude/phase couples are recorded in an array. At each frequency point f, we store the ratio of the
response amplitude Y f� � in volts to the excitation amplitude U f� � in volts also. At each frequency
point f, we save the phase information linking both input and output waveforms. As U and Y are
complex variables affected by a magnitude and a phase, we can write:

Av s� � � Y s� �
U s� � (1.1)

Av represents a transfer function, a mathematical relationship linking a response signal Y to an
excitation signal U. Please note that the excitation signal U resides in the transfer function

????
u(t) y(t)

outputinput

excitation
response

????

Figure 1.1 Ablack box featuring an input and an output signal.What is the relationship linking output and input
waveforms?

u ( t ) y ( t )

outputinput ??
responseexcitation

Figure 1.2 The black box is now driven by a sinusoidal stimulus for a small-signal analysis.
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denominator while the response Y sits in the numerator. It will always be this way throughout the
book.

The transfer function is a complex variable characterized by a magnitude noted Av f� �j j and an
argument, �Av f� � also noted arg Av f� �. The ratios Y f� �=U f� � we have stored correspond to the
transfer functionmagnitude (also calledmodulus) observed at a frequency fwhile the phase difference
between Y andU represents the transfer function argument or phase at the considered frequency. The
transfer function magnitude dimension depends on the observed variables as we will later see. Here,
because volts are involved for both variables, the transfer function magnitude is dimensionless or
unitless. Furthermore, Avj j can only be greater than or equal to zero. It is what makes the difference
between an amplitude which can take on any value, positive, null or negative and a magnitude which
can only be zero or positive. If it is 0, there is no output signal. If Avj j is less than 1, we talk about
attenuation. Now, if Avj j is greater than 1, it is designated as a gain. If themagnitude can only be a null
or positive number, what about a gain of�2 then? It simply characterizes a stage offering a gain of 2,
lagging or leading the excitation signal phase by 180°.

1.1.1 Input and Output Ports

It is convenient to represent our box as a two-port circuit. A port is a pair of connections that can input
or output signals such as voltage and current. Figure 1.3 shows an illustration of this principle where
you see two connecting ports, one input and one output.

Under some conditions, a port can take on the input and output roles at the same time. Imagine you
want to measure the output impedance of the box. To realize this measurement, you classically
implement Figure 1.4 where a current across the output terminals is injected while the voltage across
the same terminals is observed This is what is called a single injection, i.e. one stimulus and one
response. In this experiment, the box input port is shorted (see Appendix 1A). The excitation variable
is the current Iout(s) injected into the port while the response is the voltage Vout(s) collected across the
port’s terminals. The output impedance Z obtained from the ratio of the port voltage to the injected

L R1

R3

C R2

Excitation
Input
port

Output
port Response

Figure 1.3 The input port receives the excitation signal while the output port delivers the response.

L R1 Excitation

C R

R3

Response

Iout(s)
Vout(s)0 V

short circuit

C R2

Figure 1.4 Aport can be both an input and an output at the same time. Here, an output impedancemeasurement.
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current is a transfer function. It has the dimension of an impedance expressed in ohms:

Zout s� � � Vout s� �
Iout s� � (1.2)

Iout, the excitation signal lies in the denominator while the response,Vout, stands in the numerator.We
will come back on this important peculiarity.

If input and output connectors are fixed, physical ports, which let you respectively inject and
observe signals, nothing prevents one from creating other observation ports as needed. Simply
remove a resistor, a capacitor or an inductor and its connecting points become a new port. This port
can now be used as a new input stimulus or as an output variable you want to observe. As already
mentioned, this newly created port can also play the role of an input and output port at the same time.
In that case, the box originally featuring one input and one output, becomes a two-input/two-output
system as illustrated in Figure 1.5 in which the inductor has been removed. Using adequate
terminology, we analyze the system by performing a double-injection: two stimuli – inputs 1 and
2 – giving two responses, outputs 1 and 2.

In this example, the voltage across the removed inductor terminals is the response while the
injected current is the excitation signal. By dividing the port voltage by the injected current, we have
the resistance offered by the port terminals when the element initially connected has been removed. In
other words, we ‘look’ at the resistance offered by the inductor port as shown in Figure 1.6 where the
symbol R? and the arrow imply this exercise. Expressed in a different manner, we find the equivalent
output resistance exhibited by the port when ‘driving’ the inductor, hence the name driving point
resistance or driving point impedance abbreviated as DPI. Combining resistance and inductance
gives us a time constant τ (‘tau’) associated with this inductive element:

τ � L

R
(1.3)

To conduct this exercise and find the resistance R, you can directly look at the sketch and infer the
resistive series-parallel arrangementwithout solving a single equation. This exercise is called network
inspection: you simply observe the network in certain conditions (for instance in dc, or whenVin is set
to 0) andfind resistance values by observing howcomponents are connected together. For example, in
Figure 1.6, what resistance do you ‘see’ looking into the inductor port while capacitor C is

R1Input1

Input 2Output 2

L

R3

Input
Output 1

C R2

Figure 1.5 If you remove a component from this circuit, its connections become a connecting port. You can bias
this port and consider it as a new input, or as a new output, or both of them at the same time.
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disconnected for the exercise? R1 appears first and then R3 in series goes to ground and returns to the
inductor left terminal via the shorted input source. R2 is open and plays no role:

R � R1 � R3 (1.4)

Applying (1.3) with (1.4) gives the definition for the time constant involving L:

τ1 � L

R1 � R3
(1.5)

A similar exercise can be conductedwith the capacitor to also unveil the resistanceR that drives this
element. In this case, the time constant associated with the capacitance is simply:

τ � RC (1.6)

Assuming a shorted inductance in this particular illustration, what resistance value do you see in
Figure 1.7 when looking into the capacitor port? The left terminal is grounded while the second

R1

R?

L

R3Input 1
= 0 V

Output 1

C R2

Figure 1.6 Removing the inductor lets you look at the port output resistance that drives the inductor.
Associating the port resistance and the inductance leads to a time constant. Here, the resistance seen at the
inductor port is R1+R3.

R1

L

R3Input 1
= 0 V

Output 1

C R2

R?

Figure 1.7 Removing the capacitor lets you conduct a similar exercise to unveil the time constant associated
with this component. In this case, the resistance seen at the capacitor port is R2.
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terminal also goes to ground via R2. R1 and R3 play no role since their series combination goes from
one ground to the other one. Therefore:

R � R2 (1.7)

The time constant involving the capacitor is simply:

τ2 � R2C (1.8)

We have two storage elements, C and L, and there are two time constants. For each storage element,
there is an associated time constant.

Rather than looking into a capacitive or an inductive port, we could also remove a resistor and
define what resistance drives it, the exercise remains the same. Sometimes, looking into the port to
‘see’ the resistance is not as straightforward, especially when controlled sources are involved. In this
case, you need to add a test current generator as in Figure 1.5 and define the voltage generated across
the considered terminals. The resistance offered by the port being the port voltage divided by the test
current generator. This test generator will later be labeled IT and the voltage across its terminals VT.

What we just described is part of the technique foundations we will later describe: find resistances
offered across the connecting terminals of resistive, capacitive or inductive elements once they have
been temporarily removed from the circuit under certain conditions. Breaking a complex passive or
active circuit into a succession of simple configurationswhere time constants are unveiledwill help us
characterize a network featuring poles and zeros. The Extra Element Theorem (EET) and later, the n
Extra Element Theorem (nEET), make an extensive usage of these methods and it is important to
understand this prerequisite. Appendix 1A will refresh our memory regarding available methods to
derive output impedanceswhileAppendix 1B collects several examples to let you exercise your skills
at finding these resistances.

1.1.2 Different Types of Transfer Function

Depending where you inject the excitation and where you observe the response, you can define six
types of transfer functions as detailed in [1]. For the sake of simplicity, input and output ports are
ground-referenced but could also be differential types. The first one, is the voltage gain Av already
encountered in the above lines and it appears in Figure 1.8 together with an operational amplifier
(op amp) in an inverting configuration. In all the following illustrations, the op amp is considered a
perfect element (infinite open-loop gain, infinite bandwidth, zero output and infinite input imped-
ances). You sweep the input voltage with a sinusoid, the stimulus, and observe the voltage at the op
amp output, the response. In Laplace notation, you compute Av as:

Av s� � � Vout s� �
Vin s� � (1.9)

Av is dimensionless, sometimes expressed in [V]/[V].
The second one is the current gain, Ai, this time involving input and output currents as shown in

Figure 1.9. The excitation signal is now the input current Iinwhile the observed variable is the output
current Iout:

Ai s� � � Iout s� �
Iin s� � (1.10)

Ai is dimensionless, sometimes expressed in [A]/[A].
The third transfer function is called a transadmittance – short name for transfer admittance – and

is denoted Yt. You observe the output current while the input is excited by a voltage source.
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Current gain

2

-1.00V

1

4

37.4uV

-1.11V

Excitation

source

U (s)

Iin (s)

Iin

Ai (s)

Iout (s)

Iin (s)
Y (s) Ai =

R1

R2

R3

10 kΩ

1 kΩ
100 Ω

100 μA

R2Ai = 1 +
R1

Iout

Iout (s)

Figure 1.9 The current gain Ai is the second transfer function and links the output current to the input current.

Voltage gain

Av (s)Excitation
source
U (s)

Vin (s)

Vout (s)

Vin (s)

R2

Y (s)

Av =

33.4uV
R1

10 k Ω

1

2

3
-1.00V

Vin
100 mV

1 kΩ

R2
Av = −

R1

Vout

Response

Vout(s)

100mV

Figure 1.8 The voltage gain Av is the first transfer function and links the output voltage to the input voltage.
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The measurement configuration is shown in Figure 1.10. The definition is as follows:

Yt s� � � Iout s� �
Vin s� � (1.11)

If the two preceding gains were dimensionless, the transadmittance is expressed in ampere per volt,
[A]/[V] or siemens [S]. Similarly, we can define the fourth transfer function in which, this time, the
input is excited by a current source while the output voltage is the response (Figure 1.11). The ratio of
these two variables is designated as a transimpedance – short name for transfer impedance – denoted
Zt and expressed in volt per ampere, [V]/[A] or ohm [Ω]:

Zt s� � � Vout s� �
Iin s� � (1.12)

Transimpedance amplifiers are often used in case you want to amplify a photodiode current for
instance. You will find in [2] a design example of such a circuit.

In the four previous transfer functions, the involved quantities – excitation and response signals
– appear at two different places in the network. We conveniently considered the box input and
output terminals for the examples, but definitions apply equally for relationships between any
ports in the network. For the two remaining transfer functions, impedance Z and admittance Y,
excitation and response signals are observed at the same port terminals. It is therefore important to
distinguish how we create the excitation signal and what is considered the response signal. You
can argue that it is not a problem to reverse excitation and response because impedance and
admittances are reciprocal to each other. However, if we want to stick to our transfer function
definition in which the excitation waveform lies in the denominator while the response appears in
the numerator, then, for a driving point impedance (DPI) function Zdp(s), the excitation signal is a
current source and for a driving point admittance function Ydp(s), the stimulus is a voltage source.

Transadmittance

1.65uV

1.50V
2

1

3
-150mV

Response
Excitation

source
U (s)

Vin (s)

Vin
1.5 V

Yt (s)

Iout (s)

Vin (s)
Y (s) Yt =

R1 R2

1 kΩ

100 Ω
1

Yt = –
R1

Iout

Iout (s)

Figure 1.10 The transadmittance Yt links the output current to the input voltage. Here the current in R2 is
imposed by Vin and reaches 1.5mA. The transadmittance gain is �0.001A/V or �1mS.
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The 5th transfer function is thus the port input impedance Z(s) whose generalized transfer function
is given below:

Zdp s� � � V1 s� �
I1 s� � (1.13)

If you consider Vin and Iin or Vout and Iout, you respectively measure the network input and output
impedances by injecting a test current in the port and measuring the voltage across the port terminals.
Figure 1.12 shows sources arrangement for this specific measurement. The dimension of an
impedance is ohm, [Ω].

Finally, the 6th transfer function is the admittance, the inverse of an impedance. You measure an
admittance by exciting the concerned port with a voltage source which produces a current, the
response (Figure 1.13). The generalized transfer function of an admittance is:

Ydp s� � � I1 s� �
V1 s� � (1.14)

Driving point impedance

Response

Excitation
source

Ii (s)

Zdp ?

V1 (s)

I1 (s)
Zdp (s) =V1 (s)

Figure 1.12 Impedances have the dimension of ohms. The excitation signal is a current.

4.14mV

1

2
1.00V

10 μA

TransimpedanceResponse

Excitation
source
U (s)

Iin (s)

Iin

Zt (s)

Vout (s)

Iin (s)

Y (s)

Zt =

R1

100 kΩ

Zt = – R1

Vout (s)

Vout

Figure 1.11 The transimpedance Zt links the output voltage to the input current. In the op amp example, resistor
R1 brings a transimpedance gain of �100 kV/A.
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If you consider Iin and Vin or Iout and Vout, you respectively measure the network input and output
admittances.

Admittances are expressed in siemens, abbreviated [S]. Old notations such mhos, ℧ or Ω�1 are
no longer in use in the International System of units (SI, after the French Système International
d’unités).

As explained, when determining a port impedance, the excitation signal is a current source.
In certain configurations, it is sometimes more convenient to actually calculate the admittance
instead by exciting the circuit with a voltage source. The final result is simply reversed to obtain
the impedance we are looking for. We will see an application of this principle in an example later
on. Figure 1.14 below summarizes the 6 transfer functions we just described.

Driving point admittance

Response

Excitation
source

Ii (s)

Ydp ?

I1 (s)

V1 (s)
Ydp (s) =V1 (s)

Figure 1.13 Admittances have the dimension of Siemens. The excitation signal is a voltage.

Response signal

Stimulus signal

voltage gain current gain

transadmittance transimpedance

admittance impedance

N (s)

D (s)
T (s) =

Iin (s)

Vout (s)

Vin (s)

Vin (s)

Av (s) =
Iout (s)

Iin (s)
Ai (s) =

Vin (s)

Iin (s)
Zin (s) =

Vout (s)

Vout (s)

Iin (s)
Zt (s) =

Vout (s)

Iout (s)

Iout (s)

Zout (s) =
Iout (s)

Vout (s)
Yout (s) =

Iout (s)

Vin (s)
Yt (s) =

Iin (s)

Vin (s)
Yin (s) =

T (s)

Figure 1.14 There are six different transfer functions, 4 of them have a stimulus and a response at different
locations – different ports – while two of them, Zdp and Ydp, have stimulus and response at the same port.
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1.2 The Few Tools and Theorems You Did Not Forget . . .
In the litany of theorems and analysis tools I had been taught during my university years, there are a
few I did not forget because I exercise them almost every day in my engineer’s job. Voltage and
current dividers are thefirst in the tools list. They are of tremendous helpwhen it comes to simplifying
circuits and a quick refresh is given below.Among theorems, thefirst one is Thévenin’s theorem, after
the French electrical engineer, Charles Léon Thévenin, in 1883. The second is the dual of Thévenin’s
theorem, Norton’s theorem, after the American electrical engineer, Edward Lawry Norton who
described the theorem in his 1926 technical memorandum. The third one is obviously the
superposition theorem whose extension will lay the foundations for the EET and, later, the
nEET. Superposition and the EET are thoroughly detailed in Chapter 3.

Let’s have a look at a few examples applying these tools, showing how Thévenin and Norton can
help us simplify circuits in a quick and efficient way.

1.2.1 The Voltage Divider

This is one of the most useful tools I employ when analyzing electrical circuits. It works with all
passive elements in dc or ac (direct or alternating voltages/currents) and the Thévenin theoremmakes
an extensive use of it. Figure 1.15 shows its simple representation.

The circulating current I1 is the input voltage Vin divided by the total resistive path, R1+R2:

I1 � Vin

R1 � R2
(1.15)

The voltage across R2 is the resistance value multiplied by current I1:

Vout � I1R2 (1.16)

Substituting (1.15) in (1.16), we have:

Vout � Vin
R2

R1 � R2
(1.17)

If we divide both sides of the equation by Vin, we have the transfer function linking Vout to Vin:

Vout

Vin
� R2

R1 � R2
(1.18)

R1

R2

I1

VoutVin

Figure 1.15 A resistive divider is a great tool to simplify circuits.
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When you see networks such as those of Figure 1.16, you can immediately apply (1.18) without
writing a single line of algebra. In this example, (1.18) is updated with impedances rather than
resistances:

Av s� � � Vout s� �
Vin s� � � Z2 s� �

Z1 s� � � Z2 s� � (1.19)

Please note that (1.18) and (1.19) only work if R2 or Z2 are unloaded. Should you have another circuit
connected across R2 or Z2 respectively in Figure 1.15 and Figure 1.16, (1.18) and (1.19) no longer
work.

1.2.2 The Current Divider

This is another example of a very useful tool often involved in electrical analysis. Consider
Figure 1.17a circuit in which you need to find the current flowing in R3.

The total current I1 is Vin divided by the resistive path connected to the source:

I1 � Vin

R1 � R2 j jR3
(1.20)

In this expression, the ‘||’ operator refers to the paralleling of R2 and R3:

R2 j jR3 � R2R3

R2 � R3
(1.21)

Mathematically, the parallel operator has precedence over the addition: R2||R3 is first computed and
then added to R1.

The original sketch can then be updated to a simpler one as shown in Figure 1.17b. Kirchhoff’s
current law (KCL) tells us that the sum of the currents entering a junction equals the sum of currents

Vout (s)

Vin (s)

Vout (s)

Vin (s)

Z2 (s) + R1

1

Z2 (s)

+ R1

Av (s) =

Z2 (s) =

sC1

1

sC1

1

sC1

Z2 (s) =Z1 (s) = sL1
1

sC1

=
1

1+ sR1C1

=
Z2 (s)

Z1 (s) + Z2 (s)

Z1

Z2

C1

R1

Z2

C1

L1

Av (s) =

1

sC1

+ sL1
1

sC1

=
1

1+ s2L1C1

=

Figure 1.16 The divider equation works with passive elements such as capacitors and inductors.
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leaving it. Thus:
I1 � I2 � I3 (1.22)

Currents I2 and I3 are defined by the voltage across their terminals, Vout:

I3 � Vout

R3
(1.23)

I2 � Vout

R2
(1.24)

Extracting Vout from (1.23) and (1.24) then equating results gives another relationship linking I3
and I2:

R3I3 � R2I2 (1.25)

Extracting I2 from (1.22) and substituting it in (1.25) leads to:

R3I3 � R2 I1 � I3� � (1.26)

Rearranging and factoring leads to the relationship linking I3 and I1:

I3 � I1
R2

R2 � R3
(1.27)

This is the current divider expression which helps us get the current into R2 or R3 when I1 splits
between these elements. Figure 1.18 gives another representation. The current flowing in R2 equals

2I

a b

R1

R2
R2R3 R3

I1 I1

I1

I2 I3 I3

VoutVin
Vout 

Figure 1.17 The current divider is another great simple tool.

R2 R2 R3 R4 R5R3

I1

I1

I1

I1

I2 I2I3

Req

Figure 1.18 The current divider is easily generalized to paralleled resistors.
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the main current I1 multiplied by the resistance ‘facing’ R2 (thus R3) and divided by the sum of
resistances, R2+R3. The right side of Figure 1.18 generalizes the concept where more resistors are
connected in parallel with R3. If Req � R3 jjR4 jjR5 then the current in R2 is simply:

I2 � I1
Req

Req � R2
(1.28)

This technique works equally well with energy-storing components as represented in Figure 1.19.
This is a typical Electromagnetic Interference (EMI) filter found in switching converters. I1 illustrates
the converter current signature – its high-frequency input current –C1 is the front-end capacitor while
L1 is the filtering inductor.With a perfect filter, all the alternating current would flow inC1 while only
direct current flows in L1, providing the dc source with the right isolation to the switching current.
Reality differs and what you need is the current really flowing in L1 and check what attenuation this
configuration brings. Apply the current divider expression to Figure 1.19 circuit and you have

I3 s� �
I1 s� � �

Z2 s� �
Z1 s� � � Z2 s� � �

R2 � 1
sC1

R2 � 1
sC1

� R1 � sL1

� 1 � sR2C1

1 � sC1 R1 � R2� � � s2L1C1
(1.29)

We did not write a single equation to derive this transfer function, we just inspected the figure and
applied the current division law. This technique is called solving for a transfer function by inspection.

1.2.3 Thévenin’s Theorem at Work

Any 2-port linear system made of resistors, capacitors, inductors, dependent/independent current/
voltage sources can be represented by an equivalent Thévenin model. This equivalent circuit is made
of a complex generator Vth associated with a complex output impedance Zth. When solving complex
networks transfer functions, or if the current or voltage at a given point is needed, the idea is to apply
Thévenin’s theorem and break the complex circuit into a simpler representation with a Thévenin
equivalent circuit in place. This idea behind Thévenin’s approach is to model the I-V characteristics
‘seen’ by the load. You remove the load and model the equivalent source that drives it, affected by a
certain output impedance/resistance. As such, Thévenin’s and Norton’s equivalent circuits do not

I1

I1
I2I3

R2

C1L1

R1

Z1 Z2
Switching converter

Vin

R1 L1

R2

C1

Figure 1.19 Passive elements arranged to form a filter: how much current flows in L1?
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reflect the power dissipated by the network they replace. Use them carefully when evaluating powers
or currents at certain points in the circuit.

Assume you need to calculate the transfer function Vout s� �=Vin s� � of the circuit in Figure 1.20. This
is a classical case to which we purposely added more resistors than in examples you can find in the
web. The goal of using Thévenin is to reduce this complex circuit into a simple structure from which
you can immediately deduce the transfer function by inspection. The first option is to use Kirchhoff’s
voltage and current laws (KCL and KVL) and write mesh and nodes equations. It is very likely that
you will obtain the result but the chance also exists that you will make mistakes while writing these
expressions. This is the so-called brute-force analysis. The second option uses Thévenin and
represents a step towards fast analytical circuit techniques whose acronym is FACTs. We must
find a place in the network where the insertion of our equivalent generator will simplify the analysis.
Let’s proceed step by step. We first cut the circuit after R2 as shown in Figure 1.21 to isolate a first
equivalent generator.

The Thévenin voltage is the voltage appearing acrossR2while separated from the rest of the circuit.
We can apply the voltage divider law as R2 is unloaded after the separation. Looking at the upper side
of Figure 1.21, this voltage is simply:

Vth1 � Vin s� � R2

R1 � R2
(1.30)

VoutVin

R5R1

R2 R4

R3

C1

Figure 1.20 In this circuit, five resistors drive capacitor C1. Rather than going through KCL and KVL, use the
Thévenin’s generator approach.

Vout

VoutVth1

Rth1

Rth1 ?

Vth1 ?

Vin

R5

R5

R1

R2 R4

R4

R3

R3

C1

C1

Figure 1.21 You must find a place in the circuit to identify a Thévenin equivalent generator.
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We have the Thévenin generator expression so what is its output resistance in this case? The output
resistance, as explained in Appendix 1A, is found by setting the input voltage to 0V and find the
resistance seen across R2’s terminals (Figure 1.22).

The resistance is immediate:

Rth1 � R1 jjR2 (1.31)

We can now replace the input source associated with R1 and R2 by its equivalent Thévenin’s
generator. It appears in the upper side of Figure 1.23. We have an equivalent circuit that mimics the
I-V characteristic driving the circuit made ofR3 and the rest of the elements. Coming back on our note
regarding caution in using Thévenin (or Norton), you can see that the generator in Figure 1.22
dissipates power when unloaded –V2

in= R1 � R2� �– while the equivalent model involving Vth and Rth

does not. Using Thévenin to calculate power levels or efficiency figures would lead to a wrong result.
Simplifying further on, before reaching the capacitor, another resistive divider is present. We can

update the previous Thévenin generator by accounting for the presence of these elements. The voltage
divider approach is still useful:

Vth2 � Vth1
R4

R4 � R3 � Rth1
� Vin

R2

R1 � R2

R4

R4 � R3 � Rth1
(1.32)

Rth1 ?Vin = 0

Vin

R2

Short circuit
source

terminals

R2

R1R1

Figure 1.22 The output resistance is found by looking into the output port, acrossR2while the voltage generator
is set to 0V.

Vout

VoutVth1

Vth2

Rth1 R3 R5

Rth2

Rth2 ?

Vth2 ?

R5

R4 C1

C1

Figure 1.23 The Thévenin output resistance is found by looking into the output port, across R4:
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The output resistance is found by setting Vth1 to 0 and looking into R4 terminals to obtain the
resistance while R4 remains in place (Figure 1.24).

Rth2 � Rth1 � R3� �jjR4 (1.33)

The final circuit appears in the low side of Figure 1.23 where, again, a simple voltage divider
appears. Its transfer function is that of the low-pass filter in the lower left corner of Figure 1.16 where
the resistance is the sum of Rth2 and R5:

Vout s� �
Vth2 s� � �

1
1 � s Rth2 � R5� �C1

(1.34)

Vth2 must be replaced by its definition in (1.32) withVin andRth1/2 expressions brought back in (1.34).
After the update, the final expression is:

Vout s� �
Vin s� � � R2

R1 � R2
� R4

R4 � R3 � R1 jj R2
� 1

1 � s
�
R1 jj R2 � R3
� � jj R4 � R5

�
C1

(1.35)

It is a rather large equation but we don’t know if it is correct yet. Let’s try a different approach. If we
look at (1.34), the denominator expression includes a term in which C1 is multiplied by a resistance,
Rth2+R5. The resultingRC term is a time constant. If we refer to ourfirst stepswhen looking into ports
(Figure 1.7), we said that the resistance ‘seen’ by the capacitor when looking into its port is further
associated with the capacitor to form a time constant denoted τ. Well, let’s try to do the same with our
complex circuit from Figure 1.20. When calculating output impedance/resistance, the excitation
sourceVin plays no role and can be turned off. Turning off a voltage source is equivalent to replacing it
with a short circuit, a 0-V source. We will see later a more rigorous explanation for this fact, let’s
accept it now. Once Vin is replaced by a strap and capacitor C1 removed from the circuit, Figure 1.25
appears.

With a simple drawing like that, inspection is child’s play. If we start from the left, we see R1

paralleled with R2, then in series withR3 and the whole is paralleled with R4. This total resistance is in
series with R5. Finally:

R � R5 � R1 jj R2 � R3
� � jj R4 (1.36)

Vth1 = 0

Rth1Rth1 R3R3

Vth1

Rth2 ?

R4R4

Figure 1.24 The first Thévenin generator is updated with the presence of R3 and R4:

R1 R3 R5

R4R2

R ?

Figure 1.25 What resistance is ‘driving’ capacitor C1?
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This is the exact same definition we have for the resistive portion of (1.35) time constant. No
Thévenin, no complex manipulations were involved to build this expression.

In (1.35), when s equals 0, we talk about dc condition, the 0-Hz response. In some transfer function
equations wewill derive in this book, the 0-Hz response can be null, infinite or finite as in our case. In
(1.35), if you replace s by 0, the right-side denominator becomes 1 and the equation’s left term
remains alone: this is a dc termwhose unit must be that of the transfer function under study. Here, we
calculate a gain in [V]/[V] and it has no unit. Should we calculate an impedance, its dimension would
be ohms. You mark this dc term by a subscripted 0 when you write it. It is usually accepted that its
letter is the same as that of the transfer function you study: A0 for A(s),H0 forH(s),G0 forG(s) and so
on. Exception is for R0 when calculating an impedance Z(s). Figure 1.26 illustrates this fact, valid
regardless of the transfer function order.

Below appears the first generalized transfer function of a circuit described by (1.35) that we callH:

H s� � � H0
1

1 � sτ
(1.37)

in which

H0 � R2

R1 � R2

R4

R4 � R3 � R1 jj R2
(1.38)

and

τ � R5 � R1 jj R2 � R3
� � jj R4

� �
C1 (1.39)

What physically happens in a circuit under dc condition or at a 0-Hz excitation? A capacitor
becomes an infinite resistance (no current flows in it) and an inductor is replaced by a short circuit.
When you analyze a circuit under dc conditions, you thus open all capacitors and short all inductors.
This is, by the way, what SPICE does when it calculates a bias point prior to starting a simulation
whether it is a .TRANor .AC analysis. You have the corollary that at very high frequencies or infinite
frequency, capacitors becomes short circuits and inductors becomeopen circuits.When you analyze a
circuit for s approaching infinity, then you short all capacitors and open all inductors from the
network. We will come back to these important points, but let’s focus on Figure 1.20 where C1 has
been removed. The new diagram appears in Figure 1.27.

( )
( )

( )
0

N s
Z s R

D s
=

[ ] [ ]

( )
( )

( )
0

N s
Y s Y

D s
=

[ ]S [ ]S

( )
( )

( )
0

N s
G s G

D s
=

[ ]V V [ ]V V

Impedance Admittance Voltage gain 

unitless

ΩΩ

Figure 1.26 In a properly-written transfer function, the leading term carries the unit (if any)while the numerator
and the denominator are unitless.

R1

R2

R3

R4

R5

Vin
Vout

Figure 1.27 In dc conditions, capacitor C1 is removed as no current flows in it.
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In this drawing, R5 does not play a role as no current flows through it. The dc transfer function is
what we already derived in (1.32) when applying Thévenin two times. It is H0 of (1.38). As a
preliminary conclusion, we could have derived (1.35) in two steps, first by considering s= 0 and
obtainingH0, then by setting the excitation source to 0V and looking into the capacitor ports to get the
associated time constant.

In this approach, what we calculate is a simple gain involving resistors only (where capacitors or
inductors are respectively open or shorted) further followed by an output resistance calculation, the
one seen from the capacitor terminals. Assembling these elements according to (1.37) gave the
transfer function. These are the first steps towards fast analytical circuit techniques also known as
FACTs.

1.2.4 Norton’s Theorem at Work

Any 2-port linear system made of resistors, capacitors, inductors, dependent or independent current
or voltage sources can be represented by an equivalent Norton model. This equivalent circuit is made
of a complex current generator Ith associated with a complex output impedance Zth. Thévenin and
Norton can be used interchangeably depending on the circuit you need to analyze.With similar output
impedance Zth in both approaches, Ith and Vth are linked by the simple formula Ith � Vth=Zth.

Assume thefilter shown in Figure 1.28 inwhich you see an inductor associatedwith three resistors.
rL symbolizes the inductor equivalent series resistance (ESR), its ohmic losses.

To obtain the transfer function, let’s cut the circuit afterR2 and transform the input source involving
R1 andR2 into aNorton generator. The result appears in Figure 1.29. First, theNorton current is found.
This current is either equal toVth=Rth or to the short circuit currentwhen a strap is applied acrossR2. In
this case, the current Ith is simplyVin=R1. The output resistance has already been evaluated in previous
examples and is equal to the parallel arrangement of R1 and R2. Once the Norton transformation is
done, you can place the equivalent generator into the circuit as proposed in Figure 1.30. In this case,
the output voltage is simply:

Vout s� � � Ith s� �Z1 s� � � Vin s� �
R1

Rth jj rL � sL1� �� �
(1.40)

If you now develop this expression and rearrange the terms, you should obtain an expression
similar to (1.41):

Vout s� �
Vin s� � � rLR2

R1R2 � rL R1 � R2� �
1 � s

L1
rL

1 � s
L1 R1 � R2� �

R1R2 � rL R1 � R2� �
(1.41)

R1

R2

L1

rL

VoutVin

Figure 1.28 Norton’s theorem can be applied to obtain the transfer function quickly.
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We now see two time constants, one is in the numerator while the second lies in the denominator. We
can rewrite this transfer function capitalizing on the notation introduced with (1.37):

H s� � � H0
1 � sτ1
1 � sτ2

(1.42)

in which

H0 � rLR2

R1R2 � rL R1 � R2� � (1.43)

τ1 � L1
rL

(1.44)

and

τ2 � L1
Req

(1.45)

where Req � R1R2 � rL R1 � R2� �
R1 � R2

.

R1

R2
Vin Rth

VinIth R1

=Vin

R1

IthR1

R2

R?

||Rth = R2R1

Figure 1.29 The Norton current generator sources current to a series-parallel arrangement involving inductor
L1.

Rth

L1

rL

Vout
Ith

Z1 (s)

Figure 1.30 The output voltage is simply the current source times impedance Z1.
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Now, rather applying ohm’s law as in (1.40), let’s see ifwe can already applywhatwe learned in the
Thévenin example. First, the easiest thing, set s to 0 and solve the dc transfer functionH0. If a capacitor
is an open circuit at dc, an inductor becomes a short circuit. In Figure 1.30, short the inductor and you
have Figure 1.31. From this figure, the dc gain is immediate:

Vout 0� �
Ith 0� � � Rth jjrL (1.46)

Now substitute Rth and Ith definitions in (1.46) to obtain:

H0 � R1 jjR2
� �jjrL

R1
(1.47)

No special development or rearrangement was necessary here. If you check, (1.47) is the same as
(1.43). Should you start from Figure 1.28 instead and short the inductor in dc, youwould find another
definition for H0, equal to (1.47) but expressed differently:

H0 � rL jjR2

rL jjR2

� � � R1
(1.48)

In these above expressions, (1.47) and (1.48), resistors appear in an ordered series-parallel
arrangement. This is not the case for (1.43) in which resistors are combined with each other without
a noticeable relationship between them. An ordered arrangement helps gain insight into the formula
without rearranging elements. For instance, in (1.47), you see that if rL goes to infinity, the dc gain
reduces to that of a simple voltage divider involving R1 and R2. Even simpler in (1.48) where H0

simplifies immediately to R2= R1 � R2� �. Equation (1.43) does not offer the same immediate insight;
you would need to factor rL and make it infinite to simplify the formula. In other words, you would
need more effort to rearrange the complex formula and get the response you want. In that respect,
(1.47) and (1.48) are designated as low-entropy expressions by analogy to thermodynamic laws.

The entropy of a system qualifies its degree of internal disorder: to produce thework the system has
been designed for, you need to bring less external energy when its entropy is low. In our equations,
with well-organized, well-ordered constitutive elements, insight is immediate and no further work is
required to unveil gains, poles or zeros positions. On the other hand, in a high-entropy equation,
where elements are in disordered form, you need to spend more energy to rearrange terms and reveal
key relationships. We will see that FACTs naturally deliver low-entropy expressions whereas brute-
force analysis often produces a correct but abstruse result.

Now thatwe have the dc gainH0, let’s go back to (1.42). Compared to (1.37), this time,we have two
time constants. One is in the numerator while the other lies in the denominator. In Chapter 2, we will

Rth

rL

Vout
Ith

Figure 1.31 In dc conditions, the inductor is a short circuit: you replace it by a strap.
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learn that transfer functions are combining gains, poles and zeros. Without disclosing too many
details now, zeros appear in the transfer function numeratorNwhile poles are in the denominatorD. In
other words, τ1 in (1.42) corresponds to the zero time constant while τ2 characterizes the pole time
constant. As already highlighted, both time constants involve a resistive term driving the considered
element (C or L) that we sometimes can find by inspection.

The mathematical definition of a zero in a function f x� � is the value of x for which f returns 0. In a
transfer function, a zero noted sz represents the root of the numerator N. When a network featuring
zeros is evaluated at s= sz, the numerator N of the corresponding transfer function cancels:

N sz� � � 0 (1.49)

For instance, in (1.41),when s � � rL
L , a real value in the complex plane, the numerator equals 0. In this

condition, the transfer function linking the response signal to the driving signal also returns 0:

Vout sz� �
Vin sz� � � N sz� �

D sz� � �
0

D sz� � � 0 (1.50)

If the transfer function is 0 at s= sz, then despite the presence of a driving signal Vin, the response Vout

is also 0. From this simple observation, we can infer that the presence of a zero in a transfer function
implies that the response is nulled when the transformed network is examined at s= sz. Figure 1.32
illustrates this fact through a simple drawing.

The word transformed means that all energy-storing elements are replaced by their impedance
expressed in the Laplace domain as shown in Figure 1.33. If the response is a null while a driving
signal exists, it means that the excitation does not reach the output and is lost somewhere in the
transformed network examined at s= sz. Figure 1.34a and b illustrates two cases leading toVout= 0V
in this particular condition.

A null in the response implies that no current circulates in resistor R1 hence the label Iout (sz)= 0. If
you observe Figure 1.34a, the absence of current in R1, despite the presence of a driving signal, is due
to the series network Z1 becoming a transformed open for s= sz. The presence of this series infinite
impedance blocks all current circulation and induces an output null at s= sz. In Figure 1.34b, a current
circulates in resistor R2 but a transformed short circuit diverts all of it from resistor R1 to ground,
nulling the output. By observing the conditions for which an output null is created in the transformed
circuit, we have the possibility to obtain the transfer function zeros just by inspecting the network.

Back to Figure 1.30 or Figure 1.28, what circuit association could bring a null to the output when
the network is evaluated at s= sz? Rth is fixed and frequency-invariant. However, the series
association of L1 and rL could perhaps be a transformed short circuit at a certain s? The impedance
of this network is:

Z s� � � rL � sL1 (1.51)

+
Vin (sz) Vout (sz) = 0N (sz) = 0

Figure 1.32 For s= sz the numerator of a transfer function featuring a zero cancels and the response is nulled.
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For what value of s will this expression be 0? In other words, what is the root of this equation? You
have to solve:

0 � rL � sL1 (1.52)

which leads to

sz � � rL
L1

(1.53)

This is a complex root whose magnitude is:

ωz � szj j � rL
L1

(1.54)

In the next chapters, we will learn that:

τ1 � 1
ωz

� L1
rL

(1.55)

Now, if you go to the laboratory and solder a resistor in series with an inductor then drive the obtained
element with an ac current source, there is no way youwill cancel the response (the voltage across the
network). Actually, as (1.53) suggests with this real zero, the only way to make the transformed
impedance equal a short circuit would be to consider s in the entire complex plane and not only along
the imaginary axis as we do when we set s � jω. The method offered above is thus an abstraction
which translates themathematical definition of a zero into the Laplace-transformedworld. Despite its
lack of physical significance, it is an extremely useful way to identify zeros andwill be heavily used in
what we will later call the Null Double Injection (NDI). By the way, an output null can be physically
produced at a 0-Hz frequency when you have a zero at the origin as the origin is common to both real

rC rC

C
1

sC

rL

L sL

LaplaceLaplace
rL

Figure 1.33 In the transformed world, capacitive and inductive elements must be replaced by their Laplace
impedance expressions.

Vin
Vout (sz) = 0 Vout (sz) = 0R1

Z (sz) = ∞
I (sz) = 0 I (sz) = 0

Z (sz) = 0

1

0

Vin
R2

1

0

R1

(a) (b)

Figure 1.34 In the transformed circuit, when s equals sz, a series infinite impedance or a transformed short
circuit to ground prevents the driving signal from reaching the output and creates a null in the response:
Vout sz� � � 0
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and imaginary axes. This is the case in a circuit where a capacitor lies in series with the signal path, for
instance, or an inductor is paralleled with the response signal. The other case in which a null can be
physically obtained is with a highly underdamped notch filter. As the transfer function numerator
quality factor increases, the zero-pair approaches the imaginary axis and zeros become pure
imaginary conjugates. When you excite this filter at a frequency fz where both zeros are located,
you truly observe a null in the output.

To find the second time constant τ2, we can apply what we already learned: we suppress the
excitation signal (no role in output resistances definitions) and look at the resistance that drives L1. If
we apply this concept to Figure 1.30, the output resistance seen at the inductor terminals does not
depend on the current source Ith.We can then turn it to 0A. Turning an independent current source off
is similar to removing it from the circuit thus leaving an open circuit in place. This is what Figure 1.35
suggests.

What resistance do you see from the inductor terminals? rL in series with Rth. If you replace Rth by
its definition from Figure 1.29, you have:

R � rL � Rth � rL � R1 jjR2
� �

(1.56)

The second time constant is thus:

τ2 � L1
rL � R1 jjR2

� � (1.57)

Should you do the same in Figure 1.28 but shorting Vin instead (excitation is 0V) and look at the
inductor port resistance you see, you will find (1.56).

Nowassociating (1.48), (1.55) and (1.57),we canwrite the transfer function describing Figure 1.28
in a normalized form. This is truly a low-entropy expression:

Vout s� �
Vin s� � � rL jjR2

rL jjR2
� � � R1

1 � s
L1
rL

1 � s
L1

R1 jjR2
� � � rL

(1.58)

We can even rearrange it in a more readable format, where a zero and a pole now appear:

Vout s� �
Vin s� � � H0

1 � s

ωz1

1 � s

ωp1

(1.59)

R?

rL

Rth

Figure 1.35 When the excitation signal is a current source, turning it off is similar to removing it from the
circuit.
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where

H0 � rL jjR2

rL jjR2
� � � R1

(1.60)

ωz1 � 1
τ1

� rL
L1

(1.61)

ωp1 � 1
τ2

� R1 jjR2
� � � rL

L1
(1.62)

To verify our calculations, we have captured these equations into aMathcad® sheet and plotted the ac
response. Results appear in Figure 1.36.

In the upper left corner is the high-entropy expressionwhose ac response is plotted below.The right
side shows the low-entropy version involving the time constants we quickly obtained by inspection.
Values returned either way are strictly identical.

1.3 What Should I Retain from this Chapter?
In this first chapter, we have learned key information that are summarized below:

1. A transfer function is a mathematical relationship linking an excitation signal (the input) to a
response signal (the output). Excitation and response can appear at different terminals or ports but
can also be observed across a common port. This is the case for impedance and admittance transfer
functions.
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Figure 1.36 Ac responses from the low and high entropy equations are identical.
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2. A transfer function is usually made of a numerator N and a denominator D but not always. When
written in the form of a fraction, the zeros of the transfer function are the numerator roots while
poles are the denominator roots.

3. A network featuring storage elements such as capacitors and inductors involve time constants.
These time constants imply a resistive term R that ‘drives’ the concerned capacitor or inductor.
This resistance can be observed, in certain conditions, by ‘looking’ into the considered element
terminals while the said element is removed from the circuit. A time constant involving a
capacitive term is τ � RC while a time constant characterizing an inductive term is τ � L=R.

4. When the port output resistance is evaluated, we have seen that the input source does not play a
role in the resistance expression. When evaluating a port output resistance, the excitation voltage
source is turned off (set to 0V) and is replaced by a short circuit (a strap). For the dual case, if the
excitation source is a current generator, it must be set to 0A or become an open circuit.

5. Fast Analytical Circuits Techniques (FACTs) consist of expressing a transfer function with the
above time constants and gains in a clear and ordered form. This form is said to be of low entropy if
you can tell where poles, zeros, and gains are located without having to rework the equation.

6. There are several important analysis techniques that you must know and be at ease with to start
manipulating complex networks: the voltage divider, the current divider andThévenin’s/Norton’s
theorems. Superposition sets the foundations for the Extra Element Theorem we will discover in
the next chapter.

7. By applying some of the simple techniques explored in this chapter, we were able to derive a
transfer function without writing a single equation. In other words, we derived the transfer
function by inspection. When circuits are not too complex, writing the transfer function by
inspection is a real pleasure!
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1.4 Appendix 1A – Finding Output Impedance/Resistance
As exemplified in the introductory figures, finding time constants associated with capacitors or
inductors will often involve the derivation of the resistive term that ‘drives’ the considered capacitor
or inductor. Besides capacitors and inductors, the exercise can also involve a simple resistor forwhich
finding the resistance or impedance seen from its terminals is important. In other terms, what
resistance is offered from the terminals the considered element is connected to?

There are several known methods to find the output impedance or resistance of a given network.
They are reviewed in the appendix below. In the examples,wewill use SPICEnotations for the sake of
simplicity: 1k � 103, 1Meg � 106, 1p � 10�12, 1n � 10�9, 1m � 10�3 and 1u � 10�6.

The Voltage Output is Divided by Two

For the first option, assume you have a resistive dividermade of two resistors driving a capacitor. You
have removed the capacitor as in Figure 1.7 and the circuit involvingR1 andR2 appears in the left side
of Figure 1.37. If you load that circuit with a resistanceR, the output voltage takes a certain valueVout,
lower than Vin. The drop is incurred to the output resistance we want and the current delivered to the
load. If you now load the same circuit with a resistance equal to the circuit output resistance Rth, as in
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the right side of Figure 1.37, you obtain an output value exactly half of the voltage obtained with no
load (Iout= 0):

Vin
R2 jjRth

R1 � R2 jjRth
� Vth

2
(1.63)

This voltage, Vth, is the Thévenin voltage and Rth the Thévenin output resistance we want.

Capitalizing on (1.63), you can write:

Vin
R2 jjRth

R1 � R2 jjRth
� Vin

2
R2

R1 � R2
(1.64)

In this expression, the input voltage Vin does not play a role and disappears from both sides. If you
solve (1.64) for Rth, you obtain the output resistance we want:

Rth � R1R2

R1 � R2
� R1 jjR2 (1.65)

A Dynamic Output Resistance

A secondmethod consists of calculating the output voltage in relationship to a current injected by the
generator Iout,Vout � f Iout� �. This is themethod already introduced in Figure 1.4. Assuming the same
two-resistor circuit in Figure 1.38, the output voltage across R2 can be defined as follows:

Vout � Vin � R1I1 (1.66)

R1

R2Vin RVout
2

Vth
Vth

Rth

Rth

Figure 1.37 If you load a circuit with a resistance R equal to the output resistance Rth of that circuit, the output
voltage is divided by 2.

R1

R2

I1 I2

Iout

Vin
Vout Iout

Figure 1.38 If you load the resistive network by a current source, the output voltage drops by a certain quantity,
proportional to Iout and the network output resistance:
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I1 is made of the output current Iout and I2:

I1 � Vout

R2
� Iout (1.67)

Substituting (1.67) into (1.66):

Vout � Vin � R1
Vout

R2
� Iout

� �
� Vin � R1

R2
Vout � R1Iout (1.68)

Rearranging and factoring Vout in the left side leads to:

Vout Iout� � � Vin � R1Iout

1 � R1

R2

(1.69)

The incremental or small-signal output resistance is found by differentiating (1.69) with respect to
Iout:

dVout Iout� �
dIout

� R1R2

R1 � R2
� R1 jjR2 (1.70)

The word incremental refers to measurements involving small voltage (dV) and current (dI)
variations around a defined operating point. We talk about small variations so that the system
remains linear when measurements are performed. To that respect, (1.70) is also referred to as the
small-signal output resistance: the stimulus signal Iout is purposely kept of small amplitude so that
Vout, the response, remains undistorted.

You canfind a practical application of (1.70). Assume youwant to characterize the dynamic output
resistance of a given power supply, such as the simple ac-dc charger in Figure 1.39. Thismeasurement
must be performed at the selected operating point of interest. For instance, what is the output

Rth

Vth

?

+

–

Vout

Iout

Iout2

Vout1

Vout2

Sr

Iout1

Figure 1.39 The slope of this I-V characteristic is negative. The unit is ohm and is obtained at a given operating
point, Iout1.
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resistance at a 12-V output and a 1-A current? First, measure the power supply voltage at current Iout1
and record the output value,Vout1. Then slightly increase the current to Iout2, and record the newoutput
voltage Vout2. The output resistance at the given operating point is simply:

Rout � Vout1 Iout1� � � Vout2 Iout2� �
Iout1 � Iout2

(1.71)

Tomake sure you keep the power supply in a linear zone, the output current variation at which the two
output voltages are recorded must remain small. In other words, Iout2 must be close to Iout1, perhaps
1A and 1.1A. Mathematically speaking, you performed a differentiation of the output voltage with
respect to the output current at Iout= Iout1:

lim
Iout2!Iout1

Vout�Iout2� � Vout�Iout1�
Iout2 � Iout1

� dVout Iout� �
dIout

(1.72)

What you obtain with (1.72) is the linear or the small-signal dc or static output resistance of your
converter measured at a given output current, 1A in this example. Please note that (1.71) returns a
negative value simply because Iout leaves the output port rather than entering it as in Figure 1.38.
However, having a voltage drop across Rth that is proportional to the output current is the result of a
positive resistance.

Setting the Source Contribution to Zero Volts

All elements involved in Figure 1.37 are linear. The source itself, Vin, is considered a perfect voltage
generator with a zero output resistance. When we load this circuit, Vin remains constant. Again,
considering the differentiation, we can write dVin Iout� �

dIout
� 0: the source contribution to calculating the

small-signal output resistance or impedance is 0. Therefore, when we calculate the output resistance
(or impedance) of a linear circuit in which a generator is involved, we can set the generator to 0V or
replace it by a strap. Should we need to repeat the exercise with a current generator in the circuit,
setting the current to 0A would be the same as disconnecting the current source from the circuit.
Please note that controlled sources must not be put to 0 for this type of analysis.

This third method is exemplified in Figure 1.40 where Vin is set to 0 V and replaced by a short.
The output resistance is found by looking at the resistance across R2 terminals, while R2 remains
in place:

Rth � R1 jjR2 (1.73)

A similar result to that of (1.65) and (1.70).
It works nicely also when storage elements are added to the circuit as in Figure 1.41a. The output

impedance is found by setting the source to 0V as shown in Figure 1.41b. The impedance is made of

R1

R2

Rth ?

R1

R2Vin

Vin = 0

Figure 1.40 The Thévenin output resistance is found by looking into the output port, across R2.
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R1 paralleled with C1:

Zth s� � � R1 jj 1
sC1

(1.74)

The equivalent Thévenin circuit appears in the right side of the figure, its generator value is:

Vth s� � � Vin s� �
1
sC1

1
sC1

� R1

� 1
1 � sR1C1

(1.75)

The Short Circuit Current

The fourth and last method involves the short circuit current. In Figure 1.42, a Thévenin equivalent
circuit is drawn. If you short circuit its output terminals, you have a current equal to:

Isc � Vth

Rth
(1.76)

Froman unknown circuit, if you haveVth and calculate ormeasure the short circuit current Isc, you can
find the Thévenin resistance. In Figure 1.37, the output voltage across R2 is the circuit Thévenin
voltage equal to:

Vth � Vin
R2

R1 � R2
(1.77)

If you now short circuit the output as shown in Figure 1.43, the current is simply:

Isc � Vin

R1
(1.78)

(a) (b) (c)

R1

C1

R1

C1

R ? Zth

Vth
Vin Vout

Figure 1.41 A simple 1st-order network featuring a capacitor offers a frequency-dependent output impedance.

Rth

Vth Isc

Figure 1.42 The short circuit current of a Thévenin equivalent circuit is the Thévenin voltage Vth divided by
resistance Rth.
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By applying (1.76), the Thévenin resistance is derived as:

Rth � Vth

Isc
�
Vin

R2

R1 � R2
Vin

R1

� R1R2

R1 � R2
� R1 jjR2 (1.79)

Dependent Sources

So far we have drawn circuits in which one single independent source was used, the Vin generator.
Assume Figure 1.44 example in which a dependent source now appears in parallel with R3. The term
0.19 has the dimension of siemens. What resistance drives capacitor C1?

To find the answer, we can still set Vin to 0 but the controlled current source remains untouched as
we previously said: it depends on V(1), not Vin. Should it depend on Vin instead then it would be
another dependent source and putting Vin to 0 would naturally remove that current source from the
circuit.

The updated circuit appears in Figure 1.45. Tofind the resistance offered by the capacitor terminals,
we connect a current test generator as suggested in Figure 1.46 and Figure 1.47. When doing so, we
realize that the excitation signal is our current source while the response is the voltage developed
across the considered terminals. It complies with our impedance transfer function definition
introduced in the beginning of this chapter – see (1.13). The resistance offered by the port in

R1

R2

IscVin

Figure 1.43 The Thévenin output resistance can also be found by calculating the short circuit current.

Vin

R1

R2

R3

C1 Vout

V (1)   x 0.19

1

0

Figure 1.44 The presence of the dependent current source does not modify the circuit analysis: only the
independent source is set to 0.
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Figure 1.47 is thus

R � VT

IT
(1.80)

From Figure 1.46 right side, we can write that the current flowing in the paralleled arrangement of R1

and R2 (Req) is:

IReq � I3 � 0:19 � V 1� � (1.81)

with

Req � R1 jjR2 (1.82)

The current flowing in Req is node (1) voltage divided by Req. Updating (1.81), we have:

V 1� �
Req

� 0:19 � V 1� � � I3 (1.83)

The test voltage VT is equal to the voltage across Req, V(1), plus the drop across R3:

VT � V 1� � � I3R3 � V 1� � � V 1� �R3
1
Req

� 0:19

� �
(1.84)

R1

R2

R3

V (1)× 0.19

1

0

R ?

Figure 1.45 The independent source Vin is classically set to 0V but the dependent source remains in the sketch:

R1

R2

R3

V (1) × 0.19

V (1) × 0.19

1

0

IT

VT

R3
1

0

IT

VTReq

I3

Figure 1.46 A current test generator is now biasing the capacitor terminals to determine its driving resistance.
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V(1) is the voltage across Req whose current is the test generator IT. Therefore, V(1) is equal to:

V 1� � � ITReq (1.85)

Updating (1.84) with (1.85), leads to the definition of VT:

VT � ITReq 1 � R3
1
Req

� 0:19

� �� 	
(1.86)

The resistance seen by the capacitor terminals is obtained by rearranging (1.86) in a transfer function
form:

R � VT

IT
� R3 � R1 jjR2

� �
1 � 0:19R3� � (1.87)

The time constant associated with capacitor C1 is thus:

τ � R3 � R1 jjR2
� �

1 � 0:19R3� �� �
C1 (1.88)

This example shows that a network involving controlled sources requires the use of KVL and KCL
compared to other networks whose characteristics were derived by inspection only.

A Transistor-Based Circuit

A transistorized circuit is another typical example involving controlled sources. A simple amplifying
circuit appears in Figure 1.48. Here, the exercise will consist of finding the resistance driving

IT

VT

IT

VT
R

IT

=

Figure 1.47 The test generator helps find the resistance offered by the terminals at which current (excitation)
and voltage (response) are simultaneously observed.

Vg Vin

Vout

Rb1

Rb2

Rc

Re Ce

Q1

b c

e

rπ Ibβ

IcIb

Ie

Figure 1.48 A simple amplifier built around a bipolar circuit.
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capacitorCewhen that capacitor is removed from the circuit. Before proceeding,Q1 is replaced by its
(simplified) small-signal equivalent circuit, the hybrid-π model, that appears in the right side of the
figure.

The excitation signal is the Vin source applied at the bias bridge made of Rb1 and Rb2. To find the
resistance seen at capacitor Ce terminals, Vin is turned off and its terminals are strapped. Vg is a dc
supply and in this example, its ac contribution to the circuit is 0. You can imagine thatVg is decoupled
by an infinite value capacitor so thatRb1 andRc upper terminals are at the ground level in ac:Vg is also
replaced by a strap for the ac analysis. The updated circuit is shown in Figure 1.49.

Further rearranging the network leads to a rather simple circuit as drawn in Figure 1.50. Here,
you can observe that resistance Re is connected in parallel with the capacitor terminals. It can
therefore be temporarily removed from the analysis and, once the resistance seen from the
terminals is identified, the final expression will bring Re back in parallel with the intermediate
result.

First, let’s express the base current Ib equal to

Ib � �VR

rπ
(1.89)

I1 depends on the collector current as:

I1 � β � 1� �Ib � �IT (1.90)

The intermediate resistance seen at the capacitor terminals is simply the ratio of VR by the test current
IT:

Rint � VR

IT
� rπ
β � 1

(1.91)

Bringing Re back in the circuit gives the resistance seen at the capacitor terminals:

R � Re jj rπ
β � 1

� �
(1.92)

rπ
Ibβ Ic

Rc

Re

Rb2
Rb1

R?

Ib

Ie

Figure 1.49 With a 0-V excitation voltage, the equivalent circuit nicely simplifies.
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The time constant of this circuit is now immediately available:

τ � Ce Re jj rπ
β � 1

� �� 	
(1.93)

SPICE Can Help Verify Results

In some complex circuits, the output resistance you have derived can be made of several series-
paralleled combinations and a mathematical solver such as Mathcad® can be of great help to obtain
the result quickly. However, how do you know if your derivation is correct? A SPICE simulator can
help verify results quickly.

Assume the circuit in Figure 1.51 in which an inductor is inserted into a resistive circuit.
What we want is the resistance ‘seen’ from the inductor terminals. Otherwise stated, what is
the output resistance driving the inductor when the source is set to 0 V? We can see that
resistance rL is in series with L, this is the first term. Then, the left inductor terminal goes
to ground via the paralleled combination of R1 and R2 and returns to the right terminal
through R3:

R � rL � R2 jjR1 � R3 (1.94)

Vin

R1

R2

rL L

R3
Vout

R1

R2

rL

R3

R ?

Figure 1.51 Find the resistance offered by the inductor terminals when the component is removed.

rπ

Ibβ

Rc
VR

Re

ITI1

bI

Figure 1.50 The rearranged circuit reduces to a simple network.
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If we apply Figure 1.52 values to (1.94) we find:

R � 2:2 � 220 � 100
220 � 100

� 1:2k � 1270:95Ω (1.95)

The simulation circuit uses a 1-A test source IT injecting current into the inductor terminals when the
source is set to 0V. Involving a dc operating point simulation, the figure gives a voltage difference
equal to 70:95 � �1:2k� � � 1270:95 V . Considering the 1-A generator, the resistance seen from the
terminals is 1270.95Ω as calculated by SPICE.

A similar exercise can be run on Figure 1.45 circuit where I2, the test generator, injects 1A into the
capacitor terminals. With component values such as those labeled in Figure 1.53, the resistance seen
from the capacitor port is equal to:

R � 2:2 � 22jj60� �
1 � 0:19 � 2:2� � � 2:2 � 16:09756 � 0:582 � 11:56878Ω (1.96)

1

R1
100

R2
220

2

rL
2.2

3

IT
1

R3
1.2k

68.7V 70.9V –1.20kV

Figure 1.52 A SPICE dc simulation will give you the resistance seen from the inductor terminals.

1

R2
60

2
R3
2.2

R1
22

B1
Current

V(1)*0.19

I2
1

16.1V 11.6V

V(2) = 11.5688 V

Figure 1.53 The SPICE simulation of the circuit involving the controlled current source confirms hand-
calculated results.
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The value rounded by the simulator in Figure 1.53 is 11.5688V.
The technique involving SPICE is extremely useful when you deal with large and complex

networks, especially those with a lot of dependent sources. Externally biasing the storage element
terminals with the 1-A current generator and running a quick .OP bias point analysis has proven to be
extremely efficient to trap errors and flaws in the analysis. Highly recommended!

1.5 Appendix 1B – Problems
We have gathered simple to more complex sketches in which you are asked to determine the dc
transfer function and the resistance driving the storage element. Answers are at the end.

R1 C

R2

R3

VoutVin

R1

R2

R3

R?

Figure 1.54 – Problem 1

R1

C

R2 R3 VoutVin

rC

R?
R1

R2 R3

rC

Figure 1.55 – Problem 2

R1

C R2 VoutVin

R ?

R1

R2

Figure 1.56 – Problem 3

R1

C R2 VoutVin

R?

R1

R2
rC rC

Figure 1.57 – Problem 4
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R2

R3 VoutVin R ? R3

R1 R1

rC

C

R2

rC

Figure 1.59 – Problem 6

L

R1 VoutVin R ? R1

rL rL

Figure 1.58 – Problem 5

R2

R3

VoutVin

R ?

R3R1 R1

C

R2R4 R4

redraw
R1 R2

R3

R4

R?

Figure 1.60 – Problem 7

inIoutV

Cr

C

1R

Cr

1R
R?

Figure 1.61 – Problem 8

IinVout

rC

C

R1

rC

R3R?

R2

R3

R1 R2

Figure 1.62 – Problem 9
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Answers

Problem 1: R � R1 � R2 � R3

τ � R1 � R2 � R3� �C
H0 � 0

Problem 2: R � R1 jjR2 jjR3
� � � rC

τ � R1 jjR2 jjR3
� � � rC
� �

C

H0 � R2 jjR3

R2 jjR3 � R1

Problem 3: R � R1 jjR2

τ � R1 jjR2
� �

C

H0 � R2

R1 � R2

Problem 4: R � R1 jjR2 � rC

τ � R1 jjR2 � rC
� �

C

H0 � R2

R1 � R2

Problem 5: R � rL � R1

τ � L

rL � R1

H0 � R1

R1 � rL

IinVout

rL L

R2

rL

R?

R4

R3 R3

R5

R2

R4 R5

Figure 1.63 – Problem 10
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Problem 6: R � rC � R1 jj R2 � R3� �
τ � rC � R1 jj R2 � R3� �� �

C

H0 � R3

R1 � R2 � R3

Problem 7: R � R4 jj R3 � R1 jjR2
� �

τ � R4 jj R3 � R1 jjR2

� �� �
C

H0 � R4

R4 � R3 � R1 jjR2

R2

R1 � R2

Solving by inspection is not possible, use Thévenin’s theorem for R1 and R2 driving R3.

Problem 8: R � rC � R1

τ � rC � R1� �C
R0 � R1

Problem 9: R � rC � R2 � R3

τ � rC � R2 � R3� �C
R0 � R1 � R2 � R3

Problem 10: R � rL � R2 � R5 � R4� �jjR3

τ � L

rL � R2 � R5 � R4� �jjR3

R0 � ?

It cannot be found by inspection. Solution in Chapter 3!
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