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1

Measure

In this chapter, we introduce the concept of a measure and other closely related notions. We
start with some examples and then introduce the concept of a σ-algebra, which is crucial in
measure theory and probability theory. At first glance this concept seems to be a pure technical
construction, which is usually not dealt with in textbooks on ‘Probability and Statistics’ for
empirical sciences. However, a σ-algebra turned out to be the natural domain for a measure,
including probability measures. Moreover, in probability theory, a σ-algebra is not only the
domain of probability measures. The σ-algebra generated by a random variable can be inter-
preted as the set of events that is represented by this random variable. This is treated in more
detail in chapter 2 on measurable mappings, which provides the general theory of random
variables because random variables are measurable mappings. The virtues of σ-algebras will
become fully apparent in chapter 10 on conditional expectations and its subsequent chapters.
The pair (Ω, 𝒜 ) consisting of a nonempty set Ω and a σ-algebra 𝒜on Ω is called a measurable
space. Such a measurable space is crucial for the definition of a measure. Next, we treat some
important examples of measures, including the counting measure, the Dirac measure, and the
Lebesgue measure. Finally, we turn to continuity and uniqueness properties of a measure.

1.1 Introductory examples

Consider Figure 1.1 showing the set Ω of all points (x, y) inside the rectangle and the sets A
and B of all points (x, y) inside the two ellipses, respectively. These three sets are subsets of the
plane R2 := R × R, where R denotes the set of all real numbers, and R × R := {(a, b): a, b ∈
R} is the set of all ordered pairs (a, b) with a, b ∈ R, called the Cartesian product or product set
of R with itself. In Figure 1.1, the sets A and B have a nonempty intersection. Now let area (A)
and area (B) denote their areas and area (A ∩ B) the area of their intersection. Inspecting this
figure reveals:

area (A ∪ B) = area (A) + area (B) − area (A ∩ B).

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
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Ω

A BA∩B

Figure 1.1 A Venn diagram of two sets and their intersection.

This example illustrates three important points:

(a) A measure such as area is a function on a set system on Ω, (i.e., on a set of subsets of
a set Ω such as A, B, and A ∩ B).

(b) If area is defined for the subsets A, B ⊂ Ω, then it is also defined for their intersection
A ∩ B and for their union A ∪ B.

(c) Measures are additive. In other words, if A and B are disjoint subsets of Ω (i.e., if
A ∩ B = Ø), then area (A ∪ B) = area (A) + area (B).

Note that, in the example presented in Figure 1.1, the sets A and B are not disjoint, and this is
why area (A ∩ B) has to be subtracted in the equation displayed above. Points (a) to (c) also
apply to other measures such as length and volume as well as to probability measures. There-
fore, we adopt a more general language and talk about subsets A, B of a set Ω (or measurable
sets A, B) and their measure 𝜇 instead of lines and their lengths, rectangles and their areas,
cubes and their volume, or events and their probabilities.

For example, if Ω = {1, … , 6} denotes the set of possible outcomes of tossing a fair dice,
A = {1, 6} and B = {2, 4, 6} denote the events of tossing a 1 or a 6 and tossing an even number,
respectively. Furthermore, A ∩ B = {6} and the probability of tossing a 1 or a 6 or an even
number – the event A ∪ B – is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 2
6
+ 3

6
− 1

6
= 4

6
.

In the first example, the measure area assigns a real number to a subset of R2. In the second
example, the measure P assigns a real number to a subset of Ω = {1, … , 6}. This suggests that
a measure should be defined such that it assigns a real number to all subsets of a set (i.e., to all
elements of the power set). Unfortunately, this may lead to contradictions (see, e.g., Georgii,
2008). In contrast, when defining a measure on a σ-algebra, such contradictions can be avoided.

1.2 𝛔-Algebra and measurable space

In Definition 1.1, we consider a set system 𝒜on Ω, a sequence A1, A2, … of subsets of Ω, and
their countable union. Remember, a set system on a setΩ is a set of subsets ofΩ presuming that
Ω is not empty. A sequence of subsets of a set Ω is a function from the set N0 = {0, 1, 2, …}
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or N = {1, 2, …} or a subset of these sets to 𝒫(Ω), the power set of Ω. Furthermore, the finite
union of the sets A1, … , An and the countable union of the sets A1, A2, … are defined by

n⋃
i=1

Ai := {a ∈ Ω: ∃ i ∈ {1, … , n}: a ∈ Ai} (1.1)

and

∞⋃
i=1

Ai := {a ∈ Ω: ∃ i ∈ N: a ∈ Ai}, (1.2)

respectively. Hence, by definition,
⋃n

i=1 Ai is the set of all elements that are an element of at
least one of the sets Ai, i = 1, … , n, and

⋃ ∞
i=1 Ai is the set of all elements that are an element

of at least one of the sets Ai, i ∈ N. Finally, Ac := Ω ∖ A denotes the complement of A (with
respect to Ω).

Definition 1.1 [σ-Algebra]
A set 𝒜 of subsets of a nonempty set Ω is called a σ-algebra (or σ-field) on Ω, if the
following three conditions hold:

(a) Ω ∈ 𝒜.

(b) If A ∈ 𝒜, then Ac ∈ 𝒜.

(c) If A1, A2, … ∈ 𝒜, then
⋃ ∞

i=1 Ai ∈ 𝒜.

An element of a σ-algebra is called a measurable set.

Remark 1.2 [Closure with respect to set operations] Condition (c) postulates that σ-
algebras are closed with respect to countable unions of sets A1, A2, … ∈ 𝒜. However, in con-
junction with (a) and (b), this implies that a σ-algebra is also closed with respect to finite unions
of sets A1, … , An ∈ 𝒜, because every finite union of sets A1, … , An ∈ 𝒜 can be represented
as a countable union of the sets that are elements of 𝒜, for example:

n⋃
i=1

Ai = A1 ∪… ∪ An ∪ Ø ∪ Ø ∪… . (1.3)

Note that (a) and (b) imply Ø ∈ 𝒜, because Ωc = Ø.
Furthermore, although condition (c) only requires explicitly that σ-algebras are closed with

respect to countable unions, Definition 1.1 implies that a σ-algebra is closed also with respect
to intersections such as A1 ∩ A2 and set differences A1 ∖ A2. In other words, if A1 and A2 are
elements of 𝒜, then A1 ∪ A2, A1 ∩ A2, and A1 ∖ A2 are elements of 𝒜 as well, provided that 𝒜
is a σ-algebra. The same is true for countable intersections A1 ∩ A2 ∩… of elements of 𝒜. In
more formal terms: If 𝒜 is a σ-algebra, then,

A1, A2, … ∈ 𝒜 ⇒
∞⋂

i=1
Ai ∈ 𝒜 (1.4)
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(see Exercise 1.1), where
⋂ ∞

i=1 Ai = A1 ∩ A2 ∩… is defined by

∞⋂
i=1

Ai := {a ∈ Ω: ∀ i ∈ N: a ∈ Ai}. (1.5)

Because

n⋂
i=1

Ai = A1 ∩… ∩ An ∩ Ω ∩ Ω ∩… , (1.6)

we can also conclude

A1, … , An ∈ 𝒜 ⇒
n⋂

i=1
Ai ∈ 𝒜, (1.7)

where
⋂ n

i=1 Ai, the finite intersection of the sets A1, … , An, is defined by

n⋂
i=1

Ai := {a ∈ Ω: ∀ i ∈ {1, … , n}: a ∈ Ai}. (1.8)
⊲

Remark 1.3 [Countable and uncountable unions] Defining a σ-algebra, we use the sym-
bol σ in order to emphasize that unions of finitely or countably many sets are considered, but
not other unions of sets. For example, the closed interval [a, b] := {x ∈ R: a ≤ x ≤ b, a, b ∈
R} on the real axis is identical to the union of singletons {x} that contain only one single
element x ∈ R, that is,

[a, b] =
⋃

a≤x≤b
{x}. (1.9)

This union is neither finite nor countable. Hence, condition (c) of Definition 1.1 does not imply
that this union is necessarily an element of a σ-algebra𝒜on R, even if all singletons {x}, x ∈ R,
are elements of 𝒜. ⊲

The following notion of a measurable space proves to be convenient in measure theory.

Definition 1.4 [Measurable space]
If Ω is a nonempty set and 𝒜a σ-algebra on Ω, then the pair (Ω, 𝒜 ) is called a measur-
able space.

Example 1.5 [The smallest σ-algebra] The smallest σ-algebra on a nonempty set Ω is 𝒜=
{Ω, Ø}. It contains only the elements Ω and the empty set Ø. As is easily seen, Ω ∪ Ø = Ω,
Ωc = Ø, and Øc = Ω are elements of 𝒜. This shows that 𝒜= {Ω, Ø} is closed with respect to
union and complement. ⊲
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Example 1.6 [Power set] The power set 𝒫(Ω) of a nonempty setΩ (i.e., the set of all subsets
of Ω) is a σ-algebra on Ω. It is the largest σ-algebra on a nonempty set Ω. All other σ-algebras
on Ω are subsets of 𝒫(Ω). ⊲

Example 1.7 [A small σ-algebra] If A is a subset of a nonempty set Ω, then 𝒜=
{Ω, Ø, A, Ac} is always a σ-algebra on Ω (see Exercise 1.2). Again, it is easily seen that this
set system is closed with respect to union and complement. ⊲

Remark 1.8 [Motivation for σ-algebras] These examples show that there can be many dif-
ferent σ-algebras on a nonempty set Ω. Why not simply always use the largest one, the power
set 𝒫(Ω)? In fact, this would be possible as long as Ω is finite or countable. There are at least
three reasons for using σ-algebras. First, there are important sets Ω (e.g., Ω = R) such that
measures of interest (e.g., length — which is the Lebesgue measure pertaining to Ω = R) can-
not be defined on 𝒫(Ω) (see e.g., Wise and Hall, 1993, counterexample 1.25). These measures
can be defined, however, on other σ-algebras, such as the Borel-σ-algebra [see Eq. (1.18)]. (For
an example in which the power set is ‘too large’, see Georgii, 2008.) Second, in some sense,
σ-algebras contain those elements of a larger set system that are relevant for a particular ques-
tion. In probability theory, together with Ω and a probability measure, each σ-algebra on Ω
represents a random experiment that is in some sense contained in an (often larger) random
experiment. For example, if we consider the random experiment of tossing a dice, then we
may focus on whether or not the number of points is even. Together with Ω and the probability
measure, the corresponding σ-algebra represents a ‘new’ random experiment contained in the
random experiment of tossing a dice (see Exercise 1.3). Third, using different σ-algebras is
indispensable for introducing conditional expectations, conditional independence, and condi-
tional distributions (see chs. 9 to 17). ⊲

Example 1.9 [Joe and Ann] Consider the following random experiment: First, we sample a
unit u from the set ΩU := {Joe, Ann}. Second, each unit receives (yes) or does not receive a
treatment (no). Third, it is observed whether (+) or not (−) a success criterion is reached (see
Fig. 1.2). Defining ΩX := {yes, no} and ΩY := {+, −}, the Cartesian product

Ω := ΩU × ΩX × ΩY = {(Joe, no, −), (Joe, no, +), … , (Ann, yes, +)}

is the set of possible outcomes ω of this random experiment. It has eight elements, namely
the triples (Joe, no, −), (Joe, no, +), …, (Ann, yes, +) (see all eight leaves of Fig. 1.2 for a
complete list of these elements).

Joe
no −

+
yes −

+

Ann
no −

+
yes −

+

Figure 1.2 Example of a tree representation of a Cartesian product.
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In this example, a first σ-algebra 𝒜 we may consider is the set of all subsets of Ω, the
power set 𝒫(Ω). This set has 28 = 256 elements, where 8 is the number of elements, that is,
the cardinality of Ω (see Kheyfits, 2010, Th. 1.1.37). Among these elements is the set

A := {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)} = {Joe} × ΩX × ΩY.

In the context of probability theory, it is also called the event that Joe is drawn. Other elements
of 𝒜 are the events

B := {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)} = ΩU × {yes} × ΩY

that the drawn person is treated, and

C := {(Joe, no, +), (Joe, yes, +), (Ann, no, +), (Ann, yes, +)} = ΩU × ΩX × {+}

that success (+) occurs, irrespective of which person is drawn and whether or not the person
is treated.

Aside from the power set of Ω, we could also consider the σ-algebras 𝒜1 := {Ω, Ø, A, Ac},
𝒜2 := {Ω, Ø, B, Bc}, and 𝒜3 := {Ω, Ø, C, Cc}, to name just three. (For another one, see Exer-
cise 1.4.) In a sense, 𝒜1 represents the information regarding which person is drawn. In con-
trast, 𝒜2 contains the information regarding whether or not the drawn person is treated, and
𝒜3 whether or not the drawn person is successful. Of course, all these σ-algebras are subsets
of 𝒫(Ω), the power set of Ω. ⊲

Example 1.10 [Trace of a set system and trace σ-algebra] Let Ω and Ω0 be nonempty
sets. If ℰ is a set system on Ω and Ω0 ⊂ Ω, then

ℰ |Ω0
:= {Ω0 ∩ A: A ∈ ℰ}

is a set system on Ω0. It is called the trace of ℰ in Ω0. Furthermore, if 𝒜 is a σ-algebra on Ω
and Ω0 ⊂ Ω, then the set system

𝒜 |Ω0
:= {Ω0 ∩ A: A ∈ 𝒜}

is a σ-algebra on Ω0 (see Exercise 1.5). If Ω ≠ Ω0, then the trace 𝒜 |Ω0
is a σ-algebra on Ω0,

but not on Ω, because Ω ∉ 𝒜 |Ω0
. ⊲

Example 1.11 [Joe and Ann – continued] In Example 1.9, we defined the event A that Joe
is drawn, the event B that the drawn person is treated, and the σ-algebra 𝒜2 = {Ω, Ø, B, Bc}.
The trace of 𝒜2 in A is

𝒜2|A = {A, Ø, A ∩ B, A ∩ Bc}.

Obviously, just like all elements of 𝒜2 are subsets of Ω, all elements of 𝒜2|A are subsets of A.
From an application point of view, considering 𝒜2|A means to presume that Joe is drawn and
consider the events that he is treated or not treated, respectively. ⊲
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1.2.1 𝛔-Algebra generated by a set system

The concept of a σ-algebra generated by a set system is useful in order to define important
σ-algebras. It is also useful for specifying certain measures (see section 1.6). Theorem 1.12
prepares Definition 1.13. Reading this theorem, remember that a σ-algebra on a set Ω is itself
a set (of subsets of Ω), so that we can consider the intersection of σ-algebras.

Theorem 1.12 [Intersection of σ-algebras is a σ-algebra]
Let I be a nonempty (finite, countable, or uncountable) index set, and let all 𝒜i, i ∈ I, be
σ-algebras on Ω. Then,

⋂
i ∈ I 𝒜i is also a σ-algebra on Ω.

(Proof p. 28)

This theorem allows us to define the σ-algebra generated by a set system on Ω.

Definition 1.13 [σ-Algebra generated by a set system]
Let ℰ be a set system on a nonempty set Ω, and let (𝒜i, i ∈ I) be the family of all σ-
algebras on Ω that contain ℰ as a subset. Then, we define

σ(ℰ ) :=
⋂
i ∈ I

𝒜i (1.10)

and call it the σ-algebra generated by ℰ . The set ℰ is also called a generating
system of σ(ℰ ).

Remark 1.14 [Smallest σ-algebra containing ℰ as a subset] According to Theorem 1.12,
every set system ℰ on Ω generates a uniquely defined σ-algebra σ(ℰ ) on Ω. Note that the
σ-algebra σ(ℰ ) is the smallest σ-algebra on Ω containing ℰ as a subset, that is,

𝒞 is a σ-algebra on Ω and ℰ ⊂ 𝒞 ⇒ σ(ℰ ) ⊂ 𝒞. (1.11)

Furthermore,

σ[σ(ℰ )] = σ(ℰ ). (1.12)
⊲

Lemma 1.15 immediately follows from (1.11). It can be used in proofs of the identity of
two σ-algebras.

Lemma 1.15 [Smallest σ-algebra containing ℰ as a subset]
Let (Ω, 𝒜 ) be a measurable space and ℰ a set system on Ω with σ(ℰ ) = 𝒜. If 𝒞 is a
σ-algebra on Ω with ℰ ⊂ 𝒞 ⊂ 𝒜, then 𝒞 = 𝒜.

(Proof p. 29)
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Remark 1.16 [σ-Algebra generated by unions of set systems] Let 𝒟 , ℰ , ℱ be set systems
on a nonempty set Ω. Then,

σ(𝒟 ∪ℰ ∪ℱ ) = σ[𝒟 ∪ σ(ℰ ∪ℱ )] (1.13)

(see Exercise 1.6). ⊲

Example 1.17 [Several set systems may generate the same σ-algebra] If A is a subset of
a nonempty set Ω, then the set system {A} generates the σ-algebra {Ω, Ø, A, Ac}. Note that
{Ω, Ø, A, Ac} is also generated by the set systems {Ac} and {A, Ac}, for instance. Hence,

σ({A}) = σ({Ac}) = σ({A, Ac}) = σ({Ω, Ø, A, Ac}) = {Ω, Ø, A, Ac}.

In contrast, if Ø ≠ A ≠ Ω, then the σ-algebra {Ω, Ø, A, Ac} is neither generated by the set
system {Ω} nor by {Ω, Ø}. Instead,

σ({Ø}) = σ({Ω}) = σ({Ω, Ø}) = {Ω, Ø},

that is, {Ω}, {Ø}, and {Ω, Ø} generate the σ-algebra {Ω, Ø}. ⊲

Example 1.18 [A generator of the power set] Let Ω ≠ Ø be finite or countable, and let
ℰ := {{ω}: ω ∈ Ω}. Then, σ(ℰ ) = 𝒫(Ω) (see Exercise 1.7). ⊲

This example is generalized in Lemma 1.20.

Remark 1.19 [Partition] Reading Lemma 1.20, remember that a set system ℰ on a
nonempty set Ω is called a partition of Ω if

(a) ∀ B ∈ ℰ: B ≠ Ø.

(b) ∀ B, C ∈ ℰ: B ≠ C ⇒ B ∩ C = Ø.

(c)
⋃

B∈ℰ B = Ω.
⊲

Lemma 1.20 [An element of a σ-algebra generated by a partition]
Let ℰ := {B1, … , Bn} or ℰ := {B1, B2, …} be a finite or countable partition of Ω,
respectively. Then, for all C ∈ σ(ℰ ), there is an I(C) ⊂ N such that

C =
⋃

i∈ I(C)
Bi =

⋃
Bi ⊂C

Bi, (1.14)

where, by convention,
⋃

i∈Ø Bi := Ø.
(Proof p. 29)

Remark 1.21 [Constructing a σ-algebra] If ℰ = {A1, … , Am} is a finite set of subsets of
Ω, then there is a finite partition ℱ = {B1, … , Bn} of Ω with σ(ℰ ) = σ(ℱ). Furthermore, if
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ℰ is a finite set of subsets of Ω, then each element of σ(ℰ ) is obtained by finitely many unions,
intersections, or complements of elements of ℰ (see Exercise 1.8). ⊲

Example 1.22 [Joe and Ann – continued] In Example 1.11, we already considered the event
A that Joe is drawn and noted that the trace of the σ-algebra 𝒜2 = {Ω, Ø, B, Bc} in A is 𝒜2|A =
{A, Ø, A ∩ B, A ∩ Bc}. In contrast, the σ-algebra on Ω generated by the trace 𝒜2|A is

σ(𝒜2|A) = {Ω, Ø, A, Ac, A ∩ B, A ∩ Bc, (A ∩ B) ∪ Ac, (A ∩ Bc) ∪ Ac},

where (A ∩ B) ∪ Ac = Ac ∪ B and (A ∩ Bc) ∪ Ac = Ac ∪ Bc. ⊲

Remark 1.23 [Monotonicity of generated σ-algebras] Let ℰ1, ℰ2 be set systems on a
nonempty set Ω with ℰ1 ⊂ ℰ2. Then, σ(ℰ1) ⊂ σ(ℰ2) (see Exercise 1.9). ⊲

An important kind of σ-algebras are those for which there is a countable set system that
generates them.

Definition 1.24 [Countably generated σ-algebra]
Let (Ω, 𝒜 ) be a measurable space. Then, 𝒜 is called countably generated if there is
a finite or countable set ℰ ⊂ 𝒜 such that σ(ℰ ) = 𝒜.

Example 1.25 [Some countably generated σ-algebras] Examples of countably generated
σ-algebras are:

(a) All σ-algebras on a finite nonempty set Ω.

(b) 𝒫(Nn
0), n ∈ N.

(For a proof, see Exercise 1.10. For another example, see Remark 1.28.) ⊲

Remark 1.26 [A caveat] Note that there are countably generated σ-algebras for which not all
of their elements can be constructed by countably many unions, intersections, or complements
of elements of the generating system. An example in case are Borel σ-algebras on R or Rn (see
Rem. 1.28 and Michel, 1978, sect. I.4). ⊲

Lemma 1.27 [σ-Algebra generated by the trace of a set system]
Let A ⊂ Ω be nonempty, ℰ ⊂ 𝒫(Ω), and ℰ |A := {C ∩ A: C ∈ ℰ}. Then,

σ(ℰ |A) = σ(ℰ )|A, (1.15)

where σ(ℰ |A) denotes the σ-algebra generated on A, whereas σ(ℰ ) is a σ-algebra on Ω.
Furthermore, if 𝒞 is a σ-algebra on Ω and A ∈ ℰ such that

∀ C ∈ ℰ: C ≠ A ⇒ A ∩ C = Ø, (1.16)
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(i.e., A does not intersect with any other element of ℰ ), then

σ(𝒞 ∪ℰ )|A = 𝒞 |A. (1.17)

(Proof p. 30)

Hence, according to Equation (1.15), the σ-algebra generated by the trace of a set system
ℰ is the trace of the σ-algebra generated by ℰ ; and, according to Equation (1.17), the trace of
the σ-algebra σ(𝒞 ∪ℰ ) in the set A is identical to the trace of the σ-algebra 𝒞 in A, if (1.16)
holds.

1.2.2 𝛔-Algebra of Borel sets on Rn

For a, b ∈ R with a < b, let us consider a half-open interval ]a, b] in R, which is defined by

]a, b] := {x ∈ R: a < x ≤ b},

and the set system

ℐ1 := {]a, b]: a, b ∈ R and a < b}

of all half-open intervals in R. The σ-algebra generated by this set system is called the Borel
σ-algebra on R. It is denoted by ℬ or ℬ1. The elements of ℬ are called the Borel sets of R.
In formal terms,

ℬ := ℬ1 := σ(ℐ1). (1.18)

Note that there are several sets systems generating the Borel σ-algebra (see, e.g., Klenke, 2013,
Th. 1.23). In particular,

ℬ1 = σ({]−∞, b]: b ∈ R}) (1.19)

(see Georgii, 2008). Similarly, we define the Borel σ-algebra on R2 = R × R to be the σ-
algebra generated by the set system ℐ2 of all half-open rectangles in R2, whose sides are
parallel to the axes (see Fig. 1.3). These rectangles are defined by

]a1, b1] × ]a2, b2] = {(x1, x2) ∈ R2: a1 < x1 ≤ b1, a2 < x2 ≤ b2}.

The σ-algebra σ(ℐ2) is denoted by ℬ2, that is, ℬ2 := σ(ℐ2), and its elements are called the
Borel sets of R2.

This definition is easily generalized: The Borel σ-algebra on Rn is defined byℬn := σ(ℐn),
n ∈ N, where ℐn is the system of all half-open cuboids in Rn, whose sides are parallel to the
axes. Such a cuboid is a set

]a1, b1] ×… × ]an, bn] = {(x1, … , xn) ∈ Rn : a1 < x1 ≤ b1, … , an < xn ≤ bn}, (1.20)
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b1

b2

a1

a2

Figure 1.3 A half-open rectangle in the plane R2 .

where a1, … , an, b1, … , bn ∈ R. Just like ℬ1, the σ-algebra ℬn has several generating sys-
tems, one of which is used in the equation

ℬn = σ({]−∞, b1] ×… × ]−∞, bn]: b1, … , bn ∈ R}) (1.21)

(see Exercise 1.11).
Note that not every subset of Rn is a Borel set. In other words, ℬn is not the power set of

Rn (see Rem. 1.60). However, for each x = (x1, … , xn) ∈ Rn, the singleton {x} is a Borel set
of Rn, that is,

{x} ∈ ℬn, ∀ x ∈ Rn (1.22)

(see Exercise 1.12).
Furthermore, if R = R ∪ {−∞, +∞} denotes the extended set of real numbers, then

ℬ := σ(ℬ ∪ {{−∞}, {+∞}})

is a σ-algebra on R, and it is called the Borel σ-algebra on R. Similarly,ℬn is called the Borel
σ-algebra on Rn. It is defined as the product σ-algebra ofℬ with itself (n times) (see Def.
1.31). Finally, we may sometimes considerℬn|Ω0

, the trace of the Borel σ-algebra on Rn in

Ω0 ⊂ Rn.

Remark 1.28 [The Borel σ-algebra is countably generated] Note that

ℬ = σ({]a, b]: a, b ∈ Q, a < b}),

where Q denotes the set of rational numbers. Because Q is countable, the set of intervals
{]a, b]: a, b ∈ Q, a < b} is countable as well. Therefore, the Borel σ-algebra ℬ is countably
generated. This also holds for ℬn, n ∈ N (see Klenke, 2013, Th. 1.23). ⊲

Remark 1.29 [Trace of the Borel σ-algebra in a countable subset of R] Let ℬ denote the
Borel σ-algebra on R. If Ω0 ⊂ R is finite or countable, then ℬ|Ω0

= 𝒫(Ω0), where ℬ|Ω0
is

the trace of the Borel σ-algebra on R in Ω0 ⊂ R (see Exercise 1.13). ⊲
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1.2.3 𝛔-Algebra on a Cartesian product

In section 1.2.2, we defined a σ-algebra on Rn = R ×… × R (n-times). Now we consider σ-
algebras on general Cartesian products. We start with an example.

Example 1.30 [Joe and Ann – continued] In Example 1.9, we already considered the Carte-
sian product

Ω := ΩU × ΩX × ΩY,

which consists of the eight triples (Joe, no, −), (Joe, no, +), … , (Ann, yes, +) (see again Fig.
1.2). Now consider the σ-algebras 𝒜1 := 𝒫(ΩU), 𝒜2 := 𝒫(ΩX), and 𝒜3 := 𝒫(ΩY), as well as
the set

ℰ := {A1 × A2 × A3: A1 ∈ 𝒜1, A2 ∈ 𝒜2, A3 ∈ 𝒜3},

which is a set system on Ω consisting of 4 ⋅ 4 ⋅ 4 = 64 elements. For example, the set system
ℰ contains the elements

A := {Joe} × {no} × {−} = {(Joe, no, −)}

and

B := {Ann} × {yes} × {+} = {(Ann, yes, +)}.

However, ℰ does not contain

A ∪ B = {(Joe, no, −), (Ann, yes, +)}

as an element. The only product set A1 × A2 × A3 with A1 ∈ 𝒜1, A2 ∈ 𝒜2, A3 ∈ 𝒜3 that con-
tains A ∪ B as a subset is ΩU × ΩX × ΩY = Ω. However, A ∪ B ≠ Ω. Therefore, ℰ is not a
σ-algebra [cf. condition (c) of Rem. 1.2]. In this example, the σ-algebra generated by ℰ is
the power set of Ω, that is, σ(ℰ ) = 𝒫(Ω). It consists of 28 = 256 elements. According to the
following definition, σ(ℰ ) is denoted by 𝒜1 ⊗ 𝒜2 ⊗ 𝒜3 and called the product σ-algebra of
𝒜1, 𝒜2, and 𝒜3. ⊲

Definition 1.31 [Product σ-algebra]
Let (Ω1, 𝒜1), … , (Ωn, 𝒜n) be measurable spaces and Ω := Ω1 ×… × Ωn. Then

𝒜1 ⊗ … ⊗ 𝒜n :=
n⨂

i=1
𝒜i := σ

({
n

×
i=1

Ai: Ai ∈ 𝒜i, i = 1, … , n

})
(1.23)

is called the product σ-algebra of the σ-algebras 𝒜i, i = 1, … , n.

Note that the product σ-algebra 𝒜1 ⊗ … ⊗ 𝒜n is not the Cartesian product 𝒜1 ×… ×
𝒜n. Instead, the product σ-algebra is generated by the set system of all Cartesian products of
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elements of the σ-algebras 𝒜1, … , 𝒜n. In Lemma 2.42, we give an equivalent specification of
a product σ-algebra, using projection mappings.

Lemma 1.32 provides a relationship between the generating systems of the σ-algebras 𝒜i,
i = 1, … , n, and the generating system of the product σ-algebra.

Lemma 1.32 [Generating system of a product σ-algebra]
For i = 1, … , n, let (Ωi, 𝒜i) be measurable spaces and ℰi ⊂ 𝒜i with σ(ℰi) = 𝒜i. Then,

n⨂
i=1

𝒜i = σ
({

n

×
i=1

Ai: Ai ∈ ℰi, i = 1, … , n

})
. (1.24)

For a proof, see Klenke [2013, Th. 14.12 (i)].
This lemma implies

ℬn =
n⨂

i=1
ℬ = ℬ ⊗ … ⊗ ℬ (n-times)

for the Borel σ-algebra on Rn. This lemma also implies the following corollary:

Corollary 1.33 [Countable generating system of a product σ-algebra]
Let (Ωi, 𝒜i), i = 1, … , n, be measurable spaces, where all 𝒜i are countably generated.
Then

⨂n
i=1 𝒜i is countably generated as well.

Example 1.34 [Countable sets and product σ-algebra] Let Ω1, … , Ωn be finite or count-
able nonempty sets and 𝒜1, … , 𝒜n be their power sets. Then,

n⨂
i=1

𝒜i = 𝒫
(

n

×
i=1

Ωi

)
,

that is,
⨂n

i=1 𝒜i is the power set of Ω := Ω1 ×… × Ωn (see Exercise 1.14). ⊲

Remark 1.35 [Complement of a Cartesian product] Let (Ω1 × Ω2, 𝒜1 ⊗ 𝒜2) be a measur-
able space, A ∈ 𝒜1, and B ∈ 𝒜2. Then (A × B)c ∈ 𝒜1 ⊗ 𝒜2, and this set can be written as:

(A × B)c = (Ac × B) ∪ (Ω1 × Bc), (1.25)

which is a union of disjoint sets (see Exercise 1.15). ⊲

1.2.4 ∩-Stable set systems that generate a 𝛔-algebra

For many proofs, generating set systems are useful, which are ∩-stable.
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Definition 1.36 [∩-Stability]
Let Ω denote a nonempty set. A set ℰ of subsets of Ω is called ∩-stable (or ∩-closed)
if A ∩ B ∈ ℰ for all A, B ∈ ℰ .

Example 1.37 [Set system with one single element] A set system {A} that has only a single
element A ⊂ Ω ≠ Ø is ∩-stable (cf. Example 1.17). ⊲

Example 1.38 [Partition and ∩-stability] Ifℰ is a partition of the setΩ, then𝒟 := ℰ ∪ {Ø}
is ∩-stable. ⊲

Example 1.39 [A ∩-stable generating system of a product σ-algebra] Consider the mea-
surable spaces (Ωi, 𝒜i), i = 1, … , n. The set

{A1 ×… × An: Ai ∈ 𝒜i, i = 1, … , n},

is a ∩-stable generating system of
⨂n

i=1 𝒜i (see Exercise 1.16). ⊲

Another type of a set system is a Dynkin system. It can be used to show that a specific set
system is a σ-algebra.

Definition 1.40 [Dynkin system]
A set 𝒟 of subsets of a set Ω is called a Dynkin system on Ω, if the following three
conditions hold:

(a) Ω ∈ 𝒟 .

(b) If A ∈ 𝒟 , then Ac ∈ 𝒟 .

(c) If A1, A2, … ∈ 𝒟 and they are pairwise disjoint, then
⋃ ∞

i=1 Ai ∈ 𝒟 .

In the definition of a σ-algebra𝒜, we require
⋃ ∞

i=1 Ai ∈ 𝒜for all sequences A1, A2, … ∈ 𝒜,
whereas for a Dynkin system the corresponding requirement is only made for all sequences
A1, A2, … ∈ 𝒟 of pairwise disjoint sets. Analogously to Definition 1.13, for a set system ℰ
on Ω, 𝛿(ℰ ) is defined as the Dynkin system generated by ℰ , that is, as the intersection of
all Dynkin systems containing ℰ . According to Theorem 1.41, a Dynkin system is also a
σ-algebra if and only if it is ∩-stable.

Theorem 1.41 [Dynkin system and σ-algebra]
Let Ω be a nonempty set.

(i) A Dynkin system 𝒟 on Ω is a σ-algebra if and only if it is ∩-stable.

(ii) If ℰ is a ∩-stable set of subsets of Ω, then 𝛿(ℰ ) = σ(ℰ ).
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For a proof, see Bauer (2001, Ths. 2.3 and 2.4). According to proposition (i) of this theorem,
we can prove that a set system is a σ-algebra by showing that it is a ∩-stable Dynkin system,
and proposition (ii) can be applied to show that the Dynkin system generated by a ∩-stable set
system is a σ-algebra.

1.3 Measure and measure space

A measure assigns to all elements of a σ-algebra an element of the closed interval

[0, ∞] := {x ∈ R: 0 ≤ x} ∪ {∞},

that is, a nonnegative real number or the element ∞.

Example 1.42 [A first example] Let Ω = R, and assume that the closed interval [3, 9] =
{x ∈ R: 3 ≤ x ≤ 9} as well as the union [3, 9] ∪ [10, 12] are elements of a σ-algebra on Ω. If
the measure is length, then

length ([3, 9]) = 9 − 3 = 6

and

length ([3, 9] ∪ [10, 12]) = length ([3, 9]) + length ([10, 12])

= (9 − 3) + (12 − 10) = 6 + 2 = 8,

because the two intervals are disjoint (i.e., their intersection is the empty set Ø). In this case, the
lengths of the intervals [3, 9] and [10, 12] add up to the length of their union [3, 9] ∪ [10, 12].
In Definition 1.43 (c), we require not only additivity but also σ-additivity. ⊲

Reading Definition 1.43, remember that, for a sequence a1, a2, … of nonnegative real num-
bers,

∑∞
i=1 ai is defined by

∞∑
i=1

ai := lim
n→∞

n∑
i=1

ai.

Definition 1.43 [Measure and measure space]
Let (Ω, 𝒜 ) be a measurable space. A function 𝜇: 𝒜→ R is called a measure and the
triple (Ω, 𝒜, 𝜇) is called a measure space, if

(a) 𝜇(Ø) = 0.

(b) 𝜇(A) ≥ 0, ∀ A ∈ 𝒜. (nonnegativity)

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then 𝜇
(⋃∞

i=1 Ai

)
= ∑∞

i=1 𝜇(Ai).
(σ-additivity)
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1.3.1 𝛔-Additivity and related properties

Remark 1.44 [σ-Additivity implies finite additivity] Note that σ-additivity of a measure
implies finite additivity, that is, it implies

𝜇

(
n⋃

i=1
Ai

)
=

n∑
i=1

𝜇(Ai), if A1, … , An ∈ 𝒜 are pairwise disjoint (1.26)

[see Rule (ii) of Box 1.1 and its proof in Exercise 1.18]. ⊲

Remark 1.45 [σ-Additivity] Using the term σ-additivity signals that unions of finitely or
countably many sets are considered, but not other unions of sets. If, instead of σ-additivity,
we would require additivity for any kind of unions, including uncountable unions, then the
Lebesgue measure 𝜆 on (R, ℬ) – the measure representing length – could not be constructed
anymore. This is explained in more detail in Remark 1.71. ⊲

Remark 1.46 [Representation of a union as a union of pairwise disjoint sets] Let (Ω, 𝒜 )
be a measurable space. If A1, A2, … ∈ 𝒜 is a sequence of subsets of Ω, then there is a sequence
B1, B2, … ∈ 𝒜 of pairwise disjoint sets with

∞⋃
i=1

Ai =
∞⋃

i=1
Bi. (1.27)

One way to construct B1, B2, … is to define B1 := A1 and

Bi := Ai ∖

(
i−1⋃
j=1

Aj

)
, for i > 1, (1.28)

(see Exercise 1.17). ⊲

Remark 1.47 [Additivity of measures for partitions] Let (Ω, 𝒜, 𝜇) be a measure space,
B ∈ 𝒜, and assume

(a) A1, … , An ∈ 𝒜 are pairwise disjoint,

(b) B ⊂
⋃ n

i=1 Ai.

Then,

𝜇(B) =
n∑

i=1
𝜇(B ∩ Ai). (1.29)

Analogously, if

(c) A1, A2, … ∈ 𝒜 are pairwise disjoint,

(d) B ⊂
⋃ ∞

i=1 Ai,
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then

𝜇(B) =
∞∑

i=1
𝜇(B ∩ Ai) (1.30)

(see Exercise 1.19). ⊲

1.3.2 Other properties

Other important properties of a measure are displayed in Box 1.1. Some of these properties
can intuitively be understood by inspecting the Venn diagram presented in Figure 1.1. These

Box 1.1 Rules of computation for measures.

Let (Ω, 𝒜, 𝜇) be a measure space.
If A1, A2, … ∈ 𝒜 are pairwise disjoint, then,

𝜇

(
∞⋃

i=1
Ai

)
=

∞∑
i=1

𝜇(Ai). (σ-additivity) (i)

𝜇

(
n⋃

i=1
Ai

)
=

n∑
i=1

𝜇(Ai), ∀ n ∈ N. (finite additivity) (ii)

If A, B ∈ 𝒜, then,

𝜇(A) = 𝜇(A ∩ B) + 𝜇(A ∖ B). (iii)

𝜇(Ω) = 𝜇(B) + 𝜇(Bc). (iv)

𝜇(A) ≤ 𝜇(B), if A ⊂ B. (monotonicity) (v)

𝜇(A ∖ B) = 𝜇(A) − 𝜇(A ∩ B), if 𝜇(A ∩ B) < ∞. (vi)

𝜇(A ∪ B) = 𝜇(A) + 𝜇(B) − 𝜇(A ∩ B), if 𝜇(A ∩ B) < ∞. (vii)

𝜇(A) = 𝜇(Ω) < ∞ ⇒ 𝜇(A ∩ B) = 𝜇(B). (viii)

𝜇(A) = 0 ⇒ 𝜇(A ∪ B) = 𝜇(B). (ix)

Let A ∈ 𝒜 and let Ω0 ⊂ Ω and be finite or countable with 𝜇(Ω ∖ Ω0) = 0.
If, for all ω ∈ Ω0, {ω} ∈ 𝒜, then

𝜇(A) =
∑

ω∈A∩Ω0

𝜇({ω}). (x)

If A1, A2, … ∈ 𝒜, then

𝜇

(
∞⋃

i=1
Ai

)
≤

∞∑
i=1

𝜇(Ai). (σ-subadditivity) (xi)
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properties always hold with the conventions +∞+∞ = +∞ and α +∞ = +∞, for α ∈ R.
However, note that the term +∞+ (−∞) or +∞− (+∞) cannot meaningfully be defined.
Therefore, properties (vi) and (vii) only hold if we assume 𝜇(A ∩ B) < ∞. For proofs of all
these properties, see Exercise 1.18.

Remark 1.48 [Finite additivity and σ-additivity applied to singletons] If Ω is finite or
countable, then each A ⊂ Ω is finite or countable as well. Hence, for any measure 𝜇 on the
measurable space (Ω, 𝒫(Ω)),

𝜇(A) = 𝜇

(⋃
ω∈A

{ω}

)
=

∑
ω∈A

𝜇({ω}), ∀ A ⊂ Ω. (1.31)

This means that a measure on (Ω, 𝒫(Ω)) is already uniquely defined if its values 𝜇({ω}) are
uniquely defined for all ω ∈ Ω, provided that Ω is finite or countable. Rule (x) of Box 1.1
extends this result to a more general measure space (Ω, 𝒜, 𝜇). This rule shows that a measure
on (Ω, 𝒜 ) is already uniquely defined if its values 𝜇({ω}) are uniquely defined for all ω ∈ Ω0,
provided that Ω0 is finite or countable with 𝜇(Ω ∖ Ω0) = 0 and {ω} ∈ 𝒜 for all ω ∈ Ω0. ⊲

1.4 Specific measures

Now we consider some examples of measures, all of which are used later on in this volume in
order to introduce still other measures. For some of these examples, we use the indicator of a
set A.

Definition 1.49 [Indicator]
Let Ω be a set and A ⊂ Ω. Then, the function 1A: Ω → R defined by

1A(ω) =
{

1, if ω ∈ A
0, if ω ∉ A,

(1.32)

is called the indicator of A.

Remark 1.50 [Sums and products of indicators] If 1A, 1B: Ω → R are the indicators of two
sets A, B ⊂ Ω, then,

1A ⋅ 1B = 1A∩B (1.33)

and

1A + 1B − 1A∩B = 1A + 1B − 1A ⋅ 1B = 1A∪B. (1.34)
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Equation (1.33) immediately implies

1A + 1B = 1A∪B, if A ∩ B = Ø. (1.35)

More generally, if A1, … , An is a finite sequence of pairwise disjoint subsets of Ω, then,

n∑
i=1

1Ai
= 1⋃ n

i=1 Ai
, (1.36)

that is, then the sum of the indicators of the sets A1, … , An is the indicator of the union
⋃ n

i=1 Ai.
Finally, if A1, A2, … is a sequence of pairwise disjoint subsets of Ω, then,

∞∑
i=1

1Ai
= 1⋃ ∞

i=1 Ai
. (1.37)

⊲

Remark 1.51 [Indicators of products sets] Let Ω1, Ω2 be nonempty sets, A ⊂ Ω1 and B ⊂

Ω2. Then,

1A(ω1) ⋅ 1B(ω2) = 1A×B(ω1, ω2), ∀ (ω1, ω2) ∈ Ω1 × Ω2. (1.38)

This equation follows from the definitions of the product set and the indicator. ⊲

1.4.1 Dirac measure and counting measure

Example 1.52 [Dirac measure] Let (Ω, 𝒜 ) be a measurable space, let ω ∈ Ω, and consider
the function 𝛿ω: 𝒜→ {0, 1} defined by

𝛿ω(A) := 1A(ω), ∀ A ∈ 𝒜. (1.39)

Then 𝛿ω is a measure on (Ω, 𝒜 ) (see Exercise 1.20). ⊲

Definition 1.53 [Dirac measure]
The function 𝛿ω defined by Equation (1.39) is called the Dirac measure at (point) ω.

Example 1.54 [Counting measure] Let (Ω, 𝒜 ) be a measurable space, and define the func-
tion 𝜇#: 𝒜→ R by

𝜇#(A) :=
⎧⎪⎨⎪⎩

∑
ω ∈Ω

1A(ω), if A is finite

∞, if A is infinite,
∀ A ∈ 𝒜. (1.40)

Then 𝜇# is a measure on (Ω, 𝒜 ) (see Exercise 1.21). ⊲
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Definition 1.55 [Counting measure]
The function 𝜇# defined by Equation (1.40) is called the counting measure on (Ω, 𝒜 ).

Remark 1.56 [Cardinality of a set] If A is finite, then 𝜇#(A) is called the cardinality of A,
that is, 𝜇#(A) simply counts the number of elements ω of the set A. Furthermore, for finite or
countable Ω and A ⊂ Ω,

𝜇#(A) =
∑
ω ∈Ω

1A(ω) =
∑
ω ∈Ω

𝛿ω(A). (1.41)
⊲

Example 1.57 [Sum of Dirac measures] Let (Ω, 𝒜 ) be a measurable space. If B ⊂ Ω is finite
or countable and 𝛿ω is the Dirac measure on (Ω, 𝒜 ) at point ω, then

∑
ω∈B 𝛿ω: 𝒜→ [0, ∞]

defined by (∑
ω∈B

𝛿ω

)
(A) :=

∑
ω∈B

𝛿ω(A), ∀ A ∈ 𝒜, (1.42)

is a measure on (Ω, 𝒜 ) (see Exercise 1.22). Hence, if Ω itself is finite or countable, then∑
ω ∈Ω 𝛿ω is a measure on (Ω, 𝒜 ), and it is identical to the counting measure defined in Exam-

ple 1.54, because, for A ∈ 𝒜,( ∑
ω ∈Ω

𝛿ω

)
(A) =

∑
ω ∈Ω

𝛿ω(A) [(1.42)]

=
∑
ω ∈Ω

1A(ω) [(1.39)]

= 𝜇#(A). [(1.41)]

(1.43)

⊲

1.4.2 Lebesgue measure

Consider the half-open interval ]a, b]. Then,

𝜆1(]a, b]) = b − a (1.44)

is the length of the interval ]a, b]. Next consider a rectangle ]a1, b1] × ]a2, b2] in R2 with
a1 < b1 and a2 < b2. This set can be visualized by the set of all points inside the rectangle
presented in Figure 1.3 (excluding the lower and left boundary). Obviously,

𝜆2(]a1, b1] × ]a2, b2]) = (b1 − a1) ⋅ (b2 − a2) (1.45)

is the area of this rectangle.
According to Theorem 1.58, there is one and only one measure on (R, ℬ) satisfying (1.44)

for all such intervals. This measure is called the Lebesgue measure on (R, ℬ) and is denoted
by 𝜆 or 𝜆1. Similarly, there is one and only one measure on (R2, ℬ2) satisfying (1.45) for all
such rectangles. It is called the Lebesgue measure on (R2, ℬ2) and is denoted by 𝜆2. Theorem
1.58 deals with the general case.
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Theorem 1.58 [Existence and uniqueness of the Lebesgue measure]
For all n ∈ N, there is a uniquely defined measure 𝜆n on (Rn, ℬn) satisfying

𝜆n(]a1, b1] ×… × ]an, bn]) =
n∏

i=1
(bi − ai),

∀ ai, bi ∈ R with ai < bi, i = 1, … , n.
(1.46)

For a proof, see Klenke (2013, Th. 1.55).

Definition 1.59 [Lebesgue measure]
The measure 𝜆n satisfying Equation (1.46) is called the Lebesgue measure on
(Rn, ℬn).

Remark 1.60 [Sets of real numbers that are not Lebesgue measurable] Hence, the
Lebesgue measure 𝜆n is defined on (Rn, ℬn). Note, however, that this measure space
(Rn, ℬn, 𝜆n) can be completed by additionally including all subsets of sets A ∈ ℬn with
𝜆n(A) = 0. In Wise and Hall (1993, counterexample 1.25), it is shown for n = 1 that there
are subsets B ⊂ R that are not elements of the completed σ-algebra. Therefore, B ∉ ℬ, and
this implies ℬ ≠ 𝒫(R). ⊲

1.4.3 Other examples of a measure

Example 1.61 [Restriction of a measure to a sub-σ-algebra] Suppose (Ω, 𝒜, 𝜇) is a mea-
sure space and 𝒞 ⊂ 𝒜 a σ-algebra. Then the function ν: 𝒞 → R defined by

ν(A) := 𝜇(A), ∀ A ∈ 𝒞, (1.47)

is a measure on (Ω, 𝒞) (see Exercise 1.23). ⊲

Example 1.62 [Weighted sum of measures] If 𝜇1, 𝜇2, … are measures on (Ω, 𝒜 ) and 0 ≤

α1, α2, … ∈ R, then
∑ ∞

i=1 αi𝜇i: 𝒜→ [0, ∞] defined by(
∞∑

i=1
αi𝜇i

)
(A) :=

∞∑
i=1

αi𝜇i(A), ∀ A ∈ 𝒜, (1.48)

is again a measure on (Ω, 𝒜 ) (see Exercise 1.24). For 0 = αn+1 = αn+2 = … this implies: If
𝜇1, … , 𝜇n are measures on (Ω, 𝒜 ) and α1, … , αn are nonnegative, then the function

∑n
i=1 αi𝜇i

defined by (
n∑

i=1
αi𝜇i

)
(A) :=

n∑
i=1

αi𝜇i(A), ∀ A ∈ 𝒜, (1.49)

is also a measure on (Ω, 𝒜 ). ⊲
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1.4.4 Finite and 𝛔-finite measures

A measure 𝜇 on a measurable space (Ω, 𝒜 ) is called finite if 𝜇(Ω) < ∞. Otherwise, it is called
infinite. Within the class of infinite measures, there is a subclass with an important property,
called σ-finiteness. Many fundamental propositions of measure and integration theory only
hold for measures that are σ-finite.

Definition 1.63 [σ-Finite measure]
Let 𝜇 be a measure on a measurable space (Ω, 𝒜 ). Then 𝜇 is called σ-finite if there is a
sequence A1, A2, … ∈ 𝒜with

⋃∞
i=1 Ai = Ω and, for all i = 1, 2, …, 𝜇(Ai) < ∞.

To emphasize, even if 𝜇(Ω) = ∞, the measure 𝜇 can be σ-finite (see Examples 1.64 and
1.65). Note that any finite measure is also σ-finite.

Example 1.64 [σ-Finiteness of the Lebesgue measure] The Lebesgue measure 𝜆 on (R, ℬ)
is σ-finite, because R = ⋃∞

i=1[−i, i] and 𝜆([−i, i]) = 2 ⋅ i < ∞, for all i ∈ N. ⊲

Example 1.65 [A σ-finite counting measure] Consider the measurable space (R, ℬ) and
the measure 𝜇: ℬ → [0, ∞], where 𝜇 = ∑ ∞

i=0 𝛿i and 𝛿i denotes the Dirac measure at i on
(R, ℬ) with 𝛿i(A) = 1A(i), A ∈ ℬ, i ∈ N0 (see Example 1.57). Then 𝜇 is σ-finite because R =⋃ ∞

n=1[−n, n] and 𝜇([−n, n]) = n + 1, for all n ∈ N0. This measure simply counts the number
of elements i ∈ N0 in a Borel set A. In other words, for all finite A ∈ ℬ, 𝜇(A) is the cardinality
of the set A ∩ N0. ⊲

1.4.5 Product measure

In section 1.4.2, we considered the Lebesgue measure on (Rn, ℬn) that is specified for n-
dimensional cuboids by Equation (1.46) using the product of one-dimensional Lebesgue mea-
sures on (R, ℬ). Now we introduce the general concept of a product measure. Lemma 1.66
shows that σ-finiteness of measures is sufficient for the existence and uniqueness of such a
measure. Hence, this lemma shows that presuming finite measures is sufficient but not neces-
sary for the definition of the product measure.

Lemma 1.66 [Existence and uniqueness]
Let (Ωi, 𝒜i, 𝜇i) be measure spaces with σ-finite measures 𝜇i, i = 1, … , n. Then there is a
uniquely defined measure, denoted 𝜇1 ⊗ … ⊗ 𝜇n, on the product space(

n

×
i=1

Ωi,
n⨂

i=1
𝒜i

)
,

satisfying

∀ (A1, … , An) ∈ 𝒜1 ×… ×𝒜n:

𝜇1 ⊗ … ⊗ 𝜇n(A1 ×… × An) = 𝜇1(A1) ⋅… ⋅ 𝜇n(An).
(1.50)

This measure is σ-finite as well.
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For a proof, see Bauer (2001, Th. 23.9). Hence, 𝜇 := 𝜇1 ⊗ … ⊗ 𝜇n is a measure on the product
space

(
×n

i=1 Ωi,
⨂n

i=1 𝒜i

)
with

𝜇(A1 ×… × An) := 𝜇1(A1) ⋅… ⋅ 𝜇n(An), ∀ (A1, … , An) ∈ (𝒜1 ×… ×𝒜n). (1.51)

Definition 1.67 [Product measure]
The measure 𝜇1 ⊗ … ⊗ 𝜇n defined by Equation (1.50) is called the product measure
of 𝜇1, … , 𝜇n.

1.5 Continuity of a measure

The term σ-additivity refers to countable unions of pairwise disjoint sets and it implies finite
additivity, which involves finite unions of pairwise disjoint sets. Furthermore, σ-additivity
implies the following continuity properties of a measure, which are essential for the defini-
tion of the integral (see ch. 3).

Theorem 1.68 [Continuity of a measure]
Let (Ω, 𝒜, 𝜇) be a measure space, and let A1, A2, … ∈ 𝒜.

(i) If A1 ⊂ A2 ⊂ …, then,

lim
i→∞

𝜇(Ai) = 𝜇

(
∞⋃

i=1
Ai

)
. (continuity from below)

(ii) If A1 ⊃ A2 ⊃ … and there is an n ∈ N with 𝜇(An) < ∞, then,

lim
i→∞

𝜇(Ai) = 𝜇

(
∞⋂

i=1
Ai

)
. (continuity from above)

For a proof, see Klenke (2013, Theorem 1.36).

Remark 1.69 [Finite case] If A1, … , An ∈ 𝒜 is a finite sequence with A1 ⊂ … ⊂ An, then⋃n
i=1 Ai = An and

𝜇

(
n⋃

i=1
Ai

)
= 𝜇(An). (1.52)

This is a trivial case of Theorem 1.68 (i) (with An = An+1 = An+2 = …). ⊲

Example 1.70 [Geometric examples] Figures 1.4 and 1.5 illustrate this theorem for the
Lebesgue measure 𝜆2 on (R2, ℬ2), the area of a set O and the sets Ai, i ∈ N. In this exam-
ple, A1 is the open rectangle in the open (i.e., the set without its boundary) egg-shaped
set O displayed in Figure 1.4, A2 the union of A1 with two other rectangles in the middle
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A1 A2 A3

Figure 1.4 Approximation of an open egg-shaped set O from below.

figure, and A3 the union of A2 with two additional rectangles in the right figure. Adding
more and more rectangles, it is plausible that A1 ⊂ A2 ⊂ … ⊂ O and that their union approx-
imates O (i.e.,

⋃ ∞
i=1 Ai = O). Under these premises, Theorem 1.68 (i) yields the conclusion

limi→∞ 𝜆2(Ai) = 𝜆2

(⋃ ∞
i=1 Ai

)
= 𝜆2(O). Figure 1.5 illustrates the same principle. However,

now the area of the egg-shaped set O is approximated from above by subtracting the areas of
appropriate rectangles.

As a second example, consider the Lebesgue measure 𝜆 on (R, ℬ) and the intervals Ai =
]x − 1

i
, x], i ∈ N. Obviously, A1 ⊃ A2 ⊃ … and 𝜆(Ai) =

1
i
< ∞, for all i ∈ N (see also Exercise

1.12). Hence, for all x ∈ R,

𝜆({x}) = 𝜆

(
∞⋂

i=1
]x − 1

i
, x]

)
= lim

i→∞
𝜆

(
]x − 1

i
, x]

)
= lim

i→∞
1
i
= 0. (1.53)

This is an implication of continuity from above, and it implies

∀ a, b ∈ R: a < b ⇒ 𝜆(]a, b]) = 𝜆([a, b]) = 𝜆([a, b[) = 𝜆(]a, b[)
= b − a. (1.54)

⊲

Remark 1.71 [A motivation for σ-additivity] As already mentioned in Remark 1.45, σ-
additivity refers to unions of finitely or countably many sets. Now consider

⋃
1≤x≤2{x} =

[1, 2] ∈ ℬ [see Eq. (1.9)]. According to Equation (1.53), 𝜆({x}) = 0, for all x ∈ [1, 2], and
hence 𝜆({x ∈ [1, 2]: x ∈ Q}) = 0, because the set of rational numbers is countable. In other
words, the Lebesgue measure 𝜆 of the set of all rational numbers in the closed interval [1, 2]
is zero, and this is not a contradiction to

𝜆

( ⋃
1≤x≤2

{x}

)
= 𝜆([1, 2]) = 2 − 1 = 1,

A1 A2 A3

Figure 1.5 Approximation of an open egg-shaped set O from above.
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because
⋃

1≤x≤2{x} is an uncountable union. This illustrates that additivity for uncountable
unions can be meaningless. ⊲

1.6 Specifying a measure via a generating system

Given a measurable space (Ω, 𝒜 ), a measure is a function that is defined on 𝒜. In many situ-
ations, such as when 𝒜= σ(ℰ ) can only be described by a generating set system ℰ (e.g., the
set system ℐ1 generating the Borel σ-algebra on R), it is important to answer the following
questions:

(a) Existence: If there is a set function 𝜇̃: ℰ → R, is there also a measure 𝜇: σ(ℰ ) → R

such that 𝜇(A) = 𝜇̃(A), ∀ A ∈ ℰ?

(b) Uniqueness: Is a measure 𝜇 on (Ω, σ(ℰ )) already uniquely defined by its values 𝜇(A),
A ∈ ℰ?

(Sufficient conditions for the existence of such a measure 𝜇 are formulated in Klenke, 2013,
Theorem 1.53.)

The following uniqueness theorem for finite measures provides an answer to these ques-
tions, which suffices for our purposes. (A more general formulation for σ-finite measures with
additional assumptions and a proof of Theorem 1.72 is found in Klenke, 2013, Lemma 1.42.)

Theorem 1.72 [Generating system and uniqueness of a measure]
Let (Ω, 𝒜 ) be a measurable space and let ℰ ⊂ 𝒜, where ℰ is ∩-stable and σ(ℰ ) = 𝒜. If
𝜇1 and 𝜇2 are finite measures on (Ω, 𝒜 ) (i.e., measures with 𝜇1(Ω), 𝜇2(Ω) < ∞), then,

∀ A ∈ ℰ : 𝜇1(A) = 𝜇2(A) ⇒ ∀ A ∈ 𝒜: 𝜇1(A) = 𝜇2(A).

Example 1.73 [CountableΩ] LetΩ be a nonempty finite or countable set, and let𝒜= 𝒫(Ω).
Then the set system

ℰ1 = {Ø} ∪ {{ω}: ω ∈ Ω}

is ∩-stable and σ(ℰ1) = 𝒜. As already noted in Remark 1.48, a finite measure 𝜇 on (Ω, 𝒜 ) is
uniquely defined by its values 𝜇({ω}), ω ∈ Ω. ⊲

Example 1.74 [Measures on (R, ℬ)] The set system

ℰ2 = {]a, b]: a < b, a, b ∈ R} ∪ {Ø}

is ∩-stable and σ(ℰ2) = ℬ [see Eq. (1.18) and section 1.2.4]. Another ∩-stable set system ℰ3
with σ(ℰ3) = ℬ is

ℰ3 = {]−∞, b]: b ∈ R}

(cf. Klenke, 2013). This set system is crucial for the definition of a cumulative distribution
function (see section 5.7.1). ⊲
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1.7 𝛔-Algebra that is trivial with respect to a measure

All σ-algebras treated in section 1.2 have been defined without reference to a measure. Now
we define the concept of a trivial σ-algebra, which is defined referring to a measure. We start
with a lemma about the set of all subsets of a set Ω with 𝜇(A) = 0 or 𝜇(A) = 𝜇(Ω) (i.e., the set
of all sets that are trivial with respect to the measure 𝜇). Hence, the set of 𝜇-trivial sets includes
all null sets that is, all sets A ∈ 𝒜 with 𝜇(A) = 0, and all sets A ∈ 𝒜 with 𝜇(A) = 𝜇(Ω).

Lemma 1.75 [The set of all trivial sets is a σ-algebra]
Let (Ω, 𝒜, 𝜇) be a measure space, and assume that 𝜇 is finite. Then,

𝒯𝜇 := {A ∈ 𝒜: 𝜇(A) = 0 or 𝜇(A) = 𝜇(Ω)} (1.55)

is a σ-algebra.
(Proof p. 30)

This lemma allows for Definition 1.76:

Definition 1.76 [Trivial σ-algebra with respect to a measure]
Let (Ω, 𝒜, 𝜇) be a measure space, assume that 𝜇 is finite, and let 𝒯𝜇 be defined by (1.55).
Then each σ-algebra 𝒞 ⊂ 𝒯𝜇 is called a 𝜇 -trivial σ-algebra and its elements 𝜇 -triv-
ial sets.

Obviously, {Ω, Ø} is a trivial σ-algebra with respect to all measures on (Ω, 𝒜 ). Hence, we
can call it a trivial σ-algebra without reference to a specified measure.

1.8 Proofs

Proof of Theorem 1.12

(a)

∀ i ∈ I: 𝒜i is a σ-algebra on Ω ⇒ ∀ i ∈ I: Ω ∈ 𝒜i [Def. 1.1 (a)]
⇒ Ω ∈

⋂
i ∈ I

𝒜i.

(b)

A ∈
⋂
i ∈ I

𝒜i ⇒ ∀ i ∈ I: A ∈ 𝒜i

⇒ ∀ i ∈ I: Ac ∈ 𝒜i [Def. 1.1 (b)]
⇒ Ac ∈

⋂
i ∈ I

𝒜i.
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(c)
A1, A2, … ∈

⋂
i ∈ I

𝒜i ⇒ ∀ i ∈ I: A1, A2, … ∈ 𝒜i

⇒ ∀ i ∈ I:
∞⋃

j=1
Aj ∈ 𝒜i [Def. 1.1 (c)]

⇒
∞⋃

j=1
Aj ∈

⋂
i ∈ I

𝒜i.

Proof of Lemma 1.15

If 𝒞 is a σ-algebra with ℰ ⊂ 𝒞 and 𝒜= σ(ℰ ), then (1.11) and the assumption 𝒞 ⊂ 𝒜 imply
𝒜= σ(ℰ ) ⊂ 𝒞 ⊂ 𝒜. Hence, 𝒞 = 𝒜.

Proof of Lemma 1.20

Define 𝒟 :=
{

C = ⋃
i ∈ I(C) Bi: I(C) ⊂ N

}
.

ℰ ⊂ 𝒟: For Bj ∈ ℰ , choose I(Bj) = {j}. Then, Bj =
⋃

i ∈ I(Bj)
Bi.

𝒟 ⊂ σ(ℰ ): Because N is countable, any I(C) ⊂ N is finite or countable, and this implies
that C = ⋃

i∈C Bi is an element of σ(ℰ ) [see Def. 1.1 (c), (1.3)].
Checking the three conditions defining a σ-algebra (see Def. 1.1), we show that 𝒟 is a

σ-algebra.
(a)

Ω =

{⋃n
i=1 Bi, if ℰ = {B1, … , Bn}⋃∞
i=1 Bi, if ℰ = {B1, B2, …},

because ℰ is assumed to be a partition. This shows that Ω ∈ 𝒟 .
(b) The equation for Ω in (a) also implies I(Cc) = I(C)c. Therefore, Cc ∈ 𝒟 if C ∈ 𝒟 .
(c) If C1, C2, … ∈ 𝒟 , then,

∞⋃
j=1

Cj =
∞⋃

j=1

⋃
i∈I(Cj)

Bi =
⋃

i∈
⋃∞

j=1I(Cj)

Bi ∈ 𝒟 ,

because
⋃∞

j=1 I(Cj) ⊂ N.
Finally, we prove the second equation in (1.14). If j ∈ I(C) and C = ⋃

i ∈ I(C) Bi, then
Bj ⊂ C, which implies ⋃

i ∈ I(C)
Bi ⊂

⋃
Bi ⊂C

Bi.

Vice versa, if Bj ⊂ C, then j ∈ I(C), because for any ω ∈ Bj, there is no i ≠ j such that ω ∈ Bi
[see condition (b) of Rem. 1.19]. Hence,⋃

Bi ⊂C
Bi ⊂

⋃
i ∈ I(C)

Bi,

which proves the second equation in (1.14).
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Proof of Lemma 1.27

In this proof, we use σΩ(ℰ ) to denote the σ-algebra on Ω generated by ℰ ⊂ 𝒫(Ω). Similarly,
σA(𝒟 ) denotes the σ-algebra on A generated by 𝒟 ⊂ 𝒫(A).

(1.15) σΩ(ℰ ) is a σ-algebra on Ω and ℰ ⊂ σΩ(ℰ ), by definition of σΩ(ℰ ). Hence, ℰ |A ⊂

σΩ(ℰ )|A, and σΩ(ℰ )|A is a σ-algebra on A (see Exercise 1.5). Therefore, the definition (1.10)
yields

σA(ℰ |A) ⊂ σΩ(ℰ )|A.
Furthermore, ℰ ⊂ σΩ(ℰ |A ∪ℰ |Ac ), which implies

σΩ(ℰ ) ⊂ σΩ(ℰ |A ∪ℰ |Ac ) [Rem. 1.23]
⊂ σΩ(σA(ℰ |A) ∪ σAc (ℰ |Ac )) [Rem. 1.23]
= {C ∪ D: C ∈ σA(ℰ |A), D ∈ σAc(ℰ |Ac )}. [This set system is a σ-algebra]

Therefore,

σΩ(ℰ )|A ⊂ {C ∪ D: C ∈ σA(ℰ |A), D ∈ σAc(ℰ |Ac )}|A
= {(C ∪ D) ∩ A: C ∈ σA(ℰ |A), D ∈ σAc (ℰ |Ac )}
= {C ∩ A: C ∈ σA(ℰ |A)} [D ⊂ Ac]
= σA(ℰ |A). [C ⊂ A]

Hence, we have shown σA(ℰ |A) ⊂ σΩ(ℰ )|A and σΩ(ℰ )|A ⊂ σA(ℰ |A), which is equivalent to
σA(ℰ |A) = σΩ(ℰ )|A.

(1.17)

σΩ(𝒞 ∪ℰ )|A = σA(𝒞 ∪ℰ |A) [(1.15)]
= σA(𝒞 |A ∪ℰ |A) [See def. of the trace in Example 1.10]
= σA(𝒞 |A ∪ {Ø, A}) [(1.16)]
= σA(𝒞 |A) [{Ø, A} ⊂ 𝒞 |A]
= 𝒞 |A. [Exercise 1.5, (1.12)]

Proof of Lemma 1.75

(a) Ω ∈ 𝒯𝜇 by definition of 𝒯𝜇.

(b) If A ∈ 𝒯𝜇, then Rules (iv), (v) of Box 1.1 and finiteness of 𝜇 yield

𝜇(Ac) = 𝜇(Ω) − 𝜇(A) =
{
𝜇(Ω), if 𝜇(A) = 0
0, if 𝜇(A) = 𝜇(Ω),

which implies Ac ∈ 𝒯𝜇.
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(c) Let A1, A2, … ∈ 𝒜. We consider two cases. First, if 𝜇(Ai) = 0, for all Ai, i ∈ N, then
Rule (xi) of Box 1.1 yields

(⋃∞
i=1 Ai

)
≤

∑∞
i=1 𝜇(Ai) = 0 (i.e.,

⋃∞
i=1 Ai ∈ 𝒯𝜇). Second,

if there is a j ∈ N such that 𝜇(Aj) = 𝜇(Ω), then Rule (v) of Box 1.1 yields

𝜇(Ω) = 𝜇(Aj) ≤ 𝜇

(
∞⋃

i=1
Ai

)
≤ 𝜇(Ω),

which implies 𝜇
(⋃∞

i=1 Ai

)
= 𝜇(Ω). Therefore,

⋃∞
i=1 Ai ∈ 𝒯𝜇.

Exercises

1.1 Let 𝒜be a σ-algebra of subsets of a nonempty set Ω, and let A1, A2, … ∈ 𝒜. Show: (a)
A1 ∩ A2 ∩… ∈ 𝒜, (b) A1 ∩ A2 ∈ 𝒜, and (c) A1 ∖ A2 ∈ 𝒜.

1.2 Show that the set system 𝒜= {Ω, Ø, A, Ac} is stable (closed) with respect to union of
elements of 𝒜.

1.3 Consider the set Ω = {ω1, … , ω6} representing the set of all possible outcomes of toss-
ing a dice and the power set 𝒫(Ω), which, in probability theory, represents the set of all
possible events (including the ‘impossible’ event Ø) in this random experiment. Specify
the σ-algebra on Ω that represents all possible events if we only distinguish between
even and uneven number of points.

1.4 Consider the random experiment that has been described in Example 1.9. Aside from
the power set of Ω, we already considered the σ-algebras 𝒜1 = {Ω, Ø, A, Ac}, 𝒜2 =
{Ω, Ø, B, Bc}, and 𝒜3 = {Ω, Ø, C, Cc}. Define another σ-algebra not yet mentioned.

1.5 Prove: If 𝒜 is a σ-algebra on Ω and Ω0 ⊂ Ω, then 𝒜 |Ω0
= {Ω0 ∩ A: A ∈ 𝒜} is a σ-

algebra on Ω0.

1.6 Prove the proposition of Remark 1.16.

1.7 Show that σ(ℰ ) = 𝒫(Ω) if Ω is finite or countable and ℰ := {{ω}: ω ∈ Ω}.

1.8 Prove the proposition of Remark 1.21.

1.9 Let ℰ1, ℰ2 be set systems on Ω with ℰ1 ⊂ ℰ2. Show that σ(ℰ1) ⊂ σ(ℰ2).

1.10 Prove propositions (a) and (b) of Example 1.25.

1.11 Prove Equation (1.21).

1.12 Show that {x} ∈ ℬn for all x ∈ Rn, where ℬn is the Borel σ-algebra on Rn.

1.13 Let ℬ be the Borel σ-algebra on R, and let Ω0 ⊂ R be finite or countable. Show that
ℬ|Ω0

= 𝒫(Ω0).

1.14 Prove the proposition of Example 1.34.

1.15 Prove the proposition of Remark 1.35.

1.16 Let (Ωi, 𝒜i), i = 1, … , n, be measurable spaces. Show that the set system ℰ := {A1 ×
… × An: Ai ∈ 𝒜i, i = 1, … , n} is ∩-stable.
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1.17 Prove the proposition of Remark 1.46.

1.18 Prove the rules of Box 1.1.

1.19 Prove the propositions of Remark 1.47.

1.20 Show that 𝛿ω: 𝒜→ {0, 1} in Example 1.52 is a measure.

1.21 Prove that the function defined by Equation (1.40) is a measure on (Ω, 𝒜 ).

1.22 Show that
∑

ω∈B 𝛿ω in Example 1.57 is a measure.

1.23 Show that ν: 𝒞 → R defined in Example 1.61 is a measure on (Ω, 𝒞).

1.24 Prove that the function
∑∞

i=1 αi𝜇i defined in Example 1.62 is a measure on (Ω, 𝒜 ).

Solutions

1.1 (a) If A1, A2, … ∈ 𝒜, then Ac
1, Ac

2, … ∈ 𝒜 [see Def. 1.1 (b)]. Hence,

∞⋂
i=1

Ai =

[(
∞⋂

i=1
Ai

)c ]c

=

[
∞⋃

i=1
Ac

i

]c

[de Morgan]

∈ 𝒜. [Def. 1.1 (c), (b)]

(b) Let A1, A2 ∈ 𝒜 and choose A3, A4, … such that Ω = Ai, for all i ≥ 3, i ∈ N. Then,
according to Definition 1.1 (a),

A1 ∩ A2 = A1 ∩ A2 ∩ Ω =
∞⋂

i=1
Ai ∈ 𝒜.

(c) A1 ∖ A2 = A1 ∩ Ac
2 ∈ 𝒜 [see (b) and Def. 1.1 (b)].

1.2 The unions Ω ∪ A = Ω, Ω ∪ Ac = Ω, and Ω ∪ Ø = Ω are all elements of 𝒜, and the
same is true for Ø ∪ A = A, Ø ∪ Ac = Ac, and A ∪ Ac = Ω. Furthermore, B ∪ B = B for
all B ∈ 𝒜.

1.3 The σ-algebra on Ω that only distinguishes between an even and uneven number of
points is 𝒜1 := {{ω1, ω3, ω5}, {ω2, ω4, ω6}, Ω, Ø}. This is a sub-σ-algebra of 𝒫(Ω).
Therefore, 𝒜1 represents the set of all possible events of a random experiment that is,
in a sense, contained in the original random experiment.

1.4 Consider the set system that contains as elements A, Ac, B, Bc, Ω, Ø, all unions and all
intersections of these sets as well as the unions and intersections of the resulting sets
such as (Ac ∪ Bc) ∩ (A ∪ B) and (Ac ∪ Bc) ∪ (A ∪ B). Altogether, these are 16 sets. This is
σ(𝒜1 ∪𝒜2), the σ-algebra generated by 𝒜1 ∪𝒜2 = {A, Ac, B, Bc, Ω, Ø} (see Def. 1.13
and Rem. 1.21).

1.5 (a) Ω0 ∩ Ω = Ω0. This implies Ω0 ∈ 𝒜 |Ω0
.

(b)

A∗ ∈ 𝒜 |Ω0
⇒ ∃ A ∈ 𝒜: A∗ = Ω0 ∩ A.
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With this set A and using Bc for the complement of a set B with respect to Ω,

Ω0 ∖ A∗ = Ω0 ∖ (Ω0 ∩ A)

= Ω0 ∩ (Ω0 ∩ A)c

= Ω0 ∩ (Ωc
0 ∪ Ac)

= (Ω0 ∩ Ωc
0) ∪ (Ω0 ∩ Ac)

= Ω0 ∩ Ac ∈ 𝒜 |Ω0
.

(c)

A∗
1, A∗

2, … ∈ 𝒜 |Ω0
⇒ ∃ A1, A2, … ∈ 𝒜: A∗

i = Ω0 ∩ Ai, i ∈ N .

Hence,

A∗
1 ∪ A∗

2 ∪… = (Ω0 ∩ A1) ∪ (Ω0 ∩ A2) ∪… = Ω0 ∩ (A1 ∪ A2 ∪… ) ∈ 𝒜 |Ω0
.

1.6 If 𝒢 is a σ-algebra on Ω, then

ℰ ∪ℱ ⊂ 𝒢 ⇔ σ(ℰ ∪ℱ ) ⊂ 𝒢 . [(1.11)] (1.56)

Furthermore, for three sets A, B, C,

A ∪ B ⊂ C ⇔ A ⊂ C ∧ B ⊂ C. (1.57)

Hence,

𝒟 ∪ℰ ∪ℱ ⊂ 𝒢 ⇔ (𝒟 ⊂ 𝒢 ) ∧ (ℰ ∪ℱ ⊂ 𝒢 ) [(1.57)]
⇔ (𝒟 ⊂ 𝒢 ) ∧ (σ(ℰ ∪ℱ) ⊂ 𝒢 ) [(1.56)]
⇔ 𝒟 ∪ σ(ℰ ∪ℱ ) ⊂ 𝒢 . [(1.57)]

Now Definition 1.13 yields the proposition.

1.7 If Ω is finite or countable, then each of its subsets A is finite or countable as well.
Therefore,

∀ A ⊂ Ω: A =
⋃
ω∈A

{ω} ∈ σ(ℰ ) . [Def. 1.1 (c), Rem. 1.2]

Because each element A of 𝒫(Ω) is a union
⋃

ω∈A{ω} of singletons {ω}, ω ∈ A,
this implies 𝒫(Ω) ⊂ σ(ℰ ). Hence, ℰ ⊂ 𝒫(Ω) ⊂ σ(ℰ ). Therefore, Lemma 1.15 implies
σ(ℰ ) = 𝒫(Ω).

1.8 Suppose that ℰ = {A1, … , Am} and A1
j := Aj and let Ac

j denote the complement of Aj.
Then, for all (k1, … , km) ∈ {1, c}m define

B(k1,…,km) :=
m⋂

j=1
A

kj
j .
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Then

ℱ := {B(k1,…,km): (k1, … , km) ∈ {1, c}m, B(k1,…,km) ≠ Ø}

is a finite partition of Ω. Note that ℱ contains all nonempty intersections of sets Aj
or their complements, respectively, where j = 1, … , m. Now Lemma 1.20 implies the
proposition.

1.9 If ℰ1 ⊂ ℰ2 ⊂ 𝒫(Ω), then for any σ-algebra 𝒜on Ω with ℰ2 ⊂ 𝒜also ℰ1 ⊂ 𝒜. Remem-
ber, if J ⊂ I, then

⋂
i ∈ I Bi ⊂

⋂
i∈J Bi, for any sets Bi, i ∈ I. Therefore, σ(ℰ1), which is

the intersection of all σ-algebras containing ℰ1, is a subset of the intersection of all
σ-algebras containing ℰ2, which is σ(ℰ2).

1.10 (a) If Ω is finite, then 𝒫(Ω) is a finite set system. Therefore, each σ-algebra 𝒜 on Ω
is a finite set system. Because 𝒜= σ(𝒜 ), this σ-algebra is countably generated.

(b) The set N0 is countable and therefore also Nn
0 for n ∈ N. Example 1.18 then implies

that 𝒫(Nn
0) is countably generated.

1.11 Let ℋn = {]−∞, b1] ×… × ]−∞, bn]: b1, … , bn ∈ R}.
(i) For all (b1, … , bn) ∈ Rn and all m ∈ N with m < bi, i = 1, … , n,

Bm := ]−m, b1] ×… × ]−m, bn] ∈ ℐn.

According to Definition 1.1 (c) this implies

⋃
m∈N

m < bi, i = 1, … , n

Bm = ]−∞, b1] ×… × ]−∞, bn] ∈ σ(ℐn).

Hence, ℋn ⊂ σ(ℐn), which, according to (1.11) and (1.12), implies

σ(ℋn) ⊂ σ(ℐn) = ℬn.

(ii) For all a1, … , an, b1, … , bn ∈ R, with ai < bi, i = 1, … , n,

]a1, b1] ×… × ]an, bn] = ]−∞, b1] ×… × ]−∞, bn] ∖

(
n⋃

j=1
Hj

)
,

where Hj := ]−∞, b1] ×… × ]−∞, bj−1] × ]−∞, aj] × ]−∞, bj+1] ×… ×
]−∞, bn]. Hence, according to Remark 1.2, ]a1, b1] ×… × ]an, bn] ∈ σ(ℋn) and
ℐn ⊂ σ(ℋn), which, according to (1.11) and (1.12), implies

ℬn = σ(ℐn) ⊂ σ(ℋn).

1.12 If x ∈ R, then {x} = ⋂ ∞
i=1]x − 1∕i, x]. According to Equation (1.18), the intervals

]x − 1∕i, x] are elements of the generating set system of ℬ, the Borel σ-algebra on
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R. Therefore, their countable intersection is an element of ℬ. If x = (x1, … , xn) ∈ Rn,
then

{x} =
∞⋂

i=1

(
n

×
j=1

]xj −
1
i

, xj]

)
.

According to Equation (1.20), the cuboids
n

×
j=1

]xj −
1
i

, xj] are elements of the set system
ℐn and σ(ℐn) = ℬn.

1.13 Because {x} ∈ ℬ for all x ∈ R (see Exercise 1.12), we can conclude: {x} ∈ ℬ|Ω0
for

all x ∈ Ω0. Hence, if Ω0 is finite or countable, Example 1.18 implies ℬ|Ω0
= 𝒫(Ω0).

1.14 Let Ω1, … , Ωn be finite or countable sets, and let 𝒜1, … , 𝒜n be their power sets. Then
ω1 ∈ Ω1, … , ωn ∈ Ωn implies {ω1} ∈ 𝒜1, … , {ωn} ∈ 𝒜n. Therefore,

{(ω1, … , ωn)} = {ω1} ×… × {ωn} ∈
{

n

×
i=1

Ai: Ai ∈ 𝒜i, i ∈ {1, … , n}

}
.

Hence,

σ({(ω1, … , ωn)}: ω1 ∈ Ω1, … , ωn ∈ Ωn) ⊂

n⨂
i=1

𝒜i.

With Ωi being finite or countable, Ω = Ω1 ×… × Ωn is finite or countable. Therefore,

σ({(ω1, … , ωn)}: ω1 ∈ Ω1, … , ωn ∈ Ωn) = 𝒫(Ω)

(see Example 1.18). Because
n⨂

i=1
𝒜i ⊂ 𝒫(Ω), we can conclude

n⨂
i=1

𝒜i = 𝒫(Ω1 ×… × Ωn) = 𝒫
(

n

×
i=1

Ωi

)
.

1.15

(A × B)c = {(ω1, ω2) ∈ Ω1 × Ω2: ω1 ∉ A or ω2 ∉ B}

= {(ω1, ω2) ∈ Ω1 × Ω2: (ω1 ∉ A, ω2 ∈ B) or ω2 ∉ B}

= (Ac × B) ∪ (Ω1 × Bc)

and

(Ac × B) ∩ (Ω1 × Bc)

= {(ω1, ω2) ∈ Ω1 × Ω2: ω1 ∉ A, ω2 ∈ B, ω2 ∉ B}

= {(ω1, ω2) ∈ Ω1 × Ω2: ω1 ∉ A, ω2 ∈ B ∩ Bc = Ø}

= Ø.

1.16 Remember that (a ∈ A, b ∈ B) means (a ∈ A and b ∈ B) and that (a ∈ A and b ∈ B) and
(b ∈ B and a ∈ A) are equivalent. Let A1, B1 ∈ 𝒜1, … , An, Bn ∈ 𝒜n. Then A1 ∩ B1 ∈
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𝒜1, … , An ∩ Bn ∈ 𝒜n. Hence, A1 ×… × An ∈ ℰ , B1 ×… × Bn ∈ ℰ and (A1 ∩ B1) ×
… × (An ∩ Bn) ∈ ℰ . Furthermore,

(A1 ×… × An) ∩ (B1 ×… × Bn)

= {(ω1, … , ωn): ω1 ∈ A1, … , ωn ∈ An, ω1 ∈ B1, … , ωn ∈ Bn}

= {(ω1, … , ωn): ω1 ∈ (A1 ∩ B1), … , ωn ∈ (An ∩ Bn)}

= (A1 ∩ B1) ×… × (An ∩ Bn) ∈ ℰ .

1.17 Let Bi denote the sets defined in Remark 1.46.
(i) B1 = A1 ∈ 𝒜. For all i ∈ N, i > 1, Bi ∈ 𝒜:

Bi = Ai ∖

(
i−1⋃
j=1

Aj

)
= Ai ∩

(
i−1⋃
j=1

Aj

)c

∈ 𝒜. [Def. 1.1 (b), Rem. 1.2]

(ii) For any sequence C1, C2, … ⊂ Ω, define

n⋃
j=m

Cj := Ø, if m > n, and
n⋂

j=m
Cj := Ω, if m > n.

Then, using associativity and commutativity of the intersection, for 1 ≤ k < l,

Bk ∩ Bl =

[
Ak ∖

(
k−1⋃
j=1

Aj

)]
∩

[
Al ∖

(
l−1⋃
j=1

Aj

)]

= Ak ∩

(
k−1⋃
j=1

Aj

)c

∩ Al ∩

(
l−1⋃
j=1

Aj

)c

[A ∖ B = A ∩ Bc]

= Ak ∩

(
k−1⋂
j=1

Ac
j

)
∩ Al ∩

(
l−1⋂
j=1

Ac
j

)
[de Morgan]

= Ak ∩ Al ∩

(
k−1⋂
j=1

Ac
j

)
∩

(
k−1⋂
j=1

Ac
j

)
∩ Ac

k ∩

(
l−1⋂

j=k+1
Ac

j

)
= Ø. [Ak ∩ Ac

k = Ø]

(iii) The sets Bi are defined such that Bi ⊂ Ai, for all i ∈ I. Therefore,
⋃∞

i=1 Bi ⊂⋃∞
i=1 Ai. Furthermore, for all ω ∈ Ω,

ω ∈
∞⋃

i=1
Ai ⇒ ∃ i ∈ N: ω ∈ Ai ∧ (∀ j < i: ω ∉ Aj)

⇒ ∃ i ∈ N: ω ∈ Ac
1 ∩… ∩ Ac

i−1 ∩ Ai = Bi

⇒ ω ∈
∞⋃

i=1
Bi.

Hence,
⋃∞

i=1 Ai ⊂
⋃∞

i=1 Bi, and this implies
⋃∞

i=1 Bi =
⋃∞

i=1 Ai.
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1.18 (i) This is condition (c) of Definition 1.43.

(ii) If A1, … , An ∈ 𝒜are pairwise disjoint, then A1, A2, … with Ø = An+1 = An+2 =
… is a sequence of pairwise disjoint measurable sets. Therefore, conditions (a)
and (c) of Def. 1.43 imply

𝜇

(
n⋃

i=1
Ai

)
= 𝜇

(
∞⋃

i=1
Ai

)
=

∞∑
i=1

𝜇(Ai) =
n∑

i=1
𝜇(Ai) +

∞∑
i=n+1

𝜇(Ø) =
n∑

i=1
𝜇(Ai).

(iii) For A, B ⊂ Ω,

A = (A ∩ B) ∪ (A ∩ Bc) = (A ∩ B) ∪ (A ∖ B)

and

(A ∩ B) ∩ (A ∩ Bc) = A ∩ B ∩ Bc = Ø.

Hence, for sets A, B ∈ 𝒜, Rule (ii) (finite additivity of 𝜇) implies proposition (iii).

(iv) This proposition is a special case of (iii) with A = Ω.

(v) Exchanging the roles of A and B in (iii), we obtain

𝜇(B) = 𝜇(A ∩ B) + 𝜇(B ∖ A).

If A ⊂ B, then A ∩ B = A; and, because 𝜇(B ∖ A) ≥ 0,

𝜇(A) = 𝜇(A ∩ B) ≤ 𝜇(A ∩ B) + 𝜇(B ∖ A) = 𝜇(B).

(vi) This rule immediately follows from proposition (iv) for 𝜇(A ∩ B) < ∞. [Note that
𝜇(A) − 𝜇(A ∩ B) is not defined if 𝜇(A) = 𝜇(A ∩ B) = ∞.]

(vii) For A, B ⊂ Ω,

A ∪ B = (A ∖ B) ∪ (A ∩ B) ∪ (B ∖ A).

Because the right-hand side is a union of pairwise disjoint sets, finite additivity
of 𝜇 yields

𝜇(A ∪ B) + 𝜇(A ∩ B) = 𝜇(A ∖ B) + 𝜇(A ∩ B) + 𝜇(B ∖ A) + 𝜇(A ∩ B)
= 𝜇(A) + 𝜇(B). [Box 1.1 (iii)]

(viii) 𝜇(Ω) = 𝜇(A ∪ Ac) = 𝜇(A) + 𝜇(Ac). Hence, if 𝜇(Ω) = 𝜇(A) < ∞, then 𝜇(Ac) = 0.
Therefore, for all B ∈ 𝒜 , (v) implies 𝜇(Ac ∩ B) = 0. Furthermore, B = (A ∩ B) ∪
(Ac ∩ B) and (A ∩ B) ∩ (Ac ∩ B) = Ø. Hence, 𝜇(B) = 𝜇(A ∩ B) + 𝜇(Ac ∩ B) =
𝜇(A ∩ B). Note that, in general, 𝜇(A) = 𝜇(Ω) does not imply A = Ω.
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(ix) 𝜇(A) = 0 implies

𝜇(B) = 𝜇(A) + 𝜇(B)
≥ 𝜇(A ∪ B) [(xi)]
≥ 𝜇(B). [(v)]

Note that, in general, 𝜇(A) = 0 does not imply A = Ø.

(x) Let B := Ω ∖ Ω0. Then 𝜇(B) = 0 as well as 𝜇(A ∩ B) = 0 for all A ∈ 𝒜 [see Box
1.1 (v)]. Furthermore, for A ∈ 𝒜: A = (A ∩ Ω0) ∪ (A ∩ B), where A ∩ Ω0 and
A ∩ B are disjoint. Now, the sets A ∩ Ω0, A ∈ 𝒜, are the elements of the trace
σ-algebra and (Ω0, 𝒜 |Ω0

) = [Ω0, 𝒫(Ω0)]. Therefore, we can apply Equation
(1.31). Hence, for all A ∈ 𝒜,

𝜇(A) = 𝜇(A ∩ Ω0) + 𝜇(A ∩ B) [Box 1.1 (ii)]

=
∑

ω∈A∩Ω0

𝜇({ω}) + 𝜇(A ∩ B) [(1.31)]

=
∑

ω∈A∩Ω0

𝜇({ω}). [𝜇(A ∩ B) = 0]

(xi) Let A1, A2, … ∈ 𝒜and define B1, B2, … ∈ 𝒜by B1 = A1, and Bi = Ai ∖
⋃i−1

j=1 Bj
for i > 1 (see Rem. 1.46). Then B1, B2, … is a sequence of pairwise disjoint sets
with Bi ⊂ Ai for all i ∈ N and

⋃∞
i=1 Bi =

⋃∞
i=1 Ai. Hence,

𝜇

(
∞⋃

i=1
Ai

)
= 𝜇

(
∞⋃

i=1
Bi

)
=

∞∑
i=1

𝜇(Bi) [Def. 1.43 (c)]

≤

∞∑
i=1

𝜇(Ai). [Box 1.1 (v)]

1.19 If the A1, … , An ∈ 𝒜 are pairwise disjoint and B ∈ 𝒜, then, for i ≠ j, i, j = 1, … , n,

(B ∩ Ai) ∩ (B ∩ Aj) = B ∩ (Ai ∩ Aj) = B ∩ Ø = Ø.

Hence, the sets B ∩ A1, … , B ∩ An are pairwise disjoint. Furthermore, condition (b) of
Remark 1.47 implies

n⋃
i=1

(B ∩ Ai) = B ∩
n⋃

i=1
Ai = B.

Therefore, additivity of 𝜇 yields

𝜇(B) = 𝜇

(
n⋃

i=1
(B ∩ Ai)

)
=

n∑
i=1

𝜇(B ∩ Ai),
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which is Equation (1.29). The proof of Equation (1.30) is literally the same except for
replacing

⋃n
i=1 by

⋃∞
i=1,

∑n
i=1 by

∑∞
i=1, and additivity of 𝜇 by σ-additivity.

1.20 Let ω ∈ Ω.
(a) According to Equation (1.32), 𝛿ω(Ø) = 1Ø(ω) = 0.

(b) According to Equation (1.32), 𝛿ω(A) = 1A(ω) ∈ {0, 1}, for all A ∈ 𝒜, and this
implies 𝛿ω(A) ≥ 0, for all A ∈ 𝒜.

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then

𝛿ω

(
∞⋃

i=1
Ai

)
= 1⋃ ∞

i=1 Ai
(ω) [(1.32)]

=
∞∑

i=1
1Ai

(ω) [(1.37)]

=
∞∑

i=1
𝛿ω(Ai). [(1.32)]

1.21 (a) According to Equation (1.40), 𝜇#(Ø) = ∑
ω ∈Ω 1Ø(ω) = 0.

(b) According to Equation (1.40), 𝜇#(A) = ∑
ω ∈Ω 1A(ω), for all finite A ∈ 𝒜 , and

𝜇#(A) = ∞, if A is infinite. This implies 𝜇#(A) ≥ 0, for all A ∈ 𝒜 .

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint and all Ai are finite, then

𝜇#

(
∞⋃

i=1
Ai

)
=

∑
ω ∈Ω

1⋃ ∞
i=1 Ai

(ω) [(1.40)]

=
∑
ω ∈Ω

∞∑
i=1

1Ai
(ω) [(1.37)]

=
∞∑

i=1

∑
ω ∈Ω

1Ai
(ω)

=
∞∑

i=1
𝜇#(Ai). [(1.40)]

Note that the set
⋃∞

i=1 Ai can be countably infinite, even if all Ai are finite. In this
case, 𝜇#

(⋃∞
i=1 Ai

)
= ∞ = ∑∞

i=1 𝜇#(Ai). If at least one of the Ai is infinite, then⋃∞
j=1 Aj ⊃ Ai is an infinite set and 𝜇#

(⋃∞
j=1 Aj

)
≥ 𝜇#(Ai) is infinite as well.

1.22 (a) Using Equations (1.42) and (1.39),

(∑
ω∈B

𝛿ω

)
(Ø) =

∑
ω∈B

𝛿ω(Ø) =
∑
ω∈B

1Ø(ω) =
∑
ω∈B

0 = 0.
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(b) Using Equations (1.42) and (1.39),

∀ A ∈ 𝒜 :

(∑
ω∈B

𝛿ω

)
(A) =

∑
ω∈B

𝛿ω(A) =
∑
ω∈B

1A(ω) ≥ 0.

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then(∑
ω∈B

𝛿ω

)(
∞⋃

i=1
Ai

)
=

∑
ω∈B

𝛿ω

(
∞⋃

i=1
Ai

)
[(1.42)]

=
∑
ω∈B

1⋃ ∞
i=1 Ai

(ω) [(1.39)]

=
∑
ω∈B

∞∑
i=1

1Ai
(ω) [(1.37)]

=
∑
ω∈B

∞∑
i=1

𝛿ω(Ai) [(1.39)]

=
∞∑

i=1

((∑
ω∈B

𝛿ω

)
(Ai)

)
. [(1.42)]

1.23 (a) Equation (1.47) yields: ν(Ø) = 𝜇(Ø) = 0.

(b) Equation (1.47) also yields: ν(A) = 𝜇(A) ≥ 0, for all A ∈ 𝒞 .

(c) If A1, A2, … ∈ 𝒞 are pairwise disjoint, then

ν

(
∞⋃

i=1
Ai

)
= 𝜇

(
∞⋃

i=1
Ai

)
[Def. 1.1 (c), (1.47)]

=
∞∑

i=1
𝜇(Ai) [Def. 1.43 (c)]

=
∞∑

i=1
ν(Ai). [(1.47)]

1.24 (a) Using Equation (1.48) and Definition 1.43 (a) yields(
∞∑

i=1
αi𝜇i

)
(Ø) =

∞∑
i=1

αi𝜇i(Ø) =
∞∑

i=1
0 = 0.

(b) Similarly, using Equation (1.48) yields, for all A ∈ 𝒜,(
∞∑

i=1
αi𝜇i

)
(A) =

∞∑
i=1

αi𝜇i(A) = lim
n→∞

n∑
i=1

αi𝜇i(A) ≥ 0,

because 𝜇i(A) ≥ 0, and we assume αi ≥ 0.
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(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then(
∞∑

i=1
αi𝜇i

)(
∞⋃

j=1
Aj

)
=

∞∑
i=1

αi𝜇i

(
∞⋃

j=1
Aj

)
[(1.48)]

=
∞∑

i=1
αi

∞∑
j=1

𝜇i(Aj) [Def. 1.43 (c)]

=
∞∑

j=1

∞∑
i=1

αi𝜇i(Aj)

=
∞∑

j=1

((
∞∑

i=1
αi𝜇i

)
(Aj)

)
. [(1.48)]

Note that the last but one equation holds, because rearranging summands does not
change the sum if the terms αi and 𝜇i(Aj) are nonnegative.


