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Quantum mechanics

1.1 Introduction to quantum mechanics

Before attempting to investigate theworkings of a tunnelling field-effect transistor, it
is essential to be familiarwith the concept of tunnelling. Tunnelling is a quantumphe-
nomenon,with no counterpart in the everyday physics one encounters, or the physics
that one applies while dealing with devices a few hundred nanometres in length. The
initial two chapterswill, therefore, help us develop an understanding of quantumphe-
nomena. In this chapter,wewill present an introduction to the field of quantummech-
anics and the next chapter will discuss the phenomenon of tunnelling in detail.

The chapter begins with a description of a landmark experiment that conclu-
sively proved the wave nature of particles, after which wewill study the concept of
wavefunctions and how to use Schrodinger’s equation to obtain them. A few basic
problems will be presented so that the readers may familiarise themselves with
basic quantum concepts.

1.1.1 The double slit experiment

There are many experiments that led to the conception of quantum mechanics –
blackbody radiation, the Stern Gerlach experiment, the photoelectric effect, the
line spectrum, etc. However, for our purposes we will concentrate on one of
the landmark experiments, that is the double slit experiment, which demonstrated
the fundamental quantum nature (i.e. both wave and particle) of electrons.
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You would have read that only waves can undergo superposition, and not par-
ticles. Superposition is the fundamental principle behind the occurrence of
interference – therefore, if something exhibits interference, it must have a wave
nature. The double slit experiment is famously associated with Thomas Young,
who used it for the first time in the early nineteenth century to prove the wave
nature of light. Before this experiment was performed, light had been associated
with a particle nature (since the times of Newton), and the fact that it underwent
interference was conclusive proof of its wave nature.

However, the behaviour of light that led Newton and others to believe that it
had a particle nature could not be reconciled with this newly formed wave picture.
It took another century of research and experiments to establish a rather astonish-
ing result regarding the behaviour of light – that it displays both particle and wave
natures. The particle nature leads to phenomena such as the photoelectric effect
and rectilinear propagation of light in ray optics; the wave nature explained the
interference and diffraction of light.

While this dual nature (that is both particle and wave natures) of light was
being worked out, many people were, independently, studying the behaviour of
subatomic particles. Phenomenon like the discrete line spectrum of hydrogen,
the observed distribution of blackbody radiation, etc., could not be explained
by any established theory. Theoretical physicists were in a quandary. At this point,
de Broglie hypothesised that, just like light, particles possess a dual nature as well.
When de Broglie made this hypothesis, there was little evidence to support his
claim. A few years later, Davisson and Germer experimentally observed that elec-
trons underwent diffraction just as light did. These were landmark moments in the
history of physics – de Broglie received the Nobel Prize in physics (the second
time it was awarded for a PhD thesis) and, later, so did Davisson and Germer.
While the Davisson–Germer experiment was the first to establish the dual nature
of matter, the double slit interference experiment is far easier to conceptually grasp
and visualise, which is why we will use it to embark on our study of quantum
phenomena.

The setup of an electron interferometer used in the double slit experiment is
conceptually quite similar to that of a light interferometer (Figure 1.1). A parallel
beam of electrons is incident on a screen with two slits. The electrons that pass
through the slits impinge upon the optical screen, where their incidence is captured
by a visible spot. First, let us think of these electrons as if they were the kind of
particles we observe in our daily lives (classical particles) and see how they should
behave. All the electrons in the initial beam have the same speed and direction of
motion and they are heading towards the screen with two slits. All the electrons
that hit this screen are blocked, except for the ones passing right through the slits.
These electrons that passed through the slits should have no reason to change
either their speed or the direction of their motion. They do not “know” that there
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was a screen in the first place – they pass through unaffected. They subsequently
keep heading straight and hit the final screen as illustrated in Figure 1.1(a). Two
narrow bands are formed on the screen, corresponding to the two thin beams of
electrons that passed unaffected through the two small slits.

Now let us take a look at what was actually observed in the experiment. There
was an interference pattern on the screen, as shown in Figure 1.1(b), a pattern
uncannily similar to what is observed when we perform the same experiment with
light instead of electrons. At this juncture, youmight hypothesise this behaviour to
result from some sort of statistical phenomenon due to the large number of elec-
trons. However, the experiment is far from finished, and further strangeness
lies ahead.

Let us now adjust the electron source so that instead of a beam of electrons it
sends a single electron at a time. This time, we find something even more extra-
ordinary – after a lot of electrons have hit the screen, the same interference pattern
builds up as in the case of a beam of many electrons. There is no way this electron
“knows” that it has been preceded by, or it will be followed by, another electron.
What, then, could be happening? The answer is even more puzzling than the ques-
tion, and will take you quite a while to come to terms with – each and every elec-
tron is undergoing interference with itself. This is what leads to the final
conclusion that not just aggregates of particles but each and every particle exhibits
a wave nature. To make this point clear, let us modify the experiment such that we
are able to find out throughwhich slit each electron passes. Independent of howwe
find out which slit each electron passes through, we get exactly the same result, that
is the interference pattern vanishes and we get the pattern shown in Figure 1.1(a),
as predicted by classical mechanics. Think about this very carefully, because this

(b)(a)

ScreenDouble slit

Electron
beam

ScreenDouble slit

Electron
beam

Figure 1.1 (a) Classically predicted electron pattern. It can be seen that
interference fringes are experimentally observed, as opposed to the classically
predicted pattern. This establishes the wave-like behaviour of electrons, (b)
experimentally observed electron pattern.
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pointmerits serious investigation. For awave to show interference, there need to be
two sources – the two slits in this case. Thus, for a single electron to show inter-
ference, it must be passing through both slits. However, this is not possible! At the
very least, we cannot imagine such a situation. It is only reasonable to assume that
the electron either goes through one slit or the other, but the moment we impose
such a restriction on the electron, we are thinking of it as a classical particle. By just
knowing which slit the electron is going through, and thereby imposing the con-
dition that it will pass through either one slit or the other, we are restricting it to
behave like a classical particle. While the mathematical foundations will be laid
later in this chapter, for now the reader should try and grasp the underlying
concept – the quantum electron passes through both the slits; it is a superposition
of these two states (corresponding to passing through the upper or lower slit). You
may think that the electron actually passes through either of the two slits and due to
limitations of our experimental techniques, we do not know which slit it passes
through. This is not the case – the electron is indeed passing through both the slits.
This counterintuitive phenomenon is at the very root of quantummechanics and it
will take some time for us to be familiar with this kind of approach. You cannot ask
of the quantum electron (or any general quantum particle), “Which slit does it pass
through?”The question in itself is wrong. It passes through both. It should be noted
that this wave nature of a particle becomes appreciable only at very small sizes,
such as a few nanometres.

1.1.2 Basic concepts of quantum mechanics

1.1.2.1 Wavefunctions

The behaviour of classical particles can be fully explained by describing how their
position changes with time. This information would be sufficient to give us the
trajectory, the velocity, the momentum and the acceleration of the particle. How-
ever, what of the quantum particle? Surely, the electron that passed through both
slits of the double slit experiment cannot be assigned a precise location. This leads
us to the realisation that we need some new method to describe the quantum par-
ticle. The rest of this chapter is devoted to formulating a mathematical picture that
is able to capture the unusual behaviour of quantum particles.

The search for this new method of description was helped by the knowledge
that the quantum behaviour of particles closely resembled the behaviour displayed
by waves.Waves of many kinds – electromagnetic waves, sound waves, etc. – had
been extensively studied, and all these waves were described by wave equations.
These equations described the behaviour of a wave at every point in space, and at
all times. For example, in the case of sound waves, the wave equation described
the displacement (Δr ) of each particle as a function of time:
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Δr = ψ x,y,z, t 1 1

Similarly, for an electromagnetic wave, the wave equations described the
electric (E) or magnetic (B) field at each and every point as a function of time:

E = ψE x,y,z, t 1 2

B = ψB x,y,z, t 1 3

Taking the cue from these equations, physicists assigned a similar wave equa-
tion to the quantumparticle. This equationwas called thewavefunctionof the quan-
tum particle and was usually denoted by the Greek symbol ψ (psi). Just like in the
case of classical waves, this wavefunction contained all the information about the
particle – its current state and the variation of its behaviourwith time. It is important
to note that while the previously described wave equations (1.1) to (1.3) were real
functions, the wavefunction of a quantum particle is a complex function.

1.1.2.2 Born interpretation

While the wavefunction-based formulation of quantum mechanics was proposed
by Erwin Schrodinger quite early, he was at a loss to ascribe any physical meaning
to it. The theory he built up described what sort of mathematical operations one
needed to perform on the wavefunction to get information relating to its various
properties, such as its position, its momentum, its energy, etc. However, what this
wavefunction itself meant was a mystery, especially because it was a complex
function. Many interpretations were proposed as to the meaning of this wavefunc-
tion, but the one that is most widely accepted was proposed by Max Born. It is
known as the “Born interpretation of quantum mechanics” and is one of the
fundamental principles of quantum mechanics. According to this interpretation,
the wavefunction ψ is the “probability amplitude” of the quantum particle, the
square of whose magnitude gives us the probability density ρ of finding that
particle at any point:

ρ = ψ 2 =ψ∗ψ 1 4

where ψ∗ is the complex conjugate of ψ . Using this interpretation, the probability
P of finding the particle in a volume V at any time t would be

P V , t =
V
ρ dx dy dz 1 5
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Since the probability of finding the particle in the entire space should always
be unity, we can say that

∞

-∞
ψ∗ψ dx dy dz= 1 1 6

A wavefunction that displays this property is called a “normalised”
wavefunction.

It is very important to realise that the probabilistic behaviour that follows from
the Born interpretation is different from the probabilistic behaviour encountered in
statistical mechanics. For example, consider an ensemble of particles in a chamber
each occupying a particular position. This allows us to calculate the probability of
finding a particle at any position. If there were only a single classical particle in
this chamber, we could always precisely identify its position. However, in quan-
tum mechanics, every single particle is “spread out” in space, and its position is
uncertain. Even if there is only a single electron, we cannot say, “The electron is at
this particular point”. We can only talk about the probability of finding the elec-
tron at any given point once we measure its position. Thus, the Born interpretation
provided a physical meaning to the wavefunction that was compatible with the
fundamentally probabilistic behaviour of a quantum particle, and gave a mathem-
atical approach to calculate the probability of finding a quantum particle at any
region in space.

1.1.2.3 Measurement

Measurement is a fundamental process in our lives, yet it is so much a part of our
instincts that we barely pay any attention to it. However, if you think carefully,
most of the information you get is by the process of measurement. When you look
at a tree, your eyes measure the frequency and amplitude of the incoming electro-
magnetic waves, giving you information regarding the colour and brightness of
the tree. Subsequently, your eyes measure the angular difference between the sig-
nals received by the two eyes, and calculations by your brain tell you how far away
this tree is. You may hear a bird chirping on this tree – once again, due to your ears
measuring the frequency and location of the pressure waves (sound) impinging
upon them. Similarly, any information we get about a quantum particle is by
the process of measurement – measuring the position, energy, momentum, etc.

However, there is a very fundamental difference between measurement in
classical physics and quantum physics. While the state of a classical particle is
independent of measurements performed on it, in quantum mechanics, the state
of the quantum particle is intricately linked to measurements performed on it.
We shall go back to the double slit experiment to illustrate this point. When
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we measured which slit the electron passed through, that is when we measured its
position, it stopped showing interference. The electron, before measurement,
exhibited interference. After we carried out the measurement, it no longer showed
interference. This shows that measurement changed the state of the electron. In
general, measurement changes the state of a quantum particle, and its final state
(after measurement) depends both on its initial state and the kind of measurement
being performed. Do not be worried if the picture is not completely clear yet – to
fully understand the process of measurement, we will have to know about oper-
ators and eigenvalues, which we will do in the next two sections.

1.1.2.4 Operators

The Born interpretation told us that we can obtain the probability of finding a
quantum particle at any given point if we know its wavefunction. However, the
wavefunction contains far more information than this. If you remember, the wave-
function was supposed to contain all the information about the quantum particle.
How, then, do we extract this information from the wavefunction?

Since the wavefunction is a mathematical function, it is clear that we will be
performing certain mathematical operations on it to get the information we desire.
This mathematical operation must be different, depending on the specific kind of
information – energy, momentum, position, etc. –we need to obtain. This, indeed,
is the case.

Corresponding to every physically observable parameter (also called observa-
bles) of a quantum particle, such as position, momentum, energy, we have math-
ematical operators. The operators for certain common observables are listed below
in Table 1.1, where ι (iota) is the square root of negative unity and ℏ (h-cross or
h-bar) is the reduced Planck’s constant.

To understand the use of these operators, let us imagine an experiment where
we have a large number of quantum particles with the same wavefunction ψ . We
wish to measure a particular observable, the mathematical operator corresponding
to which is O. The outcome of each measurement is o. As the behaviour of

Table 1.1 Quantum mechanical operators
corresponding to physical observables.

Observable Operator

Position (x) x
Momentum (p ) − ιℏ∇
Energy (E)

ιℏ
∂

∂t
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quantum particles is probabilistic, measuring O for every particle will give a dif-
ferent outcome o. Looking back to our example of the double slit experiment, all
the incoming electrons were exactly similar. However, when we start measuring
which slit they pass through, sometimes we find that an electron passes through
the upper slit and at other times through the lower slit. We can, therefore, only
discuss the expectation value o after taking an average of all the measurements.
This expectation value of the observable o is given as

o =
∞
−∞ ψ∗Oψ dx dy dz
∞
−∞ ψ∗ψ dx dy dz

1 7

The above equation tells us about the expectation value when we perform a
large number of measurements, all on particles with the same wavefunction ψ .
However, if we have only one particle, it would be useful to know the probability
of obtaining a particular result. For us to know this, we must find the eigenfunc-
tions of the operator in question.

1.1.2.5 Eigenfunctions

Let us recollect from the section on measurement (Section 1.1.2.3) that the state of
a quantum particle changes upon measurement, and the final state is dependent on
both the initial state and the kind of measurement being performed. However,
there are certain very special states corresponding to every observable that do
not change when it is measured. These special states are the eigenfunctions of that
observable. If, for an operator O, the wavefunction ψo behaves as

Oψo = λψo 1 8

where λ is a constant, then ψo is an eigenfunction (also referred to as an eigenstate
or an eigenvector) of the operator O and λ is the corresponding eigenvalue. Sup-
pose that we measure the observable corresponding to the operatorO on a particle
having the wavefunction ψo. We will find the value of this observable to be λ. This
can be proven by substituting the value of Oψo from Equation (1.8) into
Equation (1.7) that gave us the expectation value corresponding to any operator.
Moreover, the wavefunction ψo will remain unchanged. Therefore, for a particle
whose wavefunction is an eigenfunction of an observable, we can, with absolute
certainty, state the result of measurement. To understand this, let us consider the
energy operator (Table 1.1) as an example. Let us assume ψEi

i= 0,1,2,… to be
the eigenfunctions of the energy operator, having eigenvalues Ei:

ιℏ
∂ψEi

∂t
=EiψEi

1 9
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If we take a particle with wavefunction ψEi
, we know that its energy is Ei.

There is no probability involved in this.
Furthermore, even if we have a wavefunction that is not an eigenfunction of

the operator in question, the result of every measurement can only be one of the
eigenvalues of the operator. Let us again take the energy operator as an example.
Suppose that we measure the energy of a particle having a wavefunction Ψ that is
not one of the eigenfunctions ψEi

of the operator. The result will always be one of
the eigenvalues Ei. Note that every measurement will result in a different energy
being observed each time. You will now say that once you have measured the
energy, and it is found to be a particular Ei, you know the energy of the particle
to be Ei. However, it was stated earlier in this section that we can only know (with
absolute certainty) the energy of the eigenfunctions of an observable. YetΨ is not
an eigenfunction of the energy operator. What happens is that, after measurement,
the wavefunction Ψ “collapses” into the wavefunction ψEi

corresponding to the
observed energy Ei. Remember that measurement changes the state of a quantum
particle. Now we can say thatmeasuring an observable leads us to observe one of
the eigenvalues of that observable, and the state of the quantum particle being
measured changes to the corresponding eigenfunction.

We now face the problem of finding the probability of this “collapse” into a
particular eigenfunction. Linear algebra provides us with a very handy solution to
this problem. Any general wavefunction can be written in terms of the eigenfunc-
tions of an operator. Let us clarify this point. Every operator has a set of eigen-
functions. If we use a linear combination of all these eigenfunctions, we get a
set of states that includes every possible state that the quantum particle can have.
That is, every wavefunction can be decomposed into a linear superposition of the
eigenfunctions of any given operator. Let us once again go back to the energy
operator and its eigenfunctions that we discussed in Equation (1.9). Any general
wavefunction Ψ can be written in terms of the eigenfunctions ψEi

of the energy
operator as

Ψ =ΣaiψEi
1 10

where ai are coefficients corresponding to every wavefunction ψEi
and are

complex numbers.
Unlike in the case of the eigenfunctions ψEi

, we cannot discuss the energy of
this general particle as having wavefunctionΨ. It is a linear superposition of states
ψEi

of different energies Ei. When the energy of this particle is measured, one
obtains any one of the energies Ei, and the particle is found to be in the state
ψEi

after the measurement. However, we cannot say that the particle had energy
Ei because the measurement may very well have led to the observation of a dif-
ferent energy Ej. Now the state of the particle changes after measurement from
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Ψ to ψEi
. The probability P ψEi

that the wavefunctionΨ collapses into a particu-
lar eigenfunction ψEi

can be written as

P ψEi
= ai

2 1 11

where ai is the coefficient corresponding the eigenfunction ψEi
in the linear super-

position shown in Equation (1.10).

1.1.3 Schrodinger’s equation

1.1.3.1 Formulation of the equation

We have now understood what wavefunctions mean and how they behave when
measured, yet we do not know how to find them for a particular physical situation,
like an electron in a hydrogen atom. There must be some equations that have to be
solved to give us these wavefunctions. Just as Maxwell’s equations (when solved
under an appropriate set of boundary conditions) give the equations for electro-
magnetic waves, an equation is needed that can be used to find the wavefunction
of a quantum particle. This equation is called Schrodinger’s equation. It is a quan-
tum formulation of the statement that

Total energy= kinetic energy+ potential energy 1 12

By using the operators listed in Section 1.1.2.4 (Table 1.1), we can write:

Kinetic energy=
p2

2m
= −

ℏ2

2m
∇2 1 13a

Potential energy=V r, t 1 13b

Total energy= ιℏ
∂

∂t
1 13c

which, when substituted into Equation (1.12), gives Schrodinger’s equation:

−
ℏ2

2m
∇2 +V r, t = ιℏ

∂

∂t
1 14

The above equation is in the form of operators of the individual energies.
It needs to be operated upon the wavefunction ψ , giving the final form of the equa-
tion as

−
ℏ2

2m
∇2ψ +Vψ = ιℏ

∂ψ

∂t
1 15
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The above equation is a partial differential equation, which has to be solved for
ψ . The form of the potential V r, t and the boundary conditions will be different
for different physical problems (e.g. a particle confined in a one-dimensional well,
the tunnelling problem, the hydrogen atom, etc.), thus leading to different
wavefunctions.

In Equation (1.15), we have introduced the time-dependent form of Schrodin-
ger’s equation. However, in most cases, we would be solving for energy eigen-
functions, which are stationary states and do not change with time. Therefore,
the right-hand side of Equation (1.15) changes to Eψ , giving

−
ℏ2

2m
∇2ψ +Vψ =Eψ 1 16

This is the time-independent form of Schrodinger’s equation, and it will be the
building block for solving most elementary and slightly complex quantum
problems. Additionally, most of the problems that are dealt with in this text are
one dimensional. In this case, the time-independent Schrodinger equation
(1.16) further simplifies to

−
ℏ2

2m
∂2ψ

∂x2
+Vψ =Eψ 1 17

Using Schrodinger’s equation, you can get some very important mathematical
conditions that every wavefunction must obey [1]. These are:

1. The wavefunction must be continuous at each point in space.

2. The first derivative of the wavefunction must be continuous at each point in
space, unless the potential V at the boundary in question is infinite.

1.1.3.2 Probability current

Our final aim is to model tunnel field-effect transistors (TFETs) for predicting
their electric currents. We must keep this perspective in mind when we look at
the quantum mechanical techniques that we are discussing. We know that electric
current is a measure of the rate of flow of charge. These charges are either elec-
trons or holes and their behaviour is best predicted by quantummechanics. There-
fore, we need to find a link between the electric current and the quantum
mechanical behaviour of charge carriers.

Let us consider a single electron present inside a conductingwire. If wewere to
study the behaviour of this electron purely in terms of classical physics, we could
find its position and velocity, and use this information to calculate the current in
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the wire. However, for an electron obeying the laws of quantum mechanics, we
cannot specify its position –we can only find the probability of its presence at any
point. From this point of view, what happens when an electron moves in a par-
ticular direction? The probability density |ψ2|of a quantum particle moving from
left to right is plotted at various points of time in Figure 1.2. In terms of quantum
mechanics, wemight say that the probability of finding this particle is changing. In
technical terms, there is now a probability current, which is the rate of flow of the
probability of the quantum particle’s presence. To calculate the electric current
resulting from the flow of quantum particles, we need to find this probability
current.

We know that the differential form of the continuity equation for charge is

∇ ∙J = −
∂ρ

∂t
1 18

whereJ is the current density and ρ is the charge density. In the case of a quantum
particle, the same continuity equation holds, but with J being the probability cur-
rent and ρ=ψ∗ψ being the probability density.We can use the left-hand side of the
time-independent Schrodinger Equation (1.16) to give us the values of ψ and ψ∗.
When these values of ψ and ψ∗ are substituted in Equation (1.18), we can write the
probability current J as [1]

J =
ιℏ
2m

ψ∇ ψ∗−ψ∗∇ ψ 1 19

X

t= t 1

t= t 2

t= t 0

X

x2

x1

x0

|ψ2|

|ψ2|

|ψ2|

X

Figure 1.2 Probability density of a quantum particle moving from left to right,
plotted at different points of time (t2>t1>t0).
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1.2 Basic quantum physics problems

In this section,wewill familiarise ourselveswith certain basic problemsof quantum
mechanics. This would enable us to appreciate the concepts introduced that act as a
bridge between the theoretical framework and the practical problem of tunnelling.

1.2.1 Free particle

The simplest quantum particle is a free particle – a particle that is completely
unconstrained by any external potentials. This free particle is a basic building
block for studying more complex quantum mechanical problems, just as we
use the sine wave as a basic building block for representing complicated waves
(by using Fourier series).

1.2.1.1 Wavefunction

As a free particle is unconstrained by any external potential, the term V r in the
time-independent Schrodinger equation (1.16) is zero at all points in space. There-
fore, for a free particle, we can write

−
ℏ2

2m
∂2ψ

∂x2
=Eψ 1 20

The solutions of Equation (1.20) are

ψ ± =Ae± ιkx 1 21

k =
2mE

ℏ2 1 22

where k is referred to as the wave vector of the free particle and A is a complex
constant. The general solution would be a linear superposition of ψ + and ψ−:

Ψ=A eιkx +B e− ιkx 1 23

where A and B are complex constants.
We find that there are two eigenvectors ψ + and ψ− corresponding to a particu-

lar energy E – one with a plus sign and another with a minus sign in the exponen-
tial. Let us see what happens when we apply the momentum operator px
(Table 1.1) to these wavefunctions:

pxψ ± = − ιℏ
∂ψ ±

∂x
= ±ℏkψ ± 1 24
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We find that the wavefunctions ψ ± are eigenfunctions of the momentum
operator, with eigenvalues ±ℏk. This means that the particle corresponding to
ψ + has momentum in the positive x-direction, while ψ− has momentum in the
negative x-direction. Thus, ψ + is a free particle moving forward with a momen-
tum ℏk and ψ− is a free particle moving backward with a momentum ℏk.

Another important observation here is that the probability ρ (Equation (1.4)) of
finding the particle at any location is uniform – the particle is fully dispersed in
space. Therefore, we have

ρ=ψ∗ψ = A 2 1 25

The fact that the particle is fully dispersed in space follows from Heisenberg’s
uncertainty principle. The momentum of either of the two wavefunctions ψ ± is
known with complete certainty. Therefore, the uncertainty in the position of
the particle is infinite.

1.2.1.2 Probability current

Using Equation (1.19), we can write the probability current for a free particle
propagating along the positive x-axis as

J =
ℏk
m

A 2 1 26

Since |A|2 is the probability density (Equation (1.25)) and ℏk is the momentum
(Equation (1.24)) of the particle, the above equation can be rearranged to give

J =
p

m
ρ = vρ 1 27

where v= p m is the velocity of the particle. We can now write the electric current
density j as

j= qJ = qvρ 1 28

In this section, we have discussed the behaviour of a completely unconstrained
“free” particle. Let us now investigate the behaviour of a quantum particle that is
bound to remain between two points – a particle in a box.

1.2.2 Particle in a one-dimensional box

The next problem we will deal with is a particle confined to move along an axis
between two points. It cannot go beyond those two specified points. It is, therefore,
referred to as a particle in a one-dimensional box. It is confined to remainwithin the
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“box” (also referred to as an infinite potential well) with edges at x= 0 and x= L, as
shown in Figure 1.3. The particle is completely free to move within these limits,
implying that there is no external potential (i.e. V = 0) in the region xϵ(0, L).
Outside these limits, there is an infinite potential barrier (i.e. V = ∞ ). Physically,
this form of external potential ensures that the particle stays within the “box”.
Since Schrodinger’s equation assumes different forms in different regions, its
solution – the wavefunction – will also have different forms in different regions.
We will, therefore, find the wavefunction separately for each region and then join
these separate solutions to give the final solution. It is important to be familiar with
this procedure since it will be used in this book, not just for solving Schrodinger’s
equation but as a very important tool in the modelling of TFETs.

Now we know that the particle cannot be present in the regions x ≤ 0 and x ≥L.
Thus, in these regions, the probability of finding the electron is zero:

ρ =ψ∗ψ = 0 1 29

This is only possible if ψ = 0 in these regions.
Let us now find the solution of Schrodinger’s equationwithin the box,where the

form of Schrodinger’s equation is the same as that of the free particle (Equa-
tion (1.20)). However, we need to keep in mind the restrictions applied to a wave-
function, stated at the end of Section 1.1.3.1. The first condition is that the
wavefunction must be continuous. Since the wavefunction is zero in the regions
x ≤ 0 and x ≥ L, we get the following boundary conditions at the edges of our box:

ψ 0 = 0 1 30a

ψ L = 0 1 30b

The general solution of Equation (1.20) shown in Equation (1.23) can be
written in the form of trigonometric functions as

V=∞ V=∞V= 0

0 L X–X

Figure 1.3 Particle in a one-dimensional box.
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ψ x =A sinkx+B coskx 1 31

where A and B are complex constants and the wave vector k is

k =
2mE

ℏ2 1 32

Applying the boundary conditions (1.30), we get

B= 0 1 33

knL= nπ 1 34

The subscript n has been added to k because Equation (1.34) shows that k is
quantised and takes only certain fixed values. Using Equation (1.34) in (1.32)
gives the possible values of energy En that the particle can have:

En =
n2h2

8mL2
1 35

and the wavefunction ψn corresponding the energy En is

ψn =A sin
nπx

L
1 36

The constant A is given by the normalisation condition (1.6):

A=
1

2L
1 37

The above wavefunctions (1.36) correspond to energy eigenstates, as we have
solved the time-independent Schrodinger equation. A general wavefunction for a
particle in a one-dimensional box would, therefore, be a superposition of these
energy eigenstates:

Ψ=Σanψn 1 38

where an is the coefficient corresponding to the wavefunction ψn and is a complex
number.

If we plot the wavefunctions of energy eigenstates for a particle in a one-
dimensional box (Figure 1.4), we observe the same pattern as standing waves
in a string.
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Going back to classical physics, remember that a standing wave can be written
as a superposition of two travelling waves. Therefore, we can represent the energy
eigenstate of a particle in a one-dimensional box as a superposition of two free
particle wavefunctions going in opposite directions:

ψn =
1

2L
sinknx=

ι

2L
e− ιknx−eιknx 1 39

The first and second exponential terms in Equation (1.39) represent a free par-
ticle travelling in the negative and positive x-directions with momentum ℏkn,
respectively. Therefore, if we take the expectation value (1.7) of their superpos-
ition, these momenta cancel each other and the expectation value of the momen-
tum for ψn is zero.
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Figure 1.4 Energy eigenfunctions of a particle in a one-dimensional box.
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