Preliminaries

This chapter provides a short introduction to mathematical models consisting of systems of partial
differential equations (PDEs) along with auxiliary (boundary and initial) conditions. We discuss how
these equations can be solved, either exactly or using numerical methods. We also briefly consider the
important issues of precision and stability of a numerical solution. A Matlab script is provided at the
end of the chapter to enable readers to compare an analytical solution with its corresponding numerical
approximation.

1.1 Mathematical Models

The application of the principles of conservation of mass, momentum, and energy combined with
experimentally derived laws produces sets of PDEs that describe variations in velocity (or displace-
ment), pressure, and temperature in space and time. When combined with boundary and initial
conditions, these equations constitute mathematical models that can be solved and studied in a way
somewhat similar to performing experiments in a laboratory. Whether a model is mathematical or
analogue, both are simplified abstractions of reality. However, such models are useful because they
can help isolate the influence of certain parameters or scenarios, study complex system interactions,
and make predictions.

An example of a mathematical model that has important application in Earth science is the heat
conduction equation, often more generally referred to as the diffusion equation. A complete deriva-
tion of the heat conduction equation is given in Appendix A. In one dimension (1D), the heat con-
duction equation can be written as follows:

Here, T is the temperature (K), x is the distance (m), ¢ is the time (s), p is the rock density (kg m~3), cis
the specific heat capacity (J kg=! K1), k is the thermal conductivity (W m~! K7!), and A is the rate of
internal heat production per unit volume (J s™! m~2). In Equation 1.1, the temperature (the unknown)
is referred to as the dependent variable, while ¢ and x are known as independent variables. This type of
equation is called a “partial differential equation” since the dependent variable depends on more than
one independent variable. The physical parameters p, ¢, k, and A are assumed to be known. Obtaining
a solution to the equation means finding the function T'(x,¢) (i.e., T as a function of x and) that
satisfies the PDE.

Practical Finite Element Modeling in Earth Science Using Matlab, First Edition. Guy Simpson.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/simpson

4

The Finite Element Method with Matlab

More generally, the heat equation just introduced is also referred to mathematically as a parabolic
(initial value) problem, which are typically of the form
ou_ du o
ot ox> " 0y
Parabolic equations involve time-dependent behavior (term 1) and dissipation (terms 2 and 3),
together which tend to smooth the solution with increasing time (at least for linear problems).
Note that the signs in front of the second-order spatial derivatives on the right-hand side of 1.2
are necessarily positive; otherwise, the solutions grow rather than decay in time. Note also that the
solution to parabolic equations depends on the initial value of the solution at ¢ = 0 (hence the name
initial value problems). The other two major classes of PDEs are elliptic (boundary value) problems
and hyperbolic. Elliptic equations are typically associated with steady-state problems. Examples of
elliptic equations are Poisson’s equation,

(1.2)

o’u du

I d_yz =f (1.3)
and Laplace’s equation

’u u

du u_ 1.4

ox? 0y? (1.4)

which govern incompressible potential flow and steady heat transfer. Note that these equations don’t
involve any time derivatives and so their solutions depend only on the boundary conditions (hence the
name boundary value problems) and any source (if present). Hyperbolic (initial value) PDEs involve
time-dependent wave-like solutions. An example of a hyperbolic equation is the first-order wave
equation

Ju _ du

ou _ou ou

ot ox ody
Here, the first term accounts for time-dependent behavior, while the second and third terms trans-

late the solution laterally without any dissipation. Hyperbolic equations are common in problems
involving flowing fluids.

(1.5)

1.2 Boundary and Initial Conditions

The solution to a PDE is not unique until boundary conditions are imposed. Boundary conditions
essentially “ground” the solution to some specific physical scenario. There are four types of boundary
conditions commonly encountered in the solution of PDEs:

1) Dirichlet, where the value of the solution is imposed on the boundary

2) Neumann boundary conditions, where the derivative of the solution is imposed on the boundary

3) Robin boundary conditions, where one specifies some linear combination of the solution and its
derivative

4) Periodic (or repeating) boundary conditions, where one assumes that the solution at one end of
the model domain is equal to the solution at the other end

The number of boundary conditions necessary to determine a solution to a differential equation
matches the order of the highest spatial derivative in the differential equation. For example,
Equation 1.1 contains a second-order spatial derivative and so two boundary conditions must be

Preliminaries

specified, one at each end of the domain. The equation also contains a first-order time derivative,
so we must also provide an initial condition. This means we must define the value of T" everywhere
(over the entire domain) at ¢ = 0. Equation 1.5 has only first-order spatial derivatives and so requires
only one boundary condition in each direction. In this case, the boundary condition should be
imposed at the end of the domain from where flow arrives, whereas the downstream end should be
left unconstrained so that the flow can exit uninhibited.

1.3 Analytical Solutions

For relatively simple PDEs and for certain boundary conditions and initial conditions, it may be pos-
sible to find an exact (also known as a closed-form or analytical) solution. As an example, consider
1D heat transfer about a steadily creeping, narrow, planar, vertical fault. In this case, Equation 1.1
needs to be solved with A given by (e.g., see McKenzie and Brune, 1972)

A = 8(xy)Tv (1.6)

where 7 is the (constant) shear stress (Pa) resolved on the fault plane, v is the fault slip rate (m s™1),
and 6(x,) is the Dirac function, that is, co when x, = 0,0 whenx #0,and /" 8(xo)dx, = 1. The initial
temperature at ¢ = 0 is assumed to be 0°C everywhere. The spatial domain extends horizontally from
—oo to +oo on either side of the fault located at x = 0. The boundary conditions are that the first
derivative of the temperature vanishes at +o00. The exact solution to Equation 1.1 combined with 1.6
can be written down directly using the Green’s function for this equation (Morse and Feshbach ,1953,
p- 981). The solution is

2
T(x,t) = —~ ¢ 2% <ﬂ> \/E— 1.7
(x, t) K\/;pc <|x| \/;er (2t\/ﬁ + 2t exp ™ n x| \/; (1.7)

where k¥ (= k/(pc)) is the thermal diffusivity (m? s7!) and erf is the error function (erf(x) =
2/x /Ox exp(—t*)dt). This solution can easily be evaluated exactly at any desired x and ¢ once the
values for the various physical parameters are specified (as done in the following).

1.4 Numerical Solutions

Although it is normally always desirable to obtain exact solutions to the PDE(s) being investigated, in
practice this is often not possible. A closed-form solution may either not exist, or it may be too com-
plicated to be of practical use. This may be due a number of factors, including nonlinearities in the
governing equation, variable material properties, complicated geometries or boundary conditions,
and so on. In such cases, one must resort to numerical methods that provide an approximate solu-
tion to the governing differential equation(s). Today, with powerful computers, many complicated
problems can be solved quickly using numerical techniques.

The process of obtaining a computational solution consists of two stages shown schematically in
Figure 1.1. The first stage converts the continuous PDE and auxiliary conditions (boundary and initial
conditions) into a discrete system of algebraic equations. This first stage is called “discretization” and
may be performed using various methods (one of which is the finite element method or FEM). The
second stage involves solving the system of algebraic equations (normally performed on a computer,

5

6 | The Finite Element Method with Matlab

Discretization

e

Governing PDE
oT _ PT &PT
o o ToR
T(t=0,x,y) =0 (initial condition)

~ System of algebraic equations
T (t,xb,yb)=1 (boundary condition) A T=b <~ Known load vector
Solution h

Known coefficient matrix Unknown solution
at discrete nodes

Approximate solution T (t, X, y)
at discrete positions

Figure 1.1 Major steps involved in obtaining a numerical solution to a PDE.

see Appendix B) to obtain an approximate solution to the original PDE. This second stage typically
will involve some standard mathematical method such as Gaussian elimination.

Two important issues that must be considered when obtaining a numerical solution to PDEs are
error and stability. All numerical methods introduce discretization errors, which in principle can
be reduced by increasing the spatial and temporal resolution. This can be achieved by increasing the
number of nodes (in time or space) where the solution is computed, or equivalently, by decreasing the
spacing between nodes. It both cases, this should be performed without changing the total spatial or
temporal extent of the model domain. Ideally, a numerical solution will converge to the exact solution
as the resolution is increased. Even if an exact solution doesn’t exist, one should always check that the
numerical solution doesn’t change significantly as the numerical resolution is changed, indicating that
convergence has been achieved. Other errors may also arise (e.g., round-off errors produced during
the solution of systems of linear algebraic equations), though these are usually small in comparison
to discretization errors.

Preliminaries
Figure 1.2 Comparison between the numerical 0.3
(circles) and analytical solution (line, see Equation Exact solution
1.7) for the temperature around a creeping fault after o Numerical solution

100, 1000, and 5000 years (see Equations 1.1 and
1.6). The fault (located at x = 0) creep generates
frictional heat that conducts outward into the
surrounding rocks. Only the domain to the right of
the fault is shown (the temperature is symmetrical
about x = 0). The numerical solution is computed
using the FEM. The Matlab script used to compute
these results is provided at the end of the chapter.

o
o

Temperature (°C)
©

0 500 1000 1500 2000

Distance (m)

The issue of stability concerns whether numerical errors, which are always present, decay or grow
with time. A stable solution is one where the errors decay with time. An unstable solution is one where
the errors grow with time, something that will eventually lead to large oscillations that have no phys-
ical meaning (i.e., they are simply numerical errors). Numerical methods are typically referred to as
being either stable, unstable, or conditionally stable (meaning it can exhibit both behaviors depending
on certain conditions). A stable method is an essential property of any numerical scheme. However,
it is important to emphasize that a stable method can still be inaccurate. Thus, it is also important to
assess the precision of a numerical solution. The best way this can be achieved is by directly compar-
ing the numerical solution with an exact solution (as done in Figure 1.2). This approach is desirable
because a numerical solution may look correct and may display the expected behavior but may be
completely wrong (e.g., due to a simple erroneous factor in the numerical code). When an exact solu-
tion is not available, one should attempt to compare the numerical solution with other published
numerical results.

Figure 1.2 shows a comparison between a numerical solution (computed using the FEM) to
Equations 1.1 and 1.6, along with the analytical solution to the same equations (i.e., Equation 1.7).
The Matlab code used to generate the figure is reproduced in Section 1.6. In this example, one
sees that the agreement between the approximate and exact solutions is very good, indicating
that the numerical solution is indeed a faithful representation of the original governing PDE. This
comparison illustrates the importance of exact analytical solutions, since they provide a means of
verifying the accuracy of a numerical solution.

1.5 Numerical Solution Methods

There are many different numerical methods available for solving PDEs, including the FEM, finite
different method, finite volume method, boundary element method, discrete element method, and
spectral methods. A comparison between three of these methods for a simple problem is given in
Appendix C. In theory, each numerical method should provide the same (correct) solution to the
original differential equation. However, in practice, some methods are better suited to certain types
of equations and model geometries than others. Often the best approach is to choose the method that
best suits the problem being investigated. This approach, however, requires considerable experience.

7

8

The Finite Element Method with Matlab

The text focuses entirely on the FEM that is widely regarded as being one of the most powerful,
flexible, and robust techniques, while also being mathematically sound (Hughes, 2000; Zienkiewicz
and Taylor, 2000a). The technique is slightly harder to learn than, for example, the finite difference
technique. However, as you will see later, the effort invested in initially learning the FEM pays off later
in the wide range of problems that the method is capable of solving. The FEM is especially well suited
(though not restricted) to solving mechanical problems and problems that involve complex shapes.
Another advantage of programming with the FEM is that the main structure of the code remains the
same even for very different physical problems. Thus, once you learn this basic structure, you can
easily modify it to solve various problems with minimal effort.

1.6 Matlab Script

The following is a Matlab script used to compute the numerical and analytical solution for Equations
1.1 and 1.6 presented in Figure 1.2. The reader is advised to reinspect the script after reading Chapters
2 and 3. Details of the time-stepping scheme are presented in Appendix E.

a0

% Program diffnld.m
% 1-D FEM solution of diffusion equation
% and comparison with analytical solution

o

clear % clear memory from current workspace
seconds_per_yr = 60*60*24%*365; % number of seconds in 1 year

% physical parameters

1x = 2000 ; % length of spatial domain

Cp = le3 ; % rock heat capacity J/kg/K

rho = 2700 ; % rock density

K = 3.3 ; % bulk thermal conductivity W/m/K

kappa = K/ (Cp*rho); % thermal diffusivity

tau = 10e6 ; % shear stress resolved on fault (Pa)

udot = 1l0e-3/seconds_per yr ; % fault slip rate (m/s)
dTdx = (1/2)*tau*udot/ (rho*Cp*kappa) ; % T gradient at fault

% numerical parameters

dt = seconds per yr ; % time step (s)

theta =1 % time stepping parameter [0,1]
ntime = 5000 ; % number of time steps

nels = 200 ; % total number of elements

nod =2 ; % number of nodes per element
nn = nels+1 % total number of nodes

dx = 1x/nels ; % element size

g coord = [0:dx:1x] ; % spatial domain (1-D mesh)

% explicit time stepping options
lumped_explicit = 'N';
if theta==0 % if fully explicit
lumped explicit = input ('Would you like to lump the mass matrix? Y/N [N]:',6's');
if isempty (lumped explicit)
lumped explicit = 'N';
end
end

Preliminaries | 9

% define boundary conditions
becdof = [nn] ; % boundary nodes
bcval = [0] ; % boundary values

% define connectivity and equation numbering

g_num = zeros (nod,nels) ;

g num(l,:) = [1:nn-1] ;

g num(2,:) = [2:nn] H

% initialise matrices and vectors

b = zeros(nn,1); % system rhs vector

lhs = sparse (nn,nn) ; % system lhs matrix

rhs = sparse (nn,nn) ; % system rhs matrix

displ = zeros(nn,l); % initial temperature (OC)
lumped _diag = zeros(nn,1l) ; % storage for lumped diagonal

for iel=1:nels % loop over all elements

num = g_num(:,iel) H % retrieve equation number
dx = abs(diff (g _coord(num))) ; % length of element
MM = dx*[1/3 1/6 ; 1/6 1/3] ;% mass matrix
KM = [kappa/dx -kappa/dx ; -kappa/dx kappa/dx 1;% diffn matrix
if lumped explicit=='N'
lhs (num,num) = lhs (num,num) + MM/dt + theta*KM ; % assemble lhs
rhs (num,num) = rhs (num,num) + MM/dt - (l1-theta)*KM ; % assemble rhs
else
lumped diag(num) = lumped diag(num) + sum(MM)'/dt ; % lumped diagonal
rhs (num,num) = rhs(num,num) + diag(sum(MM))/dt - (l-theta)*KM ; % assemble rhs
end
end % end of element loop

% time loop

=0 ; % time

k =1 ,; % counter

ii = [100 1000 5000]; % array used for plotting
for n=1:ntime

(e

n
t =t + dt ; % compute time
b = rhs*displ ; % form rhs load vector

o

% impose boundary conditions
lhs (bcdof,:) = 0 ;

tmp = spdiags(lhs,0) ;

tmp (becdof) =1 ;
lhs=spdiags (tmp, 0, 1lhs) ;

b (bcdof) = becval ;

o\°

zero the relevent equations
store diagonal

place 1 on stored-diagonal
reinsert diagonal

set rhs

o° o° o

oe

b(1l) = b(1l) + dTdx*kappa ; add heat flux at left boundary

oe

if lumped explicit=='N'

displ = 1lhs \ b ; % solve system of equations
else

displ = b./lumped diag ; % fully explicit, diagonalised solution
end

o

% evaluate analytical solution

10| The Finite Element Method with Matlab

bd = g_coord ;

terml = abs(x).*sgrt(pi).*erf((1/2)*abs(x)./(sqgrt(kappa./t).*t));
term2 = 2*t.*exp(-(1/4)*abs(x)."2./(kappa*t)) .*sqgrt (kappa./t);
term3 = abs(x)*sqrt(pi) ;

term4 = (tau*udot)/(2*kappa*sqgrt (pi)*rho*Cp) ;

Texact = term4* (terml+term2-term3) ;

o

% plotting

if mod(n,ii(k))==0
k = k+1;
hold on
figure (1)
plot (g_coord,displ, 'o-',g coord, Texact,'r')
title(['Time (kyr) = ', num2str(t/seconds _per yr/le3)])

xlabel ('Distance away from fault (m)')

ylabel (' Temperature (cym)
drawnow
t/seconds_per_yr
pause
end
hold off
end % end of time loop

1.7 Exercises

1) Depending on the values of the constant coefficients A, B, C, D, E, F, and G, the following PDE

0*u 0*u 0*u au ou
A= + B—— C— D—+E—+Fu+G=0
ox? 0x0y 0x ay "

can be classified accordmg to the following scheme (Garabedian, 1964):
Elliptic: B?—4AC<0

Parabolic: B> -4AC=0
Hyperbolic: B> —4AC > 0

Using this scheme, classify the following PDEs:

oT _ 0T

ot 0x2
62T 0*T

o2 oxr

02T 0°T

o+l

ox? 0y?

ﬂ + ug =0

ot ox

oT oT o*T
i + —

Uu— =«
ot ox ox?

Preliminaries

2) Match the following exact solutions

4

~

¢ =sin(Qax — t)
¢ =sin rx cos xt
¢ = sin(wx)e™
it

¢ = sin(rx)e”

with their corresponding PDEs:

?¢ _ 9%
o2 ox?
op _ 9’

ot ox2
op 0P
—+—=0
ot ox

62 2
9 P _
ox* 0y?

In each case, explain your reasoning. Write a matlab script to evaluate and compare the analyical
solutions. In each case, assume the independent variables extend from 0 to 1. Make a list of the
most important characteristics of each.

In 1D, the equation governing diffusion-advection of a passive scalar T'(x, £) is

oT | OT _ T
ot ox 0x?
where u is the flow velocity and «a is the diffusivity. For the conditions
Tx<0,t=0)=1
Tx>0,t=0)=0
Tx=-2t)=1
Tx=2,)=0

the exact solution (valid before the influence of the step reaches the boundary) is

w(x —ut)\ exp (—a(2k — 12x%t/L?)
L) 2% — 1

N
T(x.t) = % - % Y sin <(2k— 1)
k=1

Write a Matlab script to evaluate the exact solution for L =4, u = 1, « = 0.1, and ¢ between 0
and 1. Study the effect of changing @ and u.

Use the script listed in Section 1.6 to study the accuracy and stability of the numerical solution
(with respect to the exact solution). Try a range of different values for dx (modified by vary-
ing the number of finite elements, nels) and dt. The parameter 6 can be used to study dif-
ferent time-stepping schemes, ranging from fully implicit (6 = 1) to fully explicit (8 = 0) (see
Appendix E). In addition, the explicit case can be solved more efficiently by diagonalizing the sys-
tem stiffness matrix. Warning: For the boundary conditions considered, the finite element solution
can only match the analytical solution until the temperature perturbation influences the lateral
boundary. To study longer times, one would need to move the lateral boundary further away (i.e.,
increase 1x) to avoid boundary effects.

11

12| The Finite Element Method with Matlab

Suggested Reading

E. A. Bender, An Introduction to Mathematical Modeling, Dover Publications Inc., New York, 2000.

C. A.]. Fletcher, Computational Techniques for Fluid Dynamics, Springer, Berlin, 2000.

A. Ismail-Zadeh and P. Tackley, Computational Methods for Geodynamics, Cambridge University Press,
Cambridge, 2000.

R. Slinderland and L. Kump, Mathematical Modeling of Earth’s Dynamical Systems, Princeton University
Press, Princeton, NJ, 2011.

G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Cambridge, MA, 1986.

